JP2021068515A - Cooling device for battery pack - Google Patents

Cooling device for battery pack Download PDF

Info

Publication number
JP2021068515A
JP2021068515A JP2019190840A JP2019190840A JP2021068515A JP 2021068515 A JP2021068515 A JP 2021068515A JP 2019190840 A JP2019190840 A JP 2019190840A JP 2019190840 A JP2019190840 A JP 2019190840A JP 2021068515 A JP2021068515 A JP 2021068515A
Authority
JP
Japan
Prior art keywords
cooling air
intake passage
intake
orifice
orifices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019190840A
Other languages
Japanese (ja)
Other versions
JP7143832B2 (en
Inventor
直人 小川
Naoto Ogawa
直人 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019190840A priority Critical patent/JP7143832B2/en
Publication of JP2021068515A publication Critical patent/JP2021068515A/en
Application granted granted Critical
Publication of JP7143832B2 publication Critical patent/JP7143832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

To suppress occurrence of variation in temperature of a battery pack in a cooling device for a battery pack having a plurality of intake ports and intake passages.SOLUTION: A first intake passage 33a through which the cooling air introduced from a first intake port 30a flows and a second intake passage 33b through which the cooling air introduced from a second intake port 30b flows are arranged adjacently. A plurality of first orifices 35 are formed between the first intake passage 33a and a confluent part 40, and a plurality of second orifices 36 are formed between the second intake passage 33b and the confluent part 40. A battery pack 10 is cooled by the cooling air flowing out of each orifice.SELECTED DRAWING: Figure 1

Description

本開示は、組電池の冷却装置に係わり、特に、ケース内に配置された組電池を冷却風で冷却する冷却装置に関する。 The present disclosure relates to a cooling device for an assembled battery, and more particularly to a cooling device for cooling an assembled battery arranged in a case with cooling air.

内燃機関と回転電機を併用するハイブリッド車や回転電機を駆動源とする電気自動車には、蓄電器として二次電池が用いられる。二次電池は、電気化学反応やジュール熱によって発熱し、温度が上昇する。二次電池は、高温になると効率が低下するとともに寿命が低下するため、二次電池を収納するケース内に冷却風を導入して、二次電池を冷却することが行われる。 A secondary battery is used as a capacitor in a hybrid vehicle that uses both an internal combustion engine and a rotary electric machine and an electric vehicle that uses a rotary electric machine as a drive source. The temperature of the secondary battery rises due to heat generated by the electrochemical reaction and Joule heat. When the temperature of the secondary battery becomes high, the efficiency decreases and the life of the secondary battery decreases. Therefore, cooling air is introduced into the case for storing the secondary battery to cool the secondary battery.

たとえば、特開2006−179190号公報(特許文献1)に開示された車載用電池パックでは、冷却風を、吸気ダクトを介して積層電池集合体(組電池)を収納したケース内部へ導入し、組電池を冷却した冷却風を、排気ダクトを介してケース外部へ排出することにより、組電池を冷却している。 For example, in the in-vehicle battery pack disclosed in Japanese Patent Application Laid-Open No. 2006-179190 (Patent Document 1), cooling air is introduced into the case containing the laminated battery assembly (assembled battery) via an intake duct. The assembled battery is cooled by discharging the cooling air that has cooled the assembled battery to the outside of the case through the exhaust duct.

特開2006−179190号公報Japanese Unexamined Patent Publication No. 2006-179190

離間した位置の空気を取り入れるため、複数の吸気口および吸気ダクト(吸気通路)を設ける場合には、空気(吸気)温度の差により、電池を収容したケース内部で冷却風の温度差が生じる可能性がある。このため、ケース内に配置された組電池の温度にばらつきが生じる可能性がある。 When multiple intake ports and intake ducts (intake passages) are provided to take in air at distant positions, the difference in air (intake) temperature may cause a temperature difference in the cooling air inside the case containing the batteries. There is sex. Therefore, the temperature of the assembled battery arranged in the case may vary.

本開示は、かかる課題を解決するためになされたものであり、本件開示の目的は、複数の吸気口および吸気通路を備えた組電池の冷却装置において、組電池の温度にばらつきが発生することを抑制することである。 The present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to cause variations in the temperature of the assembled battery in a cooling device for an assembled battery provided with a plurality of intake ports and intake passages. Is to suppress.

本開示における組電池の冷却装置は、ケース内に配置された組電池を冷却風により冷却する冷却装置であって、ケース内に冷却風を導入する第1吸気口と、ケース内に冷却風を導入する第2吸気口と、冷却風をケース外に排出する排出口と、第1吸気口から導入された冷却風が流れる第1吸気通路と、第1吸気通路に隣接して配置され、第2吸気口から導入された冷却風が流れる第2吸気通路と、第1吸気通路から流出する冷却風と第2吸気通路から流出する冷却風とが合流する合流部と、第1吸気通路と前記合流部の間に形成された複数の第1オリフィスと、第2吸気通路と前記合流部の間に形成される複数の第2オリフィスと、を備える。第1オリフィスを通過した冷却風と第2オリフィスを通過した冷却風とが合流部で合流し、合流した冷却風が組電池を冷却した後、排出口から排出される。 The assembly battery cooling device in the present disclosure is a cooling device that cools the assembled battery arranged in the case by cooling air, and introduces the first intake port for introducing the cooling air into the case and the cooling air into the case. The second intake port to be introduced, the discharge port for discharging the cooling air to the outside of the case, the first intake passage through which the cooling air introduced from the first intake port flows, and the first intake passage are arranged adjacent to each other. 2 The second intake passage through which the cooling air introduced from the intake port flows, the confluence portion where the cooling air flowing out from the first intake passage and the cooling air flowing out from the second intake passage merge, the first intake passage and the above. A plurality of first orifices formed between the merging portions and a plurality of second orifices formed between the second intake passage and the merging portion are provided. The cooling air that has passed through the first orifice and the cooling air that has passed through the second orifice merge at the confluence, and the combined cooling air cools the assembled battery and then is discharged from the discharge port.

