JP2021063771A - Nuclear power plant - Google Patents

Nuclear power plant Download PDF

Info

Publication number
JP2021063771A
JP2021063771A JP2019189882A JP2019189882A JP2021063771A JP 2021063771 A JP2021063771 A JP 2021063771A JP 2019189882 A JP2019189882 A JP 2019189882A JP 2019189882 A JP2019189882 A JP 2019189882A JP 2021063771 A JP2021063771 A JP 2021063771A
Authority
JP
Japan
Prior art keywords
reactor
equipment
cooling system
building
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019189882A
Other languages
Japanese (ja)
Other versions
JP7232164B2 (en
Inventor
嘉晃 佐藤
Yoshiaki Sato
嘉晃 佐藤
靜 平子
Shizuka Hirako
靜 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019189882A priority Critical patent/JP7232164B2/en
Publication of JP2021063771A publication Critical patent/JP2021063771A/en
Application granted granted Critical
Publication of JP7232164B2 publication Critical patent/JP7232164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To provide a nuclear power plant that reinforces a facility and prevents increase of cost for the reinforcement of the facility.SOLUTION: The nuclear power plant includes: a nuclear reactor; and a nuclear reactor building for containing the nuclear reactor. The nuclear reactor building includes: a nuclear reactor sub-machine cooling system facility for cooling a sub-machine for the nuclear reactor; and a sea water cooling system facility for drawing sea water to cool the cooling water of the nuclear reactor sub-machine cooling system facility.SELECTED DRAWING: Figure 1

Description

本発明は、原子炉及び原子炉建屋を備えた原子力プラントに関する。 The present invention relates to a nuclear power plant including a nuclear reactor and a reactor building.

原子力発電所の立地に関して、原子炉建屋や安全系設備を収納する建屋は、安定した地盤への設置と発電所敷地内にある断層を避けた位置に設置する必要がある。
さらに、日本国内の発電所は、最終的な除熱に海水を利用することから、除熱のための海水冷却設備を、できるだけ海岸線に近い位置に配置する必要がある。
Regarding the location of the nuclear power plant, the reactor building and the building that houses the safety equipment must be installed on stable ground and in a position that avoids faults on the site of the power plant.
Furthermore, since power plants in Japan use seawater for final heat removal, it is necessary to install seawater cooling equipment for heat removal as close to the coastline as possible.

従来のBWR(沸騰水型原子炉)のプラントでは、原子炉系設備(建屋)と海水冷却設備が、建屋形状や設備配置の制約などから、分散配置、即ち、それぞれ別の建屋に配置されている(例えば、特許文献1を参照。)。
これらの設備の建屋は、それぞれ最も耐震性のあるもの(Sクラス)として設計する必要があるため、建屋の設計及び建設のコストが大きくなっている。
In a conventional BWR (boiling water reactor) plant, the reactor system equipment (building) and seawater cooling equipment are arranged in a distributed manner, that is, in different buildings due to restrictions on the building shape and equipment layout. (See, for example, Patent Document 1).
Since each of the buildings of these facilities needs to be designed as having the most seismic resistance (S class), the cost of designing and constructing the building is high.

特開2012−230085号公報Japanese Unexamined Patent Publication No. 2012-23805

原子炉補機冷却系(RCW;Reactor Building Closed Cooling Water System)及び海水冷却系(RSW;Reactor Building Closed Cooling Sea Water System)の設備は、通常運転時及び緊急時に原子炉等から発生する熱を、最終的な逃し場である海へ移送する。
これらRCW及びRSWの各設備は、安全上重要な系統であるため、地震を含めた最も苛酷と考えられる自然事象に対して耐性を求められるとともに、機能を達成できるように多重性を備えた設計とする必要がある。
Reactor Building Closed Cooling Water System (RCW) and Reactor Building Closed Cooling Sea Water System (RSW) equipment generate heat from reactors during normal operation and emergencies. Transfer to the sea, the final escape.
Since each of these RCW and RSW facilities is an important system for safety, it is required to withstand the most severe natural events including earthquakes, and it is designed with multiplex to achieve its functions. Must be.

従来の原子力発電所では、保守点検性の観点から、RCWとRSWの各設備のうちの特にRSW設備を、原子炉建屋とは別の建屋に設置していた。 In a conventional nuclear power plant, from the viewpoint of maintainability, the RSW equipment among the RCW and RSW equipment is installed in a building different from the reactor building.

しかし、近年の地震動の増大や、火災・溢水による区画分離の厳格化に伴う系統分離の強化の要求から、原子炉建屋以外の建屋の耐震性強化範囲及び系統の分離強化範囲が広くなっている。これに伴い、扉や配管・ケーブル開口の火災や溢水への対策範囲が拡大し、プラントのコスト増大の要因となっている。 However, due to the recent increase in seismic motion and the demand for strengthening system separation due to stricter division separation due to fire and flooding, the seismic resistance strengthening range and system separation strengthening range of buildings other than the reactor building are widening. .. Along with this, the range of countermeasures against fires and floods at doors, pipes and cable openings has expanded, which is a factor in increasing plant costs.

本発明の目的は、設備の強化を図り、かつ、設備の強化に伴うコストの増大の抑制を実現する原子力プラントを提供することである。 An object of the present invention is to provide a nuclear power plant that can strengthen the equipment and suppress the increase in cost due to the strengthening of the equipment.

また、本発明の上記の目的及びその他の目的と新規な特徴は、本明細書の記述及び添付図面によって、明らかにする。 In addition, the above-mentioned object and other object and novel features of the present invention will be clarified by the description and the accompanying drawings of the present specification.

