JP2021066830A - Resin composition, thermally-expandable sheet-like or putty-like refractory product, and manufacturing method of resin composition - Google Patents

Resin composition, thermally-expandable sheet-like or putty-like refractory product, and manufacturing method of resin composition Download PDF

Info

Publication number
JP2021066830A
JP2021066830A JP2019194188A JP2019194188A JP2021066830A JP 2021066830 A JP2021066830 A JP 2021066830A JP 2019194188 A JP2019194188 A JP 2019194188A JP 2019194188 A JP2019194188 A JP 2019194188A JP 2021066830 A JP2021066830 A JP 2021066830A
Authority
JP
Japan
Prior art keywords
heat
expandable graphite
resin composition
volume
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019194188A
Other languages
Japanese (ja)
Other versions
JP6753591B1 (en
Inventor
秀康 鳥居
Hideyasu Torii
秀康 鳥居
恭彦 佐藤
Yasuhiko Sato
恭彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAKO KAKO CO Ltd
Regulus Co Ltd
Original Assignee
MIYAKO KAKO CO Ltd
Regulus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72333445&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021066830(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MIYAKO KAKO CO Ltd, Regulus Co Ltd filed Critical MIYAKO KAKO CO Ltd
Priority to JP2019194188A priority Critical patent/JP6753591B1/en
Application granted granted Critical
Publication of JP6753591B1 publication Critical patent/JP6753591B1/en
Publication of JP2021066830A publication Critical patent/JP2021066830A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

To provide a modification technique of new thermally-expandable graphite which enables a more excellent fire spread prevention effect at fire to be expected in a refractory product formed by using a resin composition containing thermally-expandable graphite and resin components, and is simple, excellent in economical efficiency, and highly practicable.SOLUTION: A resin composition contains modified expandable graphite and resin components. The resin composition is such that: 5-300 pts.mass of the modified expandable graphite is contained on the basis of 100 pts.mass of the resin components; a bulk volume ratio of the modified expandable graphite is increased to 1.05-3.0 times of a bulk volume of a raw material before heating by previously heat-treating a thermally-expandable graphite raw material; and polyisocyanate is added to the heat-treated thermally-expandable graphite in a state that the bulk volume is increased. A thermally-expandable sheet-like or putty-like refractory product, and a manufacturing method of the resin composition are also provided.SELECTED DRAWING: None

Description

本発明は、熱膨張性黒鉛を含有する樹脂組成物において、樹脂組成物によって形成した製品の燃焼時における膨張特性の改善を、樹脂組成物の構成成分である熱膨張性黒鉛の改質によって達成した、樹脂組成物、熱膨張性のシート状又はパテ状の耐火製品及び樹脂組成物の製造方法に関する。 In the present invention, in a resin composition containing heat-expandable graphite, improvement of expansion characteristics during combustion of a product formed by the resin composition during combustion is achieved by modifying the heat-expandable graphite which is a component of the resin composition. The present invention relates to a resin composition, a heat-expandable sheet-like or putty-like fireproof product, and a method for producing the resin composition.

樹脂組成物に熱膨張性黒鉛を配合することによって、該樹脂組成物が、燃焼時に膨張する特性をもつものになることは既に知られている。この性質を利用し、熱膨張性黒鉛を含有する樹脂組成物からシート状の成形体を得、該成形体を建具の部品などに装着することで火災の際における延焼防止効果を期待した、耐火シートなどの各種の製品が提供されている。また、熱膨張性黒鉛を含有した樹脂組成物をパテ状の製品に仕上げて、住宅等の外部と内部の隙間に挿入し、火の通過を防ぐ用途にも用いられている。これ等の用途に期待されている熱膨張性黒鉛の最大の性能は、熱膨張性黒鉛を含有してなる樹脂組成物によって得られる製品の燃焼時の膨張特性である。 It is already known that by blending heat-expandable graphite with a resin composition, the resin composition has a property of expanding during combustion. Utilizing this property, a sheet-shaped molded body is obtained from a resin composition containing heat-expandable graphite, and the molded body is attached to parts of fittings or the like, which is expected to have a fire spread prevention effect in the event of a fire. Various products such as sheets are offered. It is also used for finishing a resin composition containing heat-expandable graphite into a putty-like product and inserting it into a gap between the outside and the inside of a house or the like to prevent the passage of fire. The maximum performance of the heat-expandable graphite expected for these applications is the expansion characteristics during combustion of the product obtained by the resin composition containing the heat-expandable graphite.

通常、火災時の温度は500℃以上になるので、樹脂組成物を構成している樹脂成分やその他有機物は大部分が燃焼消失してしまう。そして、極少量の炭化物、リン化合物、窒素化合物が複合化されて膨張した残渣物(膨張体)を形成する。この残渣物(膨張体)の形状、特に体積が延焼防止や火の通過阻止に極めて大きな要素となる。即ち、本分野における製品に対し習慣的(一般的)に求められている膨張特性である。 Normally, the temperature at the time of fire is 500 ° C. or higher, so that most of the resin components and other organic substances constituting the resin composition are burned out. Then, a very small amount of carbide, phosphorus compound, and nitrogen compound are compounded to form an expanded residue (expansion body). The shape of this residue (expansion body), especially its volume, is an extremely important factor in preventing the spread of fire and the passage of fire. That is, it is an expansion characteristic that is habitually (generally) required for products in this field.

しかしながら、熱による膨張は体積の増加を意味するが、この性質を開放状態で評価するのは極めて困難である。即ち、樹脂組成物を用いて得られたシート状の成形体やパテ等の製品の膨張特性についての比較を、空間的制限の無い開放状態で評価するのは、極めて難しい。その理由は、開放状態で熱膨張をさせた場合、膨張体は不定形の塊となり、正確な体積の測定ができないからである。 However, thermal expansion means an increase in volume, and it is extremely difficult to evaluate this property in the open state. That is, it is extremely difficult to evaluate the expansion characteristics of products such as sheet-shaped molded products and putties obtained by using the resin composition in an open state without spatial restrictions. The reason is that when thermal expansion is performed in the open state, the inflatable body becomes an amorphous mass, and accurate volume measurement cannot be performed.

このため、本分野でよく用いられている膨張特性の測定法としては、例えば、下記のような方法がある。4方向と底部が閉じられて上方のみが開放となっている上方開放型の容器の底部に、評価対象の成形体のシートを置き、電気炉で、500℃ないし600℃で所定の時間燃焼を実施し、冷却後に容器から残渣物(膨張体)を取り出し、体積の増加を調べて評価を行う。評価方法は、試験前の評価対象の成形体の厚みと燃焼後の高さの比から求めるのが一般的である。この場合は、評価対象の成形体の比重、即ち、重さ(質量)については考察外となる。他の評価方法としては、上記容器の底辺に置く評価対象の成形体の厚みはできるだけ均一にするが、評価の基準は、試験前の重さを一定にし、得られた膨張体の高さ、及び、高さの違いによる体積の増加を評価する場合もある。両者の視点の違いは、評価対象の成形体の試験前の容積と、残渣物(膨張体)の容積との比を、厚みを基に評価するか、或いは、試験に供した評価対象である成形体の同一質量を基にした膨張体の容積の比較を重視するかの点である。 Therefore, as a method for measuring expansion characteristics often used in this field, for example, there are the following methods. A sheet of the molded product to be evaluated is placed on the bottom of an upward open type container in which the bottom is closed in four directions and only the upper side is open, and combustion is performed in an electric furnace at 500 ° C. to 600 ° C. for a predetermined time. After cooling, the residue (expansion body) is taken out from the container, and the increase in volume is examined and evaluated. The evaluation method is generally obtained from the ratio of the thickness of the molded product to be evaluated before the test to the height after combustion. In this case, the specific gravity of the molded product to be evaluated, that is, the weight (mass) is out of consideration. As another evaluation method, the thickness of the molded product to be evaluated placed on the bottom of the container is made as uniform as possible, but the evaluation standard is to keep the weight before the test constant and to obtain the height of the expanded body. In some cases, the increase in volume due to the difference in height may be evaluated. The difference between the two viewpoints is that the ratio of the volume of the molded body to be evaluated before the test and the volume of the residue (expansion body) is evaluated based on the thickness, or the evaluation target is subjected to the test. The point is whether to emphasize the comparison of the volume of the expanded body based on the same mass of the molded body.

特に、多様な材料の使用が可能な樹脂組成物は、その配合によって比重が大きく変わる。例えば、樹脂が塩化ビニル系の場合とオレフィン系とではその比重が大きく異なる。このため、本発明では、評価対象の成形体についての熱による膨張特性を、下記の方法で評価した。 In particular, the specific gravity of a resin composition that can be used for various materials varies greatly depending on its composition. For example, the specific gravities of the vinyl chloride-based resin and the olefin-based resin are significantly different. Therefore, in the present invention, the thermal expansion characteristics of the molded product to be evaluated were evaluated by the following method.

先に述べた4方向と底部が閉じられている上方開放型の容器の底部に、評価対象のシート状などの成形体を一定の重さとなる量で置き、所定の加熱条件で得られた容器から取り出した膨張体の体積の比較で、評価対象である成形体の形成に用いた樹脂組成物における膨張特性の評価を行った。従って、測定値の単位は、ml/gとして表示した。例えば、評価対象の成形体の形成物(樹脂組成物)の加熱試験前の質量が1.48gであり、容器の底辺寸法が21mm×46mmで、その高さが50mmとして、加熱後に得られた膨張体の高さの測定値が34mmであれば、その膨張倍率は下記式で求められるように、22.2ml/gとする。
(2.1×4.6×3.4)/1.48=22.2ml/g
A container obtained under predetermined heating conditions in which a molded body such as a sheet to be evaluated is placed in an amount having a constant weight on the bottom of an upward open type container in which the four directions and the bottom are closed as described above. The expansion characteristics of the resin composition used for forming the molded body to be evaluated were evaluated by comparing the volumes of the expanded bodies taken out from the above. Therefore, the unit of the measured value is expressed as ml / g. For example, the mass of the molded product (resin composition) to be evaluated before the heating test was 1.48 g, the bottom dimension of the container was 21 mm × 46 mm, and the height was 50 mm, which was obtained after heating. If the measured value of the height of the inflator is 34 mm, the expansion ratio is 22.2 ml / g as calculated by the following formula.
(2.1 x 4.6 x 3.4) /1.48=22.2 ml / g

上記膨張倍率に与える最大の因子は、樹脂組成物を構成する熱膨張性黒鉛に依存する。市販されている熱膨張性黒鉛は、主に天然物として採掘された黒鉛や熱分解黒鉛原料を、洗浄、粉砕後に、硫酸、硝酸などの無機酸と過塩素酸、過酸化水素などの酸化剤で処理して黒鉛の層間に酸を挿入している。酸化剤により黒鉛の六員環が部分的にカチオン化され、このカチオンに酸根のアニオンが配位する。この挿入された物質をインターカレートと称し、加熱により急激にガス化して体積の膨張を引き起す。このインターカレートの物質の種類や量が大きな因子となる。この事由により、市販されている熱膨張性黒鉛の特性表示に、体積の膨張開始温度とガスの量が記載されている。また、樹脂組成物の製造上の面から粒度の範囲も記載されている。熱膨張性黒鉛の組成内容が全く同じでも、粒度が異なると膨張倍率に大きく影響することはよく知られており、また、一般的に粒度の大きい程、膨張倍率は大きくなる。粒度を粒径として表現する場合も有る。 The largest factor that gives the expansion coefficient depends on the heat-expandable graphite that constitutes the resin composition. Commercially available heat-expandable graphite is mainly composed of graphite and thermally decomposed graphite raw materials mined as natural products. After cleaning and crushing, inorganic acids such as sulfuric acid and nitric acid and oxidizing agents such as perchloric acid and hydrogen peroxide are used. The acid is inserted between the layers of graphite by processing with. The six-membered ring of graphite is partially cationized by the oxidizing agent, and the anion of the acid root is coordinated to this cation. This inserted substance is called intercalate, and it is rapidly gasified by heating to cause volume expansion. The type and amount of this intercalating substance is a major factor. For this reason, the characteristic display of commercially available heat-expandable graphite describes the volume expansion start temperature and the amount of gas. In addition, the range of particle size is also described from the aspect of manufacturing the resin composition. It is well known that even if the composition of the heat-expandable graphite is exactly the same, different particle sizes have a large effect on the expansion ratio. Generally, the larger the particle size, the larger the expansion ratio. The particle size may be expressed as the particle size.

熱膨張性黒鉛を含有する樹脂組成物から得られる成形体やパテ等の製品の目的・用途によっては、火災時の膨張開始温度が重要視される場合もある。例えば、火災の初期の段階で膨張を生起させる必要がある場合は、膨張開始温度を低くしなければならない。このような目的のためには、ガス化の温度を下げるためにインターカレートの物質に低分子の有機酸等が良いとされている(非特許文献1参照)。また、ペルオキソ硫酸アンモニウムと過酸化水素を添加した濃硫酸で黒鉛を処理すると、熱膨張性黒鉛の膨張開始温度を200℃以下にできるという文献もある(特許文献1参照)。 Depending on the purpose and application of the product such as a molded product or putty obtained from the resin composition containing the heat-expandable graphite, the expansion start temperature at the time of fire may be regarded as important. For example, if expansion needs to occur in the early stages of a fire, the expansion initiation temperature must be lowered. For such a purpose, it is said that a low-molecular-weight organic acid or the like is a good intercalate substance in order to lower the gasification temperature (see Non-Patent Document 1). There is also a document that the expansion start temperature of thermally expandable graphite can be lowered to 200 ° C. or lower by treating graphite with concentrated sulfuric acid to which ammonium peroxosulfate and hydrogen peroxide are added (see Patent Document 1).

他方、樹脂組成物を製造する場合に使用する樹脂成分の溶融温度が高い時には、含有する熱膨張性黒鉛の膨張開始温度をその溶融温度より高くしなければならない。特許文献2では、この目的のために、アルカリ土類金属化合物を重合体100部に5〜30重量%の割合で含有させれば、膨張開始温度を300℃以上に高くすることができるとしている。また、特許文献3では、過酸化水素を含む酸化剤で処理することで260℃以上の高い膨張開始温度の熱膨張性黒鉛が得られるとしている。同様の目的で、特許文献4では、硫酸と酸化剤の反応溶液にリン酸を添加することで、膨張開始温度を250℃以上にすることができるとしている。 On the other hand, when the melting temperature of the resin component used in producing the resin composition is high, the expansion start temperature of the heat-expandable graphite contained must be higher than the melting temperature. Patent Document 2 states that, for this purpose, if 100 parts of the polymer contains an alkaline earth metal compound at a ratio of 5 to 30% by weight, the expansion start temperature can be raised to 300 ° C. or higher. .. Further, Patent Document 3 states that heat-expandable graphite having a high expansion start temperature of 260 ° C. or higher can be obtained by treating with an oxidizing agent containing hydrogen peroxide. For the same purpose, Patent Document 4 states that the expansion start temperature can be raised to 250 ° C. or higher by adding phosphoric acid to the reaction solution of sulfuric acid and an oxidizing agent.

