JP2021065910A - Casting apparatus - Google Patents

Casting apparatus Download PDF

Info

Publication number
JP2021065910A
JP2021065910A JP2019193450A JP2019193450A JP2021065910A JP 2021065910 A JP2021065910 A JP 2021065910A JP 2019193450 A JP2019193450 A JP 2019193450A JP 2019193450 A JP2019193450 A JP 2019193450A JP 2021065910 A JP2021065910 A JP 2021065910A
Authority
JP
Japan
Prior art keywords
flow path
molten metal
peripheral wall
cooling
casting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019193450A
Other languages
Japanese (ja)
Inventor
福増 秀彰
Hideaki Fukumasu
秀彰 福増
繁生 谷元
Shigeo Tanimoto
繁生 谷元
兼一 谷口
Kenichi Taniguchi
兼一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2019193450A priority Critical patent/JP2021065910A/en
Publication of JP2021065910A publication Critical patent/JP2021065910A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a casting apparatus capable of effectively and independently controlling primary and secondary cooling conditions with a simple structure.SOLUTION: A casting apparatus A comprises: a bottom body 1 vertically movable and fixable to an arbitrary vertical position; a cast 3 which includes a peripheral wall 2 installed around the bottom body and having a circulation path formed therein for circulating a cooling medium 7; and a molten metal supply part 4 which is installed above the cast 3 and which supplies molten metal 5 into the cast 3. The casting apparatus A lowers the bottom body 1 while supplying the molten metal 5 into the case 3 by the molten metal supply part 4, primarily cools the molten metal 5 by the bottom body 1 and the peripheral wall 2, and secondarily cools the molten metal by the cooling medium 7 injected from a plurality of injection holes 15 provided around the peripheral wall 2 to form an ingot, and is configured such that a sub-flow path 16 which enables adjustment of the flow rate of the cooling medium 7 injected from the injection holes 15 of the peripheral wall 2 for secondary cooling is provided at a part of a flow path 8 for circulating the cooling medium 7.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム等の金属をビレット型やスラブ型等の鋳塊とする際に用いて好適な鋳造装置に関する。 The present invention relates to a casting apparatus suitable for use when a metal such as aluminum is used as an ingot such as a billet type or a slab type.

従来、例えば、スラブ型やビレット型等のアルミニウム鋳塊は、いわゆるDC鋳造法(Direct Chill Casting Process)と呼ばれる半連続鋳造法により製造されている。
図4はDC鋳造法によりアルミニウム鋳塊を製造する鋳造装置の一例を示す概略断面図であり、図4に示す鋳造装置100において、101は油圧シリンダー等の昇降装置により上下方向に移動自在かつ上下方向の任意の位置に固定可能とされたボトムブロック(底部体)を示す。
このボトムブロック101の周囲に冷却用の水冷ジャケットモールド(周壁部)102が設けられ、ボトムブロック101と水冷ジャケットモールド102により鋳型103が構成されている。
Conventionally, for example, aluminum ingots such as slab type and billet type are manufactured by a semi-continuous casting method called a so-called DC casting method (Direct Chill Casting Process).
FIG. 4 is a schematic cross-sectional view showing an example of a casting apparatus for producing an aluminum ingot by a DC casting method. In the casting apparatus 100 shown in FIG. 4, 101 is movable in the vertical direction and up and down by an elevating device such as a hydraulic cylinder. The bottom block (bottom body) that can be fixed at an arbitrary position in the direction is shown.
A water-cooled jacket mold (peripheral wall portion) 102 for cooling is provided around the bottom block 101, and the mold 103 is composed of the bottom block 101 and the water-cooled jacket mold 102.

鋳型103の上方には、鋳型103内にアルミニウム溶湯105を供給するトラフ(溶湯供給部)104が設けられている。ボトムブロック101の上部には、アルミニウム溶湯105溜用の凹部106が形成されている。
水冷ジャケットモールド102には、冷却水(冷却媒体)107を循環させる断面略矩型状の流路108が形成され、該流路108は上部に連通用の穴111またはスリットが形成された整流板112により外流路113と内流路114に分割されている。また、内流路114のボトムブロック101側の下端部には冷却水107を噴射する噴射孔115が所定の間隔をおいて複数個形成されている。更に、トラフ104の周囲のアルミニウム溶湯105の液面にはフロート116が浮遊されている。
Above the mold 103, a trough (molten metal supply unit) 104 for supplying the molten aluminum 105 is provided in the mold 103. A recess 106 for storing the molten aluminum 105 is formed in the upper part of the bottom block 101.
The water-cooled jacket mold 102 is formed with a flow path 108 having a substantially rectangular cross section for circulating cooling water (cooling medium) 107, and the flow path 108 is a rectifying plate having holes 111 or slits for communication formed in the upper portion. It is divided into an outer flow path 113 and an inner flow path 114 by 112. Further, a plurality of injection holes 115 for injecting the cooling water 107 are formed at the lower end portion of the inner flow path 114 on the bottom block 101 side at predetermined intervals. Further, the float 116 is suspended on the liquid surface of the molten aluminum 105 around the trough 104.

