JP2021060673A - Adjustment method allowing for improved accuracy of machine tool - Google Patents

Adjustment method allowing for improved accuracy of machine tool Download PDF

Info

Publication number
JP2021060673A
JP2021060673A JP2019183140A JP2019183140A JP2021060673A JP 2021060673 A JP2021060673 A JP 2021060673A JP 2019183140 A JP2019183140 A JP 2019183140A JP 2019183140 A JP2019183140 A JP 2019183140A JP 2021060673 A JP2021060673 A JP 2021060673A
Authority
JP
Japan
Prior art keywords
axis
machine tool
parallel
linear
linearity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183140A
Other languages
Japanese (ja)
Other versions
JP7431550B2 (en
Inventor
岳見 浅井
Takemi Asai
岳見 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP2019183140A priority Critical patent/JP7431550B2/en
Publication of JP2021060673A publication Critical patent/JP2021060673A/en
Application granted granted Critical
Publication of JP7431550B2 publication Critical patent/JP7431550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

To provide an adjustment method which allows for improved accuracy of a machine tool.SOLUTION: A machine tool has three axes X, Y and Z and has linear axes which are parallel with them respectively or each of which can be made parallel with one of them by a rotation axis, and relations between set positions (inputs) and displacements (outputs) of these linear axes are calibrated by a separate calibration device to improve feed pitch accuracy of the machine tool by software. Measurement for calibration of the pitch accuracy is performed twice, and a position of an axis being parallel or made parallel with an evaluation object in the second measurement is slightly changed from that in the first measurement to calibrate even non-linearity of the calibration device, and with respect to a long-cycle component, overall evaluation is used if the overall evaluation is performed in only one of two evaluations, and with respect to a short-cycle component, a correction value allowing for the non-linearity of a calibrator estimated from two evaluations is generated.SELECTED DRAWING: Figure 5

Description

本発明は、工作機械の高精度化が可能な調整方法に関する。 The present invention relates to an adjustment method capable of increasing the accuracy of a machine tool.

従来、後述する図1に示すような工作機械(研削盤)が実用化されている。即ち、直線X軸、Y軸およびZ軸を有し、Z軸と平行に冗長なW軸を有する。直線U軸は直線Z軸によりX−Y面との距離を調整できるし、旋回C軸によりX−Y面と平行、Z軸と直角を維持した方向を設定することが出来る。
X、Y、Z、W、C、Uのどの軸についても図示しないが、モータ内蔵のパルスコーダもしくは別置きのリニアスケールやロータリエンコーダなどの位置検出の仕組みを有しているか、パルスモータのような位置制御の仕組みを有しており、制御器の指令に合わせて工具としての砥石の位置を変更できるようになっている。
この種の工作機械において、制御器には、プロービング装置が接続される(例えば、特許文献1参照)。このプロービング装置が接触を検知した瞬間に制御器に信号を挙げ、それを受けた制御器は送りを即座に停止させる機能を有している(以降、このような機能をスキップ機能と呼ぶ)。このスキップ機能で停止させた場合には停止位置を取得することが出来き、この停止位置から形状を評価することが出来る。複数のポイントで測定を行いその差から寸法を評価するということが行われる(例えば、特許文献2参照)。
一方、先に述べた位置検出の仕組みはリニアスケールやロータリエンコーダなど多くの種類があるが、位置制御の仕組みとしては、送りねじ(親ねじ)の回転角度までしか検出・制御に使用しないオープン・ループやセミクローズド・ループという制御と位置まで検出し制御にしようするフルクローズドループ制御がある。
Conventionally, a machine tool (grinding machine) as shown in FIG. 1 described later has been put into practical use. That is, it has a linear X-axis, a Y-axis, and a Z-axis, and has a redundant W-axis parallel to the Z-axis. The distance of the straight U-axis to the XY plane can be adjusted by the straight Z axis, and the direction maintained parallel to the XY plane and perpendicular to the Z axis can be set by the swivel C axis.
Although not shown for any of the X, Y, Z, W, C, and U axes, it has a position detection mechanism such as a pulse coder with a built-in motor or a separate linear scale or rotary encoder, or a pulse motor. It has a position control mechanism, and the position of the grindstone as a tool can be changed according to the command of the controller.
In this type of machine tool, a probing device is connected to the controller (see, for example, Patent Document 1). The moment the probing device detects a contact, a signal is sent to the controller, and the controller that receives the signal has a function of immediately stopping the feed (hereinafter, such a function is referred to as a skip function). When stopped by this skip function, the stop position can be acquired, and the shape can be evaluated from this stop position. Measurements are made at a plurality of points and the dimensions are evaluated from the differences (see, for example, Patent Document 2).
On the other hand, there are many types of position detection mechanisms such as linear scales and rotary encoders mentioned above, but the position control mechanism is open-loop, which uses only the rotation angle of the lead screw (lead screw) for detection and control. There are loop and semi-closed loop control and full closed loop control that detects and controls the position.

