JP2021067481A - Timber inspection device - Google Patents

Timber inspection device Download PDF

Info

Publication number
JP2021067481A
JP2021067481A JP2019190802A JP2019190802A JP2021067481A JP 2021067481 A JP2021067481 A JP 2021067481A JP 2019190802 A JP2019190802 A JP 2019190802A JP 2019190802 A JP2019190802 A JP 2019190802A JP 2021067481 A JP2021067481 A JP 2021067481A
Authority
JP
Japan
Prior art keywords
wood
relative permittivity
microwave
transmitting
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019190802A
Other languages
Japanese (ja)
Other versions
JP7366362B2 (en
Inventor
是枝 雄一
Yuichi Koreeda
雄一 是枝
直樹 石田
Naoki Ishida
直樹 石田
浩暉 森田
Hiroteru Morita
浩暉 森田
清隆 内倉
Kiyotaka Uchikura
清隆 内倉
矩行 原田
Noriyuki Harada
矩行 原田
博幸 岡村
Hiroyuki Okamura
博幸 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKKO AUTOMATION KK
KYUSHU MOKUZAI KOGYO KK
Fukuoka Prefecture
Original Assignee
HAKKO AUTOMATION KK
KYUSHU MOKUZAI KOGYO KK
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKKO AUTOMATION KK, KYUSHU MOKUZAI KOGYO KK, Fukuoka Prefecture filed Critical HAKKO AUTOMATION KK
Priority to JP2019190802A priority Critical patent/JP7366362B2/en
Publication of JP2021067481A publication Critical patent/JP2021067481A/en
Application granted granted Critical
Publication of JP7366362B2 publication Critical patent/JP7366362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

To provide a timber inspection device capable of inspecting the distribution of the impregnation amount of a chemical in one timber.SOLUTION: Sandwiching a timber 1 impregnated with a noncombustible agent, microwave transmitting antennas 2a, 2b, 2c, 2d, 2e and receiving antennas 3a 3b, 3c, 3d, 3e are installed facing each other, with a microwave transmitting circuit 5 connected to the transmitting antenna and a microwave receiving circuit 6 connected to the receiving antenna. An amount of incombustible impregnated in the timber 1 is inspected by detecting an amplitude and phase of microwave being output from the transmitting antenna, transmitted through the timber 1 and input to the receiving antenna, calculating a distribution of the relative permittivity of the timber 1 from the amplitude and phase and using the relationship between the amount of incombustible impregnated and the permittivity of timber obtained in advance.SELECTED DRAWING: Figure 1

Description

本発明は、薬剤を含浸させた木材の検査装置であって、木材への薬剤の含浸量を検査する木材検査装置に関する。 The present invention relates to a wood inspection device impregnated with a chemical and inspects the amount of the chemical impregnated in the wood.

公共建築物等の特殊建築物では、建築基準法に定める防火材料を使用する必要がある。特殊建築物で木材を使用する場合、上記の防火材料としての基準を満たすため、木材に難燃性の薬剤(以下、不燃剤という)を含浸処理し、難燃性を付与している。このような不燃木材の製造方法の例が特許文献1及び2に記載されている。従来、木材中の不燃剤の含有量は、特許文献1及び2にも記載のように含浸前後の木材の重量差で把握され、管理されている。 For special buildings such as public buildings, it is necessary to use fireproof materials stipulated in the Building Standards Act. When wood is used in a special building, the wood is impregnated with a flame-retardant chemical (hereinafter referred to as a non-flammable agent) in order to satisfy the above criteria as a fireproof material to impart flame retardancy. Examples of such a method for producing non-combustible wood are described in Patent Documents 1 and 2. Conventionally, the content of non-combustible agent in wood is grasped and controlled by the weight difference of wood before and after impregnation as described in Patent Documents 1 and 2.

特開2003−211412号公報JP 2003-21142 特開2018−188552号公報JP-A-2018-188552

通常、製造された不燃木材においては、1つの木材内で不燃剤の含浸量にばらつきが生ずる場合が多々あり、含浸量が少ない部位では、上記の防火材料としての基準を満たせない場合がある。しかし、従来の含浸前後の重量差で含浸量を検査する方法では、対象とする1つの木材全体の含浸前後の重量差を測定して検査するため、1つの不燃木材中における不燃剤の含浸量のばらつき、すなわち含浸量の分布を検査することはできなかった。また、様々な用途の木材においては、不燃剤以外にも防腐剤等の薬物を含浸させて耐環境性能などの改善を図る場合がある。このような場合にも木材中の性能のばらつきを抑えるため、薬剤の含浸量分布の検査が必要とされている。 Usually, in the produced non-combustible wood, the impregnation amount of the non-combustible agent often varies within one wood, and the part where the impregnation amount is small may not satisfy the above-mentioned standard as a fireproof material. However, in the conventional method of inspecting the impregnation amount by the weight difference before and after impregnation, the impregnation amount of the noncombustible agent in one non-combustible wood is inspected by measuring the weight difference before and after impregnation of one target wood as a whole. It was not possible to inspect the variation, that is, the distribution of the impregnation amount. In addition, wood for various purposes may be impregnated with a drug such as a preservative in addition to a non-combustible agent to improve environmental resistance. Even in such a case, it is necessary to inspect the distribution of the impregnation amount of the chemical in order to suppress the variation in the performance in the wood.

そこで、本発明は、係る問題を解決するためになされたものであり、1つの木材中の薬剤の含浸量の分布を検査することを可能とする木材検査装置を提供することを目的とする。 Therefore, the present invention has been made to solve such a problem, and an object of the present invention is to provide a wood inspection apparatus capable of inspecting the distribution of the impregnation amount of a chemical in one wood.

第1の観点では、本発明の木材検査装置は、薬剤を含浸させた木材の検査装置であって、前記木材を挟んで互いに対向設置されたマイクロ波の送信アンテナ及び受信アンテナと、前記送信アンテナに接続されたマイクロ波送信回路と、前記受信アンテナに接続されたマイクロ波受信回路とを有し、前記送信アンテナより送出され、前記木材を透過し前記受信アンテナに入力されるマイクロ波の振幅と位相とを検出し、前記検出されたマイクロ波の振幅と位相とにより前記木材の比誘電率を算出し、前記比誘電率と、あらかじめ求めた前記薬剤の含浸量と前記比誘電率との関係と、を用いて、前記木材の前記薬剤の含浸量を検査することを特徴とする。 From the first aspect, the wood inspection apparatus of the present invention is an inspection apparatus for wood impregnated with a chemical, and is a microwave transmitting antenna and a receiving antenna installed opposite to each other with the wood sandwiched therein, and the transmitting antenna. It has a microwave transmitting circuit connected to the receiving antenna and a microwave receiving circuit connected to the receiving antenna, and the amplitude of the microwave transmitted from the transmitting antenna, transmitted through the wood, and input to the receiving antenna. The phase is detected, the specific dielectric constant of the wood is calculated from the detected microwave amplitude and phase, and the relationship between the specific dielectric constant, the preliminarily obtained impregnation amount of the chemical, and the specific dielectric constant. And, it is characterized in that the impregnation amount of the chemical is inspected in the wood.