図4に示す鋳造装置を用いてアルミニウム鋳塊を製造するには、図示しない保持炉から移送されてきたアルミニウム溶湯105を一旦トラフ104に溜め、このアルミニウム溶湯105を鋳型103内に流し込んでボトムブロック101及び水冷ジャケットモールド102により一次冷却して凝固させ、アルミニウム溶湯105の周囲に図5に示すように凝固殻105aを形成する。
次いで、アルミニウム溶湯105を鋳型103内に供給しつつ該鋳型103内のアルミニウム溶湯105の液面が一定の高さとなる様にボトムブロック101を下降させることにより該凝固殻105aを下方へ延伸させる。さらに、噴射孔115より冷却水107を噴射して凝固殻105aを二次冷却し、スラブ型またはビレット型のアルミニウム鋳塊117とする。
In order to produce an aluminum ingot using the casting apparatus shown in FIG. 4, the molten aluminum 105 transferred from a holding furnace (not shown) is temporarily stored in the trough 104, and the molten aluminum 105 is poured into the mold 103 to pour the bottom block. The solidified shell 105a is formed around the molten aluminum 105 by primary cooling with the 101 and the water-cooled jacket mold 102 as shown in FIG.
Next, the solidified shell 105a is stretched downward by lowering the bottom block 101 so that the liquid level of the molten aluminum 105 in the mold 103 becomes a constant height while supplying the molten aluminum 105 into the mold 103. Further, cooling water 107 is injected from the injection hole 115 to secondary cool the solidified shell 105a to form a slab type or billet type aluminum ingot 117.

図4に示す鋳造装置100においては、水冷ジャケットモールド102の内流路114を冷却水107が循環する間に冷却水107の温度分布を均一化することができる。このため、アルミニウム溶湯105の周囲及び得られた凝固殻105aを均一に冷却することができ、該凝固殻105aの表面の温度分布を均一にすることができる。
したがって、図4に示す鋳造装置100によると、金属組織が緻密でかつ機械的性質、耐久性に優れたアルミニウム鋳塊117を製造することができ、しかも、設置に要する床面積が狭くて済み、量産性に優れている等の優れた特徴を有する。
In the casting apparatus 100 shown in FIG. 4, the temperature distribution of the cooling water 107 can be made uniform while the cooling water 107 circulates in the inner flow path 114 of the water-cooled jacket mold 102. Therefore, the periphery of the molten aluminum 105 and the obtained solidified shell 105a can be uniformly cooled, and the temperature distribution on the surface of the solidified shell 105a can be made uniform.
Therefore, according to the casting apparatus 100 shown in FIG. 4, it is possible to manufacture an aluminum ingot 117 having a dense metal structure and excellent mechanical properties and durability, and the floor area required for installation is small. It has excellent features such as excellent mass productivity.

ところで、図4に示す従来の鋳造装置100では、冷却水107に含まれている鉄錆により、整流板の連通用の穴111及び噴射孔115に目詰まりを起こすという問題点があった。連通用の穴111が目詰まりを起こした場合、外流路113から内流路114へ冷却水107を供給できなくなる箇所が生じる。噴射孔115から噴射する冷却水107の流量が場所により変化すると、凝固殻105aが均一に冷却されなくなる。
また、噴射孔115が目詰まりを起こした場合、凝固殻105aに二次冷却されない箇所が発生するので、凝固殻105aの全体を均一に二次冷却することができず、金属組織が均一なアルミニウム鋳塊117を製造できなくなる。
By the way, in the conventional casting apparatus 100 shown in FIG. 4, there is a problem that iron rust contained in the cooling water 107 causes clogging in the communication hole 111 and the injection hole 115 of the straightening vane. When the communication hole 111 is clogged, there may be a place where the cooling water 107 cannot be supplied from the outer flow path 113 to the inner flow path 114. If the flow rate of the cooling water 107 injected from the injection hole 115 changes depending on the location, the solidified shell 105a cannot be cooled uniformly.
Further, when the injection hole 115 is clogged, the solidified shell 105a may not be secondarily cooled, so that the entire solidified shell 105a cannot be uniformly secondarily cooled, and the metal structure is uniform aluminum. The ingot 117 cannot be manufactured.

このような背景から、本願出願人は先に、冷却水中の鉄錆を除去する目的で水冷ジャケットモールド102の外流路113と内流路114の流路内に磁石を配置し、鉄錆を磁石で捕獲できるように構成した鋳造装置について特許出願している(特許文献1参照)。 Against this background, the applicant of the present application first arranged magnets in the outer flow path 113 and the inner flow path 114 of the water-cooled jacket mold 102 for the purpose of removing iron rust in the cooling water, and magnetized the iron rust. A patent application has been filed for a casting apparatus configured to be able to capture in (see Patent Document 1).