特開2007−007822号公報Japanese Unexamined Patent Publication No. 2007-007822 特開2003−311535号公報Japanese Unexamined Patent Publication No. 2003-31153

幾何学量センサのその場自律校正法の研究(清野他、 精密工学会誌 Vol.63、No.10、1997、1417−21頁)Research on in-situ autonomous calibration method for geometric quantity sensors (Kiyono et al., Journal of Precision Engineering, Vol. 63, No. 10, 1997, pp. 1417-21)

送りねじやリニアスケールの品質や組み付けの具合により入力となる位置指令と出力となる変位の関係が非線形になる場合が多い。特に送りねじについては周期的な偏差が残りやすい。また、リニアスケールについても細かく見るとスリット・刻線などを組み合わせて変位に応じて周期的な信号レベル変化を生じさせて、補間して分解能を確保している場合が多く周期的な偏差は完全に避けられるものではない。
これら非線形性は光の干渉を利用した校正機もしくは基準スケールを用いて校正を行って使うことも多いが、この校正基準自体も周期的非線形成分を有していることは注意を要する点である。
Depending on the quality of the lead screw and linear scale and the condition of assembly, the relationship between the input position command and the output displacement is often non-linear. Especially for lead screws, periodic deviations tend to remain. Also, if you look closely at the linear scale, there are many cases where slits, engraved lines, etc. are combined to generate a periodic signal level change according to the displacement, and interpolation is performed to ensure resolution, and the periodic deviation is perfect. It cannot be avoided.
These non-linearities are often calibrated using a calibrator that utilizes light interference or a reference scale, but it should be noted that the calibration criteria themselves also have periodic non-linear components. ..

本発明の目的は、工作機械の高精度化が可能な調整方法を提供することにある。 An object of the present invention is to provide an adjustment method capable of improving the accuracy of a machine tool.

本発明者は、工作機械の高精度化が可能な製造方法又は調整方法について、鋭意研究した結果、その方法として、X−Y−Zの3軸を有し、これと各々平行な直線軸または回転軸によってどれか1軸と平行に出来る直線軸を有し、これら直線軸の設定位置(入力)と変位(出力)の関係を別の校正装置で校正し、送りのピッチ精度をソフトウェアにより改善させている工作機械であって、このピッチ精度の校正のための測定を2回行い、1回目と2回目で評価対象と平行または平行にした軸の位置をわずかに変更し校正装置の側の非線形性まで校正し、かつ長周期の成分についてはどちらか一方の評価で2回のうち片方しか全体に亘って評価をしない場合には全体に亘って評価をした側を使用し、短周期の成分については2回の評価から推定される校正器の非線形性を考慮した補正値を作成することを見出した。 As a result of diligent research on a manufacturing method or an adjustment method capable of improving the precision of a machine tool, the present inventor has three axes of XYZ as the method, and a linear axis or a linear axis parallel to each of them. It has a linear axis that can be parallel to any one axis by the rotation axis, and the relationship between the set position (input) and displacement (output) of these linear axes is calibrated by another calibration device, and the feed pitch accuracy is improved by software. The machine tool is being operated, and the measurement for calibrating this pitch accuracy is performed twice, and the position of the axis parallel to or parallel to the evaluation target is slightly changed in the first and second times on the side of the calibrator. If the non-linearity is calibrated and only one of the two evaluations is performed for the long-period component, the side that has been evaluated for the entire period is used, and the short-period component is used. For the components, it was found that a correction value was created in consideration of the non-linearity of the calibrator estimated from the two evaluations.

即ち、本発明の様相によれば、X−Y−Z3軸を有し、これと各々平行な直線軸または回転軸によってどれか1軸と平行に出来る直線軸を有し、これら直線軸の設定位置(入力)と変位(出力)の関係を別の校正装置で校正し、送りのピッチ精度をソフトウェアにより改善させている工作機械であって、このピッチ精度の校正のための測定を2回行い、1回目と2回目で評価対象と平行または平行にした軸の位置をわずかに変更し校正装置の側の非線形性まで校正し、かつ長周期の成分についてはどちらか一方の評価で2回のうち片方しか全体に亘って評価をしない場合には全体に亘って評価をした側を使用し、短周期の成分については2回の評価から推定される校正器の非線形性を考慮した補正値を作成することを特徴とする工作機械の調整方法が得られる。 That is, according to the aspect of the present invention, it has three XYZ axes, and each has a linear axis parallel to the axis or a linear axis that can be made parallel to any one axis by a rotation axis, and the setting of these linear axes. It is a machine tool that calibrates the relationship between position (input) and displacement (output) with another calibrator and improves the feed pitch accuracy with software, and performs measurements for calibrating this pitch accuracy twice. In the 1st and 2nd times, the position of the axis parallel to or parallel to the evaluation target is slightly changed to calibrate to the non-linearity on the side of the calibrator, and for the long-period component, either evaluation is performed twice. If only one of them is evaluated over the whole, the side evaluated over the whole is used, and for the short-period component, the correction value considering the non-linearity of the calibrator estimated from the two evaluations is used. A method of adjusting a machine tool, which is characterized by making it, is obtained.

本発明によれば、高精度化が可能な工作機械の調整方法を提供することができる。 According to the present invention, it is possible to provide a method for adjusting a machine tool capable of increasing accuracy.