特開平11−268908号公報Japanese Unexamined Patent Publication No. 11-268908 特開2007−63434号公報Japanese Unexamined Patent Publication No. 2007-63434 特開2012−193053公報Japanese Unexamined Patent Publication No. 2012-193053 特開平10−33010号公報Japanese Unexamined Patent Publication No. 10-33010

炭素材料学会誌、総説、豊田昌宏、「膨張黒鉛とその応用」、2008[No.233]、160頁Journal of Carbon Materials Society, Review Article, Masahiro Toyoda, "Expanded Graphite and Its Applications", 2008 [No. 233], page 160

しかしながら、これ等の文献はいずれも、熱膨張性黒鉛の膨張開始温度の変化を指向し、この点を技術課題としている。これに対して、熱膨張性黒鉛の重要な特性でもある、熱膨張性黒鉛を含む樹脂組成物から得られる成形体の膨張体積、即ち、本発明が問題としている膨張特性の増加についての先行文献は見出されていない。 However, all of these documents point to changes in the expansion start temperature of thermally expandable graphite, and this point is a technical issue. On the other hand, prior literature on an increase in the expansion volume of a molded product obtained from a resin composition containing the heat-expandable graphite, which is also an important property of the heat-expandable graphite, that is, an increase in the expansion property which is a problem of the present invention. Has not been found.

一般的に膨張特性の増加の因子として考えられているのは、樹脂組成物の原料に用いられる熱膨張性黒鉛の層間にインターカレートされている物質の種類と量、及び、インターカレートの物質の単位質量当たりのガス体積である。 Generally, the factors for increasing the expansion characteristics are the type and amount of the substance intercalated between the layers of the heat-expandable graphite used as the raw material of the resin composition, and the intercalation. The volume of gas per unit mass of a substance.

膨張特性の増加にかかわる他の因子としては、加熱により発生したガスの放出経過と、樹脂組成物の燃焼炭化の進行状況との相関性が考えられる。即ち、本発明が課題としている膨張特性の増加を達成するためには、熱膨張性黒鉛を含む樹脂組成物から得られる成形体から燃焼によって発生したガスを、できるだけホールドしながら燃焼炭化が進行するのが望ましいと考えられる。本願の出願人らが提案した特許第5992589号公報、特許第6228658号公報に記載しているように、例えば、樹脂成分として塩化ビニル樹脂を用いる場合は、燃焼によって塩化ビニル樹脂が可塑剤を消失しながら固化すると共に、塩化ビニル樹脂の塩素と水素が脱塩化水素反応を起こして架橋と炭化をするので、膨張特性の増加を達成するためには、これ等の諸変化とガスの発生経過が重要な要素になると考えられる。 Another factor related to the increase in expansion characteristics is considered to be the correlation between the release process of the gas generated by heating and the progress of combustion carbonization of the resin composition. That is, in order to achieve the increase in the expansion characteristics, which is the subject of the present invention, combustion carbonization proceeds while holding the gas generated by combustion from the molded product obtained from the resin composition containing the thermally expandable graphite as much as possible. Is considered desirable. As described in Japanese Patent No. 5992589 and Japanese Patent No. 6228658 proposed by the applicants of the present application, for example, when a vinyl chloride resin is used as a resin component, the vinyl chloride resin loses the plasticizer by combustion. While solidifying while solidifying, the chlorine and hydrogen of the vinyl chloride resin undergo a dehydrochlorination reaction to crosslink and carbonize. Therefore, in order to achieve an increase in expansion characteristics, these changes and the gas generation process are required. It is considered to be an important factor.

本発明は、膨張性黒鉛と樹脂成分とを含む樹脂組成物において、該樹脂組成物を用いて得られた火災の際における延焼防止効果を期待した各種の製品において、構成する熱膨張性黒鉛を改質することで、上記製品の膨張特性の向上を達成することを実現することを目的とする。本発明の目的は、簡便な方法で熱膨張性黒鉛を改質し、該熱膨張性黒鉛と樹脂成分とを含む樹脂組成物を用いて、火災の際における優れた延焼防止効果を期待した各種の製品を構成することで、従来製品に比べて膨張特性がより向上した耐火製品の提供を可能にすることである。本発明の主たる技術的な課題は、改質した膨張性黒鉛と樹脂成分とを含む樹脂組成物を用いて形成した耐火製品が、火災の際に、より優れた延焼防止効果を期待できるものになる、簡便で経済性に優れる実用性に高い、新規な熱膨張性黒鉛の改質技術を提供することである。 In the present invention, in a resin composition containing expandable graphite and a resin component, the heat-expandable graphite constituting the resin composition, which is expected to have a fire spread prevention effect in the event of a fire obtained by using the resin composition, can be used. It is an object of the present invention to realize the improvement of the expansion characteristics of the above-mentioned product by reforming. An object of the present invention is to modify heat-expandable graphite by a simple method, and to use a resin composition containing the heat-expandable graphite and a resin component, various kinds expected to have an excellent fire spread prevention effect in the event of a fire. By configuring the above products, it is possible to provide fire-resistant products with improved expansion characteristics compared to conventional products. The main technical problem of the present invention is that a refractory product formed by using a resin composition containing modified expansive graphite and a resin component can be expected to have a better fire spread prevention effect in the event of a fire. This is to provide a novel technology for modifying heat-expandable graphite, which is simple, has excellent economic efficiency, and is highly practical.

上記の目的は、下記の本発明によって達成される。すなわち、本発明は、以下の樹脂組成物を提供する。
[1]改質された膨張性黒鉛と樹脂成分とを含む樹脂組成物であって、
前記樹脂成分100質量部を基準にして、前記改質された膨張性黒鉛を5〜300質量部含み、
前記改質された膨張性黒鉛が、熱膨張性黒鉛原料を予め加熱処理することで、下記式で求められるカサ体積倍率が、加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加しており、且つ、加熱処理済のカサ体積が増加した状態の熱膨張性黒鉛にポリイソシアナートが付与された状態のものであることを特徴とする樹脂組成物。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
The above object is achieved by the following invention. That is, the present invention provides the following resin compositions.
[1] A resin composition containing modified expansive graphite and a resin component.
Based on 100 parts by mass of the resin component, the modified expandable graphite is contained in an amount of 5 to 300 parts by mass.
By heat-treating the heat-expandable graphite raw material in advance with the modified expandable graphite, the bulk volume ratio obtained by the following formula is 1.05 to 3.0 as compared with the bulk volume of the raw material before heating. A resin composition characterized by having polyisosianate added to heat-expandable graphite in a state where the volume has been doubled and the volume of heat-treated bulk has increased.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating

上記した樹脂組成物の好ましい形態としては、下記の構成のものが挙げられる。
[2]前記改質された膨張性黒鉛の粒子の形態が、最大長が100〜1000μmの範囲内で、且つ、最大の厚みが5〜150μmの範囲内である上記[1]に記載の樹脂組成物。
[3]前記樹脂成分が、熱可塑性樹脂及び熱硬化樹脂から選ばれるいずれかの樹脂である上記[1]又は[2]に記載の樹脂組成物。
Preferred forms of the above-mentioned resin composition include those having the following configurations.
[2] The resin according to the above [1], wherein the modified expandable graphite particles have a maximum length in the range of 100 to 1000 μm and a maximum thickness in the range of 5 to 150 μm. Composition.
[3] The resin composition according to the above [1] or [2], wherein the resin component is any resin selected from a thermoplastic resin and a thermosetting resin.

また、本発明は、下記の熱膨張性のシート状又はパテ状の耐火製品を提供する。
[4]改質された膨張性黒鉛と樹脂成分とを含む樹脂組成物からなる成形物である、熱膨張性のシート状又はパテ状の耐火製品であって、
前記樹脂成分100質量部を基準にして、前記改質された膨張性黒鉛を5〜300質量部含み、
該改質された膨張性黒鉛が、熱膨張性黒鉛原料を予め加熱処理することで、下記式で求められるカサ体積倍率が、加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加しており、且つ、加熱処理済のカサ体積が増加した状態の熱膨張性黒鉛にポリイソシアナートが付与された状態のものであることを特徴とする熱膨張性のシート状又はパテ状の耐火製品。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
The present invention also provides the following heat-expandable sheet-like or putty-like refractory products.
[4] A heat-expandable sheet-like or putty-like refractory product, which is a molded product composed of a resin composition containing modified expandable graphite and a resin component.
Based on 100 parts by mass of the resin component, the modified expandable graphite is contained in an amount of 5 to 300 parts by mass.
By heat-treating the heat-expandable graphite raw material in advance with the modified expandable graphite, the bulk volume ratio obtained by the following formula is 1.05 to 3.0 as compared with the bulk volume of the raw material before heating. A heat-expandable sheet or putty characterized by having polyisosianate added to the heat-expandable graphite in a state where the volume of heat-treated bulk has increased by a factor of two. Fireproof product.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating

上記した熱膨張性のシート状又はパテ状の耐火製品の好ましい形態としては、下記の構成ものが挙げられる。
[5]前記改質された膨張性黒鉛の粒子の形態が、最大長が100〜1000μmの範囲で、且つ、最大の厚みが5〜150μmの範囲である上記[4]に記載の熱膨張性のシート状又はパテ状の耐火製品。
[6]前記樹脂成分が、熱可塑性樹脂及び熱硬化樹脂から選ばれるいずれかの樹脂である上記[4]又は[5]に記載の熱膨張性のシート状又はパテ状の耐火製品。
Preferred forms of the above-mentioned heat-expandable sheet-shaped or putty-shaped refractory product include the following configurations.
[5] The thermal expandability according to the above [4], wherein the modified expandable graphite particles have a maximum length in the range of 100 to 1000 μm and a maximum thickness in the range of 5 to 150 μm. Sheet-shaped or putty-shaped refractory products.
[6] The heat-expandable sheet-like or putty-like refractory product according to the above [4] or [5], wherein the resin component is any resin selected from a thermoplastic resin and a thermosetting resin.

また、本発明は、下記の樹脂組成物の製造方法を提供する。
[7]改質工程で熱膨張性黒鉛原料を改質し、得られた改質された膨張性黒鉛と樹脂成分とを混合して、樹脂成分100質量部を基準にして、改質された膨張性黒鉛を5〜300質量部含む樹脂組成物を得る樹脂組成物の作製方法であって、
前記改質工程が、熱膨張性黒鉛原料を100℃〜250℃の温度で加熱処理し、加熱処理前に比べて加熱処理後の、下記式で求められるカサ体積倍率が1.05〜3.0倍になるように熱膨張性黒鉛原料の体積を増加させる体積の増加工程と、該体積の増加工程で、カサ体積を増加させた状態の加熱処理済の熱膨張性黒鉛に、常温下でポリイソシアナートを添加し、その後に130℃以下の温度に加温する、ポリイソシアナートの付与工程とを有することを特徴とする樹脂組成物の製造方法。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
The present invention also provides a method for producing the following resin composition.
[7] The heat-expandable graphite raw material was modified in the modification step, and the obtained modified expandable graphite and the resin component were mixed and modified based on 100 parts by mass of the resin component. A method for producing a resin composition for obtaining a resin composition containing 5 to 300 parts by mass of expandable graphite.
In the modification step, the heat-expandable graphite raw material is heat-treated at a temperature of 100 ° C. to 250 ° C., and the bulk volume ratio obtained by the following formula after the heat treatment is 1.05 to 3. In the volume increasing step of increasing the volume of the heat-expandable graphite raw material so as to be 0 times, and the heat-treated heat-expandable graphite in a state where the bulk volume is increased in the volume increasing step, at room temperature. A method for producing a resin composition, which comprises a step of applying polyisosianate, which comprises adding polyisosianate and then heating to a temperature of 130 ° C. or lower.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating

上記した樹脂組成物の製造方法の好ましい形態としては、下記の構成のものが挙げられる。
[8]前記ポリイソシアナートの付与工程で、前記加熱処理済の膨張性黒鉛100質量部に、ポリイソシアナートを1〜10質量部の範囲内で添加する上記[7]に記載の樹脂組成物の製造方法。
[9]前記加熱処理済の膨張性黒鉛の粒子の形態が、最大長が100〜1000μmの範囲で、且つ、最大の厚みが5〜150μmの範囲である上記[7]又は[8]に記載の樹脂組成物の製造方法。
Preferred forms of the above-mentioned method for producing the resin composition include those having the following configurations.
[8] The resin composition according to the above [7], wherein in the step of applying the polyisocyanate, the polyisocyanate is added in the range of 1 to 10 parts by mass to 100 parts by mass of the heat-treated expansive graphite. Manufacturing method.
[9] The above-mentioned [7] or [8], wherein the heat-treated expandable graphite particles have a maximum length in the range of 100 to 1000 μm and a maximum thickness in the range of 5 to 150 μm. Method for producing a resin composition of.

本発明によれば、樹脂組成物中の膨張性黒鉛の含有比率を増加させることや、膨張性黒鉛の粒度を大きくすることなく、熱膨張性黒鉛に簡便な前処理を施すことで改質し、改質した膨張性黒鉛を含む樹脂組成物を用いて、火災の際における延焼防止効果を期待した各種の製品を形成することで、上記製品の膨張特性の向上を達成することを実現することができる。本発明が提供する熱膨張性黒鉛の改質技術によって提供される膨張性黒鉛を用いることで、樹脂組成物中における熱膨張性黒鉛の含有比率を高めた場合や、熱膨張性黒鉛の粒径を大きくした場合に生じる、樹脂成分への配合時の混合の操作が困難となり、均一にするのに長時間を要するといった問題を生じることはない。また、本発明が提供する熱膨張性黒鉛の改質技術によって提供される膨張性黒鉛を用いることで、粒径の大きい熱膨張性黒鉛を使用した場合に生じる、樹脂成分との混合時に、熱膨張性黒鉛が樹脂組成物の粘性抵抗によって粒子が細く裂けてしまい、目的の性能を発揮できないことが起こるといった基本性能にかかわる重大な問題が生じるといったこともない。さらに、熱膨張性黒鉛は非常に高価な材料であるので、樹脂組成物中における膨張性黒鉛の含有比率を高めることは、原料コスト的に不利であるのに対し、本発明の技術によれば、経済性に優れた樹脂組成物、該樹脂組成物を用いて形成した各種製品を提供することが可能になり、実用上の大きな課題である経済性の問題も解決できる。 According to the present invention, the heat-expandable graphite is modified by applying a simple pretreatment without increasing the content ratio of the expandable graphite in the resin composition or increasing the particle size of the expandable graphite. By using a resin composition containing modified expansive graphite to form various products expected to prevent the spread of fire in the event of a fire, it is possible to achieve improvement in the expansion characteristics of the above products. Can be done. By using the expandable graphite provided by the heat-expandable graphite modification technique provided by the present invention, the content ratio of the heat-expandable graphite in the resin composition is increased, or the particle size of the heat-expandable graphite is increased. There is no problem that the mixing operation at the time of blending with the resin component becomes difficult and it takes a long time to make the mixture uniform. Further, by using the expandable graphite provided by the heat-expandable graphite modification technique provided by the present invention, heat is generated at the time of mixing with the resin component, which is generated when the heat-expandable graphite having a large particle size is used. The viscous resistance of the resin composition of the expansive graphite does not cause the particles to split into small pieces, which may prevent the desired performance from being exhibited, which does not cause a serious problem related to the basic performance. Further, since the heat-expandable graphite is a very expensive material, increasing the content ratio of the expandable graphite in the resin composition is disadvantageous in terms of raw material cost, whereas according to the technique of the present invention. It becomes possible to provide a resin composition having excellent economic efficiency and various products formed by using the resin composition, and it is possible to solve the problem of economic efficiency, which is a big problem in practical use.