本発明の原子力プラントは、原子炉及びこの原子炉を収容する原子炉建屋を備えた原子力プラントであって、原子炉建屋内に、原子炉用の補機を冷却するための原子炉補機冷却系設備、及び、原子炉補機冷却系設備の冷却水を冷却する海水を取り込む海水冷却系設備が配置された構成である。 The nuclear power plant of the present invention is a nuclear power plant including a nuclear reactor and a reactor building accommodating the nuclear reactor, and is used for cooling auxiliary equipment for the reactor in the reactor building. The configuration is such that the system equipment and the seawater cooling system equipment that takes in the seawater that cools the cooling water of the reactor auxiliary cooling system equipment are arranged.

本発明によれば、原子炉建屋内に原子炉補機冷却系設備及び海水冷却系設備を配置したので、原子炉補機冷却系設備及び海水冷却系設備の耐震性を強化しても、必要な建屋の数を減らして集約でき、高い耐震性を有する建屋の分散を抑制できる。
従って、設備の強化を図り、かつ、設備の強化に伴う建屋設計と建屋のコストの増大の抑制を実現することが可能になる。
According to the present invention, since the reactor auxiliary cooling system equipment and the seawater cooling system equipment are arranged in the reactor building, it is necessary even if the earthquake resistance of the reactor auxiliary equipment cooling system equipment and the seawater cooling system equipment is strengthened. The number of buildings can be reduced and consolidated, and the dispersion of buildings with high earthquake resistance can be suppressed.
Therefore, it is possible to strengthen the equipment and realize the building design and the suppression of the increase in the cost of the building due to the strengthening of the equipment.

なお、上述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.

本発明が適用された原子力プラントの平面図である。It is a top view of the nuclear power plant to which this invention was applied.

以下、本発明に係る実施の形態及び実施例について、文章もしくは図面を用いて説明する。ただし、本発明に示す構造、材料、その他具体的な各種の構成等は、ここで取り上げた実施の形態や実施例に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。また、本発明に直接関係のない要素は図示を省略する。 Hereinafter, embodiments and examples according to the present invention will be described with reference to text or drawings. However, the structure, materials, and various other specific configurations shown in the present invention are not limited to the embodiments and examples taken up here, and can be appropriately combined and improved without changing the gist. Is. In addition, elements not directly related to the present invention are not shown.

本発明の原子力プラントは、原子炉及びこの原子炉を収容する原子炉建屋を備え、原子炉建屋内に、原子炉用の補機を冷却するための原子炉補機冷却系設備、及び、原子炉補機冷却系設備の冷却水を冷却する海水を取り込む海水冷却系設備を、配置した構成である。 The nuclear power plant of the present invention includes a nuclear reactor and a nuclear reactor building accommodating the nuclear reactor, and in the nuclear reactor building, a nuclear reactor auxiliary equipment cooling system facility for cooling auxiliary equipment for the nuclear reactor, and an atomic reactor. This is a configuration in which seawater cooling system equipment that takes in seawater that cools the cooling water of the reactor auxiliary cooling system equipment is arranged.

原子炉建屋は、内部に原子炉を収容する建屋である。
上記の原子力プラントでは、原子炉建屋内に、原子炉に加えて、原子炉補機冷却系設備及び海水冷却系設備を配置している。
原子炉補機冷却系(RCW)設備は、原子炉用の補機(ポンプ、冷却器、熱交換器、等)を冷却するための設備である。
海水冷却系(RSW)設備は、原子炉補機冷却系設備の冷却水を冷却する海水を取り込む設備である。
The reactor building is a building that houses a nuclear reactor inside.
In the above nuclear power plant, in addition to the reactor, the reactor auxiliary cooling system equipment and the seawater cooling system equipment are arranged in the reactor building.
Reactor auxiliary equipment cooling system (RCW) equipment is equipment for cooling auxiliary equipment (pumps, coolers, heat exchangers, etc.) for nuclear reactors.
The seawater cooling system (RSW) equipment is equipment that takes in seawater that cools the cooling water of the reactor auxiliary cooling system equipment.

上記の原子力プラントにおいて、さらに、原子炉を内包する原子炉棟が複数の系統区分に区分けされ、その原子炉棟の各系統区分に対して、原子炉補機冷却系設備及び海水冷却系設備が、それぞれ配置されている構成とすることができる。 In the above nuclear power plant, the reactor building containing the reactor is further divided into multiple system divisions, and the reactor auxiliary cooling system equipment and seawater cooling system equipment are provided for each system division of the reactor building. , Each can be arranged.

上記の原子力プラントにおいて、さらに、原子炉棟が3つの系統区分に区分けされ、原子炉棟の各系統区分に隣接して、それぞれの系統区分に対する原子炉補機冷却系設備及び海水冷却系設備が配置されている構成とすることができる。
この原子力プラントの構成において、さらに、3つの系統区分に対する原子炉補機冷却系設備及び海水冷却系設備が、原子炉建屋の外周の3つの辺のそれぞれの辺に沿って配置されている構成とすることができる。
In the above nuclear power plant, the reactor building is further divided into three system divisions, and the reactor auxiliary cooling system equipment and seawater cooling system equipment for each system division are adjacent to each system division of the reactor building. It can be an arranged configuration.
In the configuration of this nuclear power plant, the reactor auxiliary cooling system equipment and the seawater cooling system equipment for the three system divisions are further arranged along each of the three sides of the outer circumference of the reactor building. can do.

上記の原子力プラントにおいて、さらに、各系統区分の原子炉補機冷却系設備及び海水冷却系設備が、耐震壁で囲まれており、この耐震壁によって別の系統区分の原子炉補機冷却系設備及び海水冷却系設備とは分離されている構成とすることができる。 In the above nuclear power plant, the reactor auxiliary cooling system equipment and seawater cooling system equipment of each system division are further surrounded by a seismic wall, and the reactor auxiliary equipment cooling system equipment of another system division is surrounded by the seismic wall. And the configuration can be separated from the seawater cooling system equipment.

