JP2021060356A - Method for detecting defects of honeycomb structure - Google Patents

Method for detecting defects of honeycomb structure Download PDF

Info

Publication number
JP2021060356A
JP2021060356A JP2019186084A JP2019186084A JP2021060356A JP 2021060356 A JP2021060356 A JP 2021060356A JP 2019186084 A JP2019186084 A JP 2019186084A JP 2019186084 A JP2019186084 A JP 2019186084A JP 2021060356 A JP2021060356 A JP 2021060356A
Authority
JP
Japan
Prior art keywords
honeycomb structure
ultrasonic
skin
defect
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019186084A
Other languages
Japanese (ja)
Inventor
樋口 暢浩
Nobuhiro Higuchi
暢浩 樋口
敬介 梶川
Keisuke Kajikawa
敬介 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019186084A priority Critical patent/JP2021060356A/en
Publication of JP2021060356A publication Critical patent/JP2021060356A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To easily detect defects of a honeycomb core with high accuracy.SOLUTION: Disclosed is a method for detecting defects of a honeycomb structure which is formed by sandwiching a honeycomb core between a pair of skins. This method includes: an installation step of installing an ultrasound probe in the outer surface of only one skin of the pair of skins; and a flaw detection step of performing the ultrasonic flaw detection by transmitting an ultrasonic wave from the ultrasonic probe into the honeycomb structure. In the flaw detection step, the ultrasonic wave of a predetermined frequency is transmitted from the ultrasonic probe so as to reach the other skin and a bottom reflected wave reflected from the other skin is received by the ultrasonic probe.SELECTED DRAWING: Figure 2

Description

本開示は、ハニカム構造体の欠陥検出方法に関する。 The present disclosure relates to a method for detecting defects in a honeycomb structure.

近年、航空機の翼や胴体をハニカム構造体によって形成する技術が広く用いられている。ハニカム構造体は、一例として六角形の断面形状を有するとともに厚さ方向に延びる中空体を複数配列して構成されたハニカムコアと、このハニカムコアを厚さ方向の両側から覆うスキンとを有している。
航空機の部材としてハニカム構造体を用いた場合、運用に伴って繰り返し付加される応力等によって、ハニカムコアとスキンとの界面(接着層)や、スキンの内部に欠陥が発生することがある。
In recent years, a technique for forming the wings and fuselage of an aircraft by a honeycomb structure has been widely used. As an example, the honeycomb structure has a honeycomb core having a hexagonal cross-sectional shape and being formed by arranging a plurality of hollow bodies extending in the thickness direction, and a skin covering the honeycomb core from both sides in the thickness direction. ing.
When a honeycomb structure is used as an aircraft member, defects may occur at the interface (adhesive layer) between the honeycomb core and the skin or inside the skin due to stress or the like that is repeatedly applied during operation.

このような欠陥を非破壊検査によって検出する技術として、下特許文献1には、1MHz投入型変換器としての超音波変換器を用いた装置が開示されている。この装置では、検査対象物の一面に配置される駆動プローブと該一面の反対側の他面に配置される追跡プローブを有しており、いわゆる透過法によって検査対象物の欠陥を検出する。したがって、例えば航空機部材のフラップのように、内部に閉鎖された空間が形成されている検査対象物の場合には、内部空間に追跡プローブを配置することができない。また、追跡プローブは駆動プローブに対して磁石でのみで保持されているため、走査速度は追跡プローブが追随する程度に制限され、走査の自由度が低い。 As a technique for detecting such defects by non-destructive inspection, Patent Document 1 below discloses a device using an ultrasonic converter as a 1 MHz input type converter. This device has a drive probe arranged on one surface of the inspection object and a tracking probe arranged on the other surface on the opposite side of the one surface, and detects defects in the inspection object by a so-called transmission method. Therefore, in the case of an inspection object in which a closed space is formed inside, such as a flap of an aircraft member, the tracking probe cannot be placed in the internal space. Further, since the tracking probe is held only by the magnet with respect to the driving probe, the scanning speed is limited to the extent that the tracking probe follows, and the degree of freedom of scanning is low.

また、特許文献2には、ハニカム構造の表面のスキンを除去した上で超音波を用いて検査を行う装置が開示されている。当該装置は、ハニカム構造体の検査ではなく、ハニカムコアが付設されたソリッド板の検査を目的としている。この装置を使用する際には、ハニカムコアの隙間に高分子ゲルを挿入して当該高分子ゲル内に超音波を伝搬させる。即ち、高分子ゲルを介してソリッド板の検査を行うこととしている。 Further, Patent Document 2 discloses an apparatus for inspecting using ultrasonic waves after removing the skin on the surface of the honeycomb structure. The purpose of the device is not to inspect the honeycomb structure but to inspect the solid plate to which the honeycomb core is attached. When using this device, a polymer gel is inserted into the gap between the honeycomb cores to propagate ultrasonic waves into the polymer gel. That is, the solid plate is inspected via the polymer gel.