本発明が適用される工作機械(研削盤)の基本構成を示す図である。It is a figure which shows the basic structure of the machine tool (grinding machine) to which this invention is applied. 図1に示した工作機械(研削盤)におけるU軸送り装置と砥石軸周辺の拡大図である。It is an enlarged view around the U-axis feed device and the grindstone shaft in the machine tool (grinding machine) shown in FIG. 図1に示した工作機械(研削盤)の制御系の概略を示すブロック図である。It is a block diagram which shows the outline of the control system of the machine tool (grinding machine) shown in FIG. 本発明の調整方法が適用される工作機械(研削盤)の基本構成を示す図である。It is a figure which shows the basic structure of the machine tool (grinding machine) to which the adjustment method of this invention is applied. 本発明の実施形態に係る工作機械の高精度化が可能な調整方法の工程を示すフローチャートである。It is a flowchart which shows the process of the adjustment method which can improve the precision of the machine tool which concerns on embodiment of this invention. 本発明の実施形態に係る工作機械の調整方法において、長周期成分の出方の例と、短周期成分の出方の例を、それぞれ入力に対する出力の変化を表すグラフと共に示す図であり、(a)は、長周期成分の出方の例を、入力(変位)に対する出力(変位表示)の変化で表すグラフであり、(b) は、短周期成分の出方の例を、入力(変位)に対する出力(非線形)の変化で表すグラフである。It is a figure which shows the example of the appearance of the long-period component and the example of the appearance of the short-period component together with the graph showing the change of the output with respect to the input in the adjustment method of the machine tool according to the embodiment of the present invention. (a) is a graph showing an example of how long-period components are output by changing the output (displacement display) with respect to input (displacement), and (b) is an example of how short-period components are output (displacement). It is a graph represented by the change of the output (non-linearity) with respect to). 本発明の実施形態の変形例に係る工作機械の調整方法を説明するための図であり、(a)は、スケールの長手方向の数箇所で評価箇所を設ける例を示す図であり、(b) は、位相オフセットλ(x)の出方を示す例である。It is a figure for demonstrating the adjustment method of the machine tool which concerns on the modification of embodiment of this invention, (a) is the figure which shows the example which the evaluation part is provided at several places in the longitudinal direction of a scale, (b). ) Is an example showing how the phase offset λ (x) appears.

本発明の実施形態について図面を参照して説明する。図1は、本発明が適用される研削盤の一例を示す斜視図、図2は、そのU軸送り装置と砥石軸周辺の拡大図である。本発明が適用される研削盤10は、図1に示すように、ベッド12上にテーブル送り装置36およびテーブル30がレール16を介してY軸方向(前後方向)へ移動可能に支持されている。コラム14はベッド12に固定されているが、前述の通り、送り装置36との間にはレール16に沿った方向に相対運動を与えることができる。ベッド12の後部には図示しない送り装置36移動用モータが配設され、このモータにより図示しないボールネジ等を介してテーブル送り装置36がレール16に沿って前後移動されるようになっている。コラム14にはヘッド18がW軸方向に移動可能(昇降可能)に支持され、そのヘッド18の先端には砥石軸20が設けられており、砥石軸20の先端には、砥石100(図2参照)が取付けられる。コラム14の上部には図示しないヘッド昇降用モータが配設され、このモータにより図示しないボールネジ等を介してヘッド18が昇降されるようになっている。ヘッド18の後部には砥石軸(回転用)モータ24(図2参照)が配設され、このモータにより砥石軸20が回転されるようになっている。ヘッド昇降用モータには、図示しない計測手段を構成するエンコーダが付設される。このほかの砥石軸を除く直線軸および回転軸には図示しない場合にもエンコーダおよびモータを備え送り量ないし回転量が算出・制御できるようになっている。このエンコーダから出力されるデータによりヘッド18の昇降量、及び図示しないワークに対する切り込み量が算出される。W軸方向に平行にZ軸が設けられており、W軸のヘッドの動き、C軸回転およびU軸直線運動を妨げることなくZ軸運動を与えることができる。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of a grinding machine to which the present invention is applied, and FIG. 2 is an enlarged view of the U-axis feed device and the periphery of the grindstone shaft. In the grinding machine 10 to which the present invention is applied, as shown in FIG. 1, a table feeding device 36 and a table 30 are supported on a bed 12 so as to be movable in the Y-axis direction (front-rear direction) via a rail 16. .. Although the column 14 is fixed to the bed 12, as described above, a relative motion can be applied to and from the feeding device 36 in the direction along the rail 16. A motor for moving the feed device 36 (not shown) is arranged at the rear of the bed 12, and the table feed device 36 is moved back and forth along the rail 16 via a ball screw (not shown) or the like. A head 18 is supported on the column 14 so as to be movable (elevable) in the W-axis direction, a grindstone shaft 20 is provided at the tip of the head 18, and a grindstone 100 (FIG. 2) is provided at the tip of the grindstone shaft 20. See) is installed. A head elevating motor (not shown) is arranged on the upper part of the column 14, and the head 18 is elevated by this motor via a ball screw (not shown) or the like. A grindstone shaft (for rotation) motor 24 (see FIG. 2) is arranged at the rear portion of the head 18, and the grindstone shaft 20 is rotated by this motor. The head elevating motor is provided with an encoder that constitutes a measuring means (not shown). The linear shaft and the rotating shaft other than the grindstone shaft are equipped with an encoder and a motor so that the feed amount or the rotation amount can be calculated and controlled even if they are not shown. From the data output from this encoder, the amount of lifting and lowering of the head 18 and the amount of cut into a workpiece (not shown) are calculated. The Z-axis is provided parallel to the W-axis direction, and the Z-axis motion can be given without hindering the movement of the head of the W-axis, the rotation of the C-axis, and the linear motion of the U-axis.