このように構成された組電池の冷却装置によれば、第1吸気通路と第2吸気通路が隣接して配置されるので、第1吸気口から導入された冷却風と第2吸気口から導入された冷却風の間で熱交換が行われ、各吸気口から導入された冷却風の温度差が縮小する。また、第1吸気口から導入された冷却風と第2吸気口から導入された冷却風は、それぞれ、複数の第1オリフィスと複数の第2オリフィスを通過し合流部で合流するので、第1吸気口から導入された冷却風と第2吸気口から導入された冷却風がオリフィスの下流でより均一に混じり合い、組電池を冷却する冷却風の温度差が縮小する。これにより、組電池の温度にばらつきが発生することを抑制できる。 According to the assembly battery cooling device configured in this way, since the first intake passage and the second intake passage are arranged adjacent to each other, the cooling air introduced from the first intake port and the cooling air introduced from the second intake port are introduced. Heat exchange is performed between the cooling air, and the temperature difference of the cooling air introduced from each intake port is reduced. Further, since the cooling air introduced from the first intake port and the cooling air introduced from the second intake port pass through the plurality of first orifices and the plurality of second orifices, respectively, and merge at the confluence portion, the first The cooling air introduced from the intake port and the cooling air introduced from the second intake port are mixed more uniformly downstream of the orifice, and the temperature difference of the cooling air that cools the assembled battery is reduced. As a result, it is possible to suppress the occurrence of variation in the temperature of the assembled battery.

本開示によれば、複数の吸気口および吸気通路を備えた組電池の冷却装置において、組電池の温度にばらつきが発生することを抑制することができる。 According to the present disclosure, it is possible to suppress the occurrence of variation in the temperature of the assembled battery in the cooling device of the assembled battery provided with a plurality of intake ports and intake passages.

本開示の実施の形態にかかる組電池の冷却装置示す概略構成図である。It is a schematic block diagram which shows the cooling device of the assembled battery which concerns on embodiment of this disclosure. ケースを示す斜視図である。It is a perspective view which shows the case. 吸気ダクトを示す斜視図である。It is a perspective view which shows the intake duct. 図3におけるIV−IV断面図である。FIG. 3 is a sectional view taken along line IV-IV in FIG. 図3におけるV−V断面図である。FIG. 3 is a sectional view taken along line VV in FIG. 変型例における吸気ダクトを示す図である。It is a figure which shows the intake duct in the modified example. 図6におけるVII−VII断面図である。FIG. 6 is a sectional view taken along line VII-VII in FIG.

本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.

図1は、本実施の形態にかかる組電池の冷却装置示す概略構成図である。冷却装置1は、組電池10を収納するケース20を備える。ケース20は、図2に示すように、組電池10を収納する空間を有するケース本体21と蓋部材22から構成されている。ケース20は、組電池10を収納可能な形態であれば、どのような構成であってもよく、組電池10が車載される場合には、車両のアンダフロアと他の車体構成部材から組電池10を収納可能な空間を形成し、組電池10を収納するケースとしてもよい。また、ハット状のアッパケースとロアケースを組み合わせてケースを形成してもよい。 FIG. 1 is a schematic configuration diagram showing a cooling device for an assembled battery according to the present embodiment. The cooling device 1 includes a case 20 for storing the assembled battery 10. As shown in FIG. 2, the case 20 is composed of a case body 21 and a lid member 22 having a space for accommodating the assembled battery 10. The case 20 may have any configuration as long as the assembled battery 10 can be stored. When the assembled battery 10 is mounted on a vehicle, the assembled battery is composed of the underfloor of the vehicle and other vehicle body components. A space may be formed in which the 10 can be stored, and a case for storing the assembled battery 10 may be used. Further, the case may be formed by combining the hat-shaped upper case and the lower case.

組電池10は、一対のエンドプレート(図示せず)の間に、複数の単電池11を積層することによって構成されている。本実施の形態では、単電池11は角型電池からなり、単電池11と単電池11の間には、冷却風が流れる空間が形成されている。なお、単電池11として、ニッケル−水素電池やリチウムイオン電池などの二次電池を用いることができる。 The assembled battery 10 is configured by stacking a plurality of cell batteries 11 between a pair of end plates (not shown). In the present embodiment, the cell 11 is made of a square battery, and a space through which cooling air flows is formed between the cell 11 and the cell 11. As the cell 11, a secondary battery such as a nickel-hydrogen battery or a lithium ion battery can be used.