また、非特許文献1には、航空機用複合材料の接合部を非破壊で試験する技術が開示されている。この技術では、スキンとハニカムコアとの剥離を検出することができるとされている。即ち、この技術では、強力な矩形波(スクエア波)パルスによって励起された際に、検査対象の構造内に共振を起こす広帯域の1MHzの探触子を採用している。そして、測定機器の受信器フィルターはハニカム構造体の厚さに合わせて調整されており、対応する半波長で作動する。スキンとハニカムコアとの間に剥離が存在すると構造の剛性が低下し、共振の波長が長くなって共振周波数が低下する。例えば内部構造上の25mm×25mmの剥離によって底面信号が6〜12dB減衰する。そのため、入射できるエネルギが格段に低下することから、 Further, Non-Patent Document 1 discloses a technique for non-destructively testing a joint portion of an aircraft composite material. It is said that this technique can detect peeling between the skin and the honeycomb core. That is, this technique employs a wideband 1 MHz probe that resonates within the structure to be inspected when excited by a strong square wave pulse. The receiver filter of the measuring device is adjusted to the thickness of the honeycomb structure and operates at the corresponding half wavelength. If there is peeling between the skin and the honeycomb core, the rigidity of the structure is reduced, the wavelength of resonance is lengthened, and the resonance frequency is lowered. For example, the bottom surface signal is attenuated by 6 to 12 dB due to the peeling of 25 mm × 25 mm on the internal structure. Therefore, the energy that can be incident is significantly reduced.

ここで、非特許文献1の技術を採用しようとすれば、強力な矩形波パルスが必要であるため、特殊な機材が必要となる。また、受信機フィルターをハニカム構造体の厚さに合わせて調整しなければならない。即ち。ハニカム構造体の板厚が変わるたびに適切と思われる周波数帯域を走査し、適切な周波数を見つけた上で検査を行う必要があるため、作業が煩雑となる。 Here, if the technique of Non-Patent Document 1 is to be adopted, a strong rectangular wave pulse is required, so that special equipment is required. Also, the receiver filter must be adjusted to the thickness of the honeycomb structure. That is. Every time the thickness of the honeycomb structure changes, it is necessary to scan the frequency band that seems to be appropriate, find the appropriate frequency, and then perform the inspection, which complicates the work.

なお、その他、いわゆるNON-CONTACTタイプの超音波探触子によって欠陥を検出する手法も知られているが、入射できるエネルギが格段に低下するという欠点がある。そのため、ハニカム構造体の裏面から反射した超音波を検出することはできない。 In addition, a method of detecting defects by a so-called NON-CONTACT type ultrasonic probe is also known, but it has a drawback that the energy that can be incident is significantly reduced. Therefore, the ultrasonic waves reflected from the back surface of the honeycomb structure cannot be detected.

特開2005−37395号公報Japanese Unexamined Patent Publication No. 2005-337395 国際公開第2017/168795号International Publication No. 2017/1687995

航空機用複合材料の非破壊接合部試験、[online]、[令和1年9月13日検索]、インターネット〈https://www.olympus-ims.com/ja/applications/non-destructive-bond-testing-aircraft-composites/〉Non-destructive joint testing of aircraft composites, [online], [Searched September 13, 1991], Internet <https://www.olympus-ims.com/en/applications/non-destructive-bond -testing-aircraft-composites />

本開示は上記課題を解決するためになされたものであって、一対のスキン及びハニカムコアを有するハニカム構造体の全体の欠陥を、簡便かつ精度高く検出することが可能なハニカム構造体の欠陥検出方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and is capable of easily and accurately detecting defects in the entire honeycomb structure having a pair of skins and a honeycomb core. The purpose is to provide a method.

上記課題を解決するために、本開示に係るハニカム構造体の欠陥検出方法は、ハニカムコアを一対のスキンで挟み込んでなるハニカム構造体の欠陥検出方法であって、前記一対のスキンのうちの一方のスキンのみの外面に超音波探触子を設置する設置工程と、該超音波探触子から前記ハニカム構造体の内部に超音波を発信して超音波探傷を行う探傷工程と、を備え、前記探傷工程では、前記超音波探触子から所定の周波数の超音波を他方の前記スキンまで到達するように発信し、該他方のスキンから反射される底面反射波を前記超音波探触子で受信する。 In order to solve the above problems, the defect detection method for the honeycomb structure according to the present disclosure is a defect detection method for the honeycomb structure in which the honeycomb core is sandwiched between a pair of skins, and is one of the pair of skins. It is provided with an installation step of installing an ultrasonic probe on the outer surface of only the skin of the above, and a flaw detection step of transmitting ultrasonic waves from the ultrasonic probe to the inside of the honeycomb structure to perform ultrasonic flaw detection. In the flaw detection step, ultrasonic waves having a predetermined frequency are transmitted from the ultrasonic probe so as to reach the other skin, and the bottom surface reflected wave reflected from the other skin is transmitted by the ultrasonic probe. Receive.