特開平8−10921号公報Japanese Unexamined Patent Publication No. 8-10921

先の特許出願により鋳造装置において、鉄錆の問題を解消することはできたが、この種の鋳造装置について検討してみると、一次冷却と二次冷却をそれぞれ個別に有利な条件で制御できない問題を有していることがわかった。
図4に示す鋳造装置100によってアルミニウム合金の半連続鋳造を行う場合、水冷ジャケットモールド102の内周壁の熱伝導により一次冷却がなされ、噴射孔115から噴射した冷却水107による水冷処理により二次冷却がなされる。
一次冷却と二次冷却における冷却条件の制御は、一般的には冷却水107の流量制御で行われている。
The previous patent application was able to solve the problem of iron rust in casting equipment, but when examining this type of casting equipment, it is not possible to control primary cooling and secondary cooling individually under favorable conditions. It turned out to have a problem.
When semi-continuous casting of an aluminum alloy is performed by the casting apparatus 100 shown in FIG. 4, primary cooling is performed by heat conduction of the inner peripheral wall of the water-cooled jacket mold 102, and secondary cooling is performed by water cooling treatment by cooling water 107 injected from the injection hole 115. Is done.
The control of the cooling conditions in the primary cooling and the secondary cooling is generally performed by controlling the flow rate of the cooling water 107.

しかし、一次冷却にとって最適な流量と二次冷却にとって最適な流量が異なる場合が考えられるが、図4に示す鋳造装置100は、それぞれを独立して制御する構造とはなっていない。例えば、一次冷却にとって最適な流量とした場合に、二次冷却での水量が過多となり、冷却速度が過大となって鋳造割れを生じるおそれがある。逆に、二次冷却にとって最適な流量とした場合に、一次冷却の水量が過小となり、凝固殻が過小となって鋳肌不良を引き起こす場合がある。
一次冷却系と二次冷却系を分離し、それぞれ別系統で冷却水を供給する鋳型構造も提案されているが、構造が複雑となり、鋳型コストが嵩むだけでなく、鋳型のメンテナンスの手間も煩雑となる問題がある。
However, although it is conceivable that the optimum flow rate for primary cooling and the optimum flow rate for secondary cooling may differ, the casting apparatus 100 shown in FIG. 4 does not have a structure in which each is independently controlled. For example, when the flow rate is set to the optimum level for the primary cooling, the amount of water in the secondary cooling becomes excessive, the cooling rate becomes excessive, and casting cracks may occur. On the contrary, when the optimum flow rate for the secondary cooling is set, the amount of water for the primary cooling becomes too small, and the solidified shell becomes too small, which may cause poor casting surface.
A mold structure in which the primary cooling system and the secondary cooling system are separated and cooling water is supplied by separate systems has also been proposed, but the structure becomes complicated, the mold cost increases, and the maintenance of the mold becomes complicated. There is a problem that becomes.

本願発明は、上述の背景に鑑みなされたもので、シンプルな構造で効果的に一次冷却と二次冷却の条件を独立制御できる鋳造装置の提供を目的とする。 The present invention has been made in view of the above background, and an object of the present invention is to provide a casting apparatus capable of independently controlling the conditions of primary cooling and secondary cooling effectively with a simple structure.

(1)本発明に係る鋳造装置は、上下方向に移動自在かつ上下方向の任意の位置に固定可能な底部体と、該底部体の周囲に設けられ内部に冷却媒体を循環させる循環路が形成された周壁部からなる鋳型と、該鋳型の上方に設けられ、該鋳型内に金属溶湯を供給する溶湯供給部とを備え、該溶湯供給部より前記鋳型内に金属溶湯を供給しつつ前記底部体を降下させ、該底部体と前記周壁部により該金属溶湯を一次冷却しつつ前記周壁部の周回りに設けた複数の噴射孔から噴射する冷却媒体によりさらに二次冷却して鋳塊とする鋳造装置であって、前記冷却媒体を循環させる流路の一部であって前記噴射孔の近傍に、前記周壁部の噴射孔から噴射する二次冷却用の冷却媒体の流量を調節自在とする副流路を設けたことを特徴とする。 (1) In the casting apparatus according to the present invention, a bottom body that is movable in the vertical direction and can be fixed at an arbitrary position in the vertical direction and a circulation path that is provided around the bottom body and circulates a cooling medium are formed inside. The bottom portion is provided with a mold composed of a peripheral wall portion and a molten metal supply unit provided above the mold and supplying the molten metal into the mold, and supplying the molten metal into the mold from the molten metal supply unit. The body is lowered, and the molten metal is primarily cooled by the bottom body and the peripheral wall portion, and further secondarily cooled by a cooling medium injected from a plurality of injection holes provided around the peripheral wall portion to form an ingot. It is a casting apparatus, and the flow rate of the cooling medium for secondary cooling injected from the injection hole of the peripheral wall portion is adjustable in the vicinity of the injection hole, which is a part of the flow path for circulating the cooling medium. It is characterized by providing an auxiliary flow path.

(2)本発明に係る鋳造装置において、前記副流路に流量調整弁が備えられた構成を採用できる。
(3)本発明に係る鋳造装置において、前記噴射孔が前記周壁部の内底部側であって、前記溶湯供給部に隣接する位置に形成され、前記副流路が前記周壁部における前記噴射孔の形成位置よりも外側寄りに近接配置された構成を採用できる。
(2) In the casting apparatus according to the present invention, a configuration in which a flow rate adjusting valve is provided in the sub-flow path can be adopted.
(3) In the casting apparatus according to the present invention, the injection hole is formed at a position adjacent to the molten metal supply portion on the inner bottom side of the peripheral wall portion, and the sub-flow path is the injection hole in the peripheral wall portion. It is possible to adopt a configuration in which the structure is arranged closer to the outside than the formation position of.