冷却装置1は、冷却風である空気をケース20内に導入するために、第1吸気口30aおよび第2吸気口30bを備える。第1吸気口30aと第2吸気口30bは、異なる位置において開口しており、本実施の形態では、第1吸気口30aは図1の右方の位置(一方側)に開口しており、第2吸気口30bは図1の左方の位置(他方側)に開口している。車載される組電池10の場合には、たとえば、第1吸気口30aを車室内に設けて車室内の空気を導入し、第2吸気口30bを車室外に設けて外気を導入することも可能である。また、車両用空調装置で冷却された空気を取り込み可能な位置に第1吸気口30aを設け、第2吸気口30bを車室内に設けてもよい。 The cooling device 1 includes a first intake port 30a and a second intake port 30b in order to introduce air, which is cooling air, into the case 20. The first intake port 30a and the second intake port 30b are open at different positions, and in the present embodiment, the first intake port 30a is open at the right position (one side) in FIG. The second intake port 30b is open at the left position (the other side) in FIG. In the case of the assembled battery 10 mounted on the vehicle, for example, it is possible to provide the first intake port 30a in the vehicle interior to introduce the air in the vehicle interior and to provide the second intake port 30b outside the vehicle interior to introduce the outside air. Is. Further, the first intake port 30a may be provided at a position where the air cooled by the vehicle air conditioner can be taken in, and the second intake port 30b may be provided in the vehicle interior.

第1吸気口30aの下流には、第1送風機31aが設けられ、第2吸気口30bの下流には、第2送風機31bが設けられている。第1送風機31a、第2送風機31bは、たとえば、シロッコファンであり、第1吸気口30a、第2吸気口30bから吸引した空気を冷却風として、ケース2内へ圧送する。第1送風機31a、第2送風機31bは、軸流ファンから構成されてもよく、ルーツポンプ等の容積式のブロアであってもよい。第1送風機31aから吐出された冷却風は、吸気ダクト32aを介して吸気ダクト33へ流入し、第2送風機31bから吐出された冷却風は、吸気ダクト32bを介して吸気ダクト33へ流入する。 A first blower 31a is provided downstream of the first intake port 30a, and a second blower 31b is provided downstream of the second intake port 30b. The first blower 31a and the second blower 31b are, for example, sirocco fans, and the air sucked from the first intake port 30a and the second intake port 30b is pumped into the case 2 as cooling air. The first blower 31a and the second blower 31b may be composed of an axial fan, or may be a positive displacement blower such as a roots pump. The cooling air discharged from the first blower 31a flows into the intake duct 33 via the intake duct 32a, and the cooling air discharged from the second blower 31b flows into the intake duct 33 via the intake duct 32b.

吸気ダクト33は、ケース20内に配置されており、図1に示すように、吸気ダクト33と組電池10との間には、後述する合流部40が形成されている。ケース20には、冷却風をケース20外に排出する排出口50が設けられる。吸気ダクト33には、図2および図3の破線矢印で示すように、第1吸気口30aから導入された冷却風が流入し、図2および図3の実線矢印で示すように、第2吸気口30bから導入された冷却風が流入する。吸気ダクト33は、図2および図3に示すように、組電池10の積層方向に延びており、図4に示すように、その内部が区画壁34によって、第1吸気通路33aと第2吸気通路33bに分けられている。 The intake duct 33 is arranged in the case 20, and as shown in FIG. 1, a merging portion 40, which will be described later, is formed between the intake duct 33 and the assembled battery 10. The case 20 is provided with a discharge port 50 for discharging the cooling air to the outside of the case 20. The cooling air introduced from the first intake port 30a flows into the intake duct 33 as shown by the broken line arrows in FIGS. 2 and 3, and the second intake air is introduced into the intake duct 33 as shown by the solid line arrows in FIGS. 2 and 3. The cooling air introduced from the port 30b flows in. As shown in FIGS. 2 and 3, the intake duct 33 extends in the stacking direction of the assembled batteries 10, and as shown in FIG. 4, the inside thereof is formed by the partition wall 34 to form the first intake passage 33a and the second intake air. It is divided into passages 33b.

第1吸気通路33aは、吸気ダクト32aと接続しており、第1吸気口30aから導入された冷却風が流れる。第2吸気通路33bは、吸気ダクト32bと接続しており、第2吸気口30bから導入された冷却風が流れる。図4および図5に示すように、第1吸気通路33aと第2吸気通路33bは、区画壁34によって、吸気ダクト33の長さ方向と直交する方向に交互に配列されており、第1吸気通路33aと第2吸気通路33bは、隣接して配置されている。具体的には、第1吸気通路33aから分岐した通路33a1、33a2、33a3と第2吸気通路33bから分岐した通路33b1、33b2、33b3が交互に隣接して配置されている。なお、各通路33a1、33a2、33a3、33b1、33b2、33b3の通路断面積は、ほぼ同じとされている。 The first intake passage 33a is connected to the intake duct 32a, and the cooling air introduced from the first intake port 30a flows. The second intake passage 33b is connected to the intake duct 32b, and the cooling air introduced from the second intake port 30b flows. As shown in FIGS. 4 and 5, the first intake passage 33a and the second intake passage 33b are alternately arranged by the partition wall 34 in a direction orthogonal to the length direction of the intake duct 33, and the first intake passage 33a and the second intake passage 33b are arranged alternately. The passage 33a and the second intake passage 33b are arranged adjacent to each other. Specifically, the passages 33a1, 33a2, 33a3 branched from the first intake passage 33a and the passages 33b1, 33b2, 33b3 branched from the second intake passage 33b are alternately arranged adjacent to each other. The passage cross-sectional areas of the passages 33a1, 33a2, 33a3, 33b1, 33b2, and 33b3 are almost the same.