本発明においては、上記のように、被測定物である木材を挟んでマイクロ波の送信アンテナと受信アンテナを設置し、送信アンテナより送出され、木材を透過し受信アンテナに入力されるマイクロ波の振幅と位相とを検出する。これにより、その木材のマイクロ波が通過する領域の比誘電率を算出する。本発明が対象とする木材は、通常、ほぼ平行な2つの面、すなわち、表面と裏面とを有するので、入射したマイクロ波はその表面と裏面との間で多重反射して出力する。この場合、木材の比誘電率が1に近いことに留意すれば、多重反射を無視した近似的な計算により木材の比誘電率を算出することができる。一方、多重反射を考慮した計算式を用いることにより、より正確にマイクロ波が通過する領域の木材の比誘電率を求めることができる。 In the present invention, as described above, the microwave transmitting antenna and the receiving antenna are installed with the wood as the object to be measured sandwiched between them, and the microwave transmitted from the transmitting antenna, passes through the wood, and is input to the receiving antenna. Detects amplitude and phase. As a result, the relative permittivity of the region through which the microwave of the wood passes is calculated. Since the wood targeted by the present invention usually has two surfaces that are substantially parallel, that is, a front surface and a back surface, the incident microwave is multiple-reflected and output between the front surface and the back surface. In this case, if it is noted that the relative permittivity of wood is close to 1, the relative permittivity of wood can be calculated by an approximate calculation ignoring multiple reflections. On the other hand, by using a calculation formula that considers multiple reflections, the relative permittivity of wood in the region through which microwaves pass can be obtained more accurately.

本発明では、木材への薬剤の含浸量とその木材の比誘電率との関係をあらかじめ求めておき、その関係を用いて、測定された比誘電率に基づいて木材への薬剤の含浸量を検査するものである。この場合、例えば、薬剤の含浸量を変えた小さな面積の被測定対象の木材サンプルを多数作製し、これらの木材サンプルの薬剤の含浸量を、従来の含浸前後の重量差で測定する方法やX線の透過量の変化から測定する方法等を用いて把握し、それらの木材サンプルの比誘電率を上記の本発明のマイクロ波を用いた方法により測定して、木材への薬剤の含浸量と比誘電率との関係を求めることができる。このように求めた薬剤の含浸量と比誘電率との関係を用い、木材の測定部分の比誘電率の値が必要とされる薬剤の含浸量に対応する値以上であるか否か等を検査することができる。 In the present invention, the relationship between the amount of chemicals impregnated in wood and the relative permittivity of the wood is determined in advance, and the relationship is used to determine the amount of chemicals impregnated in wood based on the measured relative permittivity. It is for inspection. In this case, for example, a method in which a large number of wood samples to be measured having a small area in which the impregnation amount of the chemical is changed is prepared, and the impregnation amount of the chemical in these wood samples is measured by the weight difference before and after the conventional impregnation, or X. It is grasped by using a method of measuring from the change in the amount of wire transmission, and the relative permittivity of those wood samples is measured by the above-mentioned method using the microwave of the present invention to determine the amount of chemicals impregnated in the wood. The relationship with the relative permittivity can be obtained. Using the relationship between the impregnation amount of the chemical and the relative permittivity obtained in this way, whether or not the value of the relative permittivity of the measured portion of the wood is equal to or more than the value corresponding to the required amount of the impregnation of the chemical, etc. Can be inspected.

以上のように、本発明においては、被測定対象の木材のマイクロ波が透過する部分の薬剤の含浸量が検査できるので、その木材を移動させながら測定することにより、1つの木材中の薬剤の含浸量の分布を検査することが可能となる。例えば、被測定木材が細長い場合にはその長さ方向に木材を移動させることにより、長さ方向の薬剤の含浸量の分布を検査することができる。また、被測定木材の面積が大きい場合には、木材を二次元的に移動させることにより薬剤の含浸量の二次元分布を検査することができる。 As described above, in the present invention, the impregnation amount of the chemical in the portion of the wood to be measured through which the microwave is transmitted can be inspected. Therefore, by measuring while moving the wood, the chemical in one wood can be inspected. It is possible to inspect the distribution of the impregnation amount. For example, when the wood to be measured is elongated, the distribution of the impregnation amount of the chemical in the length direction can be inspected by moving the wood in the length direction. Further, when the area of the wood to be measured is large, the two-dimensional distribution of the impregnation amount of the chemical can be inspected by moving the wood two-dimensionally.

第2の観点では、本発明は、前記第1の観点の木材検査装置において、複数個の前記送信アンテナと、前記木材を挟んで前記複数個の送信アンテナとそれぞれ対向配置された複数個の前記受信アンテナとを有し、前記木材を一方向に移動させて前記検出を行うことにより、前記木材の比誘電率の二次元分布を測定し、該二次元分布を表示する表示装置を有することを特徴とする。 From the second aspect, the present invention relates to the wood inspection device according to the first aspect, wherein the plurality of the transmitting antennas and the plurality of the transmitting antennas are arranged so as to face each other with the wood interposed therebetween. Having a receiving antenna and a display device that measures the two-dimensional distribution of the relative permittivity of the wood by moving the wood in one direction and performing the detection, and displays the two-dimensional distribution. It is a feature.

本観点の発明においては、測定目的の分布の分解能を達成できるような間隔で複数個の送信アンテナと複数個の受信アンテナとを木材を挟んでそれぞれ対向配置することにより、木材を一方向に移動させた場合であっても薬剤の含浸量の二次元分布を検査することができる。また、測定された比誘電率の二次元分布を表示する表示装置を備えることにより、視覚によりその二次元分布を容易に把握することができる。 In the invention of this aspect, the wood is moved in one direction by arranging the plurality of transmitting antennas and the plurality of receiving antennas facing each other with the wood sandwiched at intervals so that the resolution of the distribution for measurement can be achieved. The two-dimensional distribution of the impregnation amount of the drug can be inspected even when the mixture is allowed to be used. Further, by providing a display device for displaying the two-dimensional distribution of the measured relative permittivity, the two-dimensional distribution can be easily grasped visually.

第3の観点では、本発明は、前記第2の観点の木材検査装置において、前記複数個の送信アンテナ及び前記複数個の受信アンテナは、前記木材の移動方向に直交する方向に対して互いに異なる位置に配置され、前記複数個の送信アンテナと前記マイクロ波送信回路との間にスイッチを有し、該スイッチにより前記複数個の送信アンテナを順次切り替えながら前記検出を行うことを特徴とする。 From the third aspect, in the wood inspection apparatus of the second aspect, the plurality of transmitting antennas and the plurality of receiving antennas are different from each other with respect to the direction orthogonal to the moving direction of the wood. It is characterized in that it is arranged at a position and has a switch between the plurality of transmitting antennas and the microwave transmitting circuit, and the detection is performed while sequentially switching the plurality of transmitting antennas by the switch.