本開示のハニカム構造体の欠陥検出方法によれば、ハニカムコアを含むハニカム構造体の全体の欠陥を簡便に、かつ精度高く検出することができる。 According to the defect detection method of the honeycomb structure of the present disclosure, it is possible to easily and accurately detect the entire defect of the honeycomb structure including the honeycomb core.

本開示の実施形態に係る検出装置が適用されるハニカム構造体の一例を示す断面図である。It is sectional drawing which shows an example of the honeycomb structure to which the detection apparatus which concerns on embodiment of this disclosure is applied. 図1の領域Zを拡大して示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing an enlarged area Z in FIG. 本開示の実施形態に係るハニカムコアを厚さ方向から見た断面図である。It is sectional drawing which looked at the honeycomb core which concerns on embodiment of this disclosure from the thickness direction. 本開示の実施形態に係るハニカム構造体の欠陥検出方法の各工程を示すフローチャートである。It is a flowchart which shows each step of the defect detection method of the honeycomb structure which concerns on embodiment of this disclosure.

(翼体の構成)
以下、本開示の実施形態に係るハニカム構造体の欠陥検出方法、及び検出装置90について、図1から図4を参照して説明する。検出装置90は、翼体100の欠陥の検出に用いられる装置である。図1に示すように、翼体100は、前縁Lから後縁Tに向かって延びる翼型断面形状を有している。前縁Lと後縁Tとを接続する一対の面のうち、一方側の面は外側に向かって曲面状に膨らむ負圧面Snとされ、他方側の面は内側に向かって凹む正圧面Spとされている。
(Structure of wing body)
Hereinafter, the defect detection method for the honeycomb structure and the detection device 90 according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 4. The detection device 90 is a device used for detecting defects in the blade body 100. As shown in FIG. 1, the airfoil 100 has an airfoil cross-sectional shape extending from the front edge L toward the trailing edge T. Of the pair of surfaces connecting the front edge L and the trailing edge T, one surface is a negative pressure surface Sn that bulges outward in a curved shape, and the other surface is a positive pressure surface Sp that dents inward. Has been done.

翼体100として具体的には、航空機のフラップやスラット、エルロン、エレベータ、ラダー等が挙げられる。詳しくは図示しないが、これらの部材は、航空機の補助翼として主翼や尾翼、垂直安定板に取り付けられている。翼体100は中空構造をなしている。 Specific examples of the wing body 100 include aircraft flaps, slats, ailerons, elevators, ladders, and the like. Although not shown in detail, these members are attached to the main wing, tail wing, and vertical stabilizer as auxiliary wings of an aircraft. The wing body 100 has a hollow structure.

(ハニカム構造体の構成)
図2に拡大して示すように、翼体100の壁面は、ハニカム構造体80によって形成されている。ハニカム構造体80は、一対のスキン1と、これらスキン1同士の間に挟みこまれたハニカムコア2と、スキン1とハニカムコア2とを結合する接着層gとを備える積層構造をなしている。
(Structure of honeycomb structure)
As shown enlarged in FIG. 2, the wall surface of the blade body 100 is formed by the honeycomb structure 80. The honeycomb structure 80 has a laminated structure including a pair of skins 1, a honeycomb core 2 sandwiched between the skins 1, and an adhesive layer g for connecting the skins 1 and the honeycomb core 2. ..

スキン1は例えばCFRP(Carbon Fiber Reinforced Plastic)やGFRP(Glass Fiber Reinforced Plastic)を含む複合材で形成されている。ハニカムコア2は、一例として図3に示すように厚さ方向から見て六角形の断面形状をなす複数の中空体21を互いに隙間なく隣接配置することで形成されている。ハニカムコア2は、この中空体21の延びる方向を翼体100の翼高さ方向に沿わせるようにして配置される。 The skin 1 is formed of a composite material containing, for example, CFRP (Carbon Fiber Reinforced Plastic) or GFRP (Glass Fiber Reinforced Plastic). As an example, the honeycomb core 2 is formed by arranging a plurality of hollow bodies 21 having a hexagonal cross-sectional shape when viewed from the thickness direction so as to be adjacent to each other without a gap, as shown in FIG. The honeycomb core 2 is arranged so that the extending direction of the hollow body 21 is along the blade height direction of the blade body 100.