上記の原子力プラントにおいて、さらに、原子炉建屋に設置された、各系統区分の海水冷却系設備のポンプの配置に合わせて設けられた、一体の取水路、又は、系統区分ごとに分離した取水路、を有する構成とすることができる。 In the above nuclear power plant, an integrated intake channel installed in the reactor building according to the arrangement of pumps of the seawater cooling system equipment of each system division, or an intake channel separated for each system division. , Can be configured to have.

上記の原子力プラントにおいて、さらに、原子炉建屋に設置された、海水冷却系設備のポンプが、入れ替えが可能である構成とすることができる。 In the above nuclear power plant, the pump of the seawater cooling system equipment installed in the reactor building can be further configured to be replaceable.

本発明の原子力プラントは、沸騰水型原子炉(BWR)等の各種の原子炉に適用することができる。 The nuclear power plant of the present invention can be applied to various nuclear reactors such as a boiling water reactor (BWR).

上述した構成の原子力プラントによれば、従来は原子炉建屋とは別の建屋に設置されていた、原子炉補機冷却系設備及び海水冷却系設備を、原子炉建屋内に設置している。
これにより、原子炉補機冷却系設備及び海水冷却系設備用の別の建屋を設ける必要がないため、以下に挙げる利点を有する。
(1)原子炉補機冷却系設備及び海水冷却系設備の耐震性を強化しても、必要な建屋の数を減らして集約できる。このため、立地条件が厳しい狭隘な場所であっても、原子力発電所を建設することが可能になる。
(2)原子炉補機冷却系設備及び海水冷却系設備の耐震性を強化しても、高い耐震性を有する(前述したSクラス等)建屋の分散を抑制できるので、合理的な建屋設計と建屋のコストの低減が可能になる。そして、原子炉建屋以外の建屋(例えばタービン建屋等)においては、必要以上の高い耐震性の必要がなくなり、その建屋の耐震クラスに応じた設計が可能となる。
(3)同じ原子炉建屋内に、原子炉と原子炉補機冷却系設備及び海水冷却系設備を設置するので、従来の構成において、原子炉補機冷却系設備及び海水冷却系設備用に必要であった、別の建屋の間の渡り配管が不要になる。このため、地震時等の相対変位による配管(渡り配管等)の破断要因を回避できる。
(4)同じ原子炉建屋内に、原子炉と原子炉補機冷却系設備及び海水冷却系設備を設置するので、原子炉補機冷却系設備及び海水冷却系設備用の配管長を大幅に短縮できる。このため、配管破断リスクを最小限にすることができる。
(5)原子炉補機冷却系設備の点検を、原子炉建屋内で行うことができるので、狭隘な場所であっても原子炉補機冷却系設備の保守点検性を確保でき、また定期検査にかかる時間の短縮が可能になる。
According to the nuclear power plant having the above-described configuration, the reactor auxiliary cooling system equipment and the seawater cooling system equipment, which were conventionally installed in a building different from the reactor building, are installed in the reactor building.
As a result, it is not necessary to provide a separate building for the reactor auxiliary cooling system equipment and the seawater cooling system equipment, which has the following advantages.
(1) Even if the seismic resistance of the reactor auxiliary cooling system equipment and seawater cooling system equipment is strengthened, the number of required buildings can be reduced and consolidated. Therefore, it is possible to construct a nuclear power plant even in a narrow place where the location conditions are strict.
(2) Even if the seismic resistance of the reactor auxiliary cooling system equipment and seawater cooling system equipment is strengthened, the dispersion of buildings with high seismic resistance (S class, etc. mentioned above) can be suppressed. It is possible to reduce the cost of the building. Then, in a building other than the reactor building (for example, a turbine building, etc.), it is not necessary to have higher seismic resistance than necessary, and it is possible to design the building according to the seismic class.
(3) Since the reactor, reactor auxiliary cooling system equipment and seawater cooling system equipment are installed in the same reactor building, it is necessary for the reactor auxiliary equipment cooling system equipment and seawater cooling system equipment in the conventional configuration. However, there is no need for a crossing pipe between other buildings. Therefore, it is possible to avoid the cause of breakage of pipes (crossover pipes, etc.) due to relative displacement during an earthquake or the like.
(4) Since the reactor, reactor auxiliary cooling system equipment and seawater cooling system equipment will be installed in the same reactor building, the piping length for the reactor auxiliary equipment cooling system equipment and seawater cooling system equipment will be significantly shortened. it can. Therefore, the risk of pipe breakage can be minimized.
(5) Since the inspection of the reactor auxiliary cooling system equipment can be performed inside the reactor building, the maintenance and inspection of the reactor auxiliary cooling system equipment can be ensured even in a narrow place, and the periodic inspection It is possible to reduce the time required for.

また、原子炉を内包する原子炉棟が複数の系統区分に区分けされ、原子炉棟の各系統区分に対して、原子炉補機冷却系設備及び海水冷却系設備がそれぞれ配置されている構成としたときには、系統区分ごとに独立して冷却を行うことができる。従って、設備の整備あるいは故障等により、1つの系統区分が停止していても、他の系統区分によって冷却できる。 In addition, the reactor building containing the reactor is divided into multiple system divisions, and the reactor auxiliary cooling system equipment and seawater cooling system equipment are arranged for each system division of the reactor building. When this happens, cooling can be performed independently for each system division. Therefore, even if one system division is stopped due to equipment maintenance or failure, cooling can be performed by the other system division.

さらにまた、各系統区分の原子炉補機冷却系設備及び海水冷却系設備が、耐震壁で囲まれ、耐震壁によって別の系統区分の原子炉補機冷却系設備及び海水冷却系設備とは分離されている構成としたときには、安全系設備と海水系設備を完全に分離できる。また、安全系設備の各系統の分離独立を図ることができるので、さらなる安全性の向上を図ることができる。そして、耐震壁により、各系統区分を、内部溢水による水圧を受け止める頑強な躯体で区画することができる。 Furthermore, the reactor auxiliary cooling system equipment and seawater cooling system equipment of each system division are surrounded by a seismic wall, and are separated from the reactor auxiliary equipment cooling system equipment and seawater cooling system equipment of another system division by the seismic wall. When the configuration is set up, safety equipment and seawater equipment can be completely separated. Further, since each system of the safety system can be separated and independent, the safety can be further improved. Then, each system division can be divided by a robust skeleton that receives the water pressure due to the internal overflow by the earthquake-resistant wall.