本観点の発明においては、例えば、被測定木材の幅方向に複数の送信アンテナと受信アンテナの対を並べて配置し、被測定木材の長さ方向に被測定木材を移動させることにより、木材全体の比誘電率の二次元分布を測定することができる。さらに、送信アンテナとマイクロ波送信回路との間にスイッチを配置し、そのスイッチにより測定部位に対応する送信アンテナをマイクロ波送信回路に接続して検出し、スイッチによりその測定部位を幅方向に順次切り替えながら検出を行うことにより、1つのマイクロ波送信回路を用いて検出が可能となる。なお、この場合、受信アンテナとマイクロ波受信回路との間にスイッチ又は分配器を配置してもよい。これにより、1つのマイクロ波受信回路を用いて検出が可能となる。さらに、本発明においては、送信アンテナとマイクロ波送信回路との間に分配器を配置し、受信アンテナとマイクロ波受信回路との間にスイッチを配置してもよい。 In the invention of this aspect, for example, a plurality of pairs of transmitting antennas and receiving antennas are arranged side by side in the width direction of the wood to be measured, and the wood to be measured is moved in the length direction of the wood to be measured to move the entire wood. The two-dimensional distribution of the relative permittivity can be measured. Further, a switch is arranged between the transmitting antenna and the microwave transmission circuit, the transmitting antenna corresponding to the measurement site is connected to the microwave transmission circuit for detection by the switch, and the measurement site is sequentially moved in the width direction by the switch. By performing detection while switching, detection can be performed using one microwave transmission circuit. In this case, a switch or a distributor may be arranged between the receiving antenna and the microwave receiving circuit. This enables detection using one microwave receiving circuit. Further, in the present invention, a distributor may be arranged between the transmitting antenna and the microwave transmitting circuit, and a switch may be arranged between the receiving antenna and the microwave receiving circuit.

第4の観点では、本発明は、前記第1乃至第3の観点の木材検査装置において、複数の周波数のマイクロ波を用いて前記検出を行い、該検出により得られた複数のデータにより前記比誘電率の算出を行うことを特徴とする。 From the fourth aspect, the present invention performs the detection using microwaves having a plurality of frequencies in the wood inspection apparatus according to the first to third aspects, and the ratio is based on the plurality of data obtained by the detection. It is characterized in that the dielectric constant is calculated.

本発明において、木材の比誘電率を算出する際に、単一のマイクロ波周波数を用いても比誘電率を算出することは可能であるが、ノイズ等の影響により測定誤差が大きくなる場合がある。本観点の発明は、そのようなノイズ等による測定誤差を低減するため、周波数を掃引して複数のマイクロ波の周波数を用いて検出を行い、それらの複数のデータを用いて木材の比誘電率を算出するものである。複数の周波数による検出データからフィッティング解析によって最適値を算出することにより、より正確な比誘電率を算出することが可能となる。 In the present invention, when calculating the relative permittivity of wood, it is possible to calculate the relative permittivity even if a single microwave frequency is used, but the measurement error may become large due to the influence of noise or the like. is there. In the invention of this aspect, in order to reduce the measurement error due to such noise and the like, the frequency is swept and the detection is performed using the frequencies of a plurality of microwaves, and the relative permittivity of the wood is used using the plurality of data. Is calculated. By calculating the optimum value by fitting analysis from the detection data of a plurality of frequencies, it is possible to calculate the relative permittivity more accurately.

第5の観点では、本発明は、前記第1乃至第4の観点の木材検査装置において、前記木材の薬剤を含浸する前の比誘電率、又は比誘電率の二次元分布、すなわち初期比誘電率、又は初期比誘電率分布をあらかじめ測定し、前記初期比誘電率又は前記初期比誘電率分布と薬剤を含浸させた前記木材の比誘電率又は比誘電率の二次元分布との間の差分を求め、前記差分により前記薬剤の含浸量を検査する手段を有することを特徴とする。 From the fifth aspect, the present invention presents the relative permittivity of the wood before impregnation with the chemical, or the two-dimensional distribution of the relative permittivity, that is, the initial relative permittivity, in the wood inspection apparatus of the first to fourth aspects. The rate or initial relative permittivity distribution is measured in advance, and the difference between the initial relative permittivity or the initial relative permittivity distribution and the two-dimensional distribution of the relative permittivity or the relative permittivity of the wood impregnated with a chemical agent. It is characterized by having a means for inspecting the impregnation amount of the drug by the difference.

被測定木材は、その比誘電率に若干の個体差を有する場合があり、木材サンプルによりあらかじめ求めた薬剤の含浸量と木材の比誘電率との関係だけを用いては十分な測定精度が得られない場合がある。本観点の発明では、薬剤の含浸前後の比誘電率の差分を算出する手段を備えることにより、上記のような木材の比誘電率の個体差がある場合でも、より正確に含浸量分布を検査することができる。 The wood to be measured may have some individual differences in its relative permittivity, and sufficient measurement accuracy can be obtained by using only the relationship between the amount of chemical impregnation obtained in advance from the wood sample and the relative permittivity of wood. It may not be possible. In the invention of this viewpoint, by providing a means for calculating the difference in the relative permittivity before and after impregnation with the chemical, even if there is an individual difference in the relative permittivity of wood as described above, the impregnation amount distribution can be inspected more accurately. can do.

第6の観点では、本発明は、前記第1乃至第5の観点の木材検査装置において、前記送信アンテナ及び受信アンテナはホーンアンテナであることを特徴とする。発明者らのいくつかのマイクロ波用アンテナを用いた実験及び検討において、ホーンアンテナは本発明の目的に適していることが確認された。 From the sixth aspect, the present invention is characterized in that, in the wood inspection apparatus of the first to fifth aspects, the transmitting antenna and the receiving antenna are horn antennas. In experiments and studies using some of the inventors for microwaves, it was confirmed that the horn antenna is suitable for the purpose of the present invention.

以上のように、本発明の木材検査装置によれば、1つの木材中の薬剤の含浸量の分布を検査することが可能となる。 As described above, according to the wood inspection apparatus of the present invention, it is possible to inspect the distribution of the impregnation amount of the chemical in one wood.

実施例1に係る木材検査装置の模式的な構成図。The schematic block diagram of the wood inspection apparatus which concerns on Example 1. FIG. 木材を多重反射して通過するマイクロ波の様子を模式的に示す図。The figure which shows the state of the microwave which passes through the wood by multiple reflections. 実施例1における送信アンテナと受信アンテナの配置の一例を示す斜視図。The perspective view which shows an example of the arrangement of the transmitting antenna and the receiving antenna in Example 1. FIG. 木材を透過するマイクロ波の位相と周波数の関係の一例を示す図。The figure which shows an example of the relationship between the phase and the frequency of the microwave which passes through wood. 実施例2において木材の不燃剤の含浸量と比誘電率の変化量との関係を測定した結果の一例を示す図。The figure which shows an example of the result of having measured the relationship between the impregnation amount of the noncombustible agent of wood and the change amount of a relative permittivity in Example 2. 木材の比誘電率の変化量の二次元分布の測定結果の一例を示す図。The figure which shows an example of the measurement result of the two-dimensional distribution of the change amount of the relative permittivity of wood. 木材の比誘電率の変化量の二次元分布の測定結果の一例を示す図。The figure which shows an example of the measurement result of the two-dimensional distribution of the change amount of the relative permittivity of wood.

以下、図面を参照して本発明の木材検査装置を実施例により詳細に説明する。なお、図面の説明において同一の要素には同一符号を付し、その重複した説明を省略する。 Hereinafter, the wood inspection apparatus of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and the duplicated description will be omitted.