(4)本発明に係る鋳造装置において、前記循環路がその内部を仕切る整流板によって、前記溶湯供給部に近い側の内流路と前記溶湯供給部から離れた側の外流路に仕切られ、前記整流板の上部側に前記内流路と前記外流路を接続する連通部が形成されるとともに、前記循環路において整流板の底部と前記噴射孔との間に前記副流路の排出口が形成された構成を採用できる。 (4) In the casting apparatus according to the present invention, the circulation path is partitioned into an inner flow path on the side close to the molten metal supply section and an outer flow path on the side away from the molten metal supply section by a straightening vane partitioning the inside thereof. A communication portion connecting the inner flow path and the outer flow path is formed on the upper side of the rectifying plate, and a discharge port of the sub-flow path is provided between the bottom of the rectifying plate and the injection hole in the circulation path. The formed configuration can be adopted.

溶湯供給部に供給した金属溶湯を溶湯供給部の周囲に設けた周壁部によって一次冷却し、前記金属溶湯を周壁部に設けた噴射孔から噴出させた冷却媒体で二次冷却することにより鋳造を行う鋳造装置であって、噴射孔の近傍に副流路を設けたので、副流路を介し排出する冷却媒体に応じて噴射孔から排出できる冷却媒体の流量を調節できる。
このため、循環路に供給する冷却媒体の量を調整することによる周壁部による一次冷却と、噴射孔から排出する冷却媒体の排出量を調整することによる二次冷却の両方を簡単な構成で独立に変更することができる鋳型を提供できる。
このため、シンプルな構成であるにも拘わらず、鋳造割れを起こすことなく、鋳肌不良を生じていない鋳塊を製造できる鋳造装置を提供できる。
Casting is performed by primary cooling the metal molten metal supplied to the molten metal supply unit by a peripheral wall portion provided around the molten metal supply unit, and secondary cooling the metal molten metal by a cooling medium ejected from an injection hole provided in the peripheral wall portion. Since the sub-flow path is provided in the vicinity of the injection hole in the casting apparatus to be performed, the flow rate of the cooling medium that can be discharged from the injection hole can be adjusted according to the cooling medium that is discharged through the sub-flow path.
Therefore, both the primary cooling by the peripheral wall portion by adjusting the amount of the cooling medium supplied to the circulation path and the secondary cooling by adjusting the discharge amount of the cooling medium discharged from the injection hole are independent with a simple configuration. A template that can be changed to can be provided.
Therefore, it is possible to provide a casting apparatus capable of producing an ingot having no defective casting surface without causing a casting crack in spite of having a simple structure.

本発明に係る第1実施形態の鋳造装置を示す断面図である。It is sectional drawing which shows the casting apparatus of 1st Embodiment which concerns on this invention. 図1に示す鋳造装置により凝固殻を形成する一次冷却と冷却水により直接冷却する二次冷却を行っている状態を示す説明図である。It is explanatory drawing which shows the state which performs the primary cooling which forms a solidified shell by the casting apparatus shown in FIG. 1, and the secondary cooling which directly cools by cooling water. 同鋳造装置において内流路に接続して設けた排水管を示す断面図である。It is sectional drawing which shows the drainage pipe provided connected to the inner flow path in the same casting apparatus. 従来の鋳造装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional casting apparatus. 従来の鋳造装置を用いて一次冷却と二次冷却を行っている状態を示す断面図である。It is sectional drawing which shows the state which performs the primary cooling and the secondary cooling by using the conventional casting apparatus.

以下、添付図面に基づき、本発明の一実施形態について詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合がある。
図1は本発明に係る第1実施形態の鋳造装置Aを示すもので、この実施形態の鋳造装置Aの基本的な構造は、図4を基に説明した従来の鋳造装置と同一である。
図1において、1はボトムブロック(底部体)、2は冷却用の水冷ジャケットモールド(周壁部)であり、ボトムブロック1と水冷ジャケットモールド2により鋳型3が構成されている。4はアルミニウム溶湯5を供給するためのトラフ(溶湯供給部)である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
In addition, in the drawing used in the following description, in order to make the feature easy to understand, the feature portion may be enlarged and shown for convenience.
FIG. 1 shows the casting apparatus A of the first embodiment according to the present invention, and the basic structure of the casting apparatus A of this embodiment is the same as that of the conventional casting apparatus described with reference to FIG.
In FIG. 1, 1 is a bottom block (bottom body), 2 is a water-cooled jacket mold (peripheral wall portion) for cooling, and the mold 3 is composed of the bottom block 1 and the water-cooled jacket mold 2. Reference numeral 4 denotes a trough (molten metal supply unit) for supplying the molten aluminum 5.