ハニカムコア2の厚さ方向両側には、接着層gを介して、一対のスキン1が取り付けられている。これら一対のスキン1のうち、翼体100の外面をなすスキン1は、表面側スキン1aとされている。翼体100の内面をなすスキン1は、裏面側スキン1bとされている。 A pair of skins 1 are attached to both sides of the honeycomb core 2 in the thickness direction via an adhesive layer g. Of these pair of skins 1, the skin 1 forming the outer surface of the wing body 100 is referred to as the surface side skin 1a. The skin 1 forming the inner surface of the wing body 100 is the back surface side skin 1b.

表面側スキン1aにおける翼体100の外側(つまり、ハニカムコア2の反対側)を向く面は外面A1とされ、この外面A1上には後述する検出装置90が設置される。表面側スキン1aにおける内側を向く面は内面A2とされている。内面A2は、第一接着層g1を介してハニカムコア2の一方側の面(コア外面B1)に結合されている。 The surface of the surface side skin 1a facing the outside of the blade body 100 (that is, the opposite side of the honeycomb core 2) is the outer surface A1, and a detection device 90 described later is installed on the outer surface A1. The inward facing surface of the surface side skin 1a is the inner surface A2. The inner surface A2 is bonded to one side surface (core outer surface B1) of the honeycomb core 2 via the first adhesive layer g1.

裏面側スキン1bにおける翼体100の外側(つまり、ハニカムコア2側)を向く面は外面A3とされている。外面A3は、第二接着層g2を介してハニカムコア2の他方側の面(コア内面B2)に結合されている。裏面側スキン1bにおける内側を向く面は内面A4とされている。内面A4の内側には空間が形成されている。 The surface of the back surface side skin 1b facing the outside (that is, the honeycomb core 2 side) of the blade body 100 is the outer surface A3. The outer surface A3 is bonded to the other surface (core inner surface B2) of the honeycomb core 2 via the second adhesive layer g2. The inward facing surface of the back surface side skin 1b is the inner surface A4. A space is formed inside the inner surface A4.

(検出装置の構成)
検出装置90は、表面側スキン1aの表面(外面A1)上に配置されることで、超音波によってハニカム構造体80全体の欠陥検査を行う(超音波探傷を行う)。つまり、この検出装置90は、超音波探触子である。この検出装置90は、外面A1から第二接着層g2にかけて超音波を到達させる。より具体的には、検出装置90から発せされる超音波の周波数は、500kHz以上、1MHz以下とされる。
(Configuration of detection device)
The detection device 90 is arranged on the surface (outer surface A1) of the surface side skin 1a to inspect the entire honeycomb structure 80 for defects by ultrasonic waves (ultrasonic flaw detection is performed). That is, the detection device 90 is an ultrasonic probe. The detection device 90 allows ultrasonic waves to reach from the outer surface A1 to the second adhesive layer g2. More specifically, the frequency of the ultrasonic wave emitted from the detection device 90 is 500 kHz or more and 1 MHz or less.

また、上記周波数の超音波による探傷が可能なハニカム構造体80の規格は、ハニカムコア2の形状・寸法、及びスキン1の材質によって決定される。具体的には、六角形(Hex型)のハニカム形状、3.2mmのハニカム寸法、及び5.0mm、9.5mm又は23mmの厚さを有するハニカムコア2や、矩形(Ox型)のハニカム形状、4.8mmのハニカム寸法、及び19.5mmの厚さを有するハニカムコア2が好適である。 Further, the standard of the honeycomb structure 80 capable of detecting flaws by ultrasonic waves of the above frequency is determined by the shape and dimensions of the honeycomb core 2 and the material of the skin 1. Specifically, a hexagonal (Hex type) honeycomb shape, a honeycomb size of 3.2 mm, a honeycomb core 2 having a thickness of 5.0 mm, 9.5 mm or 23 mm, and a rectangular (Ox type) honeycomb shape. A honeycomb core 2 having a honeycomb size of 4.8 mm and a thickness of 19.5 mm is suitable.

(欠陥検出方法)
次いで、本実施形態に係るハニカム構造体80の欠陥検出方法について、図4を参照して説明する。この方法は、設置工程S1と、探傷工程S2とを含む。設置工程S1では、一方のスキン1(表面側スキン1a)のみの外面A1のみに検出装置90を設置する。探傷工程S2では、反射法による超音波探傷を行う。即ち、探傷工程S2では、検出装置90を表面側スキン1aの表面に沿って移動させながら、検出装置90からハニカム構造体80の内部に超音波を発信して超音波探傷を行う。探傷工程S2では、上述した所定の周波数の超音波を検出装置90から他方のスキン1(裏面側スキン1b)まで到達するように発信する。
(Defect detection method)
Next, a defect detection method for the honeycomb structure 80 according to the present embodiment will be described with reference to FIG. This method includes an installation step S1 and a flaw detection step S2. In the installation step S1, the detection device 90 is installed only on the outer surface A1 of only one skin 1 (front surface side skin 1a). In the flaw detection step S2, ultrasonic flaw detection is performed by the reflection method. That is, in the flaw detection step S2, while moving the detection device 90 along the surface of the surface side skin 1a, ultrasonic waves are transmitted from the detection device 90 to the inside of the honeycomb structure 80 to perform ultrasonic flaw detection. In the flaw detection step S2, the ultrasonic waves having the predetermined frequency described above are transmitted from the detection device 90 so as to reach the other skin 1 (back surface side skin 1b).