図1は、実施例1に係る木材検査装置20の模式的な構成図である。図1において、本実施例の木材検査装置20は、不燃剤を含浸させた木材1の検査装置であり、5つのマイクロ波の送信アンテナ2a,2b,2c,2d,2eと、それらに対して木材1を挟んでそれぞれ対向設置された5つのマイクロ波の受信アンテナ3a,3b,3c,3d,3eとを有している。本実施例においては、送信アンテナ2a,2b,2c,2d,2eと受信アンテナ3a,3b,3c,3d,3eは、ホーンアンテナを用いて構成している。図1においては、木材1は断面図を示しており、木材搬送装置4によってx軸方向に移動するように構成されている。5つの送信アンテナ及び受信アンテナは、木材1の移動方向であるx軸に直交するy軸方向に対して互いに異なる位置に配置されている。 FIG. 1 is a schematic configuration diagram of the wood inspection device 20 according to the first embodiment. In FIG. 1, the wood inspection device 20 of this embodiment is an inspection device for wood 1 impregnated with a non-combustible agent, and has five microwave transmitting antennas 2a, 2b, 2c, 2d, 2e, and the like. It has five microwave receiving antennas 3a, 3b, 3c, 3d, and 3e that are installed opposite to each other with the wood 1 in between. In this embodiment, the transmitting antennas 2a, 2b, 2c, 2d, 2e and the receiving antennas 3a, 3b, 3c, 3d, 3e are configured by using a horn antenna. In FIG. 1, the wood 1 shows a cross-sectional view, and is configured to be moved in the x-axis direction by the wood transport device 4. The five transmitting antennas and the receiving antennas are arranged at different positions with respect to the y-axis direction orthogonal to the x-axis which is the moving direction of the wood 1.

本実施例の木材検査装置20は、送信アンテナ2a,2b,2c,2d,2eにマイクロ波を供給するマイクロ波送信回路路5と、それらの送信アンテナより送出され、木材1の表面及び裏面との間で多重反射されて木材1を透過し受信アンテナ3a,3b,3c,3d,3eに入力されるマイクロ波を検出するためのマイクロ波受信回路6とを備えている。マイクロ波送信回路路5は所定の周波数のマイクロ波信号を発生する発信器11とその信号の一部をマイクロ波受信回路6に分配するための分配器12とを備え、マイクロ波受信回路6は、マイクロ波の検出器13とその検出された信号を増幅して出力するアンプ14とを備えている。マイクロ波送信回路路5とマイクロ波受信回路6はマイクロ波ユニット7の中に一体として組み込まれている。なお、本実施例において用いるマイクロ波の周波数は、測定に最適な22GHz〜28GHzとするが、その周波数範囲は8GHz〜40GHz程度の範囲内で選択可能である。 The wood inspection device 20 of this embodiment includes a microwave transmission circuit path 5 that supplies microwaves to the transmission antennas 2a, 2b, 2c, 2d, and 2e, and the front and back surfaces of the wood 1 that are transmitted from the transmission antennas. It is provided with a microwave receiving circuit 6 for detecting microwaves that are multiple-reflected between the antennas, pass through the wood 1, and are input to the receiving antennas 3a, 3b, 3c, 3d, and 3e. The microwave transmission circuit path 5 includes a transmitter 11 that generates a microwave signal of a predetermined frequency and a distributor 12 for distributing a part of the signal to the microwave reception circuit 6, and the microwave reception circuit 6 includes a distributor 12. , A microwave detector 13 and an amplifier 14 that amplifies and outputs the detected signal are provided. The microwave transmission circuit path 5 and the microwave reception circuit 6 are integrally incorporated in the microwave unit 7. The frequency of the microwave used in this embodiment is 22 GHz to 28 GHz, which is optimal for measurement, but the frequency range can be selected within the range of about 8 GHz to 40 GHz.

また、本実施例においては、送信アンテナ2a,2b,2c,2d,2eとマイクロ波送信回路5との間にスイッチ8を有し、受信アンテナ3a,3b,3c,3d,3eとマイクロ波受信回路6との間に分配器9を有している。スイッチ8は、マイクロ波送信回路5の出力を送信アンテナ2a,2b,2c,2d,2eのいずれかに接続する。その接続された送信アンテナに対向する受信アンテナ3a,3b,3c,3d,3eのいずれかに木材1を透過したマイクロ波が入力されるとその信号は分配器9を介してマイクロ波受信回路6に入力する。本実施例においては送信アンテナ2a,2b,2c,2d,2eとスイッチ8により送信アンテナユニット16を構成し、受信アンテナ3a,3b,3c,3d,3eと分配器9により受信アンテナユニット17を構成している。 Further, in this embodiment, the switch 8 is provided between the transmitting antennas 2a, 2b, 2c, 2d, 2e and the microwave transmitting circuit 5, and the receiving antennas 3a, 3b, 3c, 3d, 3e and the microwave receiving are received. A distributor 9 is provided between the circuit 6 and the circuit 6. The switch 8 connects the output of the microwave transmission circuit 5 to any of the transmission antennas 2a, 2b, 2c, 2d, and 2e. When a microwave transmitted through the wood 1 is input to any of the receiving antennas 3a, 3b, 3c, 3d, and 3e facing the connected transmitting antenna, the signal is transmitted to the microwave receiving circuit 6 via the distributor 9. Enter in. In this embodiment, the transmitting antenna unit 16 is configured by the transmitting antennas 2a, 2b, 2c, 2d, 2e and the switch 8, and the receiving antenna unit 17 is configured by the receiving antennas 3a, 3b, 3c, 3d, 3e and the distributor 9. doing.

本実施例において、受信アンテナ3a,3b,3c,3d,3eに入力されるマイクロ波はマイクロ波受信回路6で検出され、増幅されて、そのマイクロ波信号はパーソナルコンピュータ10に入力する。パーソナルコンピュータ10においては、入力されたマイクロ波信号の振幅と位相が検出され、その振幅と位相とを用いて、木材1のマイクロ波が通過した部分の比誘電率が算出される。また、パーソナルコンピュータ10には木材搬送装置4からエンコーダパルスが入力され、そのエンコーダパルスに同期して、マイクロ波ユニット7に対してマイクロ波周波数の指令信号等を出力し、スイッチ8に対して切替信号を出力する。 In this embodiment, the microwaves input to the receiving antennas 3a, 3b, 3c, 3d, and 3e are detected and amplified by the microwave receiving circuit 6, and the microwave signal is input to the personal computer 10. In the personal computer 10, the amplitude and phase of the input microwave signal are detected, and the relative permittivity of the portion of the wood 1 through which the microwave has passed is calculated using the amplitude and phase. Further, an encoder pulse is input to the personal computer 10 from the wood transport device 4, and in synchronization with the encoder pulse, a microwave frequency command signal or the like is output to the microwave unit 7 and switched to the switch 8. Output a signal.