ボトムブロック1の上部には、アルミニウム溶湯5溜用の凹部1aが形成されている。また、水冷ジャケットモールド2はボトムブロック1の外周を取り囲む環状に形成され、水冷ジャケットモールド2は内周壁2Aと外周壁2Bと底壁2Cと天井壁2Dで組まれた中空環状体に構成されている。
水冷ジャケットモールド2の中空部には冷却水(冷却媒体)7を循環させる断面略矩型状の流路8が形成され、該流路8は上部にスリット状あるいは間欠孔などの連通孔11を有する整流板12により外流路13と内流路14に分割されている。図1の構造では内周壁2Aと外周壁2Bの中間位置の底壁上面から上方に垂直に立ち上がるように整流板12が立設されている。整流板12は水冷ジャケットモールド2の全周に渡り形成されているので、流路8は水冷ジャケットモールド2の全周に渡り外流路13と内流路14に区画されている。
A recess 1a for storing 5 molten aluminum is formed in the upper part of the bottom block 1. The water-cooled jacket mold 2 is formed in an annular shape surrounding the outer periphery of the bottom block 1, and the water-cooled jacket mold 2 is formed of a hollow annular body composed of an inner peripheral wall 2A, an outer peripheral wall 2B, a bottom wall 2C, and a ceiling wall 2D. There is.
A flow path 8 having a substantially rectangular cross section for circulating cooling water (cooling medium) 7 is formed in the hollow portion of the water-cooled jacket mold 2, and the flow path 8 has a communication hole 11 such as a slit or an intermittent hole at the upper portion. The rectifying plate 12 is divided into an outer flow path 13 and an inner flow path 14. In the structure of FIG. 1, the straightening vane 12 is erected so as to rise vertically upward from the upper surface of the bottom wall at an intermediate position between the inner peripheral wall 2A and the outer peripheral wall 2B. Since the straightening vane 12 is formed over the entire circumference of the water-cooled jacket mold 2, the flow path 8 is divided into an outer flow path 13 and an inner flow path 14 over the entire circumference of the water-cooled jacket mold 2.

図1の構造では整流板12が内周壁2Aと外周壁2Bの中間位置より若干内周壁寄りの位置に流路8の底部から上部に至るまで立設されている。連通孔11は流路8の上部側に流路8のほぼ全周にわたり形成されている。このため、流路8に冷却水7を収容して冷却水7を循環させると、図1に示すように外流路13と内流路14の両方に冷却水7が満たされた状態で冷却水7が循環される。
なお、図1には描かれていないが、水冷ジャケットモールド2の一部に給水管(冷却媒体供給管)が接続され、流量一定になるように水(冷却媒体)を流路8に供給する。
In the structure of FIG. 1, the straightening vane 12 is erected from the bottom to the top of the flow path 8 at a position slightly closer to the inner peripheral wall than the intermediate position between the inner peripheral wall 2A and the outer peripheral wall 2B. The communication hole 11 is formed on the upper side of the flow path 8 over substantially the entire circumference of the flow path 8. Therefore, when the cooling water 7 is accommodated in the flow path 8 and the cooling water 7 is circulated, the cooling water 7 is filled in both the outer flow path 13 and the inner flow path 14 as shown in FIG. 7 is circulated.
Although not drawn in FIG. 1, a water supply pipe (cooling medium supply pipe) is connected to a part of the water-cooled jacket mold 2 to supply water (cooling medium) to the flow path 8 so that the flow rate becomes constant. ..

水冷ジャケットモールド2において、内周壁2Aの底部と底壁2Cの内周部が接続する部分には冷却水7を噴出する噴射孔15が水冷ジャケットモールド2の周回りに所定の間隔をあけて複数形成されている。トラフ4の周囲のアルミニウム溶湯5の液面にはフロート6が浮遊されている。 In the water-cooled jacket mold 2, a plurality of injection holes 15 for ejecting cooling water 7 are provided around the water-cooled jacket mold 2 at predetermined intervals at a portion where the bottom portion of the inner peripheral wall 2A and the inner peripheral portion of the bottom wall 2C are connected. It is formed. The float 6 is suspended on the liquid surface of the molten aluminum 5 around the trough 4.

また、噴射孔15の形成位置と整流板12の底部の間の底壁2Cを上下に貫通するように排水管(副流路)16が接続され、排水管16に流量調整弁16aが組み込まれている。排水管16の上端部は底壁2Cを貫通して内流路14に連通され、排水管16の下端部は水冷ジャケットモールド2の下方空間に開放されている。
なお、図1では排水管16の下端を水冷ジャケットモールド2の下方空間で止めた状態で描いているが、水冷ジャケットモールド2の下方に別途排水設備等を設け、この排水設備に排水管16の下端を接続して冷却水7を排出する構成とすることが好ましい。
Further, a drain pipe (secondary flow path) 16 is connected so as to vertically penetrate the bottom wall 2C between the formation position of the injection hole 15 and the bottom of the straightening vane 12, and the flow rate adjusting valve 16a is incorporated in the drain pipe 16. ing. The upper end of the drain pipe 16 penetrates the bottom wall 2C and communicates with the inner flow path 14, and the lower end of the drain pipe 16 is open to the space below the water-cooled jacket mold 2.
In FIG. 1, the lower end of the drainage pipe 16 is drawn in a state of being stopped in the space below the water-cooled jacket mold 2. However, a separate drainage facility or the like is provided below the water-cooled jacket mold 2, and the drainage pipe 16 is provided in this drainage facility. It is preferable that the lower end is connected to discharge the cooling water 7.