ハニカム構造体80のいずれの箇所にも欠陥が無い場合、検出装置90から発信された超音波は、表面側スキン1a、第一接着層g1、ハニカムコア2、第二接着層g2を経由して裏面側スキン1bまで伝搬する。そして、当該超音波は、裏面側スキン1bにおける内側を向く面A4で反射する結果、底面反射波として、逆の経路、即ち、第二接着層g2、ハニカムコア2、第一接着層g1、表面側スキン1aを経由して検出装置90まで到達する。即ち、検出装置90から発信された超音波は、表面側スキン1a、第一接着層g1、ハニカムコア2、第二接着層g2、裏面側スキン1b、第二接着層g2、ハニカムコア2、第一接着層g1、表面側スキン1aを順次通過する経路Rで進行する。このようにハニカム構造体に欠陥がない場合には、検出装置90によって底面反射波が正常に受信される。 When there is no defect in any part of the honeycomb structure 80, the ultrasonic wave transmitted from the detection device 90 passes through the surface side skin 1a, the first adhesive layer g1, the honeycomb core 2, and the second adhesive layer g2. It propagates to the back skin 1b. Then, as a result of the ultrasonic waves being reflected by the inward facing surface A4 on the back surface side skin 1b, the reverse path, that is, the second adhesive layer g2, the honeycomb core 2, the first adhesive layer g1, and the front surface is used as the bottom surface reflected wave. It reaches the detection device 90 via the side skin 1a. That is, the ultrasonic waves transmitted from the detection device 90 are the front surface side skin 1a, the first adhesive layer g1, the honeycomb core 2, the second adhesive layer g2, the back surface side skin 1b, the second adhesive layer g2, the honeycomb core 2, and the second. It proceeds along a path R that sequentially passes through one adhesive layer g1 and the surface side skin 1a. When there is no defect in the honeycomb structure as described above, the bottom reflected wave is normally received by the detection device 90.

一方で、例えば表面側スキン1aや第一接着層g1内に欠陥が存在する場合、検出装置90から発信された超音波はこの欠陥部位によって反射される。その結果、超音波は裏面側スキン1bにおける内側を向く面A4まで到達することはないため、底面反射波は、検出装置90で受信されなくなる。検出装置90で底面反射波が受信されなかった場合には、ハニカム構造体80のいずれかの部位で欠陥があったものと判断される。なお、第一接着層g1における欠陥として具体的には、表面側スキン1aとハニカムコア2との間の剥がれが挙げられる。 On the other hand, for example, when a defect is present in the surface side skin 1a or the first adhesive layer g1, the ultrasonic wave transmitted from the detection device 90 is reflected by the defect portion. As a result, the ultrasonic waves do not reach the inward facing surface A4 of the back surface side skin 1b, so that the bottom surface reflected wave is not received by the detection device 90. If the bottom surface reflected wave is not received by the detection device 90, it is determined that there is a defect in any part of the honeycomb structure 80. Specific examples of the defect in the first adhesive layer g1 include peeling between the surface side skin 1a and the honeycomb core 2.

また、例えばハニカムコア2内に欠陥が存在する場合、検出装置90から発信された超音波はこの欠陥部位で反射される。その結果、上記同様、底面反射波は当初の経路Rから逸脱する方向に進み、検出装置90で受信されず、ハニカム構造体80のいずれかの部位で欠陥があったものと判断される。なお、ハニカムコア2は上述のように中空構造であることから、超音波による片側からの探傷は極めて難しいとされていた。しかしながら、上記のように超音波の周波数を500kHz以上、1MHz以下とすることによって、当該ハニカムコア2の欠陥を検出することが可能である。 Further, for example, when a defect exists in the honeycomb core 2, the ultrasonic wave transmitted from the detection device 90 is reflected at the defect portion. As a result, similarly to the above, the bottom reflected wave travels in a direction deviating from the initial path R, is not received by the detection device 90, and it is determined that there is a defect in any part of the honeycomb structure 80. Since the honeycomb core 2 has a hollow structure as described above, it has been considered extremely difficult to detect flaws from one side by ultrasonic waves. However, by setting the ultrasonic frequency to 500 kHz or more and 1 MHz or less as described above, it is possible to detect the defect of the honeycomb core 2.