スイッチ8を順次切り替えて、特定のx軸座標における木材1のy軸方向の比誘電率分布を算出し、木材搬送装置4により木材1をx軸方向に順次移動させることにより、xy方向の二次元の比誘電率分布を求めることができる。求めた比誘電率の二次元分布は、パーソナルコンピュータ10の表示部15に表示できるように構成されている。 By sequentially switching the switch 8 to calculate the relative permittivity distribution of the wood 1 in the y-axis direction at specific x-axis coordinates and sequentially moving the wood 1 in the x-axis direction by the wood transport device 4, the two in the xy direction The dimensional relative permittivity distribution can be obtained. The two-dimensional distribution of the obtained relative permittivity is configured so that it can be displayed on the display unit 15 of the personal computer 10.

また、パーソナルコンピュータ10には、木材1に対する不燃剤の含浸量と比誘電率の関係がメモリーに保存されている。この不燃剤の含浸量と比誘電率の関係は、不燃剤の含浸量を変えた小さな面積の木材1と同じ材質の木材サンプルを多数作製し、これらの木材サンプルの不燃剤の含浸量を、従来の含浸前後の重量差で測定する方法やX線の透過量の変化から測定する方法を用いて測定し、求めた値である。パーソナルコンピュータ10は、この関係を用いて、木材の測定部分の比誘電率が必要とされる不燃剤の含浸量に対応する値以上であるか否か等を表示部15に表示するように処理することができる。この場合、不燃性能の基準となる含浸量に対応する比誘電率の値をキーボードや外部入力により設定できるようにすることも可能である。表示部15に表示された二次元分布により、容易に不燃剤の含浸量の分布を検査することができる。 Further, in the personal computer 10, the relationship between the impregnation amount of the noncombustible agent and the relative permittivity of the wood 1 is stored in the memory. The relationship between the impregnation amount of the incombustible agent and the relative permittivity is that a large number of wood samples of the same material as the wood 1 having a small area in which the impregnation amount of the incombustible agent is changed are prepared, and the impregnation amount of the incombustible agent in these wood samples is determined. It is a value obtained by measuring using a conventional method of measuring by the weight difference before and after impregnation or a method of measuring from a change in the amount of X-ray transmission. Using this relationship, the personal computer 10 processes so as to display on the display unit 15 whether or not the relative permittivity of the measurement portion of wood is equal to or more than the value corresponding to the impregnation amount of the required noncombustible agent. can do. In this case, it is also possible to set the value of the relative permittivity corresponding to the impregnation amount, which is the standard of non-combustible performance, by a keyboard or an external input. With the two-dimensional distribution displayed on the display unit 15, the distribution of the impregnation amount of the noncombustible agent can be easily inspected.

木材1の比誘電率の算出方法について以下に記載する。図2は木材1を多重反射して通過するマイクロ波の様子を模式的に示す図である。木材1の表面1aからの入射マイクロ波21は木材1を通過して裏面1bからそのまま出力するか、又は裏面1bと表面1aとの間で何回か反射して出力し、それらの合成波が透過マイクロ波22である。透過マイクロ波22の強度は、入射マイクロ波21の強度、その周波数、光の速度、空気から木材1に入射する場合の反射率と透過率、木材1から空気へ入射する場合の反射率と透過率、木材1の厚さ、その比誘電率、透磁率、誘電正接を用いて理論的に表すことが出来る。この多重反射波を考慮した理論式を用いて、透過マイクロ波22の強度を測定することにより、木材1の比誘電率εを求めることができる。 The method of calculating the relative permittivity of wood 1 will be described below. FIG. 2 is a diagram schematically showing a state of microwaves passing through wood 1 by multiple reflection. The incident microwave 21 from the front surface 1a of the wood 1 passes through the wood 1 and is output as it is from the back surface 1b, or is reflected and output several times between the back surface 1b and the front surface 1a, and the combined waves thereof are output. It is a transmitted microwave 22. The intensity of the transmitted microwave 22 is the intensity of the incident microwave 21, its frequency, the speed of light, the reflectance and transmittance when incident on wood 1 from air, and the reflectance and transmittance when incident on wood 1 from wood 1. It can be theoretically expressed using the ratio, the thickness of the wood 1, its relative permittivity, the magnetic transmittance, and the dielectric positive contact. The relative permittivity ε r of wood 1 can be obtained by measuring the intensity of the transmitted microwave 22 using a theoretical formula that takes this multiple reflected wave into consideration.

図2において、木材1の比誘電率εが小さく、マイクロ波の反射率が小さい場合、透過するマイクロ波22の強度Eは式(1)で近似される。ここで、入射マイクロ波21の強度をE、その周波数をf、光の速度をc、木材1の厚さをdとしている。また、iは虚数であり、それを含む項がマイクロ波の位相に関連する項である。 In FIG. 2, when the relative permittivity ε r of the wood 1 is small and the reflectance of the microwave is small, the intensity E 1 of the transmitted microwave 22 is approximated by the equation (1). Here, the intensity of the incident microwave 21 is E 0 , its frequency is f, the speed of light is c, and the thickness of wood 1 is d. Further, i is an imaginary number, and the term including the imaginary number is a term related to the phase of the microwave.

Figure 2021067481
Figure 2021067481

式(1)を用いても、透過マイクロ波22の強度Eを測定することにより、木材1の比誘電率εを求めることができる。 Even if the formula (1) is used , the relative permittivity ε r of the wood 1 can be obtained by measuring the intensity E 1 of the transmitted microwave 22.

図3は、本実施例における送信アンテナ2a,2b,2c,2d,2eと受信アンテナ3a,3b,3c,3d,3eの配置の一例を示す斜視図である。同じ1つのx座標でy軸方向にアンテナを並べた場合、y軸方向の測定分解能はホーンアンテナの開口の大きさで制限されてしまうため、図3においては、y軸方向の測定の分解能を高くするため、互いのホーンアンテナの開口部分がy軸方向に重なってもよいように、x座標もシフトさせてアンテナを配置している。送信アンテナをスイッチ8で順次切り替えることにより木材1の比誘電率の測定領域は、領域23、領域24、領域25、領域26、領域27へと順次移動し、さらに木材1をx軸方向に移動させることにより、二次元的な分布が求められる。 FIG. 3 is a perspective view showing an example of the arrangement of the transmitting antennas 2a, 2b, 2c, 2d, 2e and the receiving antennas 3a, 3b, 3c, 3d, 3e in this embodiment. When the antennas are arranged in the y-axis direction with the same x-coordinate, the measurement resolution in the y-axis direction is limited by the size of the opening of the horn antenna. In order to raise the height, the x-coordinates are also shifted so that the openings of the horn antennas may overlap each other in the y-axis direction. By sequentially switching the transmitting antenna with the switch 8, the measurement region of the relative permittivity of the wood 1 sequentially moves to the region 23, the region 24, the region 25, the region 26, and the region 27, and further moves the wood 1 in the x-axis direction. By doing so, a two-dimensional distribution can be obtained.