図1に示す構造において、水冷ジャケットモールド2の周回りに所定の間隔をあけて複数の噴射孔15が形成されており、また、水冷ジャケットモールド2の周回りに所定の間隔をあけて複数の排水管16が設けられている。
また、水冷ジャケットモールド2に対し図示略の給水管より供給水量一定となるように水を供給し、排水管16に流量調整弁16aを設けているため、流量調整弁16aの開閉状態を調整し、排水管16を介する排水量を調節することにより、噴射孔15から排出する水量を調節することができる。例えば、排水管16から排出する水量を増加すると比例するように噴射孔15から排出する水量を少なくすることができる。このため、排水管16が冷却水7の副流路として機能する。
なお、図1に示す実施形態において描いた排水管16の上端部を内流路14に接続する位置は、噴射孔15の設置位置の近傍の底壁2Cとされているが、排水管16の形成位置は図に示す位置には限らず、水冷ジャケットモールド2の内流路14の底部側であれば任意の位置で良い。
In the structure shown in FIG. 1, a plurality of injection holes 15 are formed around the water-cooled jacket mold 2 at predetermined intervals, and a plurality of injection holes 15 are formed around the water-cooled jacket mold 2 at predetermined intervals. A drain pipe 16 is provided.
Further, water is supplied to the water-cooled jacket mold 2 from a water supply pipe (not shown) so that the amount of water supplied is constant, and since the drain pipe 16 is provided with the flow rate adjusting valve 16a, the open / closed state of the flow rate adjusting valve 16a is adjusted. By adjusting the amount of drainage through the drainage pipe 16, the amount of water discharged from the injection hole 15 can be adjusted. For example, the amount of water discharged from the injection hole 15 can be reduced in proportion to the increase in the amount of water discharged from the drain pipe 16. Therefore, the drain pipe 16 functions as a secondary flow path of the cooling water 7.
The position where the upper end of the drainage pipe 16 drawn in the embodiment shown in FIG. 1 is connected to the inner flow path 14 is the bottom wall 2C near the installation position of the injection hole 15, but the drainage pipe 16 The forming position is not limited to the position shown in the figure, and may be any position as long as it is on the bottom side of the inner flow path 14 of the water-cooled jacket mold 2.

図1に示す鋳造装置Aを用いてアルミニウム鋳塊を製造するには、図示しない保持炉から移送されてきたアルミニウム溶湯5を一旦トラフ4に溜め、このアルミニウム溶湯5を鋳型3内に流し込んでボトムブロック1及び水冷ジャケットモールド2により一次冷却して凝固させ、アルミニウム溶湯5の周囲に凝固殻5aを形成する。
次いで、アルミニウム溶湯5を鋳型3内に供給しつつ該鋳型3内のアルミニウム溶湯5の液面が一定の高さとなる様にボトムブロック1を徐々に下降させることにより該凝固殻5aを下方へ延伸させ、さらに、噴射孔15より冷却水7を噴射させて凝固殻5aを二次冷却し、スラブ型またはビレット型のアルミニウム鋳塊17とする。
In order to produce an aluminum ingot using the casting apparatus A shown in FIG. 1, the molten aluminum 5 transferred from a holding furnace (not shown) is temporarily stored in the trough 4, and the molten aluminum 5 is poured into the mold 3 to bottom. The block 1 and the water-cooled jacket mold 2 are used for primary cooling to solidify, and a solidified shell 5a is formed around the molten aluminum 5.
Next, the solidified shell 5a is stretched downward by gradually lowering the bottom block 1 so that the liquid level of the molten aluminum 5 in the mold 3 becomes a constant height while supplying the molten aluminum 5 into the mold 3. Further, cooling water 7 is injected from the injection hole 15 to secondary cool the solidified shell 5a to form a slab type or billet type aluminum ingot 17.

この鋳造装置Aでは、冷却水7が内流路14内を循環する間にその温度分布が均一となり、アルミニウム溶湯5の周囲及び得られた凝固殻5aを均一に一次冷却することができ、該鋳塊殻5aの表面の温度分布を均一にすることができる。したがって、金属組織が緻密でかつ機械的性質、耐久性に優れたアルミニウム鋳塊17を得ることができる。しかも、鋳造装置Aは設置に要する床面積が狭くて済み、量産性に優れている等の優れた特徴を有する。 In this casting apparatus A, the temperature distribution becomes uniform while the cooling water 7 circulates in the inner flow path 14, and the periphery of the molten aluminum 5 and the obtained solidified shell 5a can be uniformly primaryly cooled. The temperature distribution on the surface of the ingot shell 5a can be made uniform. Therefore, it is possible to obtain an aluminum ingot 17 having a dense metal structure and excellent mechanical properties and durability. Moreover, the casting apparatus A has excellent features such as a small floor area required for installation and excellent mass productivity.