3種の熱膨張性黒鉛の市販品について、それぞれ200℃で加熱を行った時の30分毎の質量の減少を示すグラフである。It is a graph which shows the mass decrease every 30 minutes when each of the three kinds of commercially available products of thermal expansion graphite was heated at 200 ° C. 3種の熱膨張性黒鉛の市販品について、190〜255℃の温度領域で加熱した時のカサ体積倍率の変化を示すグラフである。It is a graph which shows the change of the bulk volume magnification at the time of heating in the temperature range of 190-255 ° C. about the commercial product of 3 kinds of heat-expandable graphite.

以下、好ましい実施形態を挙げて本発明を詳細に説明する。本発明者らは、改質した熱膨張性黒鉛と樹脂成分とを含む樹脂組成物を用いて形成した耐火製品が、火災の際に、より優れた延焼防止効果を期待できるものになる、従来にない、簡便で経済性に優れる実用性に高い、新規な熱膨張性黒鉛の改質技術を提供するべく鋭意検討した結果、本発明に至った。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments. The present inventors have conventionally made a refractory product formed by using a resin composition containing modified heat-expandable graphite and a resin component, which can be expected to have a better fire spread prevention effect in the event of a fire. The present invention has been reached as a result of diligent studies to provide a novel technique for modifying heat-expandable graphite, which is simple, economical, and highly practical.

まず、膨張性黒鉛を含む樹脂組成物からなる製品の、火災などによる燃焼時における膨張倍率、即ち膨張特性を高める手段としては、樹脂組成物中の熱膨張性黒鉛の含有比率を増加させるのが一般的である。また、樹脂組成物に含有させる熱膨張性黒鉛の粒度(以下、粒径と記す)が大きいと、膨張倍率を高めることが知られている。 First, as a means for increasing the expansion coefficient, that is, the expansion characteristics of a product made of a resin composition containing expandable graphite during combustion due to a fire or the like, increasing the content ratio of thermally expandable graphite in the resin composition is a method. It is common. Further, it is known that when the particle size of the heat-expandable graphite contained in the resin composition (hereinafter referred to as the particle size) is large, the expansion coefficient is increased.

しかしながら、本発明者らの検討によれば、樹脂組成物中における熱膨張性黒鉛の含有比率を高めた場合や、熱膨張性黒鉛の粒径を大きくした場合は、配合時の混合の操作が困難となり均一にするのに長時間を要するという問題がある。さらに、粒径の大きい熱膨張性黒鉛を使用した場合は、樹脂成分と混合して樹脂組成物とする時に、熱膨張性黒鉛が樹脂組成物の粘性抵抗によって粒子が細く裂けてしまい、目的の性能を発揮できないこともあるという致命的な問題が生じることが懸念される。 However, according to the study by the present inventors, when the content ratio of the heat-expandable graphite in the resin composition is increased or when the particle size of the heat-expandable graphite is increased, the mixing operation at the time of blending is performed. There is a problem that it becomes difficult and it takes a long time to make it uniform. Further, when heat-expandable graphite having a large particle size is used, when the heat-expandable graphite is mixed with the resin component to form a resin composition, the particles of the heat-expandable graphite are torn into fine particles due to the viscous resistance of the resin composition, which is the target. There is a concern that a fatal problem may occur in which the performance may not be exhibited.

上記した種々の問題点に対し、本発明者らは、熱膨張性黒鉛原料に簡便な前処理を施すことで、製品の膨張特性の向上を図ることができる新規の方法を見出した。具体的には、本発明者らが見出した、「熱膨張性黒鉛原料を予め加熱処理することで、カサ体積倍率が、加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加しており、且つ、加熱処理済のカサ体積が増加した状態の熱膨張性黒鉛にポリイソシアナートが付与された状態のもの」とした本発明で規定する改質された膨張性黒鉛を用いることで、従来技術における種々の問題は一挙に解決できる。即ち、本発明で規定する改質された膨張性黒鉛を用いることで、通常の樹脂組成物の作製操作を用いて、リーズナブルなコストで、より膨張特性の優れた製品が容易に提供できるようになる。以下に、本発明を特徴づける改質された膨張性黒鉛について詳細に説明する。本発明では、本発明を構成する、熱膨張性黒鉛原料を加熱することで、加熱済の熱膨張性黒鉛のカサ体積倍率が1.05〜3.0倍と、原料に比べて若干体積が増加した状態の熱膨張性黒鉛のことを「膨張黒鉛」と呼ぶ。また、この加熱処理済の「膨張黒鉛」にポリイソシアナートを付与したものを「改質膨張性黒鉛」と呼ぶ。 In response to the above-mentioned various problems, the present inventors have found a novel method capable of improving the expansion characteristics of a product by subjecting a heat-expandable graphite raw material to a simple pretreatment. Specifically, the present inventors have found that "by heat-treating the heat-expandable graphite raw material in advance, the bulk volume ratio is 1.05 to 3.0 times that of the bulk volume of the raw material before heating. The modified expandable graphite specified in the present invention, which is defined as "a state in which polyisosianate is added to the heat-expandable graphite in a state where the volume of heat-treated bulk is increased". By using it, various problems in the prior art can be solved at once. That is, by using the modified expandable graphite specified in the present invention, it is possible to easily provide a product having more excellent expansion characteristics at a reasonable cost by using a normal resin composition production operation. Become. The modified expansive graphite that characterizes the present invention will be described in detail below. In the present invention, by heating the heat-expandable graphite raw material constituting the present invention, the bulk volume ratio of the heated heat-expandable graphite is 1.05 to 3.0 times, which is slightly larger than that of the raw material. The thermally expandable graphite in the increased state is called "expanded graphite". Further, the heat-treated "expanded graphite" to which polyisocyanate is added is called "modified expansive graphite".

本発明を特徴づけ、顕著な効果を実現できる改質された膨張性黒鉛は、下記の簡便な改質工程で熱膨張性黒鉛原料から容易に得ることができる。即ち、本発明を特徴づける熱膨張性黒鉛原料の改質工程では、まず、体積の増加工程で、熱膨張性黒鉛原料を100℃〜250℃の温度で加熱処理し、加熱処理前に比べて加熱処理後の、下記式で求められるカサ体積倍率が1.05〜3.0倍になるように熱膨張性黒鉛原料の体積を増加させて「膨張黒鉛」を得る。使用する熱膨張性黒鉛原料にもよるが、例えば、熱膨張性黒鉛原料を190℃〜230℃程度の温度で加熱処理することで、カサ体積倍率が1.05〜3.0倍の「膨張黒鉛」を得ることができる。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
The modified expandable graphite that characterizes the present invention and can realize a remarkable effect can be easily obtained from the heat-expandable graphite raw material by the following simple modification step. That is, in the modification step of the heat-expandable graphite raw material that characterizes the present invention, first, in the volume increasing step, the heat-expandable graphite raw material is heat-treated at a temperature of 100 ° C. to 250 ° C., as compared with that before the heat treatment. After the heat treatment, the volume of the heat-expandable graphite raw material is increased so that the coefficient of thermal expansion obtained by the following formula becomes 1.05 to 3.0 times to obtain "expanded graphite". Although it depends on the heat-expandable graphite raw material used, for example, by heat-treating the heat-expandable graphite raw material at a temperature of about 190 ° C. to 230 ° C., the bulk volume ratio is 1.05 to 3.0 times. "Graphite" can be obtained.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating

次に、ポリイソシアナートの付与工程で、上記体積の増加工程で、カサ体積を1.05〜3.0倍になるように増加させた状態の加熱処理済の熱膨張性黒鉛の「膨張黒鉛」に、常温下でポリイソシアナートを添加する。そして、その後に、130℃以下の温度に加温する、という極めて簡便な操作で得ることができる。この際の加温温度は、例えば、80℃〜100℃程度でよい。 Next, in the step of applying the polyisocyanate, in the step of increasing the volume, the heat-treated heat-expandable graphite in a state where the bulk volume is increased to 1.05 to 3.0 times is "expanded graphite". , Polyisocyanate is added at room temperature. Then, after that, it can be obtained by an extremely simple operation of heating to a temperature of 130 ° C. or lower. The heating temperature at this time may be, for example, about 80 ° C. to 100 ° C.

次に、上記した本発明で規定する、樹脂組成物の構成材料として極めて有用な改質された膨張性黒鉛を見出すことに至った経緯について説明する。本発明者らの検討によれば、熱膨張性黒鉛原料を100〜250℃程度の比較的低温に加熱すると、黒鉛の層間が若干広がり、低倍率ながら個々の黒鉛粒子の体積の増加となる。本発明者らは、この点について、さらに詳細な検討を行うことで本発明の目的を達成できないかと考えた。そのためには、比較的低温で加熱することによって、どの程度、熱膨張性黒鉛原料が膨張したかを知る必要がある。 Next, the background of finding the modified expansive graphite which is extremely useful as a constituent material of the resin composition specified in the present invention will be described. According to the study by the present inventors, when the heat-expandable graphite raw material is heated to a relatively low temperature of about 100 to 250 ° C., the layers of graphite are slightly expanded, and the volume of individual graphite particles is increased at a low magnification. The present inventors wondered if the object of the present invention could be achieved by conducting a more detailed study on this point. For that purpose, it is necessary to know how much the heat-expandable graphite raw material has expanded by heating at a relatively low temperature.

比較的低温での加熱で熱膨張性黒鉛の粒子に生じる程度の若干の体積の増加の測定法としては、理論的には、個々の黒鉛粒子の各層間の広がりを測定して算出して、その平均値を求めることが考えられる。しかし、この測定方法は現実的ではなく、極めて困難である。また、本発明が問題としていることは、このような個々の黒鉛粒子に現れるミクロ的な現象ではなく、樹脂組成物を構成する熱膨張性黒鉛原料における、比較的低温に加熱することで生じるマクロ的な挙動である。そこで、本発明の目的に叶った、しかも、極めて容易で且つ客観的な測定方法として、本発明では、カサ体積倍率を使用した。カサ体積倍率は、下記式で求められる、加熱前の熱膨張性黒鉛原料の採取サンプルのカサ体積と、加熱後に膨張した採取サンプルのカサ体積の比率である。それぞれのカサ体積は、メスシリンダーを用いれば簡単に計測できる。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
As a method for measuring a slight increase in volume that occurs in heat-expandable graphite particles when heated at a relatively low temperature, theoretically, the spread between layers of individual graphite particles is measured and calculated. It is conceivable to find the average value. However, this measurement method is not realistic and extremely difficult. Further, the problem of the present invention is not the microscopic phenomenon that appears in such individual graphite particles, but the macro that occurs when the heat-expandable graphite raw material constituting the resin composition is heated to a relatively low temperature. Behavior. Therefore, as an extremely easy and objective measurement method that meets the object of the present invention, the bulk volume magnification is used in the present invention. The bulk volume ratio is the ratio of the bulk volume of the sample collected from the heat-expandable graphite raw material before heating to the bulk volume of the sample sample expanded after heating, which is calculated by the following formula. Each bulk volume can be easily measured using a graduated cylinder.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating

このカサ体積倍率によって求められる値で1.05〜3.0倍程度の、比較的低温での加熱によって生じる熱膨張性黒鉛の低倍率の体積増加の因子は、熱膨張性黒鉛の製造時に、黒鉛粒子の表面に付着した酸や酸化物、或いは水分等が比較的低温の加熱で気散することに依ると推定される。図1は、3種の熱膨張性黒鉛の市販品についての、それぞれ200℃で加熱を行い、30分毎に黒鉛をサンプリングして測った時の重量の減少曲線を示す。図1に示されている通り、いずれの熱膨張性黒鉛でも、初期の30分間域で1〜2%の重量減少を示すが、その後の180分間の加熱では進行しないことから、黒鉛の層間にインターカレートされた酸のガス化とは異なると判断される。 The factor of the low magnification volume increase of the heat-expandable graphite caused by heating at a relatively low temperature, which is about 1.05 to 3.0 times the value obtained by the bulk volume magnification, is the factor of the volume increase of the heat-expandable graphite during the production of the heat-expandable graphite. It is presumed that the acid, oxide, water, etc. adhering to the surface of the graphite particles are dispersed by heating at a relatively low temperature. FIG. 1 shows the weight reduction curves of three types of commercially available heat-expandable graphite when each of them is heated at 200 ° C. and graphite is sampled every 30 minutes. As shown in FIG. 1, any of the heat-expandable graphites showed a weight loss of 1 to 2% in the initial 30-minute range, but did not progress in the subsequent 180-minute heating. It is judged to be different from the gasification of intercalated acid.