図1に示すように、吸気ダクト33と組電池10の間には、第1吸気通路33aから流出する冷却風と第2吸気通路33bから流出する冷却風が合流する合流部40が形成されている。第1吸気通路33aの合流部40と接する面、すなわち、第1吸気通路33aと合流部40の間には、図3および図5に示すように、複数の第1オリフィス35が設けられており、第1吸気通路33a内を流れた冷却風は、複数の第1オリフィス35を通過し、組電池10へ向けて吐出される。第2吸気通路33bの合流部40と接する面、すなわち、第2吸気通路33bと合流部40の間には、図3および図5に示すように、複数の第2オリフィス36が設けられており、第2吸気通路33b内を流れた冷却風は、複数の第2オリフィス36を通過し、組電池10へ向けて吐出される。 As shown in FIG. 1, a confluence 40 is formed between the intake duct 33 and the assembled battery 10 at which the cooling air flowing out from the first intake passage 33a and the cooling air flowing out from the second intake passage 33b merge. There is. As shown in FIGS. 3 and 5, a plurality of first orifices 35 are provided on the surface of the first intake passage 33a in contact with the merging portion 40, that is, between the first intake passage 33a and the merging portion 40. The cooling air flowing through the first intake passage 33a passes through the plurality of first orifices 35 and is discharged toward the assembled battery 10. As shown in FIGS. 3 and 5, a plurality of second orifices 36 are provided on the surface of the second intake passage 33b in contact with the merging portion 40, that is, between the second intake passage 33b and the merging portion 40. The cooling air flowing through the second intake passage 33b passes through the plurality of second orifices 36 and is discharged toward the assembled battery 10.

第1吸気通路33aの合流部40と接する面は、図5に示すよう、第1吸気通路33a内の冷却風流れ方向と直交する断面が、合流部40側に凸な山形形状となっており、山形形状の斜面部分に複数の第1オリフィス35が形成されている。同様に、第2吸気通路33bの合流部40と接する面は、図5に示すよう、第2吸気通路33b内の冷却風流れ方向と直交する断面が、合流部40側に凸な山形形状となっており、山形形状の斜面部分に複数の第2オリフィス36が形成されている。なお、単位面積当たりにおける第1オリフィス35と第2オリフィス36の個数は同じとされており、各オリフィスの径もほぼ同じとされている。 As shown in FIG. 5, the surface of the first intake passage 33a in contact with the merging portion 40 has a chevron shape whose cross section orthogonal to the cooling air flow direction in the first intake passage 33a is convex toward the merging portion 40. , A plurality of first orifices 35 are formed on the chevron-shaped slope portion. Similarly, as shown in FIG. 5, the surface of the second intake passage 33b in contact with the merging portion 40 has a chevron shape in which the cross section orthogonal to the cooling air flow direction in the second intake passage 33b is convex toward the merging portion 40. A plurality of second orifices 36 are formed on the chevron-shaped slope portion. The number of the first orifice 35 and the second orifice 36 per unit area is the same, and the diameter of each orifice is also substantially the same.

以上のように構成された、本実施の形態の冷却装置1では、第1吸気口30aから導入された冷却風(空気)は第1吸気通路33aを流れ、第2吸気口30bから導入された冷却風(空気)は第2吸気通路33bを流れる。第1吸気口30aから導入された冷却風(空気)と第2吸気口30bから導入された冷却風(空気)に温度差があっても、第1吸気通路33aと第2吸気通路33bは隣接して配置されているので、第1吸気通路33aと第2吸気通路33bを流れる冷却風の間で熱交換が行われ、冷却風の温度差が縮小する。特に、本実施の形態では、第1吸気通路33aと第2吸気通路33bは、区画壁34によって、吸気ダクト33の長さ方向と直交する方向に交互に配列されており、伝熱面積を大きくすることができ、好適に熱交換を行うことができる。また、第1吸気通路33aと第2吸気通路33bの冷却風の流れは対向しており、向流型の熱交換器を形成するので熱交換効率がよい。さらに、向流型の熱交換器を形成しているので、第1吸気通路33aと第2吸気通路33bの冷却風の流れ方向(組電池10の積層方向)において、第1オリフィス35と第2オリフィス36から流出する冷却風の温度差も小さくすることができる。 In the cooling device 1 of the present embodiment configured as described above, the cooling air (air) introduced from the first intake port 30a flows through the first intake passage 33a and is introduced from the second intake port 30b. The cooling air (air) flows through the second intake passage 33b. Even if there is a temperature difference between the cooling air (air) introduced from the first intake port 30a and the cooling air (air) introduced from the second intake port 30b, the first intake passage 33a and the second intake passage 33b are adjacent to each other. Therefore, heat is exchanged between the cooling air flowing through the first intake passage 33a and the second intake passage 33b, and the temperature difference of the cooling air is reduced. In particular, in the present embodiment, the first intake passage 33a and the second intake passage 33b are alternately arranged by the partition wall 34 in the direction orthogonal to the length direction of the intake duct 33, and the heat transfer area is increased. And can preferably perform heat exchange. Further, the flow of the cooling air in the first intake passage 33a and the second intake passage 33b are opposed to each other, and a countercurrent type heat exchanger is formed, so that the heat exchange efficiency is good. Further, since the countercurrent type heat exchanger is formed, the first orifice 35 and the second orifice 35 and the second in the flow direction of the cooling air of the first intake passage 33a and the second intake passage 33b (the stacking direction of the assembled batteries 10). The temperature difference of the cooling air flowing out from the orifice 36 can also be reduced.