鋳造装置Aにおいて、複数の排水管16に組み込まれている流量調整弁16aを調整することにより、複数の排水管16を介する冷却水7の排出量を調節できるとともに、同時に複数の噴射孔15から噴射する冷却水量も調節することができる。複数の噴射孔15から噴射する所定量の冷却水7で凝固殻5aを二次冷却することができる。
流量調整弁16aを調整し、複数の噴射孔15からの冷却水の噴射の他に排水管16を介し冷却水7を排出すると、その排出量に応じて複数の噴射孔15から凝固殻5aを二次冷却するために噴射する冷却水の水量を少なくすることができる。
このため、排水管16からの冷却水の排出量に応じ、凝固殻5aの二次冷却を行う噴射孔15からの冷却水排出量を調整することができ、これにより二次冷却の程度を調整できる。
In the casting apparatus A, by adjusting the flow rate adjusting valves 16a incorporated in the plurality of drain pipes 16, the amount of the cooling water 7 discharged through the plurality of drain pipes 16 can be adjusted, and at the same time, the amount of the cooling water 7 discharged from the plurality of injection holes 15 can be adjusted. The amount of cooling water to be injected can also be adjusted. The solidified shell 5a can be secondarily cooled with a predetermined amount of cooling water 7 injected from the plurality of injection holes 15.
When the flow rate adjusting valve 16a is adjusted and the cooling water 7 is discharged through the drain pipe 16 in addition to the injection of the cooling water from the plurality of injection holes 15, the solidified shell 5a is discharged from the plurality of injection holes 15 according to the discharge amount. The amount of cooling water jetted for secondary cooling can be reduced.
Therefore, the amount of cooling water discharged from the injection hole 15 for secondary cooling of the solidified shell 5a can be adjusted according to the amount of cooling water discharged from the drain pipe 16, thereby adjusting the degree of secondary cooling. it can.

以上説明のように、本実施形態の鋳造装置Aは、簡単な構成により、一次冷却と二次冷却の両方を個別に制御できるようになるので、鋳造するアルミニウム合金に合わせて、望ましい一次冷却条件と好ましい二次冷却条件を個別に設定し、使い分けることができる。
このため、二次冷却の条件好適化によって鋳塊割れを引き起こすことなく鋳塊の製造が可能となり、一次冷却の条件好適化によって鋳肌不良などの問題を引き起こすことなく鋳塊の製造が可能となる。
このため、本願発明によれば、鋳肌が良好であり、鋳塊割れを引き起こすことなく鋳塊を製造できる鋳造装置Aを安価に提供することができる。
なお、鋳造装置Aにおいて、水冷ジャケットモールド2の周回りに形成する排水管16の設置位置と個数は、各噴射孔15から噴射する冷却水量をできるだけ一定とするために、周回りに所定の間隔で必要数設けることが好ましい。
また、噴射孔15の形成位置は凝固殻5aの冷却をできるだけ均一に行うために、水冷ジャケットモールド2の周回りの望ましい位置に必要個数設けることが好ましい。
As described above, the casting apparatus A of the present embodiment can control both the primary cooling and the secondary cooling individually by a simple configuration. Therefore, the desired primary cooling conditions are matched to the aluminum alloy to be cast. And preferable secondary cooling conditions can be set individually and used properly.
Therefore, by optimizing the conditions for secondary cooling, it is possible to manufacture ingots without causing ingot cracking, and by optimizing the conditions for primary cooling, it is possible to manufacture ingots without causing problems such as poor casting surface. Become.
Therefore, according to the present invention, it is possible to provide a casting apparatus A having a good casting surface and capable of producing an ingot without causing ingot cracking at low cost.
In the casting apparatus A, the installation positions and the number of drainage pipes 16 formed around the water-cooled jacket mold 2 are set at predetermined intervals around the circumference in order to keep the amount of cooling water injected from each injection hole 15 as constant as possible. It is preferable to provide the required number.
Further, it is preferable that the required number of injection holes 15 are formed at desirable positions around the circumference of the water-cooled jacket mold 2 in order to cool the solidified shell 5a as uniformly as possible.

A…鋳造装置、1…ボトムブロック(底部体)、2…水冷ジャケットモールド(周壁部)、2A…内周壁、2B…外周壁、2C…底壁、2D…天井壁、3…鋳型、4…トラフ(溶湯供給部)、5…アルミニウム溶湯、5a…凝固殻、7…冷却水(冷却媒体)、8…流路、11…連通孔、12…整流板、13…外流路、14…内流路、15…噴射孔、16…排水管(副流路)、16a…流量調整弁。 A ... Casting equipment, 1 ... Bottom block (bottom body), 2 ... Water-cooled jacket mold (peripheral wall), 2A ... Inner peripheral wall, 2B ... Outer wall, 2C ... Bottom wall, 2D ... Ceiling wall, 3 ... Mold, 4 ... Traf (molten metal supply unit), 5 ... Aluminum molten metal, 5a ... solidified shell, 7 ... cooling water (cooling medium), 8 ... flow path, 11 ... communication hole, 12 ... rectifying plate, 13 ... outer flow path, 14 ... inner flow Road, 15 ... injection hole, 16 ... drain pipe (secondary flow path), 16a ... flow control valve.