さらに、原子炉建屋に設置された、各系統区分の海水冷却系設備のポンプの配置に合わせて、系統区分ごとに分離した取水路を有する構成としたときには、取水路の多重性を確保できる。また、系統区分の最上流から最末端までを徹底して分離することが可能になる。
一方、原子炉建屋に設置された、各系統区分の海水冷却系設備のポンプの配置に合わせて、一体の取水路を有する構成としたときには、系統区分を分離しても取水路が一体であるので、取水路が占める面積を低減することができる。これにより、地形的に狭隘な場所であっても、取水路とその取水口を配置することができる。
Further, when the structure is such that the intake channels are separated for each system division according to the arrangement of the pumps of the seawater cooling system equipment installed in the reactor building, the multiplicity of the intake channels can be ensured. In addition, it becomes possible to thoroughly separate from the most upstream to the most terminal of the system division.
On the other hand, when the structure has an integrated intake channel according to the arrangement of the pumps of the seawater cooling system equipment installed in the reactor building, the intake channels are integrated even if the system divisions are separated. Therefore, the area occupied by the intake channel can be reduced. As a result, the intake channel and its intake port can be arranged even in a geographically narrow place.

以下、本発明の実施例による原子力プラントを、図面を用いて説明する。 Hereinafter, the nuclear power plant according to the embodiment of the present invention will be described with reference to the drawings.

(実施例1)
本発明の原子力プラントの実施例として、本発明が適用された原子力プラントの平面図を、図1に示す。
(Example 1)
As an example of the nuclear power plant of the present invention, a plan view of the nuclear power plant to which the present invention is applied is shown in FIG.

図1に示す原子力プラントは、原子炉建屋1と、タービン建屋5とを備えている。
原子炉建屋1及びタービン建屋5は、隣接して配置されている。
The nuclear power plant shown in FIG. 1 includes a reactor building 1 and a turbine building 5.
The reactor building 1 and the turbine building 5 are arranged adjacent to each other.

原子炉建屋1は、主として原子炉2を内包する原子炉棟3と、原子炉棟3を囲むように設置された付属棟4から構成される。 The reactor building 1 is mainly composed of a reactor building 3 containing the reactor 2 and an accessory building 4 installed so as to surround the reactor building 3.

原子炉2は、平面形状が円形の耐震壁に囲まれており、図示しないが、燃料が収容される原子炉圧力容器、原子炉圧力容器や圧力抑制プールや再循環ポンプを格納した原子炉格納容器、等を備えている。 The reactor 2 is surrounded by a seismic wall having a circular planar shape, and although not shown, the reactor containment vessel containing the fuel, the reactor pressure vessel, the pressure suppression pool, and the recirculation pump is stored. It is equipped with a container, etc.

原子炉棟3は、原子炉2の円形の耐震壁よりも外側にある区画が、A系区分3aとB系区分3bとC系区分3cの、3つの系統区分に分離されている。A系区分3aは原子炉2の図中右上に配置され、B系区分3bは原子炉2の図中右下に配置され、C系区分3cは原子炉2の図中左に配置されている。 In the reactor building 3, the section outside the circular earthquake-resistant wall of the reactor 2 is divided into three system sections, A system section 3a, B system section 3b, and C system section 3c. The A system division 3a is arranged in the upper right of the figure of the reactor 2, the B system division 3b is arranged in the lower right of the figure of the reactor 2, and the C system division 3c is arranged in the left of the figure of the reactor 2. ..

付属棟4内の機器は、上記の原子炉棟3の系統区分3a,3b,3cに近接するように設置され、近接する原子炉棟3の系統区分3a,3b,3cに従って付属棟4内の系統区分が決められる。
図1では、付属棟4内の機器として、具体的に、RSWポンプ6a,6b,6cと、RSW配管7a,7b,7cと、RCW熱交換器8a,8b,8bとを示している。
The equipment in the annex 4 is installed so as to be close to the system divisions 3a, 3b, 3c of the reactor building 3 described above, and in the annex 4 according to the system divisions 3a, 3b, 3c of the adjacent reactor building 3. The system classification is decided.
In FIG. 1, the RSW pumps 6a, 6b, 6c, the RSW pipes 7a, 7b, 7c, and the RCW heat exchangers 8a, 8b, 8b are specifically shown as the devices in the annex 4.