図2のグラフは、図1と同様の3種の熱膨張性黒鉛の市販品について、190〜255℃の温度領域で加熱した時のカサ体積倍率の変化を示したものである。図2のグラフの縦軸のカサ体積倍率は、図2のグラフの横軸に示した各温度表示の測定点で30分間ホールドの条件で加熱して、それぞれの測定点でのカサ体積を測定し、(加熱後の熱膨張性黒鉛のカサ体積/加熱前(室温)の熱膨張性黒鉛原料のカサ体積)で求めた値である。図2に示されている通り、いずれの市販品も、この温度域では比較的に緩やかなカサ体積倍率の増加曲線であった。本発明の樹脂組成物を構成する、樹脂成分と混合させるための、カサ体積倍率の値が1.05〜3.0倍である、カサ体積が若干増加した状態の加熱処理済の熱膨張性黒鉛は、100℃〜250℃の温度領域で、例えば、例示した市販品の熱膨張性黒鉛原料の場合では、図2のグラフから、熱膨張性黒鉛原料を190℃〜230℃程度の温度で加熱処理することで容易に得ることができる。 The graph of FIG. 2 shows the change in the bulk volume ratio when heated in the temperature range of 190 to 255 ° C. for the three types of commercially available products of the same type of heat-expandable graphite as in FIG. The bulk volume magnification on the vertical axis of the graph of FIG. 2 is measured by heating at the measurement points of each temperature display shown on the horizontal axis of the graph of FIG. 2 under the condition of holding for 30 minutes, and measuring the bulk volume at each measurement point. Then, it is a value obtained by (the volume of the heat-expandable graphite after heating / the volume of the heat-expandable graphite raw material before heating (room temperature)). As shown in FIG. 2, all of the commercially available products had a relatively gentle increase curve of bulk volume magnification in this temperature range. Heat-treated thermal expansion in a state where the bulk volume ratio is 1.05 to 3.0 times and the bulk volume is slightly increased for mixing with the resin component constituting the resin composition of the present invention. The graphite is in the temperature range of 100 ° C. to 250 ° C., for example, in the case of the commercially available heat-expandable graphite raw material illustrated, the heat-expandable graphite raw material is prepared at a temperature of about 190 ° C. to 230 ° C. from the graph of FIG. It can be easily obtained by heat treatment.

本発明の樹脂組成物の技術的特徴は、樹脂組成物を構成する、樹脂成分と混合させるための熱膨張性黒鉛が、加熱処理済の、カサ体積倍率が1.05〜3.0倍である体積が若干増加した熱膨張性黒鉛(「膨張黒鉛」)であること、且つ、この体積が若干増加した状態の加熱処理済の「膨張黒鉛」にポリイソシアナートが付与された状態のものであることにある。先に述べた通り、加熱することで熱膨張性黒鉛の体積が若干増加させた状態とすると、この操作で黒鉛粒子の層間が広がった状態になる。本発明では、この体積が若干増加した状態の「膨張黒鉛」に、液状のポリイソシアナートを添加して付与し、このような構成の改質させた膨張性黒鉛(改質膨張性黒鉛)を樹脂組成物の構成成分としたことを特徴とする。本発明者らの検討によれば、「膨張黒鉛」のカサ体積倍率は、1.05〜3.0倍、熱膨張性黒鉛原料にもよるが、例えば、1.1〜2.0倍程度の「膨張黒鉛」を用いることで、良好な効果が得られる。 The technical feature of the resin composition of the present invention is that the heat-expandable graphite for mixing with the resin component constituting the resin composition has been heat-treated and has a bulk volume ratio of 1.05 to 3.0 times. It is a heat-expandable graphite (“expanded graphite”) with a certain volume slightly increased, and the heat-treated “expanded graphite” with this volume slightly increased is provided with polyisosianate. There is. As described above, assuming that the volume of the heat-expandable graphite is slightly increased by heating, the layers of the graphite particles are expanded by this operation. In the present invention, liquid polyisocyanate is added to "expanded graphite" in a state where the volume is slightly increased, and modified expansive graphite having such a constitution (modified expansive graphite) is provided. It is characterized in that it is a constituent component of a resin composition. According to the study by the present inventors, the bulk volume magnification of "expanded graphite" is 1.05 to 3.0 times, and although it depends on the heat-expandable graphite raw material, for example, it is about 1.1 to 2.0 times. A good effect can be obtained by using the "expanded graphite" of.

上記のように構成したことで、添加されたポリイソシアナートは、「膨張黒鉛」粒子の広がった割れ目に付着した状態になる。ここで、「膨張黒鉛」に添加され付与されたポリイソシアナートの量、より詳しくは、黒鉛粒子表面に濡れ密着した量と、黒鉛粒子の層間の中まで含浸した量の割合は不明であるが、上記した方法で得られた、体積が若干増加した「膨張黒鉛」にポリイソシアナートが付与された状態の改質された膨張性黒鉛(改質膨張性黒鉛)を、本発明の樹脂組成物を構成する膨張性黒鉛として配合すると、該樹脂組成物を用いて得た成形体は、極めて高い膨張性能を示すものになることが確認され、本発明に至った。本発明者らの検討によれば、本発明の樹脂組成物と比較して、樹脂組成物全体としての各成分の使用量を同じにして、未加熱の状態の熱膨張性黒鉛原料に、ポリイソシアナートを添加した構成の比較用の樹脂組成物の場合や、ポリイソシアナートを樹脂成分に添加して均一に分散させた後、この樹脂成分に、本発明で使用する加熱済の「膨張黒鉛」を添加して均一混合した構成の比較用の樹脂組成物の場合は、いずれの場合も、特に優れた膨張特性を示さなかった。これらのことから、本発明の樹脂組成物の新規な構成に対する有効性が確認された。この点については後述する。 With the above configuration, the added polyisocyanate is in a state of being attached to the widened cracks of the "expanded graphite" particles. Here, the ratio of the amount of polyisosianate added to and applied to the "expanded graphite", more specifically, the amount of wet adhesion to the surface of the graphite particles and the amount of impregnation into the layers of the graphite particles is unknown. The modified expansive graphite (modified expansive graphite) obtained by the above-mentioned method in which polyisosianate is added to the slightly increased volume "expanded graphite" is used in the resin composition of the present invention. It was confirmed that the molded product obtained by using the resin composition exhibited extremely high expansion performance when blended as the expandable graphite constituting the above, which led to the present invention. According to the study by the present inventors, the amount of each component used as the whole resin composition is the same as that of the resin composition of the present invention, and the heat-expandable graphite raw material in the unheated state is made of poly. In the case of a comparative resin composition in which isocyanate is added, or after polyisocyanate is added to a resin component and uniformly dispersed, the heated "expanded graphite" used in the present invention is added to this resin component. In the case of the comparative resin composition having a structure in which "" was added and uniformly mixed, no particularly excellent expansion characteristics were exhibited in any of the cases. From these facts, the effectiveness of the resin composition of the present invention for a novel composition was confirmed. This point will be described later.

本発明の樹脂組成物に用いる膨張性黒鉛原料は、工業的に入手可能な市販品であればいずれのものでもよく、特に制限はない。即ち、天然黒鉛、熱分解黒鉛、キャッシュ黒鉛などを原料として、酸と酸化剤の使用で黒鉛の層間に酸成分がインターカレートされ、洗浄精製されていればよい。取扱上の観点から、黒鉛粒子の粒径が20〜1000μm範囲のものが望ましい。黒鉛粒子の厚みに特別な制限は無いが、取扱上の観点から、5〜150μmの範囲のものが望ましい。本願明細書でいう膨張性黒鉛の黒鉛粒子の厚みとは、黒鉛粒子の層状の底面から上面までの平均の距離を指す。厚みの測定法は、黒鉛粒子の最大長(長径)に平行な垂直面を電子顕微鏡で撮影し、その平面投射面積を計算して得られた面積をその平面投射の平行な距離で割った値を厚みとした。また、膨張性黒鉛の黒鉛粒子の粒径とは、最大長(長径)とも称し、黒鉛粒子の層状の上面又は底面の、厚み方向と直角な方向での最大値の距離を指す。黒鉛粒子の厚みと粒径は、一般的な高性能光学顕微鏡や電子顕微鏡で容易に測定できる。 The expandable graphite raw material used in the resin composition of the present invention may be any commercially available commercially available product, and is not particularly limited. That is, it suffices that natural graphite, pyrolysis graphite, cache graphite, or the like is used as a raw material, and the acid component is intercalated between the layers of graphite by using an acid and an oxidizing agent, and the graphite is washed and purified. From the viewpoint of handling, it is desirable that the graphite particles have a particle size in the range of 20 to 1000 μm. There is no particular limitation on the thickness of the graphite particles, but from the viewpoint of handling, those in the range of 5 to 150 μm are desirable. The thickness of the graphite particles of the expandable graphite referred to in the present specification refers to the average distance from the bottom surface to the top surface of the layered graphite particles. The thickness is measured by photographing a vertical plane parallel to the maximum length (major axis) of graphite particles with an electron microscope, calculating the plane projection area, and dividing the area obtained by the parallel distance of the plane projection. Was taken as the thickness. The particle size of the graphite particles of expandable graphite is also referred to as the maximum length (major axis), and refers to the maximum distance between the upper surface or the bottom surface of the layered graphite particles in the direction perpendicular to the thickness direction. The thickness and particle size of graphite particles can be easily measured with a general high-performance optical microscope or electron microscope.

本発明を特徴づける、カサ体積倍率が、加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加した、加熱処理済の熱膨張性黒鉛(「膨張黒鉛」)を得るための具体的な方法について説明する。比較的に低温の加熱温度で、カサ体積倍率が加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加した低倍率の黒鉛を簡便に安定して得る方法としては、例えば、熱膨張性黒鉛原料を適切な容器に入れて、熱風炉又は電気炉等に入れてその周囲から加熱することが挙げられる。100℃〜250℃程度の比較的低温で、例えば、190℃〜230℃程度の温度で、熱膨張性黒鉛原料を加熱することで、目的とする倍率の「膨張黒鉛」を得ることができる。且つ、先に説明した図2からも判るように、その体積の増加は極めてゆるやかな増加曲線なので、極めてコントロールがし易いため、本発明で使用する「膨張黒鉛」を簡便に得ることができる。参考とした図1、図2は、設定された加熱条件下での曲線であり、実施の方法によって加熱条件が異なるので、加熱時間の指定は無い。即ち、熱膨張性黒鉛原料を加熱することで、加熱済の熱膨張性黒鉛のカサ体積倍率が1.05〜3.0倍になればよく、特に、加熱方法や加熱条件や、その他の条件には拘らない。 To obtain heat-treated heat-expandable graphite (“expanded graphite”) in which the bulk volume ratio, which characterizes the present invention, is increased by 1.05 to 3.0 times as compared with the bulk volume of the raw material before heating. The specific method of As a method for easily and stably obtaining low-magnification graphite in which the bulk volume ratio increases 1.05 to 3.0 times as much as the bulk volume of the raw material before heating at a relatively low heating temperature, for example. , The heat-expandable graphite raw material is put in an appropriate container, put in a hot air furnace, an electric furnace, or the like, and heated from the surroundings. By heating the heat-expandable graphite raw material at a relatively low temperature of about 100 ° C. to 250 ° C., for example, at a temperature of about 190 ° C. to 230 ° C., "expanded graphite" having a desired magnification can be obtained. Moreover, as can be seen from FIG. 2 described above, since the increase in volume is an extremely gentle increase curve and is extremely easy to control, the "expanded graphite" used in the present invention can be easily obtained. Referenced FIGS. 1 and 2 are curves under the set heating conditions, and the heating conditions differ depending on the method of implementation, so that the heating time is not specified. That is, by heating the heat-expandable graphite raw material, the coefficient of thermal expansion of the heated heat-expandable graphite may be 1.05 to 3.0 times, and in particular, the heating method, heating conditions, and other conditions. I don't care.

本発明の樹脂組成物は、樹脂成分に混合させる膨張性黒鉛として、カサ体積倍率が1.05〜3.0倍になった「膨張黒鉛」に、ポリイソシアナートを付与した状態の改質された膨張性黒鉛を用いたことを特徴とする。「膨張黒鉛」にポリイソシアナートを付与する具体的な方法としては、下記のようにする。予め熱膨張性黒鉛原料を加熱して得た「膨張黒鉛」に、常温でポリイソシアナートを添加し、その後に130℃以下の温度で加温する。これにより、カサ体積倍率の増加にともなって開いた黒鉛粒子の層間にポリイソシアナートが含浸された状態又は黒鉛粒子の表面に濡れ密着された状態の「改質膨張性黒鉛」になる。本発明の樹脂組成物では、この状態の「改質膨張性黒鉛」を樹脂成分に含有させる必須の構成成分として用いる。 The resin composition of the present invention is modified as expandable graphite to be mixed with a resin component in a state where polyisocyanate is added to "expanded graphite" having a bulk volume ratio of 1.05 to 3.0 times. It is characterized by using expansive graphite. Specific methods for applying polyisocyanate to "expanded graphite" are as follows. Polyisocyanate is added to "expanded graphite" obtained by heating a heat-expandable graphite raw material in advance at room temperature, and then heated at a temperature of 130 ° C. or lower. As a result, "modified expandable graphite" is obtained in a state in which polyisocyanate is impregnated between the layers of graphite particles opened as the bulk volume ratio increases, or in a state in which the graphite particles are wet and adhered to the surface. In the resin composition of the present invention, "modified expandable graphite" in this state is used as an essential constituent component to be contained in the resin component.

本発明者らは、上記した処理操作で得られた「改質膨張性黒鉛」を含む樹脂組成物は、該樹脂組成物を用いて得た製品が、高温での燃焼後に残る膨張体の体積が増加すること、即ち、膨張特性が高くなることを見出した。本発明者らの検討によれば、「膨張黒鉛」へのポリイソシアナートの添加量は、質量基準で、膨張黒鉛100質量部に対して、1〜10質量部の範囲が好ましい。1質量部以下では効果が少なく、10質量部超では、樹脂成分に「改質膨張性黒鉛」を混合させた際に、樹脂組成物の均一な組成が得られ難い。 The present inventors have prepared a resin composition containing "modified expansive graphite" obtained by the above-mentioned treatment operation, and the volume of the expanded body remaining after combustion at a high temperature in the product obtained by using the resin composition. Is increased, that is, the expansion characteristic is increased. According to the study by the present inventors, the amount of polyisocyanate added to "expanded graphite" is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of expanded graphite on a mass basis. If it is 1 part by mass or less, the effect is small, and if it exceeds 10 parts by mass, it is difficult to obtain a uniform composition of the resin composition when "modified expandable graphite" is mixed with the resin component.

また、本発明者らの検討によれば、ポリイソシアナートを添加する「膨張黒鉛」のカサ体積倍率が1.05倍未満では、ポリイソシアナートを添加したことによる効果が少なく、一方、3.0倍超になると、「膨張黒鉛」が脆くなり、樹脂成分に混合した際に細かく砕けて効果が少なくなる。本発明を構成する「膨張黒鉛」のカサ体積倍率は、1.1〜2.0倍、特に、1.1〜1.6倍の範囲であることが好ましい。 Further, according to the study by the present inventors, when the bulk volume ratio of "expanded graphite" to which polyisocyanate is added is less than 1.05 times, the effect of adding polyisocyanate is small, while 3. When it exceeds 0 times, the "expanded graphite" becomes brittle, and when mixed with the resin component, it is finely crushed and the effect is reduced. The bulk volume magnification of the "expanded graphite" constituting the present invention is preferably in the range of 1.1 to 2.0 times, particularly 1.1 to 1.6 times.