先に述べた通り、ベッド12上にはレール16を介してX軸送り装置36が載っている。このX軸送り装置36はレール16の方向に沿ってY方向に前後直線運動できるように構成されている。このX軸送り装置36の上に更に図示しないレールを介してテーブル30が支持されている。このテーブル30はX軸送り装置36に対して左右方向に直線運動できるように構成されている。その上面には図示しないワークが着脱可能に設置固定されるようになっている。当然ながらベッド12にはX軸送り装置36を移動する用のモータが配設され、このモータにより図示しないボールネジ等を介してX軸送り装置36がレール16に沿って移動されるようになっている。テーブル30についても同様に図示しないモータおよびボールネジ等を介してX軸送り装置36上を動くようになっている。そして、上記砥石軸回転用モータ24により砥石軸20が回転された状態で、上記ヘッド昇降用モータによりヘッド18(砥石軸20)が下降されて、砥石軸20の先端に取り付けられた砥石100がテーブル30上のワークの面に接触させられる。テーブル30は上述の2つのモータでX−Y方向に自由に可動させられる。これにより、ワークの表面が砥石100にて研削されるようになっている。 As described above, the X-axis feed device 36 is mounted on the bed 12 via the rail 16. The X-axis feed device 36 is configured to be able to linearly move back and forth in the Y direction along the direction of the rail 16. A table 30 is further supported on the X-axis feed device 36 via a rail (not shown). The table 30 is configured to be able to linearly move in the left-right direction with respect to the X-axis feed device 36. A work (not shown) is detachably installed and fixed on the upper surface. As a matter of course, a motor for moving the X-axis feed device 36 is provided on the bed 12, and the X-axis feed device 36 is moved along the rail 16 via a ball screw or the like (not shown) by this motor. There is. Similarly, the table 30 moves on the X-axis feed device 36 via a motor, a ball screw, or the like (not shown). Then, in a state where the grindstone shaft 20 is rotated by the grindstone shaft rotation motor 24, the head 18 (grindstone shaft 20) is lowered by the head elevating motor, and the grindstone 100 attached to the tip of the grindstone shaft 20 is moved. It is brought into contact with the surface of the work on the table 30. The table 30 can be freely moved in the XY directions by the above-mentioned two motors. As a result, the surface of the work is ground by the grindstone 100.

図1に示す工作機械(研削盤)10は、以上に述べたように、少なくともX−Y−Zの三軸の同時制御ができるCNC制御の工作機械(研削盤)であり、更に、砥石軸20という回転軸と軸方向が平行な駆動軸(回転軸又は直線駆動軸)を有している。即ち、工作機械(研削盤)10は、ヘッド18の下部にU軸送り装置40を有しており、このU軸送り装置40は、砥石軸20と、その上部の円盤体27を含む直線送り機構であり、砥石軸20とその上部の円盤体27を、その時のC軸の角度位置に応じて所定のストロークの範囲内で直線移動させる装置であり、この直線移動方向をU軸(方向)と定義している。即ち、図1に示す工作機械(研削盤)10では、ヘッド18は、Z軸方向に直線移動(上下移動)できる。Z軸との区別のため、W軸送り装置と呼称する。また、ヘッド18に対して、U軸送り装置40をZ軸直線移動とZ軸周り旋回(C軸と呼称する)に旋回させることができる。U軸送り装置40は、砥石軸20をU軸方向に直線移動させることができる。図2及び図3を参照して、工作機械(研削盤)10の駆動軸制御を更に具体的に述べれば、工作機械(研削盤)10では、U軸の直線送り機構はC軸の回転側に載っている。砥石軸(U軸)の送り指令によって、U軸送り装置40をU軸の方向に沿って直線移動させることができる。C軸の回転指令によって砥石軸の中心ごと回転する。更に、このC軸装置は、Z軸装置で鉛直方向に直線移動させることができる。 As described above, the machine tool (grinding machine) 10 shown in FIG. 1 is a CNC-controlled machine tool (grinding machine) capable of simultaneously controlling at least three axes of XYZ, and further, a grindstone shaft. It has a drive shaft (rotary shaft or linear drive shaft) whose axial direction is parallel to the rotation shaft of 20. That is, the machine tool (grinding machine) 10 has a U-axis feed device 40 at the lower part of the head 18, and the U-axis feed device 40 includes a grindstone shaft 20 and a disk body 27 above the grindstone shaft 20. It is a mechanism, and is a device that linearly moves the grindstone shaft 20 and the disk body 27 above the grindstone shaft 20 within a predetermined stroke range according to the angular position of the C axis at that time, and the linear movement direction is the U axis (direction). Is defined as. That is, in the machine tool (grinding machine) 10 shown in FIG. 1, the head 18 can be linearly moved (moved up and down) in the Z-axis direction. To distinguish it from the Z-axis, it is called a W-axis feed device. Further, the U-axis feed device 40 can be swiveled with respect to the head 18 in a Z-axis linear movement and a Z-axis rotation (referred to as a C-axis). The U-axis feed device 40 can linearly move the grindstone shaft 20 in the U-axis direction. More specifically, the drive axis control of the machine tool (grinding machine) 10 will be described more specifically with reference to FIGS. 2 and 3. In the machine tool (grinding machine) 10, the U-axis linear feed mechanism is on the rotation side of the C-axis. It is listed in. The U-axis feed device 40 can be linearly moved along the direction of the U-axis by the feed command of the grindstone shaft (U-axis). The center of the grindstone shaft is rotated by the rotation command of the C shaft. Further, this C-axis device can be linearly moved in the vertical direction by the Z-axis device.

図3は、図1に示したジグ研削盤の制御系の概略を示すブロック図である。本発明に係るジグ研削盤は、制御系として、制御装置300と、入出力装置310と、各軸モータ320及びそれぞれのモータドライバ330、砥石回転モータ102Aと砥石モータインバータ102invを有している。制御装置300は、コンピュータ数値制御部(CNC)302と、プログラマブルコントローラ304と、I/O(入出力)モジュール306を有している。本発明に係るジグ研削盤の制御系には、入出力装置310として、キーボード、各種スイッチ、温度センサ等と、スキップ信号に関わるツールセッタ、AEセンサ等も有している。 FIG. 3 is a block diagram showing an outline of the control system of the jig grinding machine shown in FIG. The jig grinding machine according to the present invention has a control device 300, an input / output device 310, each axis motor 320, each motor driver 330, a grindstone rotation motor 102A, and a grindstone motor inverter 102inv as control systems. The control device 300 includes a computer numerical control unit (CNC) 302, a programmable controller 304, and an I / O (input / output) module 306. The control system of the jig grinding machine according to the present invention also includes a keyboard, various switches, a temperature sensor and the like, a tools setter related to a skip signal, an AE sensor and the like as an input / output device 310.