第1吸気通路33aから流出する冷却風と第2吸気通路33bから流出する冷却風が合流する合流部40には、複数の第1オリフィス35と複数の第2オリフィス36を通過した冷却風が流れ込む。冷却風が第1オリフィス35および第2オリフィス36を通過することにより、オリフィスを通過しない場合に比べて、合流部40に流れ込む冷却風の流速が大きくなるとともに圧力が低下する。また、第1オリフィス35を通過した冷却風と第2オリフィス36を通過した冷却風の流量の差は、第1吸気通路33aを流れる冷却風と第2吸気通路33bを流れる冷却風の流量の差よりも小さくなる。これにより、オリフィスを備えない場合に比較して、第1吸気口30aから導入された冷却風(第1吸気通路33aを流れる冷却風)と第2吸気口30bから導入された冷却風(第2吸気通路33bを流れる冷却風)が合流部40でより均一に混じり合い、組電池を冷却する冷却風の温度差が縮小する。 The cooling air that has passed through the plurality of first orifices 35 and the plurality of second orifices 36 flows into the confluence portion 40 where the cooling air flowing out from the first intake passage 33a and the cooling air flowing out from the second intake passage 33b merge. .. By passing the cooling air through the first orifice 35 and the second orifice 36, the flow velocity of the cooling air flowing into the merging portion 40 increases and the pressure decreases as compared with the case where the cooling air does not pass through the orifice. The difference between the flow rates of the cooling air that has passed through the first orifice 35 and the cooling air that has passed through the second orifice 36 is the difference between the flow rates of the cooling air that flows through the first intake passage 33a and the flow rate of the cooling air that flows through the second intake passage 33b. Is smaller than As a result, the cooling air introduced from the first intake port 30a (cooling air flowing through the first intake passage 33a) and the cooling air introduced from the second intake port 30b (second) as compared with the case where the orifice is not provided. The cooling air flowing through the intake passage 33b) is more evenly mixed at the confluence 40, and the temperature difference of the cooling air for cooling the assembled battery is reduced.

第1吸気通路33aと第2吸気通路33bを流れる冷却風の流量の差が大きくても、第1オリフィス35を通過した冷却風と第2オリフィス36を通過した冷却風の流量の差は、合流部40の各領域でほぼ同じになるので、第1吸気通路33aと第2吸気通路33bを流れる冷却風の流量の差にかかわらず、第1吸気通路33aを流れる冷却風と第2吸気通路33bを流れる冷却風が合流部40で均一に混じり合い、組電池を冷却する冷却風の温度差が縮小する。このため、たとえば、第1吸気通路33aを流れる冷却風(空気)の温度を検出する手段、および、第2吸気通路33bを流れる冷却風(空気)の温度を検出する手段を設け、温度が低い側の冷却風の流量割合を増加して冷却効率を高めても、組電池の温度にばらつきが発生することを抑制できるので、第1吸気通路33aと第2吸気通路33bを流れる冷却風の流量割合を制御することにより、組電池の温度にばらつきが発生することを抑制しつつ冷却効率を高めることが可能となる。 Even if the difference in the flow rates of the cooling air flowing through the first intake passage 33a and the second intake passage 33b is large, the difference in the flow rates of the cooling air passing through the first orifice 35 and the cooling air passing through the second orifice 36 merges. Since it is almost the same in each region of the portion 40, the cooling air flowing through the first intake passage 33a and the second intake passage 33b are not related to the difference in the flow rates of the cooling air flowing through the first intake passage 33a and the second intake passage 33b. The cooling air flowing through the battery is uniformly mixed at the confluence 40, and the temperature difference of the cooling air for cooling the assembled battery is reduced. Therefore, for example, a means for detecting the temperature of the cooling air (air) flowing through the first intake passage 33a and a means for detecting the temperature of the cooling air (air) flowing through the second intake passage 33b are provided, and the temperature is low. Even if the cooling efficiency is increased by increasing the flow rate ratio of the cooling air on the side, it is possible to suppress the occurrence of variation in the temperature of the assembled battery, so that the flow rate of the cooling air flowing through the first intake passage 33a and the second intake passage 33b By controlling the ratio, it is possible to improve the cooling efficiency while suppressing the occurrence of variation in the temperature of the assembled battery.

特に、本実施の形態では、前述のように、複数の第1オリフィス35および複数の第2オリフィス36が、山形形状の斜面部分に形成されている。この構成により、図5の一点鎖線矢印および破線矢印で示すように、第1オリフィス35から流出した冷却風と第2オリフィス36から流出した冷却風が合流部40で交差し、さらに均一に混じり合う。合流部40で合流し混じり合った冷却風は、図1の破線矢印に示すように、組電池10の単電池11と単電池11の間を流れ、組電池10を冷却した後、排出口50からケース20外に排出される。 In particular, in the present embodiment, as described above, the plurality of first orifices 35 and the plurality of second orifices 36 are formed on the chevron-shaped slope portion. With this configuration, as shown by the alternate long and short dash arrow in FIG. 5, the cooling air flowing out from the first orifice 35 and the cooling air flowing out from the second orifice 36 intersect at the confluence 40 and are further uniformly mixed. .. As shown by the broken line arrow in FIG. 1, the cooling air that has merged and mixed at the merging portion 40 flows between the cell 11 and the cell 11 of the assembled battery 10, cools the assembled battery 10, and then discharges the outlet 50. Is discharged from the case 20 to the outside.