本発明で用いられるポリイソシアナートは、分子中にイソシアナート基を2個以上有する化合物を指す。ポリイソシアナートの構造や分子量に特別な制限はないが、膨張した黒鉛粒子の層間に含浸又は濡れ付着性が良好になるのを目的としているので、比較的分子量の小さい、即ち、粘度の低いものが好ましい。例えば、4,4’ジフェニルメタンジイソシアナート(M.D.I)、トルエンジイソシアナート(T.D.I)、キシリレンジイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート等が挙げられる。又、これ等のジイソシアナートの多量体でもよく、例えば、クルードM.D.IとしてMS−20(商品名、BASF IONACポリウレタン社製)、脂肪族イソシアナートの多量体のコロネートHX(商品名、東ソー社製)等が挙げられる。 The polyisocyanate used in the present invention refers to a compound having two or more isocyanate groups in the molecule. There are no particular restrictions on the structure or molecular weight of the polyisocyanate, but since it is intended to impregnate or wet and adhere well between the layers of expanded graphite particles, it has a relatively small molecular weight, that is, a low viscosity. Is preferable. For example, 4,4'diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI), xylylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate and the like can be mentioned. Further, a multimer of these diisocyanates may be used, for example, Crude M. D. Examples of I include MS-20 (trade name, manufactured by BASF IONAC Polyurethane), coronate HX (trade name, manufactured by Tosoh Corporation), which is a multimer of aliphatic isocyanate.

粘度が特に高いポリイソシアナートを使用する場合は、少量の低沸点溶剤を添加して粘度を下げて使用することもできる。但し、一般的にポリイソシアナートは、活性が強いので作業上から揮発性の低いものが望ましい。また、溶剤を添加した場合、溶剤の残存が懸念されるので、できれば使用しないことが望まれる。これらの点から、クルードM.D.IやM.D.I及びコロネートHXが最も望ましい。 When polyisocyanate having a particularly high viscosity is used, a small amount of low boiling point solvent can be added to reduce the viscosity. However, in general, polyisocyanate has strong activity, so it is desirable that polyisocyanate has low volatility from the viewpoint of work. In addition, when a solvent is added, there is a concern that the solvent may remain, so it is desirable not to use it if possible. From these points, Crude M. D. I and M. D. I and Coronate HX are the most desirable.

本発明によって達成できた膨張特性の向上という効果の発現に対し、本発明を特徴づける「改質膨張性黒鉛」において、「膨張黒鉛」の層間に含浸又は濡れ付着したポリイソシアナートが何等かの反応を生起したか否かは、確認できていない。しかしながら、後述する通り、実施例及び比較例の対比から、予めこの操作をした「改質膨張性黒鉛」を配合した構成の本発明の樹脂組成物は、その他の構成の樹脂組成物と比較して、明らかに優れた膨張特性を示すことを確認した。 In contrast to the effect of improving the expansion characteristics achieved by the present invention, in the "modified expansive graphite" that characterizes the present invention, some polyisocyanate is impregnated or wet-adhered between the layers of the "expanded graphite". It has not been confirmed whether or not the reaction has occurred. However, as will be described later, from the comparison between Examples and Comparative Examples, the resin composition of the present invention having a structure in which the "modified expansive graphite" subjected to this operation in advance is compared with the resin compositions having other structures. It was confirmed that it clearly exhibited excellent expansion characteristics.

即ち、まず、本発明を構成する低倍率に体積が増加した、黒鉛粒子の層間が開いた状態ではなく、原料のままの非加熱の熱膨張性黒鉛に、ポリイソシアナートを予め添加した状態の熱膨張性黒鉛を用いて作成した樹脂組成物を用いて得た成形体は、燃焼後の膨張体(残存物)の膨張特性が、本発明の、層間が開いた「膨張黒鉛」にポリイソシアナートを予め添加した状態の「改質膨張性黒鉛」を用いて得た成形体の場合に得られる膨張特性に比べて、劣ることが確認された。また、「膨張黒鉛」を用いたとしても、ポリイソシアナートを「膨張黒鉛」に添加して付与した「改質膨張性黒鉛」とせずに、単にポリイソシアナートを樹脂組成物に均一に添加しても、本発明が目的とする膨張特性の向上効果を得ることができないことが確認された。 That is, first, polyisocyanate is added in advance to unheated heat-expandable graphite as a raw material, not in a state where the layers of graphite particles are opened at a low magnification, which constitutes the present invention. The molded product obtained by using the resin composition prepared by using the heat-expandable graphite has the expansion characteristics of the expanded product (residue) after combustion in the "expanded graphite" of the present invention with open layers and polyisosia. It was confirmed that it was inferior to the expansion characteristics obtained in the case of the molded product obtained by using "modified expandable graphite" in which nat was added in advance. Further, even if "expanded graphite" is used, polyisocyanate is simply added uniformly to the resin composition without adding polyisocyanate to "expanded graphite" to obtain "modified expansive graphite". However, it was confirmed that the effect of improving the expansion characteristics, which is the object of the present invention, cannot be obtained.

なお、実施例及び比較例の樹脂組成物について、効果を評価するに当たり、膨張性黒鉛として、原料のままの熱膨張性黒鉛、低倍率に膨張させた黒鉛粒子の層間を開いた「膨張黒鉛」、及び、該「膨張黒鉛」にポリイソシアナートを付与させてなる「改質膨張性黒鉛」を適宜に用いた。「改質膨張性黒鉛」は、「膨張黒鉛」に、所定のポリイソシアナートを常温で添加後に、例えば、130℃で20分間加熱して、熱膨張性黒鉛にポリイソシアナートをなじませたものを用いた。これらの膨張性黒鉛と、樹脂成分と混合して樹脂組成物を作製した。 In evaluating the effects of the resin compositions of Examples and Comparative Examples, as the expandable graphite, the heat-expandable graphite as a raw material and the "expanded graphite" in which the layers of the graphite particles expanded at a low magnification are opened. , And "modified expansive graphite" obtained by imparting polyisosianate to the "expanded graphite" was appropriately used. "Modified expandable graphite" is obtained by adding a predetermined polyisocyanate to "expanded graphite" at room temperature and then heating at 130 ° C. for 20 minutes to allow the polyisocyanate to blend into the heat-expandable graphite. Was used. A resin composition was prepared by mixing these expandable graphites with a resin component.

また、実施例及び比較例の樹脂組成物についての効果を評価する際に用いた、樹脂組成物から、燃焼時における膨張特性確認用の試験体シート試料の作成などの諸条件は、実施例、比較例に記載した。そして、本発明が目的とする膨張特性については、下記のようにして測定し、評価に用いた。シート状の各試験体試料を燃焼用容器に入れ、600℃の電気炉で30分間燃焼させてから室温まで冷却して、容器から取り出した膨張体の高さを計測し、これにより体積を算出して、得られた算出値を、加熱前の試験体試料の重さ(質量)で割った数値を膨張特性として表現した。この数値を用いて、膨張特性を相対的に評価した。 In addition, various conditions such as preparation of a test piece sheet sample for confirming expansion characteristics during combustion from the resin composition used when evaluating the effects of the resin compositions of Examples and Comparative Examples are described in Examples. Described in the comparative example. Then, the expansion characteristics intended by the present invention were measured as follows and used for evaluation. Each sheet-shaped sample is placed in a combustion container, burned in an electric furnace at 600 ° C. for 30 minutes, cooled to room temperature, and the height of the inflatable body taken out of the container is measured, thereby calculating the volume. Then, the obtained calculated value was divided by the weight (mass) of the test sample before heating, and the value was expressed as the expansion characteristic. Using this value, the expansion characteristics were relatively evaluated.

上記で用いた燃焼用容器は、底辺が、21mm×46mmで、高さが50mmの、上方が開放され、底部及び四方が閉じた長方形の形状である。この容器の底部にシート状の試験体を、20〜21mm×45〜46mmで、重さ(質量)が1.48gになるように切りだしてセットした。ここで、試験体試料の比重が正確には異なり、且つ、シートの厚みも正確には若干バラツキがあり、異なるので、膨張特性を試験体試料のシート厚みと燃焼後の膨張体の高さの比で表現すると効果の判定にいくつかの要素を加味し複雑になる。従って、本発明では、上記の如く試験体試料は、ほぼ同厚のシート状で作成するが、最終的な調整は、重さ(質量)を同じ値にした試料を用い、燃焼後に得られた膨張体の体積を試料の重さ(質量)で割った値を、比較評価用の膨張特性と定めた。 The combustion container used above has a rectangular shape with a base of 21 mm × 46 mm, a height of 50 mm, an open upper part, and a closed bottom and all sides. A sheet-shaped test piece was cut out and set on the bottom of this container so as to have a size of 20 to 21 mm × 45 to 46 mm and a weight (mass) of 1.48 g. Here, since the specific gravity of the test sample is exactly different and the thickness of the sheet is also slightly different and different, the expansion characteristics are determined by the sheet thickness of the test sample and the height of the inflator after combustion. Expressed as a ratio, it becomes complicated by adding some factors to the judgment of the effect. Therefore, in the present invention, the test sample is prepared in the form of a sheet having substantially the same thickness as described above, but the final adjustment was obtained after combustion using a sample having the same weight (mass). The value obtained by dividing the volume of the expander by the weight (mass) of the sample was defined as the expansion characteristic for comparative evaluation.

次に、実施例及び比較例を挙げて本発明をさらに詳細に説明する。「部」とあるのは、特に限定がない限り、質量基準である。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. The term "part" is based on mass unless otherwise specified.

[「膨張黒鉛」の調製]
熱膨張性黒鉛原料には、下記の銘柄の市販品を使用した。以下、商品名で説明する。
・SYZR802(商品名):三洋貿易社製、1000℃膨張度230ml/g
・SYZR502(商品名):三洋貿易社製、1000℃膨張度250ml/g
・EG−E300(商品名)別名(Expanded graphite):Qingdao Yanhai carbon materiaIs社製、1000℃膨張度270ml/g
[Preparation of "expanded graphite"]
As the heat-expandable graphite raw material, commercially available products of the following brands were used. Hereinafter, the product name will be described.
-SYZR802 (trade name): manufactured by Sanyo Trading Co., Ltd., 1000 ° C expansion degree 230 ml / g
-SYZR502 (trade name): manufactured by Sanyo Trading Co., Ltd., 1000 ° C expansion degree 250 ml / g
EG-E300 (trade name) Alias (Expanded graphite): Made by Qingdao Yanhai carbon materia Is, 1000 ° C expansion degree 270 ml / g

実施例では、上記熱膨張性黒鉛原料を100℃〜250℃の温度範囲で加熱して、カサ体積が増加してカサ体積の倍率(カサ体積倍率)が、それぞれ表1に示した値になった、若干膨張した加熱処理済の黒鉛を「膨張黒鉛」として試験に供した。なお、カサ体積倍率は、それぞれに測定した試料のカサ体積を用い、「加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積」で求めた算出値である。この式で用いたカサ体積の測定は、メスシリンダーに、加熱前の熱膨張性黒鉛原料と、当該原料を上記温度範囲で加熱して、体積が若干増加した加熱処理済の「膨張黒鉛」試料を各々入れて、軽く2回タップして、それぞれの体積を測定することで行った。 In the embodiment, the heat-expandable graphite raw material is heated in a temperature range of 100 ° C. to 250 ° C., the bulk volume increases, and the bulk volume magnification (bulk volume magnification) becomes the values shown in Table 1, respectively. Further, the slightly expanded heat-treated graphite was subjected to a test as "expanded graphite". The bulk volume ratio is a calculated value obtained by "the bulk volume of the heat-expandable graphite after heating / the bulk volume of the heat-expandable graphite raw material before heating" using the bulk volume of each measured sample. The volume of bulk used in this formula was measured by using a measuring cylinder with a heat-expandable graphite raw material before heating and a heat-treated "expanded graphite" sample in which the raw material was heated in the above temperature range and the volume was slightly increased. Each was put in and tapped lightly twice to measure the volume of each.

Figure 2021066830
Figure 2021066830

[実施例1−1〜実施例1−4、比較例1](樹脂成分:ポリ塩化ビニル系樹脂)
樹脂組成物を調製する際に使用した、先に述べた方法で調製した加熱処理済の熱膨張性黒鉛である「膨張黒鉛」以外の成分として、下記の成分を表2に示した量で用いた。表2に示した通り、この例では、樹脂成分としてポリ塩化ビニル樹脂を用いた。表2中でPVCと略記したポリ塩化ビニル樹脂には、リューロンペースト772A(商品名、東ソー社製、以下PVCと略す)を用いた。先に調製した「膨張黒鉛」に付与するためのポリイソシアナートには、クルードM.D.I(以下、MS−20と略す)を用いた。本実施例では、その他の添加剤として、下記のものを用いた。可塑剤としてジオクチルフタレート(以下、DOPと略す)を用い、難燃剤としてポリリン酸アンモニウム(APPと略す)を用い、その他に、炭酸カルシウムを用いた。なお、DOP、APP及び炭酸カルシウムについては、試薬をそのまま用いた。
[Examples 1-1 to 1-4, Comparative Example 1] (Resin component: polyvinyl chloride resin)
The following components are used in the amounts shown in Table 2 as components other than "expanded graphite", which is the heat-treated heat-expandable graphite prepared by the method described above, which was used when preparing the resin composition. There was. As shown in Table 2, in this example, a polyvinyl chloride resin was used as the resin component. As the polyvinyl chloride resin abbreviated as PVC in Table 2, Luron paste 772A (trade name, manufactured by Tosoh Corporation, hereinafter abbreviated as PVC) was used. The polyisocyanate to be applied to the previously prepared "expanded graphite" includes Crude M. D. I (hereinafter abbreviated as MS-20) was used. In this example, the following additives were used as other additives. Dioctyl phthalate (hereinafter abbreviated as DOP) was used as a plasticizer, ammonium polyphosphate (abbreviated as APP) was used as a flame retardant, and calcium carbonate was also used. For DOP, APP and calcium carbonate, the reagents were used as they were.