A系RSWポンプ6a及びA系RCW熱交換器8aは、原子炉建屋1の図中右側の辺に沿って設けられ、原子炉棟3内のA系区分3aの外側に隣接している、付属棟4のA系区分内に設置される。
A系RSWポンプ6aとA系RCW熱交換器8aは、海水系配管の破断リスクや海水の漏洩ポテンシャルを低減するために、近接して配置されており、A系RSW配管7aによって接続されている。
A系RCW熱交換器8aは、付属棟4内に設置されるA系のディーゼル発電機の補機(図示せず)と、原子炉棟3内のA系の残留熱除去系(RHR;Residual Heat Removal System)熱交換器(図示せず)を冷却している。
A系RCW熱交換器8aと原子炉棟3のA系区分3a内のA系残留熱除去系(RHR)熱交換器とは、A系RCW配管9aで接続される。
A系RSWポンプ6aとA系RCW熱交換器8aの間には耐震壁を設けており、A系RSW配管7aはその耐震壁に開口された貫通孔に配置されている。
A系RCW熱交換器8aと原子炉棟3のA系区分3aとの間には耐震壁を設けており、その耐震壁に開口された貫通孔にA系RCW配管9aが配置されている。
また、A系RSWポンプ6aとA系RCW熱交換器8aの外側の壁(原子炉建屋1の外壁を兼ねる)も、耐震壁とされている。
The A system RSW pump 6a and the A system RCW heat exchanger 8a are provided along the right side of the figure of the reactor building 1 and are adjacent to the outside of the A system division 3a in the reactor building 3, and are attached. It will be installed in the A system division of Building 4.
The A system RSW pump 6a and the A system RCW heat exchanger 8a are arranged close to each other in order to reduce the risk of breakage of the seawater system pipe and the leakage potential of seawater, and are connected by the A system RSW pipe 7a. ..
The A system RCW heat exchanger 8a includes an auxiliary machine (not shown) of the A system diesel generator installed in the annex 4 and an A system residual heat removal system (RHR; Residual) in the reactor building 3. Heat Removal System) The heat exchanger (not shown) is being cooled.
The A system RCW heat exchanger 8a and the A system residual heat removal system (RHR) heat exchanger in the A system division 3a of the reactor building 3 are connected by the A system RCW pipe 9a.
A seismic wall is provided between the A system RSW pump 6a and the A system RCW heat exchanger 8a, and the A system RSW pipe 7a is arranged in a through hole opened in the seismic wall.
A seismic wall is provided between the A system RCW heat exchanger 8a and the A system division 3a of the reactor building 3, and the A system RCW pipe 9a is arranged in a through hole opened in the seismic wall.
Further, the outer walls of the A-based RSW pump 6a and the A-based RCW heat exchanger 8a (which also serve as the outer wall of the reactor building 1) are also earthquake-resistant walls.

原子炉建屋1の図中下側の辺に沿って設けられ、原子炉棟3内のB系区分3bの外側に隣接している、付属棟4のB系区分内に、B系RSWポンプ6b、B系RSW配管7b、B系RCW熱交換器8bが設置される。そして、B系RCW配管9bが、B系RCW熱交換器8bと原子炉棟3のB系区分3b内のB系残留熱除去系(RHR)熱交換器(図示せず)を接続している。
B系RSWポンプ6bとB系RCW熱交換器8bの間の壁、B系RCW熱交換器8bと原子炉棟3のB系区分3bとの間の壁、B系RSWポンプ6bとB系RCW熱交換器8bの外側の壁(原子炉建屋1の外壁を兼ねる)は、それぞれ耐震壁とされている。
The B system RSW pump 6b is provided in the B system division of the annex building 4 which is provided along the lower side of the figure of the reactor building 1 and is adjacent to the outside of the B system division 3b in the reactor building 3. , B system RSW pipe 7b and B system RCW heat exchanger 8b are installed. Then, the B system RCW pipe 9b connects the B system RCW heat exchanger 8b and the B system residual heat removal system (RHR) heat exchanger (not shown) in the B system division 3b of the reactor building 3. ..
The wall between the B-based RSW pump 6b and the B-based RCW heat exchanger 8b, the wall between the B-based RCW heat exchanger 8b and the B-based division 3b of the reactor building 3, the B-based RSW pump 6b and the B-based RCW The outer wall of the heat exchanger 8b (which also serves as the outer wall of the reactor building 1) is an earthquake-resistant wall.

原子炉建屋1の図中左側の辺に沿って設けられ、原子炉棟3内のC系区分3cの外側に隣接している、付属棟4のC系区分内に、C系RSWポンプ6c、C系RSW配管7c、C系RCW熱交換器8cが設置される。そして、C系RCW配管9cが、C系RCW熱交換器8cと原子炉棟3のC系区分3c内のC系残留熱除去系(RHR)熱交換器(図示せず)を接続している。
C系RSWポンプ6cとC系RCW熱交換器8cの間の壁、C系RCW熱交換器8cと原子炉棟3のC系区分3cとの間の壁、C系RSWポンプ6cとC系RCW熱交換器8cの外側の壁(原子炉建屋1の外壁を兼ねる)は、それぞれ耐震壁とされている。
In the C system division of the annex building 4, which is provided along the left side of the figure of the reactor building 1 and is adjacent to the outside of the C system division 3c in the reactor building 3, the C system RSW pump 6c, A C-based RSW pipe 7c and a C-based RCW heat exchanger 8c are installed. Then, the C system RCW pipe 9c connects the C system RCW heat exchanger 8c and the C system residual heat removal system (RHR) heat exchanger (not shown) in the C system division 3c of the reactor building 3. ..
The wall between the C-based RSW pump 6c and the C-based RCW heat exchanger 8c, the wall between the C-based RCW heat exchanger 8c and the C-based division 3c of the reactor building 3, the C-based RSW pump 6c and the C-based RCW The outer wall of the heat exchanger 8c (which also serves as the outer wall of the reactor building 1) is an earthquake-resistant wall.

RSWポンプ6a,6b,6c、RSW配管7a,7b,7c、RCW熱交換器8a,8b,8c、RCW配管9a,9b,9cは、それぞれA系、B系、C系で回転対称の同様の配置としており、これにより配管レイアウトが標準化されている。 The RSW pumps 6a, 6b, 6c, RSW pipes 7a, 7b, 7c, RCW heat exchangers 8a, 8b, 8c, and RCW pipes 9a, 9b, 9c are similar in rotation symmetry in A system, B system, and C system, respectively. The layout is standardized, which standardizes the piping layout.

原子炉建屋1の図中太実線で示す壁は、それぞれ耐震壁とされており、原子炉2や、RSW及びRCWの各設備において、十分な耐震性が確保される。 The walls shown by the thick solid lines in the figure of the reactor building 1 are each earthquake-resistant walls, and sufficient earthquake resistance is ensured in the reactor 2, each facility of RSW and RCW.