以上説明したように、本実施の形態では、第1吸気口30aから導入された冷却風(空気)と第2吸気口30bから導入された冷却風(空気)に温度差があっても、第1吸気通路33aと第2吸気通路33bが隣接して配置されているので、第1吸気通路33aと第2吸気通路33bを流れる冷却風の間で熱交換が行われ、冷却風の温度差が縮小する。そして、熱交換により温度差が縮小した冷却風が、複数の第1オリフィス35と複数の第2オリフィス36を通過したあと、合流部40において均一に混じり合うので、さらに冷却風の温度差が縮小する。これにより、組電池10の温度にばらつきが発生することを抑制できる。 As described above, in the present embodiment, even if there is a temperature difference between the cooling air (air) introduced from the first intake port 30a and the cooling air (air) introduced from the second intake port 30b, the first Since the first intake passage 33a and the second intake passage 33b are arranged adjacent to each other, heat exchange is performed between the first intake passage 33a and the cooling air flowing through the second intake passage 33b, and the temperature difference of the cooling air is increased. to shrink. Then, the cooling air whose temperature difference is reduced by heat exchange passes through the plurality of first orifices 35 and the plurality of second orifices 36 and then is uniformly mixed at the confluence 40, so that the temperature difference of the cooling air is further reduced. To do. As a result, it is possible to suppress the occurrence of variation in the temperature of the assembled battery 10.

上記の実施の形態において、第1吸気通路33aと第2吸気通路33bの通路断面積はほぼ等しく、単位面積当たりにおける第1オリフィス35と第2オリフィス36の個数およびオリフィスの径を等しくしているが、第1吸気通路33aにおいて、冷却風の下流側ほど第1オリフィス35の径を大きくすることにより、各々の第1オリフィス35から流出する冷却風の流量の偏差を小さくすることができる。同様に、第2吸気通路33bにおいて、冷却風の下流側ほど第2オリフィス36の径を大きくすることによって、各々の第2オリフィス36から流出する冷却風の流量の偏差を小さくすることができる。このような構成を採用することにより、合流部40の全体にわたって、より均一に冷却風が混じり合い、組電池100の温度ばらつきの発生を抑制できる。 In the above embodiment, the passage cross-sectional areas of the first intake passage 33a and the second intake passage 33b are substantially the same, and the number of the first orifice 35 and the second orifice 36 and the diameter of the orifice per unit area are equal. However, in the first intake passage 33a, by increasing the diameter of the first orifice 35 toward the downstream side of the cooling air, the deviation of the flow rate of the cooling air flowing out from each first orifice 35 can be reduced. Similarly, in the second intake passage 33b, the deviation of the flow rate of the cooling air flowing out from each of the second orifices 36 can be reduced by increasing the diameter of the second orifice 36 toward the downstream side of the cooling air. By adopting such a configuration, the cooling air is more uniformly mixed throughout the confluence portion 40, and the occurrence of temperature variation in the assembled battery 100 can be suppressed.

第1吸気通路33aと第2吸気通路33bの通路断面積は異なってもよく、第1オリフィス35と第2オリフィス36の個数も異なってよい。各々の第1オリフィス35の径がほぼ等しければ、第1オリフィス35の各々から流出する冷却風の流量はほぼ等しくなる。各々の第2オリフィス36の径がほぼ等しければ、第2オリフィス36から流出する冷却風の流量もほぼ等しくなる。合流部40の各領域において、第1オリフィス35の各々から流出する冷却風の流量がほぼ等しく、かつ、第2オリフィス36から流出する冷却風の流量もほぼ等しければ、合流部40の各領域において均一に冷却風が混じり合い、組電池の温度のばらつきを抑制できる。 The passage cross-sectional areas of the first intake passage 33a and the second intake passage 33b may be different, and the number of the first orifice 35 and the second orifice 36 may be different. If the diameters of the first orifices 35 are approximately equal, the flow rates of the cooling air flowing out of each of the first orifices 35 are approximately equal. If the diameters of the second orifices 36 are substantially equal, the flow rate of the cooling air flowing out from the second orifice 36 is also substantially equal. In each region of the merging portion 40, if the flow rates of the cooling air flowing out from each of the first orifice 35 are substantially equal and the flow rates of the cooling air flowing out from the second orifice 36 are also substantially equal, in each region of the merging portion 40. The cooling air is uniformly mixed, and the fluctuation in the temperature of the assembled battery can be suppressed.