本例では、「膨張黒鉛」として、カサ体積倍率が1.42のSYZR502を使用した。そして、下記のようにして、ポリイソシアナートが付与された「改質膨張性黒鉛」を得、これらを実施例1−1〜実施例1−4で用いた。即ち、「膨張黒鉛」100部に対して、表2に示した1部〜4部の配合となるように、常温下でMS−20をそれぞれに添加して混和後、130℃で20分間加熱することで、「膨張黒鉛」にポリイソシアナートを付着及び含浸等させて、MS−20を付与した。これに対し、比較例1では、「膨張黒鉛」をそのまま用いた。上記した「改質膨張性黒鉛」又は「膨張黒鉛」をそれぞれに用いて、表2に示した配合で、他の樹脂成分及び添加剤成分と混合して、実施例1−1〜実施例1−4、比較例1の樹脂組成物を調製した。 In this example, SYZR502 having a bulk volume magnification of 1.42 was used as the "expanded graphite". Then, as described below, "modified expansive graphite" to which polyisocyanate was added was obtained, and these were used in Examples 1-1 to 1-4. That is, MS-20 is added to and mixed with 100 parts of "expanded graphite" at room temperature so that 1 part to 4 parts are blended as shown in Table 2, and then heated at 130 ° C. for 20 minutes. By doing so, polyisocyanate was attached to and impregnated with "expanded graphite" to impart MS-20. On the other hand, in Comparative Example 1, "expanded graphite" was used as it was. Using the above-mentioned "modified expandable graphite" or "expanded graphite", respectively, and mixing them with other resin components and additive components in the formulation shown in Table 2, Examples 1-1 to Example 1 -4, The resin composition of Comparative Example 1 was prepared.

Figure 2021066830
Figure 2021066830

[樹脂組成物の評価方法]
<燃焼試験用の試料の作製>
まず、上記のようにして調製した各樹脂組成物を良く撹拌して、それぞれ均一な流動液にする。この流動液をそれぞれに用い、離型板の上に所定の厚みにコーティングして、その後、160℃、10分間の加熱でシート状に固化させた。上記厚みは、約1.0〜2.0mmになるようにした。得られたシート状の成形体を、実施例及び比較例の各樹脂組成物についての燃焼試験に用いる試料とした。
[Evaluation method of resin composition]
<Preparation of sample for combustion test>
First, each resin composition prepared as described above is well stirred to obtain a uniform fluid. Each of these fluids was used, coated on a release plate to a predetermined thickness, and then solidified into a sheet by heating at 160 ° C. for 10 minutes. The thickness was set to about 1.0 to 2.0 mm. The obtained sheet-shaped molded product was used as a sample to be used for a combustion test for each resin composition of Examples and Comparative Examples.

具体的には、上記のようにして得た燃焼試験に用いるシート状の試料を、それぞれ重さが一定になるようにカットして試験用の試料を得、得られた試料を用いて燃焼試験を行い、実施例及び比較例の樹脂組成物についての膨張特性をそれぞれ評価した。上記で、燃焼試験に用いるシート状の試料を、それぞれ重さが一定になるようにカットする際に、燃焼試験に使用する容器に入るように、約20〜21mm×45〜46mmの範囲内で長方形にカットし、燃焼試験用の試料の重さ(質量)が1.48gで一定になるようにそれぞれ調整した。 Specifically, the sheet-shaped samples used for the combustion test obtained as described above are cut so that the weights are constant to obtain test samples, and the obtained samples are used for the combustion test. The expansion characteristics of the resin compositions of Examples and Comparative Examples were evaluated. In the above, when cutting the sheet-shaped sample used for the combustion test so that the weight becomes constant, the sample is placed in the range of about 20 to 21 mm × 45 to 46 mm so as to fit in the container used for the combustion test. It was cut into a rectangular shape and adjusted so that the weight (mass) of the sample for the combustion test was constant at 1.48 g.

<燃焼試験>
上記のようにして得た燃焼試験用の試料を用い、下記のように燃焼試験を行った。まず、底辺が、21mm×46mmで、高さが50mmの、上方が開放され、底部及び四方が閉じた長方形の形状をした鉄製容器の底部に、燃焼試験用の試料を置いた。次に、燃焼試験用の試料が載置された鉄製容器を、600℃の電気炉内に30分間置いて試料を燃焼させ、燃焼後の残渣として膨張体をそれぞれに得た。室温まで冷却した後に、膨張体の体積をそれぞれ計測して、加熱前の燃焼試験用の試料の重さ、1.48gで割った数値(ml/g)である膨張特性を、表2中に示した。また、得られた数値を、相対的に比較して、実施例及び比較例の樹脂組成物についての膨張特性の優劣を判定するための基準として用いた。実施例1では、「膨張黒鉛」をポリイソシアナートのMS−20で処理して改質することによって生じる膨張特性への影響を確認した。表2中に、比較例1の膨張特性の数値を基準値として、実施例1−1〜1−4の膨張特性の数値を用いて算出した膨張特性の比率(向上率)を示した。その結果、表2に示されている通り、「膨張黒鉛」をMS−20で改質することによって、明らかに膨張特性の向上効果が得られることを確認した。
<Combustion test>
Using the combustion test sample obtained as described above, the combustion test was performed as follows. First, a sample for a combustion test was placed on the bottom of a rectangular iron container having a base of 21 mm × 46 mm and a height of 50 mm, which was open at the top and closed at the bottom and all sides. Next, an iron container on which a sample for a combustion test was placed was placed in an electric furnace at 600 ° C. for 30 minutes to burn the sample, and an expanded body was obtained as a residue after combustion. After cooling to room temperature, the volume of the expander is measured, and the weight of the sample for the combustion test before heating and the expansion characteristics, which are the values (ml / g) divided by 1.48 g, are shown in Table 2. Indicated. In addition, the obtained numerical values were relatively compared and used as a reference for determining the superiority or inferiority of the expansion characteristics of the resin compositions of Examples and Comparative Examples. In Example 1, the effect on the expansion characteristics caused by treating "expanded graphite" with MS-20 of polyisocyanate and modifying it was confirmed. Table 2 shows the ratio (improvement rate) of the expansion characteristics calculated using the numerical values of the expansion characteristics of Examples 1-1 to 1-4 using the numerical values of the expansion characteristics of Comparative Example 1 as reference values. As a result, as shown in Table 2, it was confirmed that the effect of improving the expansion characteristics was clearly obtained by modifying the "expanded graphite" with MS-20.

[比較例2](非加熱の熱膨張性黒鉛を用いた例)
比較例2−1では、実施例1及び比較例1で用いたと同様の熱膨張性黒鉛原料SYZR502を、加熱処理せずに非加熱のまま用いた。そして、比較例2−2〜2−4では実施例1で用いたと同様のポリイソシアナートMS−20を、常温下、表3に示した量で非加熱処理の熱膨張性黒鉛原料に添加して混和した。その後、実施例1で行ったと同様に、130℃で20分間加熱した。それ以外の操作は、実施例1と同様にして、樹脂組成物をそれぞれに調製し、各樹脂組成物を用いて燃焼試験用のシート状の成形体試料を得、得られた試料をカットして燃焼試験用の試料を調製し、さらに、得られた試料を用いて、それぞれ燃焼試験を行った。
[Comparative Example 2] (Example using unheated heat-expandable graphite)
In Comparative Example 2-1 the same heat-expandable graphite raw material SYZR502 used in Example 1 and Comparative Example 1 was used without heat treatment and without heating. Then, in Comparative Examples 2-2-2-4, the same polyisocyanate MS-20 as used in Example 1 was added to the non-heat-treated heat-expandable graphite raw material in the amount shown in Table 3 at room temperature. And mixed. Then, it was heated at 130 ° C. for 20 minutes in the same manner as in Example 1. Other operations are the same as in Example 1, each resin composition is prepared, each resin composition is used to obtain a sheet-shaped molded product sample for a combustion test, and the obtained sample is cut. A sample for a combustion test was prepared, and further, each of the obtained samples was subjected to a combustion test.

実施例1で行ったと同様の樹脂組成物の評価方法を実施して、燃焼試験で得られる膨張特性の値を算出し、表3中に示した。そして、得られた膨張特性を示す算出値を用い、まず、実施例1と同様に、MS−20を「膨張黒鉛」に付与したことによる膨張特性に及ぼす影響を、比較例2−1の膨張特性の数値を基準値とし、比較例2−2〜2−4の膨張特性の数値を用いて膨張特性の比率をそれぞれ算出し、表3中に「膨張特性の評価1(向上率)」として示した。この結果、表3に示した通り、加熱処理をしない非加熱の熱膨張性黒鉛原料にポリイソシアナートを添加しても、膨張特性の向上効果を得ることはできないことがわかった。 The same evaluation method for the resin composition as in Example 1 was carried out, and the values of the expansion characteristics obtained in the combustion test were calculated and shown in Table 3. Then, using the calculated value indicating the obtained expansion characteristics, first, as in Example 1, the effect of applying MS-20 to the “expanded graphite” on the expansion characteristics was examined by the expansion of Comparative Example 2-1. Using the numerical value of the characteristic as the reference value, calculate the ratio of the expansion characteristic using the numerical value of the expansion characteristic of Comparative Examples 2-2-2-4, and use it as "Evaluation 1 (improvement rate) of the expansion characteristic" in Table 3. Indicated. As a result, as shown in Table 3, it was found that even if polyisocyanate was added to the unheated heat-expandable graphite raw material which was not heat-treated, the effect of improving the expansion characteristics could not be obtained.

さらに、実施例1における加熱処理済の「膨張黒鉛」にポリイソシアナートのMS−20を付与して改質した「改質膨張性黒鉛」を使用した場合における、表2に示した膨張特性の値と、加熱処理せずに非加熱のままの熱膨張性黒鉛原料を用い、同量のポリイソシアナートを添加した比較例2の場合における、表3に示した膨張特性の値とを用い、膨張特性の向上効果を比較するため、MS−20を同量配合した例同士で「表3の膨張特性の値/表2の膨張特性の値」をそれぞれ算出した比率を、「膨張特性の評価2」として表3中に示した。この結果、表3中の「膨張特性の評価2」に示されている通り、樹脂組成物を構成する膨張性黒鉛に、熱膨張性黒鉛原料を加熱処理した「膨張黒鉛」を用いたことで初めて、ポリイソシアナートを付与することによる膨張特性の向上効果を得ることができることが確認された。 Further, when "modified expansive graphite" modified by adding MS-20 of polyisocyanate to the heat-treated "expanded graphite" in Example 1 is used, the expansion characteristics shown in Table 2 are exhibited. Using the value and the value of the expansion characteristic shown in Table 3 in the case of Comparative Example 2 in which the same amount of polyisocyanate was added using the heat-expandable graphite raw material which was not heat-treated and remained unheated, was used. In order to compare the effect of improving the expansion characteristics, the ratio of "values of expansion characteristics in Table 3 / values of expansion characteristics in Table 2" calculated for each of the examples in which the same amount of MS-20 was blended was calculated as "evaluation of expansion characteristics". 2 ”is shown in Table 3. As a result, as shown in "Evaluation 2 of expansion characteristics" in Table 3, "expanded graphite" obtained by heat-treating a heat-expandable graphite raw material was used as the expandable graphite constituting the resin composition. For the first time, it was confirmed that the effect of improving the expansion characteristics can be obtained by adding graphite cyanate.

Figure 2021066830
Figure 2021066830

[比較例3]
本比較例では、樹脂組成物に配合する膨張性黒鉛に、体積が若干増加した状態の加熱処理済の熱膨張性黒鉛である「膨張黒鉛」として、実施例1と同様の、カサ体積倍率が1.42のSYZR502を使用した。また、ポリイソシアナートとしてMS−20を用いた。しかし、実施例1の場合とは異なり、「膨張黒鉛」にMS−20を付着及び含浸させて、ポリイソシアナートが付与された状態の「改質膨張性黒鉛」を樹脂成分に配合をするのではなく、本比較例では、MS−20を単に樹脂組成物中に添加して、ブレンドして「膨張黒鉛」と併用する構成とした。具体的には、表4に示した成分中のMS−20を除く配合をまず良く混合し、その状態にしてからMS−20を添加して均一にして本比較例の樹脂組成物とした。即ち、本比較例の樹脂組成物は、「膨張黒鉛」のSYZR502と、MS−20のポリイソシアナートは、他の添加剤と同様に、樹脂組成物中に単に併存している状態となる。
[Comparative Example 3]
In this comparative example, the expandable graphite blended in the resin composition has a bulk volume ratio similar to that of Example 1 as "expanded graphite" which is heat-treated heat-expandable graphite in a state where the volume is slightly increased. 1.42 SYZR502 was used. Moreover, MS-20 was used as a polyisocyanate. However, unlike the case of Example 1, MS-20 is adhered and impregnated to "expanded graphite", and "modified expandable graphite" to which polyisocyanate is added is blended with the resin component. Instead, in this comparative example, MS-20 was simply added to the resin composition, blended, and used in combination with "expanded graphite". Specifically, the formulations other than MS-20 in the components shown in Table 4 were first mixed well, and then MS-20 was added in that state to make them uniform to obtain the resin composition of this comparative example. That is, in the resin composition of this comparative example, SYZR502 of "expanded graphite" and polyisocyanate of MS-20 are simply coexisted in the resin composition like other additives.

それ以外の操作は、実施例1と同様にして、表4に示した配合の樹脂組成物をそれぞれに調製し、各樹脂組成物を用いて燃焼試験用のシート状の成形体試料を得、得られた試料をカットして燃焼試験用の試料を調製し、さらに、得られた試料を用いて、実施例1と同様にして、それぞれ燃焼試験を行った。また、実施例1の場合と同様の方法で、燃焼試験で得られる膨張特性の値を算出し、表4中に示した。また、実施例1における、加熱処理済の「膨張黒鉛」にポリイソシアナートのMS−20を付与して改質させた構成の「改質膨張性黒鉛」を使用した場合における、表2に示した膨張特性の値と、「膨張黒鉛」に、単にポリイソシアナートをブレンドして併存させた構成の比較例3の場合における膨張特性の値を用い、その向上効果を比較する目的で、MS−20を同量配合した例同士で、それぞれ「表4の膨張特性の値/表2の膨張特性の値」を算出した比率を、「膨張特性の評価3」として表4中に示した。表4中の「膨張特性の評価3」の結果に示されている通り、熱膨張性黒鉛原料を加熱処理して「膨張黒鉛」とし、さらに、この「膨張黒鉛」にポリイソシアナートが付与された「膨張黒鉛」をMS−20で改質した構成の膨張性黒鉛を樹脂組成物に用いた実施例1の構成とすることによって初めて、より高い膨張特性の向上効果が得られることが確認された。 For other operations, the resin compositions having the formulations shown in Table 4 were prepared in the same manner as in Example 1, and each resin composition was used to obtain a sheet-shaped molded product sample for a combustion test. The obtained sample was cut to prepare a sample for a combustion test, and further, using the obtained sample, a combustion test was carried out in the same manner as in Example 1. Further, the values of the expansion characteristics obtained in the combustion test were calculated by the same method as in the case of Example 1, and are shown in Table 4. Further, Table 2 shows the case where the "modified expandable graphite" having the structure of the heat-treated "expanded graphite" modified by adding MS-20 of polyisocyanate to the heat-treated "expanded graphite" was used. For the purpose of comparing the improvement effect by using the value of the expansion characteristic and the value of the expansion characteristic in the case of Comparative Example 3 of the configuration in which polyisocyanate is simply blended and coexisted with "expanded graphite", MS- The ratios for which "values of expansion characteristics in Table 4 / values of expansion characteristics in Table 2" were calculated for each of the examples in which the same amount of 20 was blended are shown in Table 4 as "evaluation 3 of expansion characteristics". As shown in the result of "Evaluation 3 of expansion characteristics" in Table 4, the heat-expandable graphite raw material is heat-treated to obtain "expansion graphite", and polyisosianate is further added to this "expansion graphite". It was confirmed that a higher effect of improving the expansion characteristics can be obtained for the first time by adopting the configuration of Example 1 in which the expansion graphite having a configuration in which the “expanded graphite” is modified with MS-20 is used in the resin composition. It was.