前述したように、本発明者は、高精度化が可能な工作機械の製造又は調整方法について、鋭意研究した結果、その方法として、X−Y−Z3軸を有し、これと各々平行な直線軸または回転軸によってどれか1軸と平行に出来る直線軸を有し、これら直線軸の設定位置(入力)と変位(出力)の関係を別の校正装置で校正し、送りのピッチ精度をソフトウェアにより改善させていることを特徴とする工作機械であって、このピッチ精度の校正のための測定を2回行い1回目と2回目で評価対象と平行または平行にした軸の位置をわずかに変更し校正装置の側の非線形性まで校正し、かつ長周期の成分についてはどちらか一方の評価を使用し、短周期の成分については2回の評価から推定される校正器の非線形性の考慮した補正を作成することを見出した。 As described above, as a result of diligent research on a method for manufacturing or adjusting a machine tool capable of increasing accuracy, the present inventor has XYZ3 axes as the method, and straight lines parallel to each of them. It has a linear axis that can be parallel to any one axis depending on the axis or the rotating axis, and the relationship between the set position (input) and displacement (output) of these linear axes is calibrated by another calibration device, and the feed pitch accuracy is adjusted by software. It is a machine tool characterized by being improved by the above, and the measurement for calibration of this pitch accuracy is performed twice, and the position of the axis parallel to or parallel to the evaluation target is slightly changed in the first and second times. The non-linearity on the side of the calibrator is calibrated, and one of the evaluations is used for the long-period component, and the non-linearity of the calibrator estimated from the two evaluations is taken into consideration for the short-period component. Found to create a correction.

図4は、本発明の調整方法が適用される工作機械(研削盤)の基本構成を示す図である。即ち、まず本発明の調整方法が適用される工作機械(研削盤)は、図1に示した工作機械(研削盤)と基本構成は略同様である(その基本構成は図1を参照)。即ち、図4にも示すように、X−Y−Zの3軸を有し、これと各々平行な直線軸または回転軸によってどれか1軸と平行に出来る直線軸を有し、これら直線軸の設定位置(入力)と変位(出力)の関係を別の校正装置(システム)92で校正し、送りのピッチ精度をソフトウェアにより改善させている工作機械である。尚、図4では、リニアスケール94でX軸を校正する例を示しており、リニアスケール検出ヘッド96を備えているが、レーザ干渉システムを用いても周期性が現れるのは同様である。そして、本発明の製造方法又は調整方法では、上記のような工作機械(研削盤)において、このピッチ精度の校正のための測定を2回行い、1回目と2回目で評価対象と平行または平行にした軸の位置をわずかに変更し校正装置の側の非線形性まで校正し、かつ長周期の成分についてはどちらか一方の評価を使用し、短周期の成分については2回の評価から推定される校正器の非線形性の考慮した補正を作成する。 FIG. 4 is a diagram showing a basic configuration of a machine tool (grinding machine) to which the adjustment method of the present invention is applied. That is, first, the machine tool (grinding machine) to which the adjustment method of the present invention is applied has substantially the same basic configuration as the machine tool (grinding machine) shown in FIG. 1 (see FIG. 1 for the basic configuration). That is, as shown in FIG. 4, it has three axes XYZ, and each has a linear axis parallel to this or a linear axis that can be made parallel to any one axis by a rotation axis, and these linear axes. This is a machine tool in which the relationship between the set position (input) and the displacement (output) of is calibrated by another calibration device (system) 92, and the feed pitch accuracy is improved by software. Note that FIG. 4 shows an example of calibrating the X-axis with the linear scale 94, which includes the linear scale detection head 96, but the periodicity appears even when the laser interference system is used. Then, in the manufacturing method or adjustment method of the present invention, in the machine tool (grinding machine) as described above, the measurement for calibrating the pitch accuracy is performed twice, and the first and second measurements are parallel or parallel to the evaluation target. The position of the set axis is slightly changed to calibrate to the non-linearity on the side of the calibration device, and one of the evaluations is used for the long-period component, and the short-period component is estimated from two evaluations. Create a correction that takes into account the non-linearity of the calibrator.