図1に示す原子力プラントでは、取水路が系統ごとに設置されている。
具体的には、海11からの海水をRSWポンプ6aに引き込むA系取水路10aと、海11からの海水をRSWポンプ6bに引き込むB系取水路10bと、海11からの海水をRSWポンプ6cに引き込むC系取水路10cが、それぞれ独立して設けられている。
In the nuclear power plant shown in FIG. 1, intake channels are installed for each system.
Specifically, the A system intake channel 10a that draws seawater from the sea 11 into the RSW pump 6a, the B system intake channel 10b that draws the seawater from the sea 11 into the RSW pump 6b, and the RSW pump 6c that draws the seawater from the sea 11 into the RSW pump 6b. The C-type intake channels 10c that lead into the water intake channels 10c are provided independently of each other.

定期検査を行う際には、原子炉棟3及び付属棟4内のすべての機器の運転を停止して、検査を行う。
また、RSWポンプ6a,6b,6cのいずれかを交換する際には、定期検査と同様に原子炉棟3及び付属棟4内のすべての機器の運転を停止して、交換するRSWポンプ(例えば、A系RSWポンプ6a)を、新しいRSWポンプと交換する。
RSWポンプ6a,6b,6cの交換や点検を行うために、RSWポンプ6a,6b,6cを囲む耐震壁に、ポンプの出し入れを可能にする扉等を設ける。
When conducting a periodic inspection, the operation of all the equipment in the reactor building 3 and the annex building 4 is stopped and the inspection is performed.
Further, when replacing any of the RSW pumps 6a, 6b, 6c, the operation of all the equipment in the reactor building 3 and the accessory building 4 is stopped and replaced as in the periodic inspection (for example, the RSW pump (for example). , A system RSW pump 6a) is replaced with a new RSW pump.
In order to replace or inspect the RSW pumps 6a, 6b, 6c, a door or the like is provided on the earthquake-resistant wall surrounding the RSW pumps 6a, 6b, 6c to allow the pumps to be taken in and out.

上述の本実施例の構成によれば、RSWポンプ6a,6b,6c、RSW配管7a,7b,7c、RCW熱交換器8a,8b,8c、RCW配管9a,9b,9cを、原子炉建屋1内に配置している。即ち、原子炉補機冷却系(RCW)設備及び海水冷却系(RSW)設備を、原子炉建屋1内に配置している。
これにより、原子炉補機冷却系(RCW)設備及び海水冷却系(RSW)設備用の別の建屋を設ける必要がない。
従って、必要な建屋の数を減らして集約できるので、立地条件が厳しい狭隘な場所であっても、原子力発電所を建設することが可能になる。
また、高い耐震性を有する建屋の分散を抑制でき、合理的な建屋設計と建屋のコストの低減が可能になる。タービン建屋5等の原子炉建屋1以外の建屋においては、その建屋の耐震クラスに応じた設計が可能となる。
また、従来の構成において必要であった、別の建屋の間の渡り配管が不要になる。このため、地震時等の相対変位による渡り配管等の破断要因を回避できる。
また、RSW配管7a,7b,7cやRCW配管9a,9b,9cの配管長を大幅に短縮できる。このため、配管破断リスクを最小限にすることができる。
また、RCW設備の点検を、原子炉建屋1内で行うことができるので、狭隘な場所であってもRCW設備の保守点検性を確保でき、また定期検査にかかる時間の短縮が可能になる。
According to the configuration of the present embodiment described above, the RSW pumps 6a, 6b, 6c, the RSW pipes 7a, 7b, 7c, the RCW heat exchangers 8a, 8b, 8c, the RCW pipes 9a, 9b, 9c are installed in the reactor building 1 It is placed inside. That is, the reactor auxiliary cooling system (RCW) equipment and the seawater cooling system (RSW) equipment are arranged in the reactor building 1.
This eliminates the need to provide separate buildings for reactor auxiliary cooling system (RCW) equipment and seawater cooling system (RSW) equipment.
Therefore, since the number of required buildings can be reduced and consolidated, it is possible to construct a nuclear power plant even in a narrow place where the location conditions are strict.
In addition, it is possible to suppress the dispersion of buildings with high earthquake resistance, and it is possible to rationalize the building design and reduce the cost of the building. Buildings other than the reactor building 1 such as the turbine building 5 can be designed according to the seismic class of the building.
In addition, the crossover piping between different buildings, which was required in the conventional configuration, becomes unnecessary. Therefore, it is possible to avoid the cause of breakage of the crossover pipe or the like due to the relative displacement during an earthquake or the like.
Further, the pipe lengths of the RSW pipes 7a, 7b, 7c and the RCW pipes 9a, 9b, 9c can be significantly shortened. Therefore, the risk of pipe breakage can be minimized.
Further, since the inspection of the RCW equipment can be performed in the reactor building 1, the maintenance and inspection of the RCW equipment can be ensured even in a narrow place, and the time required for the periodic inspection can be shortened.

上述の本実施例の構成によれば、原子炉棟3が3つの系統区分3a,3b,3cに区分けされ、原子炉棟3の各系統区分3a,3b,3cに対して、RCW設備及びRSW設備がそれぞれ配置されている、
これにより、系統区分ごとに独立して冷却を行うことができる。従って、設備の整備あるいは故障等により、1つの系統区分が停止していても、他の系統区分によって冷却できる。
According to the configuration of the present embodiment described above, the reactor building 3 is divided into three system divisions 3a, 3b, 3c, and the RCW equipment and RSW are provided for the respective system divisions 3a, 3b, 3c of the reactor building 3. Each facility is located,
As a result, cooling can be performed independently for each system division. Therefore, even if one system division is stopped due to equipment maintenance or failure, cooling can be performed by the other system division.