Figure 2021066830
Figure 2021066830

[膨張特性の向上効果についての評価結果のまとめ]
表2〜表4に示した通り、表2の実施例1の樹脂組成物で実現される、燃焼試験における膨張特性は、表3、表4に示した、本発明で規定する、「膨張黒鉛」をポリイソシアナートで改質した「改質膨張性黒鉛」を用いない、比較例2、3の樹脂組成物を用いて行った燃焼試験における膨張特性と明らかに相違しており、膨張特性の向上効果が得られることを確認した。即ち、加熱処理によりカサ体積を若干増加させた「膨張黒鉛」であるSYZR502に、ポリイソシアナートを添加して改質させ、「改質膨張性黒鉛」を樹脂組成物の構成成分として用いることで、膨張特性を向上させることができる。一方、加熱処理をしない非加熱の熱膨張性黒鉛原料にポリイソシアナートを添加させた構成のものを使用した、比較例2の樹脂組成物の場合や、加熱処理してカサ体積を若干増加させている「膨張黒鉛」を使用しているものの、「膨張黒鉛」をさらにポリイソシアナートで改質させて用いるのではなく、単に、樹脂組成物中にポリイソシアナートをブレンドさせただけの構成の比較例3の樹脂組成物の場合は、膨張特性が効果的に改善されないことが確認された。
[Summary of evaluation results regarding the effect of improving expansion characteristics]
As shown in Tables 2 to 4, the expansion characteristics in the combustion test realized by the resin composition of Example 1 in Table 2 are the "expanded graphite" specified in the present invention shown in Tables 3 and 4. Is clearly different from the expansion characteristics in the combustion test conducted using the resin compositions of Comparative Examples 2 and 3 without using "modified expansive graphite" modified with polyisocyanate. It was confirmed that an improvement effect could be obtained. That is, by adding polyisocyanate to SYZR502, which is "expanded graphite" whose bulk volume is slightly increased by heat treatment, and modifying it, and using "modified expandable graphite" as a constituent component of the resin composition. , Expansion characteristics can be improved. On the other hand, in the case of the resin composition of Comparative Example 2 in which polyisosianate is added to a non-heated heat-expandable graphite raw material that is not heat-treated, or in the case of heat treatment, the bulk volume is slightly increased. Although "expanded graphite" is used, it is not used by further modifying "expanded graphite" with polyisosianate, but simply by blending polyisosianate in the resin composition. In the case of the resin composition of Comparative Example 3, it was confirmed that the expansion characteristics were not effectively improved.

[実施例2、比較例4]
ポリイソシアナートに4,4’ジフェルメタンジイソシアナート(M.D.Iと略す)を用い、熱膨張性黒鉛原料にSYZR802を用いたこと以外の操作は、実施例1と同様にして、実施例2の樹脂組成物を調製した。また、ポリイソシアナートをM.D.Iに替えて、加熱処理しない熱膨張性黒鉛原料をそのまま用いた、前記した比較例2と同様にした例を比較例4−1及び4−2とした。また、ポリイソシアナートをM.D.Iに替えて、加熱処理した「膨張黒鉛」を用い、前記した比較例3と同様に、M.D.Iを単にブレンドさせたて併用した例を比較例4−3及び4−4とした。実施例1と同様に燃焼試験をそれぞれ行って、同様にして膨張特性を算出した。表5に、樹脂組成物の配合と、燃焼試験をして求めた膨張特性を示した。
[Example 2, Comparative Example 4]
The operations other than using 4,4'diffelmethane diisocyanate (abbreviated as MDI) as the polyisocyanate and SYZR802 as the heat-expandable graphite raw material were carried out in the same manner as in Example 1. The resin composition of Example 2 was prepared. In addition, polyisocyanate was added to M. D. Comparative Examples 4-1 and 4-2 were the same as those of Comparative Example 2 in which the heat-expandable graphite raw material which was not heat-treated was used as it was instead of I. In addition, polyisocyanate was added to M. D. Instead of I, heat-treated "expanded graphite" was used, and M.I. D. Examples of I being simply blended and used in combination were designated as Comparative Examples 4-3 and 4-4. Combustion tests were carried out in the same manner as in Example 1, and the expansion characteristics were calculated in the same manner. Table 5 shows the composition of the resin composition and the expansion characteristics obtained by the combustion test.

そして、実施例2で得られた膨張特性の値について、同様の配合量で得た上記比較例4におけるそれぞれの膨張特性の値を基準として、比率を算出して膨張特性の向上効果を確認した。表5に示した通り、実施例1と同様の処理を行って、加熱により体積を若干増加させた「膨張黒鉛」を、ポリイソシアナートのM.D.Iを使用して改質させた「改質膨張性黒鉛」を使用して樹脂組成物とした実施例2の場合も、比較例4と比べて明らかに膨張特性が向上することが確認された。 Then, with respect to the value of the expansion characteristic obtained in Example 2, the ratio was calculated based on the value of each expansion characteristic obtained in the above Comparative Example 4 obtained in the same blending amount, and the effect of improving the expansion characteristic was confirmed. .. As shown in Table 5, "expanded graphite", which was subjected to the same treatment as in Example 1 and whose volume was slightly increased by heating, was obtained from the polyisocyanate M.I. D. It was also confirmed that in the case of Example 2 in which the resin composition was prepared by using "modified expandable graphite" modified using I, the expansion characteristics were clearly improved as compared with Comparative Example 4. ..

Figure 2021066830
Figure 2021066830

[実施例3、比較例5〜7](樹脂成分:不飽和ポリエステル樹脂)
表6に示した配合で、樹脂組成物の樹脂成分として、PVCに替えて不飽和ポリエステル樹脂を用い、さらに、熱膨張性黒鉛原料にSYZ802を用いたこと以外は実施例1と同様に操作して、実施例3の樹脂組成物を調製した。また、表6に示した配合で、樹脂組成物の樹脂成分に不飽和ポリエステル樹脂を用い、熱膨張性黒鉛原料をSYZ802に替えたこと以外は比較例1と同様に操作して、比較例5の樹脂組成物を調製した。また、表6に示した配合で、樹脂組成物の樹脂成分として、PVCに替えて不飽和ポリエステル樹脂を用い、加熱処理をせずに用いた熱膨張性黒鉛原料をSYZ802に替えたこと以外は比較例2と同様に操作して、比較例6、7の樹脂組成物を調製した。不飽和ポリエステル樹脂には、日本特殊塗料社製の手積用ポリエステルを主剤99/硬化剤1の比率で混合して使用した。熱膨張性黒鉛原料にSYZ802を用いて、比較例6、7では加熱処理をせずに非加熱の原料をそのままで用い、実施例3及び比較例5では、先に説明したようにしてカサ体積倍率1.50倍に膨張させた「膨張黒鉛」を用いた。
[Example 3, Comparative Examples 5 to 7] (Resin component: unsaturated polyester resin)
In the formulation shown in Table 6, the same operation as in Example 1 was performed except that an unsaturated polyester resin was used instead of PVC as the resin component of the resin composition, and SYZ802 was used as the heat-expandable graphite raw material. The resin composition of Example 3 was prepared. Further, in the formulation shown in Table 6, an unsaturated polyester resin was used as the resin component of the resin composition, and the operation was carried out in the same manner as in Comparative Example 1 except that the heat-expandable graphite raw material was replaced with SYZ802. Resin composition of. In addition, in the formulation shown in Table 6, unsaturated polyester resin was used instead of PVC as the resin component of the resin composition, and the heat-expandable graphite raw material used without heat treatment was replaced with SYZ802. The resin compositions of Comparative Examples 6 and 7 were prepared in the same manner as in Comparative Example 2. As the unsaturated polyester resin, a polyester for hand-loading manufactured by Nippon Tokushu Paint Co., Ltd. was mixed at a ratio of 99 main agent / 1 curing agent. SYZ802 was used as the heat-expandable graphite raw material, and in Comparative Examples 6 and 7, the unheated raw material was used as it was without heat treatment. In Example 3 and Comparative Example 5, the bulk volume was as described above. "Expanded graphite" expanded to a magnification of 1.50 was used.

上記のようにしてそれぞれ調製した表6の配合の各樹脂組成物を用いて、それぞれ燃焼試験を行った。本例では、樹脂成分にPVCを用いた実施例1の場合と異なり、燃焼試験用の試料の作製の際に、離形板に所定の厚みでコーティング後、60℃で20分間加熱して固化させて試料とした。それ以降の燃焼試験の操作及び評価方法は、実施例1で行ったのと同様である。表6に、樹脂組成物の配合と、燃焼試験で得られたそれぞれの膨張特性の値、及び、各比較例の膨張特性の値に対する実施例3の膨張特性の値についての比率を求め、その相対評価の結果を示した。 Combustion tests were carried out using each of the resin compositions having the formulations shown in Table 6 prepared as described above. In this example, unlike the case of Example 1 in which PVC is used as the resin component, when preparing a sample for a combustion test, the release plate is coated with a predetermined thickness and then heated at 60 ° C. for 20 minutes to solidify. It was used as a sample. Subsequent operations and evaluation methods for the combustion test are the same as those performed in Example 1. In Table 6, the blending of the resin composition, the respective expansion characteristic values obtained in the combustion test, and the ratio of the expansion characteristic value of Example 3 to the expansion characteristic value of each comparative example were obtained, and the ratio thereof was obtained. The result of relative evaluation is shown.

表6に示した通り、樹脂成分を不飽和ポリエステル樹脂に変更した場合も、樹脂組成物を構成する膨張性黒鉛として、本発明で規定するように「膨張黒鉛」にポリイソシアナートを付与して改質させた「改質膨張性黒鉛」を使用する構成とすることで、明らかに膨張特性の向上効果が得られることが確認された。 As shown in Table 6, even when the resin component is changed to an unsaturated polyester resin, polyisocyanate is added to the "expanded graphite" as the expansive graphite constituting the resin composition as specified in the present invention. It was confirmed that the effect of improving the expansion characteristics was clearly obtained by using the modified "modified expandable graphite".

Figure 2021066830
Figure 2021066830

[実施例4、比較例8〜10](樹脂成分:アクリル樹脂)
表7に示した配合で、樹脂組成物の樹脂成分として、PVCに替えてアクリル樹脂を用い、さらに、熱膨張性黒鉛原料にEG−E300を用い、ポリイソシアナートとしてコロネートHX(商品名、東ソー社製)を用いたこと以外は実施例1と同様に操作して、実施例4の樹脂組成物を調製した。また、表7に示した配合で、樹脂組成物の樹脂成分にアクリル樹脂を用い、熱膨張性黒鉛原料をEG−E300に替えたこと以外は比較例1と同様にして、比較例8の樹脂組成物を調製した。また、表7に示した配合で、樹脂組成物の樹脂成分として、アクリル樹脂を用い、加熱処理をせずに用いた熱膨張性黒鉛原料をEG−E300に替えたこと以外は比較例2と同様に操作して、比較例9、10の樹脂組成物を調製した。アクリル樹脂には、藤倉化成社製のMH101−5(商品名)を酢酸エチルに30%溶液で溶解して使用した。熱膨張性黒鉛原料としてEG−E300を用いて、比較例9、10では加熱処理をせずに非加熱の原料をそのままで用い、実施例4及び比較例8では、カサ体積倍率1.47倍に膨張させた「膨張黒鉛」を用いた。
[Example 4, Comparative Examples 8 to 10] (Resin component: Acrylic resin)
In the formulation shown in Table 7, acrylic resin is used instead of PVC as the resin component of the resin composition, EG-E300 is used as the raw material for the heat-expandable graphite, and Coronate HX (trade name, Tosoh) is used as the polyisocyanate. The resin composition of Example 4 was prepared by operating in the same manner as in Example 1 except that the resin composition of Example 4 was used. Further, in the formulation shown in Table 7, the resin of Comparative Example 8 was obtained in the same manner as in Comparative Example 1 except that acrylic resin was used as the resin component of the resin composition and the heat-expandable graphite raw material was replaced with EG-E300. The composition was prepared. Further, in the formulation shown in Table 7, acrylic resin was used as the resin component of the resin composition, and the heat-expandable graphite raw material used without heat treatment was replaced with EG-E300, as compared with Comparative Example 2. The resin compositions of Comparative Examples 9 and 10 were prepared in the same manner. As the acrylic resin, MH101-5 (trade name) manufactured by Fujikura Kasei Co., Ltd. was used by dissolving it in ethyl acetate in a 30% solution. EG-E300 was used as the heat-expandable graphite raw material, and in Comparative Examples 9 and 10, the unheated raw material was used as it was without heat treatment. In Example 4 and Comparative Example 8, the bulk volume magnification was 1.47 times. "Expanded graphite" that was expanded to the above was used.