〈変形例〉
上記の実施の形態では、複数の第1オリフィス35および複数の第2オリフィス36が、山形形状の斜面部分に形成されている。変形例においては、図6に示す吸気ダクト63のように、複数の第1オリフィス65および複数の第2オリフィス66は、平面部分に形成されている。図6に示す吸気ダクト63は、上記実施の形態における吸気ダクト33に代わるものであり、その内部が区画壁64によって、第1吸気通路63aと第2吸気通路63bに分けられている。第1吸気通路63aと第2吸気通路63bは、区画壁64によって、吸気ダクト63の長さ方向と直交する方向に交互に配列しており、第1吸気通路63aと第2吸気通路63bは、隣接して配置されている。第1吸気通路63aは、吸気ダクト32a(図1参照)と接続しており、第1吸気口30aから導入された冷却風が流れる。第2吸気通路63bは、吸気ダクト32b(図1参照)と接続しており、第2吸気口30bから導入された冷却風が流れる。
<Modification example>
In the above embodiment, the plurality of first orifices 35 and the plurality of second orifices 36 are formed on the chevron-shaped slope portion. In the modified example, as in the intake duct 63 shown in FIG. 6, the plurality of first orifices 65 and the plurality of second orifices 66 are formed in a flat portion. The intake duct 63 shown in FIG. 6 replaces the intake duct 33 in the above embodiment, and the inside thereof is divided into a first intake passage 63a and a second intake passage 63b by a partition wall 64. The first intake passage 63a and the second intake passage 63b are alternately arranged in a direction orthogonal to the length direction of the intake duct 63 by the partition wall 64, and the first intake passage 63a and the second intake passage 63b are arranged in a direction orthogonal to the length direction of the intake duct 63. They are placed adjacent to each other. The first intake passage 63a is connected to the intake duct 32a (see FIG. 1), and the cooling air introduced from the first intake port 30a flows. The second intake passage 63b is connected to the intake duct 32b (see FIG. 1), and the cooling air introduced from the second intake port 30b flows.

吸気ダクト63に形成された第1吸気通路63aの合流部40側の面には、複数の第1オリフィス65が設けられており、第2吸気通路63bの合流部40側の面には、複数の第2オリフィス66が設けられている。図7に示すように、第1吸気通路63aおよび第2吸気通路63bの合流部40側の面は、平面とされており、この平面に複数の第1オリフィス65および複数の第2オリフィス66が形成されている。オリフィスを形成する面を平面とすることにより、吸気ダクト63の製造が容易になる。この変形例では、第1オリフィス65から流出する冷却風と第2オリフィス66から流出する冷却風は、ほぼ平行に流出し、上記の実施形態のようにオリフィスから流出した冷却風が合流部40で交差することはないが、合流部40に流れ込む冷却風の流速が大きくなるとともに圧力が低下し、また、第1オリフィス65を通過した冷却風と第2オリフィス66を通過した冷却風の流量の差は、第1吸気通路63aを流れる冷却風と第2吸気通路63bを流れる冷却風の流量の差よりも小さくなる。これにより、オリフィスを備えない場合に比較して、第1吸気口30aから導入された冷却風(第1吸気通路63aを流れる冷却風)と第2吸気口30bから導入された冷却風(第2吸気通路63bを流れる冷却風)が合流部40で均一に混じり合い、組電池を冷却する冷却風の温度差が縮小する。 A plurality of first orifices 65 are provided on the surface of the first intake passage 63a formed in the intake duct 63 on the merging portion 40 side, and a plurality of first orifices 65 are provided on the surface of the second intake passage 63b on the merging portion 40 side. The second orifice 66 of the above is provided. As shown in FIG. 7, the surface of the first intake passage 63a and the second intake passage 63b on the confluence 40 side is a flat surface, and a plurality of first orifices 65 and a plurality of second orifices 66 are formed on this plane. It is formed. By making the surface forming the orifice flat, the intake duct 63 can be easily manufactured. In this modification, the cooling air flowing out from the first orifice 65 and the cooling air flowing out from the second orifice 66 flow out substantially in parallel, and the cooling air flowing out from the orifice as in the above embodiment is merged at the confluence 40. Although they do not intersect, the flow velocity of the cooling air flowing into the confluence 40 increases and the pressure decreases, and the difference between the flow rates of the cooling air passing through the first orifice 65 and the flow rate of the cooling air passing through the second orifice 66. Is smaller than the difference between the flow rates of the cooling air flowing through the first intake passage 63a and the flow rate of the cooling air flowing through the second intake passage 63b. As a result, the cooling air introduced from the first intake port 30a (cooling air flowing through the first intake passage 63a) and the cooling air introduced from the second intake port 30b (second) as compared with the case where the orifice is not provided. The cooling air flowing through the intake passage 63b) is uniformly mixed at the confluence 40, and the temperature difference of the cooling air for cooling the assembled battery is reduced.

実施の形態および変形例において、吸気ダクトに形成した第1吸気通路と第2吸気通路は隣接して配置されていればよく、吸気ダクトの長さ方向に直交する方向に交互に配置されていなくともよい。また、第1吸気通路と第2吸気通路の冷却風の流れを同じ方向として、並流型の熱交換器を形成してもよい。 In the embodiment and the modified example, the first intake passage and the second intake passage formed in the intake duct need only be arranged adjacent to each other, and are not arranged alternately in the direction orthogonal to the length direction of the intake duct. It is also good. Further, a parallel flow type heat exchanger may be formed with the flow of the cooling air in the first intake passage and the second intake passage in the same direction.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the description of the embodiment described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 冷却装置、10 組電池、2 ケース、30a 第1吸気口、30b 第2吸気口,33,63 吸気ダクト、33a,63a 第1吸気通路、33b,63b 第2吸気通路、35,65 第1オリフィス、36,66 第2オリフィス、40 合流部、50 排出口。 1 Cooling device, 10 sets of batteries, 2 cases, 30a 1st intake port, 30b 2nd intake port, 33,63 intake duct, 33a, 63a 1st intake passage, 33b, 63b 2nd intake passage, 35,65 1st Orifices, 36, 66 second orifices, 40 confluences, 50 outlets.