上述の本実施例の構成によれば、RSWポンプ6a,6b,6cやRCW熱交換器8a,8b,8cの周囲の壁が耐震壁とされている。
これにより、RCW設備及びRCW設備の耐震性を強化することができる。
According to the configuration of the present embodiment described above, the walls around the RSW pumps 6a, 6b, 6c and the RCW heat exchangers 8a, 8b, 8c are earthquake-resistant walls.
This makes it possible to enhance the seismic resistance of RCW equipment and RCW equipment.

上述の本実施例の構成によれば、さらに、A系とB系とC系の各系統区分のRCW設備及びRSW設備が、耐震壁により別の系統区分のRCW設備及びRSW設備とは分離されている。
これにより、安全系設備と海水系設備を完全に分離できる。また、安全系設備の各系統の分離独立を図ることができるので、さらなる安全性の向上を図ることができる。そして、耐震壁により、各系統区分を、内部溢水による水圧を受け止める頑強な躯体で区画することができる。
According to the configuration of the present embodiment described above, the RCW equipment and RSW equipment of each system division of A system, B system and C system are further separated from the RCW equipment and RSW equipment of another system division by the earthquake-resistant wall. ing.
As a result, safety equipment and seawater equipment can be completely separated. Further, since each system of the safety system can be separated and independent, the safety can be further improved. Then, each system division can be divided by a robust skeleton that receives the water pressure due to the internal overflow by the earthquake-resistant wall.

上述の本実施例の構成によれば、原子炉建屋1に設置された、各系統区分のRSWポンプ6a,6b,6cの配置に合わせて、系統区分ごとに分離した取水路10a,10b,10cを有する。
これにより、取水路の多重性を確保でき、また、系統区分の最上流から最末端までを徹底して分離することが可能になる。
According to the configuration of the present embodiment described above, the intake channels 10a, 10b, 10c separated for each system division according to the arrangement of the RSW pumps 6a, 6b, 6c of each system division installed in the reactor building 1. Has.
As a result, the multiplicity of intake channels can be ensured, and it becomes possible to thoroughly separate the system division from the most upstream to the terminal.

(変形例)
実施例1では、取水路10a,10b,10cが系統ごとに独立して設けられ、各取水路10a,10b,10cの海11からの取水口が別々に設けられていた。
これに対して、2つ以上の系統の取水口を共通として、かつ取水路が途中で分岐して系統ごとに別れる構成とすることも可能である。このように取水口を共通とすれば、海岸の地形の制約等によって、各系統で別々に取水口を設けることが難しい場合でも、各系統の取水路を設けることができる。
(Modification example)
In the first embodiment, the intake channels 10a, 10b, and 10c were independently provided for each system, and the intakes of the intake channels 10a, 10b, and 10c from the sea 11 were separately provided.
On the other hand, it is also possible to make the intake ports of two or more systems common, and to have a configuration in which the intake channels are branched in the middle and separated for each system. If the intakes are shared in this way, even if it is difficult to provide separate intakes for each system due to restrictions on the topography of the coast, it is possible to provide intake channels for each system.

実施例1では3つの系統(A系、B系、C系)を設けていたが、系統は3つに限定されず、複数(2つ以上)の系統を設ければよい。
複数の系統を設けることにより、1つの系統が何らかの理由で停止したときでも、他の系統で運転を行うことができる。
In the first embodiment, three systems (A system, B system, C system) are provided, but the system is not limited to three, and a plurality of (two or more) systems may be provided.
By providing a plurality of systems, even if one system is stopped for some reason, the operation can be performed on the other system.

なお、本発明は、上述した実施の形態及び実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiments and examples, and includes various modifications. For example, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.

1…原子炉建屋、2…原子炉、3…原子炉棟、3a…A系区分、3b…B系区分、3c…C系区分、4…付属棟、5…タービン建屋、6a…A系RSWポンプ、6b…B系RSWポンプ、6c…C系RSWポンプ、7a…A系RSW配管、7b…B系RSW配管、7c…C系RSW配管、8a…A系RCW熱交換器、8b…B系RCW熱交換器、8c…C系RCW熱交換器、9a…A系RCW配管、9b…B系RCW配管、9c…C系RCW配管、10a…A系取水路、10b…B系取水路、10c…C系取水路、11…海 1 ... Reactor building, 2 ... Reactor, 3 ... Reactor building, 3a ... A system classification, 3b ... B system classification, 3c ... C system classification, 4 ... Annex building, 5 ... Turbine building, 6a ... A system RSW Pump, 6b ... B system RSW pump, 6c ... C system RSW pump, 7a ... A system RSW piping, 7b ... B system RSW piping, 7c ... C system RSW piping, 8a ... A system RCW heat exchanger, 8b ... B system RCW heat exchanger, 8c ... C system RCW heat exchanger, 9a ... A system RCW piping, 9b ... B system RCW piping, 9c ... C system RCW piping, 10a ... A system intake channel, 10b ... B system intake channel, 10c … C system intake channel, 11… sea

Claims (7)