さらに、例えば裏面側スキン1bや第二接着層g2内に欠陥が存在する場合、検出装置90から発信された超音波はこの欠陥部位によって経路Rから逸脱して反射される。その結果、底面反射波は上記同様、検出装置90で受信されなくなる。検出装置90で底面反射波が受信されなかった場合には、ハニカム構造体80のいずれかの部位で欠陥があったものと判断される。なお、第二接着層g2における欠陥として具体的には、裏面側スキン1bとハニカムコア2との間の剥がれが挙げられる。 Further, for example, when a defect is present in the back surface side skin 1b or the second adhesive layer g2, the ultrasonic wave transmitted from the detection device 90 is reflected by the defect portion deviating from the path R. As a result, the bottom reflected wave is not received by the detection device 90 as described above. If the bottom surface reflected wave is not received by the detection device 90, it is determined that there is a defect in any part of the honeycomb structure 80. Specific examples of the defect in the second adhesive layer g2 include peeling between the back surface side skin 1b and the honeycomb core 2.

(作用効果)
上記方法によれば、一方のスキン1の外面A1に検出装置90を設置することのみによって、ハニカム構造体80の欠陥を検出することができる。即ち、表面側スキン1aや裏面側スキン1bの境界の欠陥のみならず、裏面側スキン1bやハニカムコア2の内部の欠陥も検出することができる。つまり、従来のようにハニカム構造体80の厚さ方向両側にプローブ等を配置することができないハニカム構造体80に対しても、外部から簡便にハニカム構造体80全体の超音波探傷を行うことができる。
(Action effect)
According to the above method, defects in the honeycomb structure 80 can be detected only by installing the detection device 90 on the outer surface A1 of one of the skins 1. That is, not only defects at the boundary between the front surface side skin 1a and the back surface side skin 1b but also internal defects at the back surface side skin 1b and the honeycomb core 2 can be detected. That is, even for the honeycomb structure 80 in which probes and the like cannot be arranged on both sides of the honeycomb structure 80 in the thickness direction as in the conventional case, ultrasonic flaw detection of the entire honeycomb structure 80 can be easily performed from the outside. it can.

したがって、例えばハニカム構造体80から形成された航空機のフラップの袋構造をばらさずに欠陥検査を行うことができる。即ち、探傷工程S2では反射法が用いられていることにより、裏面側スキン1bの表面には超音波探触子を設ける必要はないため、効率良く円滑に作業を行うことができる。仮に、ハニカム構造体80を挟むように一対の超音波探触子を設ける必要がある場合には、これら超音波探触子を互いに磁石等で保持する必要がある。そのため、落下等のおそれがあり、安全上好ましくない。本実施形態の欠陥検出方法では、このようなデメリットを回避することができる。 Therefore, for example, the defect inspection can be performed without disassembling the bag structure of the flap of the aircraft formed from the honeycomb structure 80. That is, since the reflection method is used in the flaw detection step S2, it is not necessary to provide an ultrasonic probe on the front surface of the back surface side skin 1b, so that the work can be performed efficiently and smoothly. If it is necessary to provide a pair of ultrasonic probes so as to sandwich the honeycomb structure 80, it is necessary to hold these ultrasonic probes with magnets or the like. Therefore, there is a risk of dropping, which is not preferable in terms of safety. In the defect detection method of the present embodiment, such a demerit can be avoided.

また、本実施形態では、超音波の周波数の所定の値とすることで、片側からの反射法による検査を可能としている。そのため、例えば強力な矩形波パルスを発信するような特殊な機器は必要なく、通常の超音波探傷機器によって検査を行うことができる。
さらに、検査装置90を表面側スキン1aに設置してその表面に沿って移動させればよく、例えばハニカム構造体80の厚さに対応して周波数を調整する必要もない。
また、欠陥の有無は、底面反射波を受信できたか否かで判別が可能であるため、ノイズが少なく高精度な欠陥検出を行うことができる。
Further, in the present embodiment, by setting the frequency of the ultrasonic wave to a predetermined value, it is possible to inspect by the reflection method from one side. Therefore, for example, a special device that emits a strong rectangular wave pulse is not required, and the inspection can be performed by a normal ultrasonic flaw detection device.
Further, the inspection device 90 may be installed on the surface side skin 1a and moved along the surface thereof, and it is not necessary to adjust the frequency corresponding to the thickness of the honeycomb structure 80, for example.
Further, since the presence or absence of a defect can be determined by whether or not the bottom reflected wave can be received, it is possible to perform highly accurate defect detection with less noise.

以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。 Although the embodiments of the present disclosure have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present disclosure are also included.

<付記>
各実施形態に記載のハニカム構造体80の欠陥検出方法は、例えば以下のように把握される。
<Additional notes>
The defect detection method of the honeycomb structure 80 described in each embodiment is grasped as follows, for example.