実施例4では、燃焼試験用の試料を下記のようにして作製した。まず、前記したアクリル樹脂をトルエンに30%濃度に溶解した。そして、この溶解液に、EG−E300原料を加熱することで得た、カサ体積1.47倍の「膨張黒鉛」に、常温下で、ポリイソシアナートとしてコロネートHXを、表7に示した量でそれぞれ添加して混和後、130℃で20分間加熱することで、「膨張黒鉛」にポリイソシアナートを付着及び含浸等させて、コロネートHXを付与して「改質膨張性黒鉛」を得た。そして、得られた「改質膨張黒鉛」を他の配合物とよく混合して樹脂組成物を得た。得られた樹脂組成物を用いて実施例1と同様にして、離形板に所定の厚みにコーティングして、燃焼試験に用いるシート状の成形体を得た。シート状の成形体を得る際に、20〜30℃で24時間放置して溶剤を蒸発させ固化させた。その他は、実施例1と同様にしてシート状の試料を用いて燃焼試験を行って、膨張特性を求めた。比較例8〜10の樹脂組成物も、上記に準じて燃焼試験を行って、膨張特性を求めた。 In Example 4, a sample for a combustion test was prepared as follows. First, the acrylic resin described above was dissolved in toluene at a concentration of 30%. Then, in this solution, coronate HX as a polyisocyanate was added to "expanded graphite" having a bulk volume of 1.47 times, which was obtained by heating the EG-E300 raw material, at room temperature in the amount shown in Table 7. After adding and mixing with each other and heating at 130 ° C. for 20 minutes, polyisocyanate was attached to and impregnated with "expanded graphite", and coronate HX was added to obtain "modified expansive graphite". .. Then, the obtained "modified expanded graphite" was well mixed with other formulations to obtain a resin composition. Using the obtained resin composition, the release plate was coated to a predetermined thickness in the same manner as in Example 1 to obtain a sheet-shaped molded product used for the combustion test. When the sheet-shaped molded product was obtained, it was left at 20 to 30 ° C. for 24 hours to evaporate and solidify the solvent. Other than that, a combustion test was carried out using a sheet-shaped sample in the same manner as in Example 1 to determine the expansion characteristics. The resin compositions of Comparative Examples 8 to 10 were also subjected to a combustion test according to the above to determine expansion characteristics.

表7に、樹脂組成物の配合と、燃焼試験をして求めた膨張特性を示した。表7に、樹脂組成物の配合と、燃焼試験で得られたそれぞれの膨張特性の値、及び、各比較例の膨張特性の値に対する実施例4の膨張特性の値についての比率を求め、その相対評価の結果を示した。 Table 7 shows the composition of the resin composition and the expansion characteristics obtained by the combustion test. In Table 7, the blending of the resin composition, the respective expansion characteristic values obtained in the combustion test, and the ratio of the expansion characteristic value of Example 4 to the expansion characteristic value of each comparative example were obtained, and the ratio thereof was obtained. The result of relative evaluation is shown.

表7に示した通り、樹脂成分をアクリル樹脂に変更した場合も、樹脂組成物を構成する膨張性黒鉛として、本発明で規定するように「膨張黒鉛」にポリイソシアナートを付与して改質させた「改質膨張性黒鉛」を使用する構成とすることで、明らかに膨張特性の向上効果が得られることが確認された。表7中のアクリル樹脂は、固形分100%として記載した。 As shown in Table 7, even when the resin component is changed to acrylic resin, polyisocyanate is added to "expanded graphite" as the expansive graphite constituting the resin composition to modify it as specified in the present invention. It was confirmed that the effect of improving the expansion characteristics was clearly obtained by using the modified "modified expandable graphite". The acrylic resin in Table 7 is described as having a solid content of 100%.

Figure 2021066830

Figure 2021066830

Claims (9)

改質された膨張性黒鉛と樹脂成分とを含む樹脂組成物であって、
前記樹脂成分100質量部を基準にして、前記改質された膨張性黒鉛を5〜300質量部含み、
前記改質された膨張性黒鉛が、熱膨張性黒鉛原料を予め加熱処理することで、下記式で求められるカサ体積倍率が、加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加しており、且つ、加熱処理済のカサ体積が増加した状態の熱膨張性黒鉛にポリイソシアナートが付与された状態のものであることを特徴とする樹脂組成物。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
A resin composition containing modified expansive graphite and a resin component.
Based on 100 parts by mass of the resin component, the modified expandable graphite is contained in an amount of 5 to 300 parts by mass.
By heat-treating the heat-expandable graphite raw material in advance with the modified expandable graphite, the bulk volume ratio obtained by the following formula is 1.05 to 3.0 as compared with the bulk volume of the raw material before heating. A resin composition characterized by having polyisosianate added to heat-expandable graphite in a state where the volume has been doubled and the volume of heat-treated bulk has increased.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating
前記改質された膨張性黒鉛の粒子の形態が、最大長が100〜1000μmの範囲内で、且つ、最大の厚みが5〜150μmの範囲内である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the modified expandable graphite particles have a maximum length in the range of 100 to 1000 μm and a maximum thickness in the range of 5 to 150 μm. 前記樹脂成分が、熱可塑性樹脂及び熱硬化樹脂から選ばれるいずれかの樹脂である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the resin component is any resin selected from a thermoplastic resin and a thermosetting resin. 改質された膨張性黒鉛と樹脂成分とを含む樹脂組成物からなる成形物である、熱膨張性のシート状又はパテ状の耐火製品であって、
前記樹脂成分100質量部を基準にして、前記改質された膨張性黒鉛を5〜300質量部含み、
該改質された膨張性黒鉛が、熱膨張性黒鉛原料を予め加熱処理することで、下記式で求められるカサ体積倍率が、加熱前の原料のカサ体積に比べて1.05〜3.0倍に増加しており、且つ、加熱処理済のカサ体積が増加した状態の熱膨張性黒鉛にポリイソシアナートが付与された状態のものであることを特徴とする熱膨張性のシート状又はパテ状の耐火製品。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
A heat-expandable sheet-like or putty-like refractory product, which is a molded product composed of a resin composition containing modified expandable graphite and a resin component.
Based on 100 parts by mass of the resin component, the modified expandable graphite is contained in an amount of 5 to 300 parts by mass.
By heat-treating the heat-expandable graphite raw material in advance with the modified expandable graphite, the bulk volume ratio obtained by the following formula is 1.05 to 3.0 as compared with the bulk volume of the raw material before heating. A heat-expandable sheet or putty characterized by having polyisosianate added to the heat-expandable graphite in a state where the volume of heat-treated bulk has increased by a factor of two. Fireproof product.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating
前記改質された膨張性黒鉛の粒子の形態が、最大長が100〜1000μmの範囲で、且つ、最大の厚みが5〜150μmの範囲である請求項4に記載の熱膨張性のシート状又はパテ状の耐火製品。 The heat-expandable sheet or the form according to claim 4, wherein the modified expandable graphite particles have a maximum length in the range of 100 to 1000 μm and a maximum thickness in the range of 5 to 150 μm. Putty-like refractory product. 前記樹脂成分が、熱可塑性樹脂及び熱硬化樹脂から選ばれるいずれかの樹脂である請求項4又は5に記載の熱膨張性のシート状又はパテ状の耐火製品。 The heat-expandable sheet-like or putty-like refractory product according to claim 4 or 5, wherein the resin component is any resin selected from a thermoplastic resin and a thermosetting resin. 改質工程で熱膨張性黒鉛原料を改質し、得られた改質された膨張性黒鉛と樹脂成分とを混合して、樹脂成分100質量部を基準にして、改質された膨張性黒鉛を5〜300質量部含む樹脂組成物を得る樹脂組成物の作製方法であって、
前記改質工程が、熱膨張性黒鉛原料を100℃〜250℃の温度で加熱処理し、加熱処理前に比べて加熱処理後の、下記式で求められるカサ体積倍率が1.05〜3.0倍になるように熱膨張性黒鉛原料の体積を増加させる体積の増加工程と、該体積の増加工程で、カサ体積を増加させた状態の加熱処理済の熱膨張性黒鉛に、常温下でポリイソシアナートを添加し、その後に130℃以下の温度に加温するポリイソシアナートの付与工程とを有することを特徴とする樹脂組成物の製造方法。
カサ体積倍率
=加熱後の熱膨張性黒鉛のカサ体積/加熱前の熱膨張性黒鉛原料のカサ体積
The heat-expandable graphite raw material is modified in the modification step, the obtained modified expandable graphite and the resin component are mixed, and the modified expandable graphite is based on 100 parts by mass of the resin component. A method for producing a resin composition, which comprises 5 to 300 parts by mass of
In the modification step, the heat-expandable graphite raw material is heat-treated at a temperature of 100 ° C. to 250 ° C., and the bulk volume ratio obtained by the following formula after the heat treatment is 1.05 to 3. In the volume increasing step of increasing the volume of the heat-expandable graphite raw material so as to be 0 times, and the heat-treated heat-expandable graphite in a state where the bulk volume is increased in the volume increasing step, at room temperature. A method for producing a resin composition, which comprises a step of adding polyisocyanate and then heating to a temperature of 130 ° C. or lower.
Volume magnification = Volume of heat-expandable graphite after heating / Volume of heat-expandable graphite raw material before heating
前記ポリイソシアナートの付与工程で、前記加熱処理済の膨張性黒鉛100質量部に、ポリイソシアナートを1〜10質量部の範囲内で添加する請求項7に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 7, wherein in the step of applying the polyisocyanate, the polyisocyanate is added in the range of 1 to 10 parts by mass to 100 parts by mass of the heat-treated expansive graphite. 前記加熱処理済の膨張性黒鉛の粒子の形態が、最大長が100〜1000μmの範囲で、且つ、最大の厚みが5〜150μmの範囲である請求項7又は8に記載の樹脂組成物の製造方法。

The production of the resin composition according to claim 7 or 8, wherein the heat-treated expandable graphite particles have a maximum length in the range of 100 to 1000 μm and a maximum thickness in the range of 5 to 150 μm. Method.

JP2019194188A 2019-10-25 2019-10-25 Method for manufacturing resin composition, heat-expandable sheet-like or putty-like refractory product, and resin composition Active JP6753591B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019194188A JP6753591B1 (en) 2019-10-25 2019-10-25 Method for manufacturing resin composition, heat-expandable sheet-like or putty-like refractory product, and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019194188A JP6753591B1 (en) 2019-10-25 2019-10-25 Method for manufacturing resin composition, heat-expandable sheet-like or putty-like refractory product, and resin composition

Publications (2)

Publication Number Publication Date
JP6753591B1 JP6753591B1 (en) 2020-09-09
JP2021066830A true JP2021066830A (en) 2021-04-30

Family

ID=72333445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019194188A Active JP6753591B1 (en) 2019-10-25 2019-10-25 Method for manufacturing resin composition, heat-expandable sheet-like or putty-like refractory product, and resin composition

Country Status (1)

Country Link
JP (1) JP6753591B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072065A (en) * 2021-05-08 2021-07-06 河南四达电力设备股份有限公司 Modified expandable graphite, cable fire-proof and explosion-proof coating film and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161975B (en) * 2021-05-08 2022-09-02 河南四达电力设备股份有限公司 Flexible fireproof and explosion-proof blanket for cable intermediate joint

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214081A (en) * 1990-03-07 1992-08-05 Bayer Ag Foamable molded item
JPH07138070A (en) * 1993-11-15 1995-05-30 Tokai Carbon Co Ltd Production of carbonaceous material coated with glassy carbon
JP2000053408A (en) * 1998-08-05 2000-02-22 Hitachi Chem Co Ltd Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP2002198679A (en) * 2000-10-16 2002-07-12 Furukawa Electric Co Ltd:The Electromagnetic wave shielding gasket
JP5992589B1 (en) * 2015-09-04 2016-09-14 株式会社レグルス Thermally expandable vinyl chloride resin material and method for producing thermally expandable vinyl chloride resin material
JP2018109137A (en) * 2017-07-06 2018-07-12 株式会社レグルス Thermal expansion vinyl chloride resin material and thermal expansion vinyl chloride resin material production method
JP2019052199A (en) * 2017-09-12 2019-04-04 株式会社レグルス Thermally expandable resin composition thermally expandable resin-made material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214081A (en) * 1990-03-07 1992-08-05 Bayer Ag Foamable molded item
JPH07138070A (en) * 1993-11-15 1995-05-30 Tokai Carbon Co Ltd Production of carbonaceous material coated with glassy carbon
JP2000053408A (en) * 1998-08-05 2000-02-22 Hitachi Chem Co Ltd Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP2002198679A (en) * 2000-10-16 2002-07-12 Furukawa Electric Co Ltd:The Electromagnetic wave shielding gasket
JP5992589B1 (en) * 2015-09-04 2016-09-14 株式会社レグルス Thermally expandable vinyl chloride resin material and method for producing thermally expandable vinyl chloride resin material
JP2018109137A (en) * 2017-07-06 2018-07-12 株式会社レグルス Thermal expansion vinyl chloride resin material and thermal expansion vinyl chloride resin material production method
JP2019052199A (en) * 2017-09-12 2019-04-04 株式会社レグルス Thermally expandable resin composition thermally expandable resin-made material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072065A (en) * 2021-05-08 2021-07-06 河南四达电力设备股份有限公司 Modified expandable graphite, cable fire-proof and explosion-proof coating film and production method thereof

Also Published As

Publication number Publication date
JP6753591B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
Cai et al. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites
Gavgani et al. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties
Guo et al. Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing
Lin et al. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials
Cai et al. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites
Babapoor et al. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization
Hao et al. Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites
JP6753591B1 (en) Method for manufacturing resin composition, heat-expandable sheet-like or putty-like refractory product, and resin composition
Chen et al. Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites
Gardelle et al. Characterization of the carbonization process of expandable graphite/silicone formulations in a simulated fire
Lou et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites
JP4041149B2 (en) Thermally expandable putty composition
Chai et al. Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material
Danowska et al. Rigid polyurethane foams modified with selected layered silicate nanofillers
Zhou et al. Preparation of highly thermally conducting polyamide 6/graphite composites via low‐temperature in situ expansion
Carpentier et al. Rheological investigations in fire retardancy: application to ethylene–vinyl‐acetate copolymer–magnesium hydroxide/zinc borate formulations
Zhou et al. High thermally conducting composites obtained via in situ exfoliation process of expandable graphite filled polyamide 6
Cerezo et al. Structural, mechanical and dielectric properties of poly (ethylene-co-methyl acrylate-co-acrylic acid) graphite oxide nanocomposites
Li et al. Microstructure and transport properties of copper-doped p-type BiSbTe alloy prepared by mechanical alloying and subsequent spark plasma sintering
Araby et al. Graphene platelets versus phosphorus compounds for elastomeric composites: Flame retardancy, mechanical performance and mechanisms
Stabler et al. High-temperature creep behavior of a SiOC glass ceramic free of segregated carbon
Hu et al. Effect of ethyl cellulose microencapsulated ammonium polyphosphate on flame retardancy, mechanical and thermal properties of flame retardant poly (butylene succinate) composites
Luo et al. Study of different-sized sulfur-free expandable graphite on morphology and properties of water-blown semi-rigid polyurethane foams
Xu et al. Synergistic effects of aluminum hypophosphite on intumescent flame retardant polypropylene system
EP3408319A1 (en) Polymeric foam board with flexible water resistant intumescent coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R150 Certificate of patent or registration of utility model

Ref document number: 6753591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250