実施例2の木材検査装置の基本構成は実施例1と同様である。但し、本実施例の木材検査装置においては、複数の周波数のマイクロ波を用いて検出を行い、それらの検出により得られた複数のデータにより木材1の比誘電率の算出を行う構成となっていることと、木材が送信アンテナと受信アンテナの間に挿入される直前の入射マイクロ波21の位相と振幅のデータを取得し、その値を基準として木材1による位相変化を算出すること、木材1の不燃剤を含浸する前の比誘電率の二次元分布、すなわち初期比誘電率分布をあらかじめ測定し、その初期比誘電率分布と不燃剤を含浸させた後の木材1の比誘電率の二次元分布との間の差分を求め、その差分により不燃剤の含浸量を検査する手段を備えていることが異なっている。 The basic configuration of the wood inspection device of the second embodiment is the same as that of the first embodiment. However, the wood inspection device of this embodiment has a configuration in which detection is performed using microwaves having a plurality of frequencies, and the relative permittivity of wood 1 is calculated from a plurality of data obtained by these detections. Obtaining the phase and amplitude data of the incident microwave 21 immediately before the wood is inserted between the transmitting antenna and the receiving antenna, and calculating the phase change due to the wood 1 based on the values, the wood 1 The two-dimensional distribution of the relative permittivity before impregnation with the non-combustible agent, that is, the initial relative permittivity distribution is measured in advance, and the initial relative permittivity distribution and the relative permittivity of wood 1 after impregnation with the non-combustible agent are two. The difference is that the means for obtaining the difference from the dimensional distribution and inspecting the impregnation amount of the incombustible agent based on the difference is provided.

図4は木材1を透過するマイクロ波の位相と周波数の関係の一例を示す図である。単一のマイクロ波周波数を用いても比誘電率を算出することは可能であるが、ノイズ等の影響により測定誤差が大きくなる場合がある。また、マイクロ波の位相を算出する場合、位相の変化量が2π以上となると位相の絶対値が不明となる場合がある。そこで、マイクロ波の周波数を掃引して、複数の周波数に対する位相を求めることにより、フィッティング解析によって最適値を算出し、より正確な比誘電率を算出することが可能となる。例えば、図4において、周波数fからfまで掃引したときに位相φからφまで変化する場合、位相の周波数に対する比例係数、すなわち図4の直線28の傾きから透過マイクロ波の位相の正確な値を特定し、正確な比誘電率εを求めることができる。 FIG. 4 is a diagram showing an example of the relationship between the phase and frequency of microwaves transmitted through wood 1. Although it is possible to calculate the relative permittivity using a single microwave frequency, the measurement error may increase due to the influence of noise and the like. Further, when calculating the phase of a microwave, the absolute value of the phase may be unknown when the amount of change in the phase is 2π or more. Therefore, by sweeping the frequency of the microwave and obtaining the phase for a plurality of frequencies, it is possible to calculate the optimum value by the fitting analysis and calculate the relative permittivity more accurately. For example, in FIG. 4, when the phase changes from φ 1 to φ 2 when the frequencies are swept from f 1 to f 2 , the proportional coefficient with respect to the frequency of the phase, that is, the slope of the straight line 28 in FIG. 4 shows the phase of the transmitted microwave. An accurate value can be specified and an accurate relative permittivity ε r can be obtained.

マイクロ波デバイスは、温度変化などにより位相や振幅がドリフトする場合がある。そのような場合、透過マイクロ波22の位相や振幅もドリフトしてしまい、基準となる値が変化してしまうので木材1の正確な比誘電率を測定することができない。そこで、本実施例では木材が送信アンテナと受信アンテナの間に挿入される直前の入射マイクロ波21の位相と振幅のデータを取得し、その値を基準として木材1による位相変化を算出し、比誘電率を算出している。 In microwave devices, the phase and amplitude may drift due to temperature changes and the like. In such a case, the phase and amplitude of the transmitted microwave 22 also drift, and the reference value changes, so that the accurate relative permittivity of the wood 1 cannot be measured. Therefore, in this embodiment, the phase and amplitude data of the incident microwave 21 immediately before the wood is inserted between the transmitting antenna and the receiving antenna is acquired, and the phase change due to the wood 1 is calculated based on the data, and the ratio is calculated. The dielectric constant is calculated.

また、本実施例では、含浸量の検査精度をさらに高めるため、木材1に不燃剤を含浸させる前のその木材の比誘電率分布を測定し、それを基準として、含浸後の比誘電率分布を測定し、不燃剤の含浸前後の比誘電率の差分、すなわち比誘電率の変化量を求めている。これにより、木材1自体が元々有している比誘電率の部位によるばらつきの影響を除去することができ、より正確な含浸量の分布に対応する比誘電率変化量の分布を求めることができる。 Further, in this embodiment, in order to further improve the inspection accuracy of the impregnation amount, the relative permittivity distribution of the wood before impregnating the wood 1 with the incombustible agent is measured, and the relative permittivity distribution after the impregnation is used as a reference. Is measured, and the difference in the relative permittivity before and after impregnation with the incombustible agent, that is, the amount of change in the relative permittivity is obtained. As a result, it is possible to eliminate the influence of the variation of the relative permittivity originally possessed by the wood 1 itself depending on the portion, and it is possible to obtain the distribution of the relative permittivity change amount corresponding to the more accurate distribution of the impregnation amount. ..

図5は、本実施例において、木材の不燃剤の含浸量と比誘電率の関係を測定した結果の一例を示す図である。形態や部位が異なる5種類の木材について、それぞれ不燃剤の含浸量が異なるサンプルを作成し、不燃剤を含浸させる前のサンプルの比誘電率を基準として不燃剤を含浸後の比誘電率の変化量を測定した結果を示す。ここで、比誘電率の変化量は、各サンプルについて面内全体での測定データを平均化した値を示している。含浸量の値は木材のサンプル1枚当たりの不燃剤の含浸量である。図5より、不燃剤の含浸量に比例して比誘電率の変化量が増加していること、5種類の木材サンプルについては、その傾きはほぼ同じであることがわかる。なお、本実施例の上記木材サンプルの比誘電率εの測定値は、マイクロ波周波22〜28GHzでは、1.5〜2.3程度であった。 FIG. 5 is a diagram showing an example of the result of measuring the relationship between the impregnation amount of the noncombustible agent of wood and the relative permittivity in this embodiment. For five types of wood with different morphologies and parts, prepare samples with different impregnation amounts of the incombustible agent, and change the relative permittivity after impregnation with the incombustible agent based on the relative permittivity of the sample before impregnation with the incombustible agent. The result of measuring the quantity is shown. Here, the amount of change in the relative permittivity indicates a value obtained by averaging the measurement data in the entire in-plane for each sample. The impregnation amount value is the impregnation amount of the noncombustible agent per wood sample. From FIG. 5, it can be seen that the amount of change in the relative permittivity increases in proportion to the amount of the incombustible impregnated, and that the slopes of the five types of wood samples are almost the same. The measured value of the relative permittivity ε r of the wood sample of this example was about 1.5 to 2.3 at a microwave frequency of 22 to 28 GHz.