(1)第1の態様に係るハニカム構造体80の欠陥検出方法は、ハニカムコア2を一対のスキン1で挟み込んでなるハニカム構造体80の欠陥検出方法であって、前記一対のスキン1のうちの一方のスキン1のみの外面A1に超音波探触子90を設置する設置工程S1と、該超音波探触子90から前記ハニカム構造体80の内部に超音波を発信して超音波探傷を行う探傷工程S2と、を備え、前記探傷工程S2では、前記超音波探触子90から所定の周波数の超音波を他方の前記スキン1bまで到達するように発信し、該他方のスキン1bから反射される底面反射波を前記超音波探触子90で受信する。 (1) The defect detection method for the honeycomb structure 80 according to the first aspect is a defect detection method for the honeycomb structure 80 in which the honeycomb core 2 is sandwiched between the pair of skins 1, and is among the pair of skins 1. The installation step S1 in which the ultrasonic probe 90 is installed on the outer surface A1 of only one skin 1, and the ultrasonic probe 90 transmits ultrasonic waves into the honeycomb structure 80 to perform ultrasonic flaw detection. In the flaw detection step S2, ultrasonic waves having a predetermined frequency are transmitted from the ultrasonic probe 90 so as to reach the other skin 1b, and are reflected from the other skin 1b. The bottom reflected wave is received by the ultrasonic probe 90.

上記方法によれば、一方のスキン1の外面A1に超音波探触子を設置することのみによって、ハニカム構造体80の欠陥を検出することができる。つまり、従来のようにハニカム構造体80の厚さ方向両側にプローブ等を配置することができないハニカム構造体80に対しても、外部から簡便に超音波探傷を行うことができる。さらに一方のスキン1aや他方のスキン1bの境界の欠陥のみならず、ハニカムコア2の欠陥も検出することができる。 According to the above method, the defect of the honeycomb structure 80 can be detected only by installing the ultrasonic probe on the outer surface A1 of one of the skins 1. That is, even for the honeycomb structure 80 in which probes and the like cannot be arranged on both sides of the honeycomb structure 80 in the thickness direction as in the conventional case, ultrasonic flaw detection can be easily performed from the outside. Further, not only defects at the boundary between one skin 1a and the other skin 1b but also defects at the honeycomb core 2 can be detected.

(2)第2の態様に係るハニカム構造体80の欠陥検出方法において、前記探傷工程S2では、前記超音波を発信した際に、前記底面反射波を受信した場合には、欠陥がなかったと判断し、前記底面反射波を受信しなかった場合には、前記ハニカムコア2を含む前記ハニカム構造体80のいずれかの部位に欠陥があったと判断する。 (2) In the defect detection method of the honeycomb structure 80 according to the second aspect, in the flaw detection step S2, when the ultrasonic wave is transmitted and the bottom surface reflected wave is received, it is determined that there is no defect. If the bottom surface reflected wave is not received, it is determined that any part of the honeycomb structure 80 including the honeycomb core 2 has a defect.

上記構成によれば、ハニカム構造体80全体の欠陥を精度高く検出することができる。 According to the above configuration, defects in the entire honeycomb structure 80 can be detected with high accuracy.

(3)第3の態様に係るハニカム構造体80の欠陥検出方法では、前記所定の周波数は、500kHz〜1MHzである。 (3) In the defect detection method of the honeycomb structure 80 according to the third aspect, the predetermined frequency is 500 kHz to 1 MHz.

上記構成によれば、ハニカムコア2とスキン1との界面、及びハニカムコア2自体の欠陥を精度高く検出することができる。 According to the above configuration, the interface between the honeycomb core 2 and the skin 1 and the defects of the honeycomb core 2 itself can be detected with high accuracy.

100 翼体
90 検出装置
80 ハニカム構造体
1 スキン
1a 表面側スキン
1b 裏面側スキン
2 ハニカムコア
21 中空体
A1,A3 外面
A2,A4 内面
B1 コア外面
B2 コア内面
g1 第一接着層
g2 第二接着層
L 前縁
R 経路
Sn 負圧面
Sp 正圧面
T 後縁
100 Wing body 90 Detection device 80 Honeycomb structure 1 Skin 1a Front side skin 1b Back side skin 2 Honeycomb core 21 Hollow body A1, A3 Outer surface A2, A4 Inner surface B1 Core outer surface B2 Core inner surface g1 First adhesive layer g2 Second adhesive layer L Front edge R Path Sn Negative pressure surface Sp Positive pressure surface T Trailing edge

Claims (3)