Claims (1)

ケース内に配置された組電池を冷却風により冷却する冷却装置であって、
前記ケース内に冷却風を導入する第1吸気口と、
前記ケース内に冷却風を導入する第2吸気口と、
冷却風を前記ケース外に排出する排出口と、
前記第1吸気口から導入された冷却風が流れる第1吸気通路と、
前記第1吸気通路に隣接して配置され、前記第2吸気口から導入された冷却風が流れる第2吸気通路と、
前記第1吸気通路から流出する冷却風と前記第2吸気通路から流出する冷却風とが合流する合流部と、
前記第1吸気通路と前記合流部の間に形成された複数の第1オリフィスと、
前記第2吸気通路と前記合流部の間に形成される複数の第2オリフィスと、
を備え、
前記第1オリフィスを通過した冷却風と前記第2オリフィスを通過した冷却風とが前記合流部で合流し、合流した冷却風が前記組電池を冷却した後、前記排出口から排出される、組電池の冷却装置。
It is a cooling device that cools the assembled batteries arranged in the case with cooling air.
A first intake port that introduces cooling air into the case,
A second intake port that introduces cooling air into the case,
A discharge port that discharges cooling air to the outside of the case,
The first intake passage through which the cooling air introduced from the first intake port flows, and
A second intake passage, which is arranged adjacent to the first intake passage and through which cooling air introduced from the second intake port flows,
A confluence portion where the cooling air flowing out from the first intake passage and the cooling air flowing out from the second intake passage merge.
A plurality of first orifices formed between the first intake passage and the confluence,
A plurality of second orifices formed between the second intake passage and the confluence,
With
The cooling air that has passed through the first orifice and the cooling air that has passed through the second orifice are merged at the confluence, and the merged cooling air cools the assembled battery and then is discharged from the discharge port. Battery cooling device.
JP2019190840A 2019-10-18 2019-10-18 Battery pack cooling system Active JP7143832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190840A JP7143832B2 (en) 2019-10-18 2019-10-18 Battery pack cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190840A JP7143832B2 (en) 2019-10-18 2019-10-18 Battery pack cooling system

Publications (2)

Publication Number Publication Date
JP2021068515A true JP2021068515A (en) 2021-04-30
JP7143832B2 JP7143832B2 (en) 2022-09-29

Family

ID=75637424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190840A Active JP7143832B2 (en) 2019-10-18 2019-10-18 Battery pack cooling system

Country Status (1)

Country Link
JP (1) JP7143832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024080A (en) * 2021-10-14 2022-02-08 风帆(扬州)有限责任公司 Waterproof high efficiency of heat dissipation opens stops battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262144A (en) * 1991-12-04 1993-10-12 Honda Motor Co Ltd Battery temperature controller for electric vehicle
JP2007305425A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Battery pack and vehicle
JP2012043591A (en) * 2010-08-18 2012-03-01 Tigers Polymer Corp Battery cooling structure
JP2012054023A (en) * 2010-08-31 2012-03-15 Hitachi Vehicle Energy Ltd Power storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262144B2 (en) 2008-01-31 2013-08-14 日本電気株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262144A (en) * 1991-12-04 1993-10-12 Honda Motor Co Ltd Battery temperature controller for electric vehicle
JP2007305425A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Battery pack and vehicle
JP2012043591A (en) * 2010-08-18 2012-03-01 Tigers Polymer Corp Battery cooling structure
JP2012054023A (en) * 2010-08-31 2012-03-15 Hitachi Vehicle Energy Ltd Power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024080A (en) * 2021-10-14 2022-02-08 风帆(扬州)有限责任公司 Waterproof high efficiency of heat dissipation opens stops battery
CN114024080B (en) * 2021-10-14 2023-09-26 风帆(扬州)有限责任公司 Waterproof high-efficient power failure pond that opens of heat dissipation

Also Published As

Publication number Publication date
JP7143832B2 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
KR102142669B1 (en) Air cooling type Battery Module having Guide vane
US9306251B2 (en) Battery pack
JP5720663B2 (en) Power storage device
JP4046463B2 (en) Power supply
JP2006128123A (en) Battery module and cooling device for battery module
JP2009004319A (en) Battery pack structure
WO2017026312A1 (en) Battery pack
JP6256439B2 (en) Battery pack
JP6380877B2 (en) Battery pack
JP6390550B2 (en) Battery pack
JP6390549B2 (en) Battery pack
JP5096842B2 (en) Battery storage unit
US11289754B2 (en) Cooling structure of battery pack
JP2020042982A (en) Battery pack cooling structure and battery pack smoke exhaust structure
JPWO2017154071A1 (en) Battery device
JP2021068515A (en) Cooling device for battery pack
US20160181675A1 (en) Battery pack
KR101750069B1 (en) Battery pack with optimized inlet and outlet
JP6390548B2 (en) Battery pack
JP2006156211A (en) Vehicular power supply device
JP2020047557A (en) Cooling structure of battery pack
JP7434966B2 (en) battery pack
JP6451604B2 (en) Battery cooling system
JP2004022267A (en) Capacitor cooling structure
JP6507921B2 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R151 Written notification of patent or utility model registration

Ref document number: 7143832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151