本実施例の木材検査装置により木材の不燃剤の含浸前後の比誘電率の変化量の二次元分布を測定した。図6及び図7は、それぞれ異なる条件で不燃剤を含浸させたた2種類の木材の比誘電率変化量の二次元分布の測定結果の一例を示す図であり、ディスプレイ上に表示された分布を示す。図6及び図7において、実際の画面では比誘電率変化量に応じて、赤色(R)、黄色(Y)、緑色(G)、青色(B)の順に色分けして示している。赤色(R)が比誘電率変化量0.8〜1.0付近、黄色(Y)が比誘電率変化量0.7付近、緑色(G)が比誘電率変化量0.5付近、青色(B)が比誘電率変化量0.2〜0.3付近の値をそれぞれ示す。図6の木材サンプルでは比誘電率変化量は0.2〜0.5付近を中心に分布し、図7の木材サンプルでは比誘電率変化量は0.6〜1.0付近を中心に分布している。この表示により、検査者は視覚的に木材中の比誘電率に対応する含浸量の二次元分布の様子を明確に認識することができる。例えば、不燃性能の基準となる含浸量に対応する比誘電率変化量の値が0.3付近であった場合、表示画面の青色部分の含浸量が基準値以下であると認識できる。 The two-dimensional distribution of the amount of change in the relative permittivity before and after impregnation of the noncombustible agent in wood was measured by the wood inspection device of this example. 6 and 7 are diagrams showing an example of the measurement results of the two-dimensional distribution of the amount of change in the relative permittivity of two types of wood impregnated with a non-combustible agent under different conditions, and the distribution displayed on the display. Is shown. In FIGS. 6 and 7, in the actual screen, red (R), yellow (Y), green (G), and blue (B) are color-coded in this order according to the amount of change in the relative permittivity. Red (R) is around 0.8 to 1.0 relative permittivity change, yellow (Y) is around 0.7 relative permittivity change, green (G) is around 0.5 relative permittivity change, blue (B) shows values in the vicinity of the relative permittivity change amount of 0.2 to 0.3, respectively. In the wood sample of FIG. 6, the amount of change in the relative permittivity is mainly distributed around 0.2 to 0.5, and in the wood sample of FIG. 7, the amount of change in the relative permittivity is mainly distributed in the vicinity of 0.6 to 1.0. doing. This display allows the inspector to visually recognize the two-dimensional distribution of the impregnation amount corresponding to the relative permittivity in the wood. For example, when the value of the relative permittivity change amount corresponding to the impregnation amount that is the standard of non-combustible performance is around 0.3, it can be recognized that the impregnation amount of the blue portion of the display screen is equal to or less than the reference value.

以上のように、本発明の木材検査装置により、1つの不燃木材中の不燃剤の含浸量の分布を検査できることが確認できた。上記実施例においては、木材に含浸させる薬剤が不燃剤である場合を示したが、防腐剤などの他の薬剤を含浸させた場合であっても、あらかじめその薬剤の含浸量と比誘電率との関係を求めておけば、上記実施例と同様に含浸量の分布の検査が可能である。 As described above, it was confirmed that the wood inspection apparatus of the present invention can inspect the distribution of the impregnation amount of the noncombustible agent in one noncombustible wood. In the above embodiment, the case where the chemical to be impregnated in the wood is a non-combustible agent is shown, but even when the chemical is impregnated with another chemical such as a preservative, the impregnation amount and the relative permittivity of the chemical are determined in advance. If the relationship is obtained, it is possible to inspect the distribution of the impregnation amount in the same manner as in the above embodiment.

なお、本発明は上記の実施例に限定されるものではないことは言うまでもなく、目的や用途に応じて設計変更可能である。例えば、送信アンテナと受信アンテナはホーンアンテナ以外のマイクロ波アンテナ、例えばプローブアンテナ等を用いても構成可能である。送信アンテナと受信アンテナの設置数及びその配置は、測定を目的とする木材の形状等に合わせて最適な構成を選択すればよい。 Needless to say, the present invention is not limited to the above embodiment, and the design can be changed according to the purpose and application. For example, the transmitting antenna and the receiving antenna can be configured by using a microwave antenna other than the horn antenna, for example, a probe antenna. The optimum configuration of the number of transmitting antennas and receiving antennas installed and their arrangement may be selected according to the shape of the wood to be measured and the like.

1 木材
1a 表面
1b 裏面
2a,2b,2c,2d,2e 送信アンテナ
3a,3b,3c,3d,3e 受信アンテナ
4 木材搬送装置
5 マイクロ波送信回路
6 マイクロ波受信回路
7 マイクロ波ユニット
8 スイッチ
9,12 分配器
10 パーソナルコンピュータ
11 発信器
13 検出器
14 アンプ
15 表示部
16 送信アンテナユニット
17 受信アンテナユニット
20 木材検査装置
21 入射マイクロ波
22 透過マイクロ波
23,24,25,26,27 領域
28 直線
1 Wood 1a Front surface 1b Back surface 2a, 2b, 2c, 2d, 2e Transmission antenna 3a, 3b, 3c, 3d, 3e Reception antenna 4 Wood transfer device 5 Microwave transmission circuit 6 Microwave reception circuit 7 Microwave unit 8 Switch 9, 12 Distributor
10 Personal computer 11 Transmitter 13 Detector 14 Amplifier 15 Display 16 Transmitter antenna unit 17 Receiving antenna unit 20 Wood inspection device 21 Incident microwave 22 Transmitted microwave 23, 24, 25, 26, 27 Area 28 Straight line

Claims (6)