以下、本発明の調整方法の要部について、図5乃至図7を参照して説明する。図5は、本発明の実施形態に係る工作機械の高精度化が可能な調整方法の工程を示すフローチャートである。まず、基準尺を校正基準として位置決めの偏差を評価する(1回目)(ステップS101)。続いて、校正尺をδオフセットする(ステップS102)。X軸を評価する場合には、U軸の方向をX軸と平行になるようにしておく。Y軸を評価する場合には、U軸の方向をY軸と平行になるようにしておく。U軸を評価する場合には、X軸を平行にしておく。Z軸とW軸は元から平行である。オフセットは平行な軸のうち、評価しない側の軸で行う。更に、今度は、校正尺を基準として位置決めの偏差を評価する(2回目)(ステップS103)。繰り返し性の範囲内で1回目と2回目は同じ動きとなるはずである。しかし、オフセットを与えたため、出力として現れる範囲が異なる。基準尺側の線形性が高ければ、出力はオフセットするだけであるが、非線形性の分だけ出力にオフセット以外の差が生じる。上述した非特許文献1では、このようにオフセットさせた同じ入力をある測長器の入力として与えて出力を比較することで校正を行うことができることを示している。但し、2回も細かいピッチで評価をするには時間を要するので、その評価は短い範囲に留める。そして、長周期については、1回目と2回目どちらか全長の評価を行った方の評価を用いてピッチ補正を行う(ステップS104A)。一方、短周期については、1回目と2回目で非線形性を評価し、周期関数として近似して全域に亘ってピッチ補正を重畳する(ステップS104B)。ここで、短周期と長周期の境目は、光学式スケール・レーザ干渉式測長システム・校正器の親ねじ等、基本周期が現れやすいシステムを使う場合に、概ね、その周期より小さいものを短周期とし、その周期より大きいものを長周期とする(定義する)。仮に、1回目を全長に亘る評価を行う測定回とすると、この回では測定ピッチを長めに取る評価と2回目で評価する範囲については短ピッチで細かく測定を行う。例えば、内挿入前の号周期8マイクロメートルで全長1メートルのスケールを信号周期2マイクロメートルの基準尺で評価する場合、内挿入前の信号周期がどちらもマイクロメートルのオーダなので、16マイクロメートルや24マイクロメートル等の範囲内を1マイクロメートルや0.5マイクロメートルピッチで局所短ピッチ測定評価すると共に、全長に亘っては5ミリメートルや10ミリメートルピッチ等大きめの間隔で評価する。求める補正のオーダによっては、50ミリメートルピッチ等でも構わない。1回目の評価は大き目のピッチで行う全長に亘る評価と、2回目での局所的な評価範囲については局所的な評価の両方を行い、2回目の評価では局所的な評価のみでよい。 Hereinafter, the main part of the adjustment method of the present invention will be described with reference to FIGS. 5 to 7. FIG. 5 is a flowchart showing a process of an adjustment method capable of improving the accuracy of the machine tool according to the embodiment of the present invention. First, the positioning deviation is evaluated using the reference scale as a calibration reference (first time) (step S101). Subsequently, the calibration scale is offset by δ (step S102). When evaluating the X-axis, the direction of the U-axis should be parallel to the X-axis. When evaluating the Y-axis, the direction of the U-axis should be parallel to the Y-axis. When evaluating the U-axis, keep the X-axis parallel. The Z-axis and the W-axis are originally parallel. The offset is performed on the side of the parallel axes that is not evaluated. Further, this time, the deviation of positioning is evaluated with reference to the calibration scale (second time) (step S103). Within the range of repeatability, the first and second movements should be the same. However, because the offset is given, the range that appears as the output is different. If the linearity on the reference scale side is high, the output will only be offset, but there will be a difference other than the offset in the output due to the non-linearity. Non-Patent Document 1 described above shows that calibration can be performed by giving the same input offset in this way as an input of a certain length measuring instrument and comparing the outputs. However, since it takes time to evaluate twice with a fine pitch, the evaluation should be limited to a short range. Then, for the long period, pitch correction is performed using the evaluation of the entire length, whichever is the first time or the second time, (step S104A). On the other hand, for the short period, the non-linearity is evaluated in the first and second times, approximated as a periodic function, and the pitch correction is superimposed over the entire area (step S104B). Here, the boundary between the short period and the long period is generally shorter than the period when using a system in which the basic period is likely to appear, such as an optical scale, a laser interference type length measuring system, and a lead screw of a calibrator. A period is defined, and a period larger than that period is defined as a long period. Assuming that the first measurement is performed over the entire length, in this measurement, the measurement pitch is taken longer and the range to be evaluated in the second measurement is finely measured at a short pitch. For example, when evaluating a scale with an issue cycle of 8 micrometers before internal insertion and a total length of 1 meter with a reference scale with a signal cycle of 2 micrometers, the signal cycle before internal insertion is on the order of micrometers, so 16 micrometers or Local short pitch measurement and evaluation are performed at a pitch of 1 micrometer or 0.5 micrometer within a range of 24 micrometers, etc., and evaluation is performed at large intervals such as 5 mm or 10 mm pitch over the entire length. Depending on the order of correction to be obtained, a pitch of 50 mm or the like may be used. In the first evaluation, both the evaluation over the entire length performed at a large pitch and the local evaluation in the local evaluation range in the second evaluation are performed, and in the second evaluation, only the local evaluation is required.

図6に、本発明の実施形態に係る工作機械の調整方法において、長周期成分の出方の例と、短周期成分の出方の例を、それぞれ入力に対する出力の変化を表すグラフと共に示す。図6(a)は、長周期成分の出方の例を、入力(変位)に対する出力(変位表示)の変化で表すグラフであり、図6(b) は、短周期成分の出方の例を、入力(変位)に対する出力(非線形)の変化で表すグラフである。尚、図6(b)において、横軸の間隔lは、スケールの内挿前の信号周期(もしくは親ねじのリード)である。図6(a)(b)に示すように、長周期成分の出方に比べ、短周期成分の出方は、非線形であるが、略周期的な成分が主体である。そこで、このように略周期的な成分が主体であることを確認し、全長に亘って、これが続くと仮定し、周期関数近似の数式(1)を用いる。