Claims (4)

上下方向に移動自在かつ上下方向の任意の位置に固定可能な底部体と、該底部体の周囲に設けられ内部に冷却媒体を循環させる循環路が形成された周壁部からなる鋳型と、該鋳型の上方に設けられ、該鋳型内に金属溶湯を供給する溶湯供給部とを備え、
該溶湯供給部より前記鋳型内に金属溶湯を供給しつつ前記底部体を降下させ、該底部体と前記周壁部により該金属溶湯を一次冷却しつつ前記周壁部の周回りに設けた複数の噴射孔から噴射する冷却媒体によりさらに二次冷却して鋳塊とする鋳造装置であって、
前記冷却媒体を循環させる流路の一部であって前記噴射孔の近傍に、前記周壁部の噴射孔から噴射する二次冷却用の冷却媒体の流量を調節自在とする副流路を設けたことを特徴とする鋳造装置。
A mold consisting of a bottom body that is movable in the vertical direction and can be fixed at an arbitrary position in the vertical direction, a peripheral wall portion that is provided around the bottom body and has a circulation path for circulating a cooling medium inside, and the mold. It is provided above the mold and is provided with a molten metal supply unit for supplying the molten metal in the mold.
A plurality of injections provided around the peripheral wall portion while supplying the molten metal into the mold from the molten metal supply unit to lower the bottom body and primary cooling the molten metal by the bottom body and the peripheral wall portion. A casting device that is further secondary cooled by a cooling medium jetted from a hole to form an ingot.
A sub-flow path is provided in the vicinity of the injection hole, which is a part of the flow path for circulating the cooling medium, so that the flow rate of the cooling medium for secondary cooling injected from the injection hole of the peripheral wall portion can be adjusted. A casting machine characterized by that.
前記副流路に流量調整弁が備えられたことを特徴とする請求項1に記載の鋳造装置。 The casting apparatus according to claim 1, wherein a flow rate adjusting valve is provided in the sub-flow path. 前記噴射孔が前記周壁部の内底部側であって、前記溶湯供給部に隣接する位置に形成され、前記副流路が前記周壁部における前記噴射孔の形成位置よりも外側寄りに近接配置されたことを特徴とする請求項1または請求項2に記載の鋳造装置。 The injection hole is formed on the inner bottom side of the peripheral wall portion and adjacent to the molten metal supply portion, and the sub-flow path is arranged closer to the outside than the formation position of the injection hole on the peripheral wall portion. The casting apparatus according to claim 1 or 2, wherein the casting apparatus is characterized in that. 前記循環路がその内部を仕切る整流板によって、前記溶湯供給部に近い側の内流路と前記溶湯供給部から離れた側の外流路に仕切られ、前記整流板の上部側に前記内流路と前記外流路を接続する連通孔が形成されるとともに、前記循環路において整流板の底部と前記噴射孔との間に前記副流路の排出口が形成されたことを特徴とする請求項1〜請求項3のいずれか一項に記載の鋳造装置。 The circulation path is partitioned into an inner flow path on the side close to the molten metal supply section and an outer flow path on the side away from the molten metal supply section by a rectifying plate that partitions the inside thereof, and the inner flow path is on the upper side of the rectifying plate. 1. A communication hole connecting the outer flow path and the outer flow path is formed, and a discharge port of the sub-flow path is formed between the bottom of the straightening vane and the injection hole in the circulation path. The casting apparatus according to any one of claims 3.
JP2019193450A 2019-10-24 2019-10-24 Casting apparatus Pending JP2021065910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019193450A JP2021065910A (en) 2019-10-24 2019-10-24 Casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019193450A JP2021065910A (en) 2019-10-24 2019-10-24 Casting apparatus

Publications (1)

Publication Number Publication Date
JP2021065910A true JP2021065910A (en) 2021-04-30

Family

ID=75638016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193450A Pending JP2021065910A (en) 2019-10-24 2019-10-24 Casting apparatus

Country Status (1)

Country Link
JP (1) JP2021065910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996768A (en) * 2021-11-02 2022-02-01 江苏隆达超合金股份有限公司 Crystallizer for semi-continuous casting of Monel square billet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996768A (en) * 2021-11-02 2022-02-01 江苏隆达超合金股份有限公司 Crystallizer for semi-continuous casting of Monel square billet

Similar Documents

Publication Publication Date Title
US3780789A (en) Apparatus for the vertical multiple continuous casting of aluminum and aluminum alloys
US2515284A (en) Differential cooling in casting metals
JP2021065910A (en) Casting apparatus
US5927378A (en) Continuous casting mold and method
US2414269A (en) Method for cooling ingots in continuous casting
CN111054896A (en) Water-cooling dummy bar head device for casting
US2789328A (en) Apparatus for casting of metals
JP4748875B2 (en) Mold for electromagnetic stirrer
JPH09308945A (en) Vertical type continuous casting method of aluminum alloy slab
US4719959A (en) Apparatus for continuously producing hollow metallic ingot
US9266167B2 (en) Oxide control system for a continuous casting molten metal mold
US20110031284A1 (en) apparatus for feeding molten metal to a plurality of moulds
US2281718A (en) Method of casting metal ingots and apparatus therefor
US9079242B2 (en) Hot-top for continuous casting and method of continuous casting
CN212264472U (en) Graphite pouring pipe for vertical continuous casting
JP3253485B2 (en) Vertical continuous casting equipment
KR102326253B1 (en) Casting apparatus and method
JPH03297541A (en) Mold for continuous casting equipment
JPH0710422B2 (en) Method and apparatus for vertical continuous hot casting of metal
CN211679909U (en) Water-cooling dummy bar head device for casting
JPH01143742A (en) Mold for continuous casting
JPS6333153A (en) Cast starting method for multi-connecting electromagnetic casting
JPH0810921A (en) Casting apparatus
JP2019188444A (en) Vertical continuous casting device, and continuous casting method
RU2148469C1 (en) Metal continuous casting plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128