ハニカムコアを一対のスキンで挟み込んでなるハニカム構造体の欠陥検出方法であって、
前記一対のスキンのうちの一方のスキンのみの外面に超音波探触子を設置する設置工程と、
該超音波探触子から前記ハニカム構造体の内部に超音波を発信して超音波探傷を行う探傷工程と、
を備え、
前記探傷工程では、
前記超音波探触子から所定の周波数の超音波を他方の前記スキンまで到達するように発信し、該他方のスキンから反射される底面反射波を前記超音波探触子で受信するハニカム構造体の欠陥検出方法。
A defect detection method for a honeycomb structure in which a honeycomb core is sandwiched between a pair of skins.
The installation process of installing the ultrasonic probe on the outer surface of only one of the pair of skins, and
A flaw detection process in which ultrasonic waves are transmitted from the ultrasonic probe to the inside of the honeycomb structure to perform ultrasonic flaw detection, and
With
In the flaw detection process,
A honeycomb structure in which an ultrasonic wave having a predetermined frequency is transmitted from the ultrasonic probe so as to reach the other skin, and a bottom reflected wave reflected from the other skin is received by the ultrasonic probe. Defect detection method.
前記探傷工程では、
前記超音波を発信した際に、
前記底面反射波を受信した場合には、欠陥がなかったと判断し、
前記底面反射波を受信しなかった場合には、前記ハニカムコアを含む前記ハニカム構造体のいずれかの部位に欠陥があったと判断するハニカム構造体の欠陥検出方法。
In the flaw detection process,
When the ultrasonic wave is transmitted,
When the bottom reflected wave is received, it is judged that there is no defect, and it is judged that there is no defect.
A method for detecting a defect in a honeycomb structure, which determines that any part of the honeycomb structure including the honeycomb core has a defect when the bottom reflected wave is not received.
前記所定の周波数は、500kHz〜1MHzである請求項1または2に記載のハニカム構造体の欠陥検出方法。 The method for detecting defects in a honeycomb structure according to claim 1 or 2, wherein the predetermined frequency is 500 kHz to 1 MHz.
JP2019186084A 2019-10-09 2019-10-09 Method for detecting defects of honeycomb structure Withdrawn JP2021060356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019186084A JP2021060356A (en) 2019-10-09 2019-10-09 Method for detecting defects of honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019186084A JP2021060356A (en) 2019-10-09 2019-10-09 Method for detecting defects of honeycomb structure

Publications (1)

Publication Number Publication Date
JP2021060356A true JP2021060356A (en) 2021-04-15

Family

ID=75379995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186084A Withdrawn JP2021060356A (en) 2019-10-09 2019-10-09 Method for detecting defects of honeycomb structure

Country Status (1)

Country Link
JP (1) JP2021060356A (en)

Similar Documents

Publication Publication Date Title
US6843130B2 (en) System and method for the inspection of adhesive
US8499632B1 (en) Characterizing anomalies in a laminate structure
Ramadas et al. Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate
EP3070467B1 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
Diamanti et al. Non-destructive inspection of sandwich and repaired composite laminated structures
EP3405782B1 (en) Inspection devices and related systems and methods
Ramadas et al. Lamb wave based ultrasonic imaging of interface delamination in a composite T-joint
ITTO20101090A1 (en) ULTRASONIC NON-DESTRUCTIVE INSPECTION METHOD, IN PARTICULAR FOR COMPOSITE MATERIAL STRUCTURES FOR AERONAUTICAL APPLICATIONS
Dragan et al. Studying efficiency of NDE techniques applied to composite materials in aerospace applications
CN109997039B (en) Ultrasonic flaw detection device and method for composite material
Hsu Nondestructive testing using air-borne ultrasound
Jakubczak et al. Non-destructive testing investigation of gaps in thin Glare laminates
EP2984479B1 (en) Ultrasonic inspection using incidence angles
JP2021060356A (en) Method for detecting defects of honeycomb structure
Hsu et al. Inspecting composites with airborne ultrasound: through thick and thin
Roach et al. Development and assessment of advanced inspection methods for wind turbine blades using a focused WINDIE experiment
Bisle et al. In-Service Inspection Concept for GLARE®—An Example for the Use of New UT Array In-spection Systems
Poudel et al. Porosity measurement in carbon fiber epoxy laminates by using acoustography
RU2701204C1 (en) Method for non-destructive testing of a monolithic sheet together with an adhesive layer in multilayer structures from polymer composite materials
Koodalil et al. Inspection of hidden and curved regions in composite structures using non-contact guided ultrasonic waves
Zhong et al. Ultrasonic testing techniques for nondestructive evaluation of fiber-reinforced composite structures
Chu et al. Ultrasonic edge waves for damage detection in composite plate stiffeners
JP7387511B2 (en) Structural health diagnosis system, structural health diagnosis method, and aircraft structure
Žukauskas et al. Investigation of the delamination type defects parameters in multilayered GLARE3-3/2 composite material using air–coupled ultrasonics technique
Spytek et al. Comparison of ultrasonically generated shear and zero-group velocity Lamb waves for damage detection in adhesively bonded aluminum plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220906

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230602