Figure 2021060673
そして、スケールの内挿前の信号周期の整数倍だけの1回目、2回目の評価を上記非特許文献1の方法で処理し、内挿の偏差を推定する。この周期的な偏差の傾向が全長に亘って分布していると考え、周期的なピッチ補正を行うようにする(長周期のピッチ補正に重畳する)。 FIG. 6 shows an example of how long-period components are output and an example of how short-period components are output in the machine tool adjustment method according to the embodiment of the present invention, together with graphs showing changes in output with respect to input. FIG. 6A is a graph showing an example of how long-period components are output by changing the output (displacement display) with respect to input (displacement), and FIG. 6B is an example of how short-period components are output. Is a graph represented by a change in output (non-linearity) with respect to input (displacement). In FIG. 6B, the interval l on the horizontal axis is the signal period (or lead of the lead screw) before the scale is inserted. As shown in FIGS. 6A and 6B, the appearance of the short-period component is non-linear as compared with the appearance of the long-period component, but the appearance of the substantially periodic component is the main component. Therefore, it is confirmed that the component is substantially periodic in this way, and it is assumed that this continues over the entire length, and the mathematical formula (1) of periodic function approximation is used.
Figure 2021060673
Then, the first and second evaluations of only an integral multiple of the signal period before interpolation of the scale are processed by the method of Non-Patent Document 1 to estimate the deviation of interpolation. Considering that the tendency of this periodic deviation is distributed over the entire length, the periodic pitch correction is performed (superimposed on the long-period pitch correction).

ところで、スケールの内挿前の信号周期の整数倍だけの周期的な偏差の傾向が全長に亘って分布していると考えて周期的なピッチ補正だけを行うと、特に評価基準として高分解能のスケールをした場合は、端の部分では位相がずれる場合がある。図7は、本発明の実施形態の変形例に係る工作機械の調整方法を説明するための図であり、(a)は、スケールの長手方向の数箇所で評価箇所を設ける例を示す図であり、(b) は、位相オフセットλ(x)の出方を示す例である。図7(a)(b)に示すように、本実施形態の変形例として、例えば、スケールの長手方向のA、B、C、D、E、Fなど数箇所で位相オフセットλ(x)を、λをいくつにした時に、最も非線形性が小さくなるかを基準に評価し、λ(x)を決める。これを元に、補正の位相を調節するようにすれば良い。この補正の位相を調節するには、修正補正式として以下の数式(2)を用い、これを長周期のピッチ補正に重畳するようにすれば良い。

Figure 2021060673
以上のように、本発明の実施形態又はその変形例によれば、工作機械の高精度化が可能な調整方法を得ることができる。 By the way, if it is considered that the tendency of the periodic deviation of only an integral multiple of the signal period before the interpolation of the scale is distributed over the entire length and only the periodic pitch correction is performed, the resolution is particularly high as an evaluation standard. When scaled, the phase may shift at the edge. FIG. 7 is a diagram for explaining a method of adjusting a machine tool according to a modified example of the embodiment of the present invention, and FIG. 7A is a diagram showing an example in which evaluation points are provided at several points in the longitudinal direction of the scale. Yes, (b) is an example showing how the phase offset λ (x) appears. As shown in FIGS. 7A and 7B, as a modification of this embodiment, for example, phase offsets λ (x) are set at several points such as A, B, C, D, E, and F in the longitudinal direction of the scale. , Λ is evaluated based on how many non-linearities are minimized, and λ (x) is determined. Based on this, the phase of the correction may be adjusted. In order to adjust the phase of this correction, the following formula (2) may be used as the correction correction formula, and this may be superimposed on the long-period pitch correction.
Figure 2021060673
As described above, according to the embodiment of the present invention or a modification thereof, it is possible to obtain an adjustment method capable of improving the accuracy of the machine tool.

10 研削盤、 12 ベッド、 14 コラム、 16 レール、18 ヘッド、 20 砥石軸、 24 砥石軸(回転用)モータ、30 テーブル、36 テーブル送り装置、 40 U軸送り装置92 校正装置(システム)、94 リニアスケール、96 リニアスケール検出ヘッド、 100 砥石、 10 Grinding machine, 12 beds, 14 columns, 16 rails, 18 heads, 20 grindstone shafts, 24 grindstone shafts (for rotation) motors, 30 tables, 36 table feed devices, 40 U-axis feed devices 92 calibrators (systems), 94 Linear scale, 96 linear scale detection head, 100 grindstone,

Claims (1)

X−Y−Z3軸を有し、これと各々平行な直線軸または回転軸によってどれか1軸と平行に出来る直線軸を有し、これら直線軸の設定位置(入力)と変位(出力)の関係を別の校正装置で校正し、送りのピッチ精度をソフトウェアにより改善させている工作機械であって、このピッチ精度の校正のための測定を2回行い、1回目と2回目で評価対象と平行または平行にした軸の位置をわずかに変更し校正装置の側の非線形性まで校正し、かつ長周期の成分についてはどちらか一方の評価で2回のうち片方しか全体に亘って評価をしない場合には全体に亘って評価をした側を使用し、短周期の成分については2回の評価から推定される校正器の非線形性を考慮した補正値を作成することを特徴とする工作機械の調整方法。 It has three XYZ axes, and each has a linear axis parallel to it or a linear axis that can be parallel to any one axis by a rotation axis, and the set position (input) and displacement (output) of these linear axes. It is a machine tool that calibrates the relationship with another calibrator and improves the feed pitch accuracy by software. The measurement for calibrating this pitch accuracy is performed twice, and the evaluation target is the first and second times. The position of the parallel or parallel axes is slightly changed to calibrate to the non-linearity on the side of the calibrator, and for the long-period component, only one of the two evaluations is evaluated over the whole. In the case of a machine tool, the side evaluated over the whole is used, and for short-period components, a correction value considering the non-linearity of the calibrator estimated from two evaluations is created. Adjustment method.
JP2019183140A 2019-10-03 2019-10-03 Adjustment method that enables higher accuracy of machine tools Active JP7431550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183140A JP7431550B2 (en) 2019-10-03 2019-10-03 Adjustment method that enables higher accuracy of machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183140A JP7431550B2 (en) 2019-10-03 2019-10-03 Adjustment method that enables higher accuracy of machine tools