原子炉及び前記原子炉を収容する原子炉建屋を備えた原子力プラントであって、
前記原子炉建屋内に、前記原子炉用の補機を冷却するための原子炉補機冷却系設備、及び、前記原子炉補機冷却系設備の冷却水を冷却する海水を取り込む海水冷却系設備が、配置された
原子力プラント。
A nuclear power plant equipped with a nuclear reactor and a reactor building that houses the nuclear reactor.
Reactor auxiliary equipment cooling system equipment for cooling auxiliary equipment for the reactor and seawater cooling system equipment for taking in seawater for cooling the cooling water of the reactor auxiliary equipment cooling system equipment in the reactor building. However, the nuclear plant where it was placed.
前記原子炉建屋は、前記原子炉を内包する原子炉棟を備え、前記原子炉棟が複数の系統区分に区分けされており、複数の前記系統区分に区分けされた前記原子炉棟の各前記系統区分に対して、前記原子炉補機冷却系設備及び前記海水冷却系設備が、それぞれ配置されている請求項1に記載の原子力プラント。 The reactor building includes a reactor building containing the reactor, the reactor building is divided into a plurality of system divisions, and each of the systems of the reactor building divided into the plurality of system divisions. The nuclear power plant according to claim 1, wherein the reactor auxiliary cooling system equipment and the seawater cooling system equipment are respectively arranged for the classification. 前記原子炉棟が3つの前記系統区分に区分けされ、前記原子炉棟の各前記系統区分に隣接して、それぞれの系統区分に対する前記原子炉補機冷却系設備及び前記海水冷却系設備が配置されている、請求項2に記載の原子力プラント。 The reactor building is divided into three system divisions, and the reactor auxiliary cooling system equipment and the seawater cooling system equipment for each system division are arranged adjacent to each system division of the reactor building. The nuclear plant according to claim 2. 3つの前記系統区分に対する前記原子炉補機冷却系設備及び前記海水冷却系設備が、前記原子炉建屋の外周の3つの辺のそれぞれの辺に沿って配置されている、請求項3に記載の原子力プラント。 The third aspect of claim 3, wherein the reactor auxiliary cooling system equipment and the seawater cooling system equipment for the three system divisions are arranged along each of the three sides of the outer periphery of the reactor building. Nuclear plant. 各前記系統区分の前記原子炉補機冷却系設備及び前記海水冷却系設備が、耐震壁で囲まれており、前記耐震壁によって別の系統区分の前記原子炉補機冷却系設備及び前記海水冷却系設備とは分離されている、請求項2に記載の原子力プラント。 The reactor auxiliary cooling system equipment and the seawater cooling system equipment of each of the above system divisions are surrounded by a seismic wall, and the said reactor auxiliary equipment cooling system equipment and the seawater cooling of another system division by the earthquake resistant wall. The nuclear power plant according to claim 2, which is separated from the system equipment. 前記原子炉建屋に設置された、各前記系統区分の前記海水冷却系設備のポンプの配置に合わせて設けられた、一体の取水路、又は、前記系統区分ごとに分離した取水路、を有する請求項2に記載の原子力プラント。 Claims having an integrated intake channel or an intake channel separated for each system category, which is installed in the reactor building and is provided according to the arrangement of pumps of the seawater cooling system equipment of each system category. Item 2. The nuclear power plant according to item 2. 前記原子炉建屋に設置された、前記海水冷却系設備のポンプが、入れ替えが可能な構成とされた請求項1に記載の原子力プラント。 The nuclear power plant according to claim 1, wherein the pump of the seawater cooling system equipment installed in the reactor building has a configuration in which the pump can be replaced.
JP2019189882A 2019-10-17 2019-10-17 nuclear power plant Active JP7232164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019189882A JP7232164B2 (en) 2019-10-17 2019-10-17 nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189882A JP7232164B2 (en) 2019-10-17 2019-10-17 nuclear power plant

Publications (2)

Publication Number Publication Date
JP2021063771A true JP2021063771A (en) 2021-04-22
JP7232164B2 JP7232164B2 (en) 2023-03-02

Family

ID=75486104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189882A Active JP7232164B2 (en) 2019-10-17 2019-10-17 nuclear power plant

Country Status (1)

Country Link
JP (1) JP7232164B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145398A (en) * 1990-10-08 1992-05-19 Toshiba Corp Auxiliary cooling device for nuclear power plant
JP2014232059A (en) * 2013-05-30 2014-12-11 日立Geニュークリア・エナジー株式会社 Reactor auxiliary machine cooling facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145398A (en) * 1990-10-08 1992-05-19 Toshiba Corp Auxiliary cooling device for nuclear power plant
JP2014232059A (en) * 2013-05-30 2014-12-11 日立Geニュークリア・エナジー株式会社 Reactor auxiliary machine cooling facility

Also Published As

Publication number Publication date
JP7232164B2 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
Bajaj et al. The indian PHWR
Schulz Westinghouse AP1000 advanced passive plant
US10991471B2 (en) Emergency core cooling system and boiling water reactor plant using the same
US4080256A (en) Nuclear reactor apparatus
CN103850483A (en) Main machine hall group arrangement method of nuclear power plant
US20210287815A1 (en) Valve assembly with isolation valve vessel
US7835482B2 (en) Emergency core cooling system
JP2010085282A (en) Nuclear power plant of pressurized water type
Lee et al. The design features of the advanced power reactor 1400
CN103871530B (en) Series dividing and cooling framework of users of nuclear power plant equipment cooling water system
KR102577167B1 (en) Highly simplified boiling water reactors for commercial electricity production
JP6550479B2 (en) Waste heat exhaust ventilation system for spent fuel dry storage of nuclear power plants
JP2021063771A (en) Nuclear power plant
Hannerz Towards intrinsically safe light-water reactors
Bereznai Nuclear power plant systems and operation
KR20120070594A (en) Emergency reactor core cooling device and nuclear reactor facility
Muhlheim et al. Design Strategies and Evaluation for Sharing Systems at Multi-Unit Plants Phase I
Mazzantini et al. Atucha II plant description
JP2014173860A (en) Safety enhancement building for nuclear facility
Kubo et al. ICONE23-1748 JSFR DESIGN PROGRESS RELATED TO DEVELOPMENT OF SAFETY DESIGN CRITERIA FOR GENERATION IV SODIUM-COOLED FAST REACTORS:(2) PROGRESS OF SAFETY DESIGN
WO2018211771A1 (en) Tank-type nuclear reactor structure
CN114512251A (en) Reactor plant layout method and reactor plant
Zentner et al. N reactor level 1 probabilistic risk assessment
VII et al. VII. 1 Introduction
Veras et al. 200 MW NUCLEAR POWER STATION USING A NATURAL URANIUM, ORGANIC COOLED, HEAVY WATER MODERATED, HETEROGENEOUS POWER REACTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230217

R150 Certificate of patent or registration of utility model

Ref document number: 7232164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150