薬剤を含浸させた木材の検査装置であって、
前記木材を挟んで互いに対向設置されたマイクロ波の送信アンテナ及び受信アンテナと、前記送信アンテナに接続されたマイクロ波送信回路と、前記受信アンテナに接続されたマイクロ波受信回路とを有し、
前記送信アンテナより送出され、前記木材を透過し前記受信アンテナに入力されるマイクロ波の振幅と位相とを検出し、
前記検出されたマイクロ波の振幅と位相とにより前記木材の比誘電率を算出し、
前記比誘電率と、あらかじめ求めた前記薬剤の含浸量と前記比誘電率との関係と、を用いて、前記木材の前記薬剤の含浸量を検査することを特徴とする木材検査装置。
A chemical-impregnated wood inspection device
It has a microwave transmitting antenna and a receiving antenna installed opposite to each other across the wood, a microwave transmitting circuit connected to the transmitting antenna, and a microwave receiving circuit connected to the receiving antenna.
The amplitude and phase of microwaves transmitted from the transmitting antenna, transmitted through the wood, and input to the receiving antenna are detected.
The relative permittivity of the wood is calculated from the detected microwave amplitude and phase.
A wood inspection apparatus for inspecting the impregnation amount of the chemical in the wood by using the relative permittivity, the impregnation amount of the chemical, and the relationship between the relative permittivity obtained in advance.
複数個の前記送信アンテナと、前記木材を挟んで前記複数個の送信アンテナとそれぞれ対向配置された複数個の前記受信アンテナとを有し、前記木材を一方向に移動させて前記検出を行うことにより、前記木材の比誘電率の二次元分布を測定し、該二次元分布を表示する表示装置を有することを特徴とする請求項1に記載の木材検査装置。 Having a plurality of the transmitting antennas, the plurality of transmitting antennas sandwiching the wood, and a plurality of the receiving antennas arranged opposite to each other, the wood is moved in one direction to perform the detection. The wood inspection device according to claim 1, further comprising a display device that measures the two-dimensional distribution of the relative permittivity of the wood and displays the two-dimensional distribution. 前記複数個の送信アンテナ及び前記複数個の受信アンテナは、前記木材の移動方向に直交する方向に対して互いに異なる位置に配置され、前記複数個の送信アンテナと前記マイクロ波送信回路との間にスイッチを有し、該スイッチにより前記複数個の送信アンテナを順次切り替えながら前記検出を行うことを特徴とする請求項2に記載の木材検査装置。 The plurality of transmitting antennas and the plurality of receiving antennas are arranged at different positions with respect to a direction orthogonal to the moving direction of the wood, and are located between the plurality of transmitting antennas and the microwave transmitting circuit. The wood inspection apparatus according to claim 2, further comprising a switch, wherein the detection is performed while sequentially switching the plurality of transmitting antennas by the switch. 複数の周波数のマイクロ波を用いて前記検出を行い、該検出により得られた複数のデータにより前記比誘電率の算出を行うことを特徴とする請求項1乃至3のいずれか1項に記載の木材検査装置。 The invention according to any one of claims 1 to 3, wherein the detection is performed using microwaves having a plurality of frequencies, and the relative permittivity is calculated from a plurality of data obtained by the detection. Wood inspection equipment. 前記木材の薬剤を含浸する前の比誘電率、又は比誘電率の二次元分布、すなわち初期比誘電率、又は初期比誘電率分布をあらかじめ測定し、前記初期比誘電率又は前記初期比誘電率分布と薬剤を含浸させた前記木材の比誘電率又は比誘電率の二次元分布との間の差分を求め、前記差分により前記薬剤の含浸量を検査する手段を有することを特徴とする請求項1乃至4のいずれか1項に記載の木材検査装置。 The relative permittivity before impregnating the chemical of the wood, or the two-dimensional distribution of the relative permittivity, that is, the initial relative permittivity or the initial relative permittivity distribution is measured in advance, and the initial relative permittivity or the initial relative permittivity is measured. The claim is characterized in that it has a means for obtaining a difference between the distribution and the relative permittivity of the wood impregnated with the chemical or the two-dimensional distribution of the relative permittivity, and inspecting the impregnation amount of the chemical by the difference. The wood inspection apparatus according to any one of 1 to 4. 前記送信アンテナ及び受信アンテナはホーンアンテナであることを特徴とする請求項1乃至5のいずれか1項に記載の木材検査装置。 The wood inspection device according to any one of claims 1 to 5, wherein the transmitting antenna and the receiving antenna are horn antennas.
JP2019190802A 2019-10-18 2019-10-18 wood inspection equipment Active JP7366362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190802A JP7366362B2 (en) 2019-10-18 2019-10-18 wood inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190802A JP7366362B2 (en) 2019-10-18 2019-10-18 wood inspection equipment

Publications (2)

Publication Number Publication Date
JP2021067481A true JP2021067481A (en) 2021-04-30
JP7366362B2 JP7366362B2 (en) 2023-10-23

Family

ID=75637004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190802A Active JP7366362B2 (en) 2019-10-18 2019-10-18 wood inspection equipment

Country Status (1)

Country Link
JP (1) JP7366362B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162845A (en) * 1984-06-27 1986-03-31 ステイフテルセン インスチツテツト フオア− ミクロベ−グステクニツク ビツド テクニスカ ホ−グスコラン アイ ストツクホルム Method and device for measuring moisture content in organic material
JPH0121457B2 (en) * 1979-07-14 1989-04-21 Fuiritsupusu Furuuiranpenfuaburiken Nv
US20030146767A1 (en) * 2002-02-04 2003-08-07 Steele Philip H. Moisture and density detector (MDD)
JP2010237135A (en) * 2009-03-31 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> Device and method for determining moisture content of wood
JP4829452B2 (en) * 1999-09-17 2011-12-07 フード ラダー システム イン スウェーデン アーベー Apparatus and method for detecting foreign matter in product
JP2019070535A (en) * 2017-10-06 2019-05-09 マイクロメジャー株式会社 Measuring apparatus and measuring method of moisture content rate and the like
JP2019132807A (en) * 2018-02-02 2019-08-08 株式会社サカワ Non-combustible wood quality test method and quality test system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0121457B2 (en) * 1979-07-14 1989-04-21 Fuiritsupusu Furuuiranpenfuaburiken Nv
JPS6162845A (en) * 1984-06-27 1986-03-31 ステイフテルセン インスチツテツト フオア− ミクロベ−グステクニツク ビツド テクニスカ ホ−グスコラン アイ ストツクホルム Method and device for measuring moisture content in organic material
JP4829452B2 (en) * 1999-09-17 2011-12-07 フード ラダー システム イン スウェーデン アーベー Apparatus and method for detecting foreign matter in product
US20030146767A1 (en) * 2002-02-04 2003-08-07 Steele Philip H. Moisture and density detector (MDD)
JP2010237135A (en) * 2009-03-31 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> Device and method for determining moisture content of wood
JP2019070535A (en) * 2017-10-06 2019-05-09 マイクロメジャー株式会社 Measuring apparatus and measuring method of moisture content rate and the like
JP2019132807A (en) * 2018-02-02 2019-08-08 株式会社サカワ Non-combustible wood quality test method and quality test system

Also Published As

Publication number Publication date
JP7366362B2 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
US6691563B1 (en) Universal dielectric calibration method and apparatus for moisture content determination in particulate and granular materials
Sham et al. Development of a new algorithm for accurate estimation of GPR's wave propagation velocity by common-offset survey method
US4764718A (en) Microwave oil saturation scanner
US20050179578A1 (en) Ultra-wideband detector systems for detecting moisture in building walls
US9304190B2 (en) Method and system for unveiling hidden dielectric object
RU2507506C2 (en) Microwave method of detecting and evaluating non-uniformities in dielectric coatings on metal
Hasar et al. A microwave method based on amplitude-only reflection measurements for permittivity determination of low-loss materials
JP6620098B2 (en) Nondestructive material characterization waveguide probe
De Donno et al. High-resolution investigation of masonry samples through GPR and electrical resistivity tomography
US20190257770A1 (en) Microwave sensor
Zhang et al. Broadband stepped-frequency modulated continuous terahertz wave tomography for non-destructive inspection of polymer materials
CN108872386A (en) Concrete strength ultrasound wave angle surveys the bearing calibration of method detection
Hasar Unique retrieval of complex permittivity of low-loss dielectric materials from transmission-only measurements
JP7366362B2 (en) wood inspection equipment
Tang et al. Electromagnetic evaluation of brick specimens using synthetic aperture radar imaging
WO2017055689A1 (en) Method and apparatus for detecting moisture content of building structures
Ahanian et al. An array waveguide probe for detection, location and sizing of surface cracks in metals
Liu et al. High-resolution imaging of damaged wooden structures for building inspection by polarimetric radar
US6984976B1 (en) Process for determining the resistivity of a resistive layer
Agarwal et al. Active millimeter wave radar system for non-destructive, non-invasive underline fault detection and multilayer material analysis
Jaeger et al. Millimeter wave inspection of concealed objects
Kurz et al. Measurement of moisture content in building materials using radar technology
Hasar Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements
JP3799524B2 (en) Microwave nondestructive evaluation system
Vilovic et al. A non-destructive approach for extracting the complex dielectric constant of the walls in building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7366362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150