Publications (2)

Publication Number Publication Date
JP2021060673A true JP2021060673A (en) 2021-04-15
JP7431550B2 JP7431550B2 (en) 2024-02-15

Family

ID=75381396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183140A Active JP7431550B2 (en) 2019-10-03 2019-10-03 Adjustment method that enables higher accuracy of machine tools

Country Status (1)

Country Link
JP (1) JP7431550B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113601267A (en) * 2021-07-26 2021-11-05 成都飞机工业(集团)有限责任公司 Method for establishing part machining coordinate system
CN114923412A (en) * 2022-05-24 2022-08-19 绍兴职业技术学院 Calibration method for multi-measuring-head measuring system of shaft parts
WO2022209732A1 (en) 2021-03-31 2022-10-06 Hoya株式会社 Processor for electronic endoscope and electronic endoscopic system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1165625A (en) * 1997-08-26 1999-03-09 Toyoda Mach Works Ltd Method for correcting feeding position error for numerical control feeding device and the numerical control feeding device
JP2000099119A (en) * 1998-09-25 2000-04-07 Sodick Co Ltd Correcting method for ball screw pitch error
JP2003523567A (en) * 2000-01-11 2003-08-05 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Abbe error correction apparatus and method
JP2012208937A (en) * 2006-01-19 2012-10-25 Nikon Corp Mobile object driving method and mobile object driving system, pattern formation method and pattern formation device, exposure method and exposure device, and device manufacturing method
JP2017067448A (en) * 2015-09-28 2017-04-06 三井精機工業株式会社 Screw lead measurement device with en bloc autonomous calibration function of rotation angle sensor and displacement sensor
JP2018088250A (en) * 2016-11-29 2018-06-07 ミクロン アジー シャルミル アクチエンゲゼルシャフトMikron Agie Charmilles AG Kinematic calibration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1165625A (en) * 1997-08-26 1999-03-09 Toyoda Mach Works Ltd Method for correcting feeding position error for numerical control feeding device and the numerical control feeding device
JP2000099119A (en) * 1998-09-25 2000-04-07 Sodick Co Ltd Correcting method for ball screw pitch error
JP2003523567A (en) * 2000-01-11 2003-08-05 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Abbe error correction apparatus and method
JP2012208937A (en) * 2006-01-19 2012-10-25 Nikon Corp Mobile object driving method and mobile object driving system, pattern formation method and pattern formation device, exposure method and exposure device, and device manufacturing method
JP2017067448A (en) * 2015-09-28 2017-04-06 三井精機工業株式会社 Screw lead measurement device with en bloc autonomous calibration function of rotation angle sensor and displacement sensor
JP2018088250A (en) * 2016-11-29 2018-06-07 ミクロン アジー シャルミル アクチエンゲゼルシャフトMikron Agie Charmilles AG Kinematic calibration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209732A1 (en) 2021-03-31 2022-10-06 Hoya株式会社 Processor for electronic endoscope and electronic endoscopic system
CN113601267A (en) * 2021-07-26 2021-11-05 成都飞机工业(集团)有限责任公司 Method for establishing part machining coordinate system
CN113601267B (en) * 2021-07-26 2022-09-20 成都飞机工业(集团)有限责任公司 Method for establishing part machining coordinate system
CN114923412A (en) * 2022-05-24 2022-08-19 绍兴职业技术学院 Calibration method for multi-measuring-head measuring system of shaft parts
CN114923412B (en) * 2022-05-24 2024-03-12 绍兴职业技术学院 Calibration method for shaft part multi-measuring head measuring system

Also Published As

Publication number Publication date
JP7431550B2 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
EP2742316B1 (en) Calibration of apparatus for inspecting workpieces
JP5296316B2 (en) Measuring method for machine tools
US8131385B2 (en) Positioning device and positioning method with non-contact measurement
JP5607695B2 (en) Machine tool thermal displacement compensation device
KR101130596B1 (en) Method of calculating probe-mounting position in on-board measuring device
JP2021060673A (en) Adjustment method allowing for improved accuracy of machine tool
JPH02230303A (en) Positioning error compensation method and apparatus
EP3333537A1 (en) Method of error compensation
JP2016083729A (en) Geometric error identification system, and geometric error identification method
US20210132571A1 (en) System and method for machine workpiece alignment
US7612516B2 (en) Measuring method and system for CNC machine
Barman et al. Enhancement of accuracy of multi-axis machine tools through error measurement and compensation of errors using laser interferometry technique
US6325578B1 (en) Method of error compensation for angular errors in machining (droop compensation)
US10955238B1 (en) In-process automatic recalibration
WO2013187106A1 (en) Machine tool and method for correcting thermal deformation thereof
JP2021049591A (en) On-machine measuring method in machine tool
JPH1165663A (en) Position controller and method therefor
Ye et al. Application of error compensation technology for positioning precision of hydrostatic rotary table based on UMAC
JP2000317776A (en) Machine tool
Fedonin et al. CNC Lathe Accuracy Diagnostic System
Svoboda et al. 3D Volumetric Positioning Measurement and Compensation of CNC Machines Using Laser Vector Technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240202

R150 Certificate of patent or registration of utility model

Ref document number: 7431550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150