JP2021057883A - インテリジェントな無線バンド再構成 - Google Patents

インテリジェントな無線バンド再構成 Download PDF

Info

Publication number
JP2021057883A
JP2021057883A JP2020112609A JP2020112609A JP2021057883A JP 2021057883 A JP2021057883 A JP 2021057883A JP 2020112609 A JP2020112609 A JP 2020112609A JP 2020112609 A JP2020112609 A JP 2020112609A JP 2021057883 A JP2021057883 A JP 2021057883A
Authority
JP
Japan
Prior art keywords
aps
determining
difference
network
neighbor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020112609A
Other languages
English (en)
Inventor
ウェンフェン・ワン
Wenfeng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juniper Networks Inc
Original Assignee
Juniper Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juniper Networks Inc filed Critical Juniper Networks Inc
Publication of JP2021057883A publication Critical patent/JP2021057883A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】ネットワークパラメータを自動的に再構成するための方法及び装置を提供する。【解決手段】通信ネットワークシステム100において、サーバなどのスタンドアロンネットワークデバイスとして実装されるか又はアクセスポイントなどのネットワークデバイスに組み込まれるネットワーク管理装置は、高優先度の機器と干渉する通信チャネルを識別し、有害な干渉を引き起こす通信チャネルをデアクティベートする。いくつかのアクセスポイントは、2.4GHz通信チャネルに切り替えられる。送信電力などのアクセスポイント動作パラメータは、高優先度受信機に対する干渉を低減するように調整される。【選択図】図1

Description

関連出願の相互参照
[0001] 本願は、2019年9月30日付で出願され、「Intelligent Radio Band Reconfiguration」と題された、米国仮特許出願第62/907,889号に対する優先権を主張する。この先行出願の内容は、本願の一部と見なされ、その全体が参照により組み込まれている。
[0002] 本願は、ワイヤレス通信に関する。より詳細には、開示された主題は、あるアクセスポイントから別のアクセスポイントへのモバイル端末のローミングを改善する。
[0003] 図1は、1つまたは複数の実施形態が実装される例示的な通信ネットワークを図示するブロック図である。 [0004] 図2は、図1に示されたシステムに使用され得るワイヤレスアクセスポイントの実施形態を図示するブロック図である。 [0005] 図3は、例えばサーバなどのスタンドアロンネットワークデバイスとして実装され得るか、または例えば図1のアクセスポイントなどの別のネットワークデバイスに組み込まれ得る、例えば、リアルタイムのおよび/または予測的な障害検出および補正デバイスのような、ネットワーク管理装置の実施形態を図示するブロック図である。 [0006] 図4は、図1に示されるいくつかのデバイスのうちのいずれか1つとして使用され得る例示的なネットワークノードを図示するブロック図である。 [0007] 図5は、図1のシステム中のUEとして使用され得る、WTなどの例示的な通信デバイスの実施形態を図示するブロック図である。 [0008] 図6Aは、図1のネットワークなどのネットワークの例示的なネットワークグラフを図示する。 [0009] 図6Bは、1つのAPがオフにされているか、またはそうでなければ抑制された後の図6Aのネットワークに対応する、例示的なグラフである。 [00010] 図6Cは、図1のシステムなどの別のネットワークに対応する、例示的なネットワークグラフである。 [00011] 図6Dは、1つのAPがオフにされているか、またはそうでなければ抑制された後の図6Cのネットワークに対応する、例示的なグラフである。 [00012] 図6Eは、2つのAPがオフにされているか、またはそうでなければ抑制された後の図6Cのネットワークに対応する、例示的なグラフである。 [00013] 図6Fは、2つのAPがオフにされているか、またはそうでなければ抑制されており、かつ送信電力が調整された後の図6Cのネットワークに対応する例示的なネットワークグラフである。 [00014] 図7は、開示された実施形態のうちの1つまたは複数において動的周波数選択(DFS:Dynamic Frequency Selection)を使用してAPによって行われる例示的な処理のフローチャートである。 [00015] 図8は、開示された実施形態のうちの1つまたは複数によって行われる例示的な処理のフローチャートである。 [00016] 図9は、開示された実施形態のうちの1つまたは複数によって行われる例示的な処理のフローチャートである。
詳細な説明
[00017] Wi−Fiは、産業用、化学用、および医療用(ISM:Industrial, Scientific, and Medical)機器のために使用されるアンライセンス周波数バンドで最初に展開された。ISM周波数バンドは、2.4〜2.5GHzにまたがり、2.4GHzバンドと呼ばれる。2.4GHz ISMバンドのためのWi−Fi IEEE802.11で使用するために定義された14チャネルが存在する。それらチャネルの全てが、全ての国で許可されているわけではない。11はFCC(米国連邦通信委員会)によって許可されており、しばしば北アメリカドメインと呼ばれるもので使用され、13はETSI(欧州電気通信規格協会)によってチャネルが定義されている欧州で許可されている。WLAN/Wi−Fiチャネルは、(最後の2つのチャネル間の12MHz間隔を除いて)5MHz離れて配置される。
[00018] 上述されたチャネルは重複しており、したがって、ユーザは干渉に起因した通信の劣化を経験し得る。いかなる場合でも干渉がないよう保証するために、2.4GHzスペクトルがこれらのチャネル間の十分なガードバンドを有する3つの非重複通信チャネルに(北アメリカでは)分割される。これらの非重複チャネルは、チャネル1、6、および11と呼ばれる。
[00019] IEEE802.11WLAN規格は、22MHzの帯域幅を指定し、チャネルは、5MHzの増分ステップである。20MHzのチャネル帯域幅のための公称値(Nominal figures)が与えられることもある。20/22MHz帯域幅と5MHzのチャネル分割は、隣り合うチャネルが重複し、かつ隣り合うチャネル上の信号が互いに干渉するであろうことを意味する。
[00020] 2.4GHzバンドはさらに狭くなるので、多くのユーザが5GHz ISMバンドを使用することを選択している。これは、さらなるスペクトルを提供するだけではなく、例えば電子レンジなどのような商品を含む電子機器によって幅広く使用されるものではない。
[00021] 5GHz Wi−Fi帯域幅は、アンライセンスISMチャネル、並びに、認可された(accepted)ISMアンライセンスバンドの分野に入らない多数のチャネルを含み、結果として、様々な制限がこれらの周波数における動作で発生する。ISMアンライセンスバンドの分野に入らないチャネルを使用するための主な懸念点は、Wi−Fi機器が天気レーダーおよび軍事用途(軍事用レーダーおよび/または通信など)の動作と干渉する可能性があることである。干渉を避けるために、これらの周波数で動作するWi−Fi機器は、これらのチャネル上で動的周波数選択(DFS:Dynamic Frequency Selection)能力を実装しなければならない。DFSは、IEEE802.11hワイヤレスローカルエリアネットワーク規格によってサポートされている。DFSはまた、レーダー回避のための5470〜5725MHz U−NIIバンドでも指示される。
[00022] DFSは、レーダーおよび他のシステムと共存するワイヤレスLAN(WLAN)を可能にするスペクトル共有機構である。DFSシステムは、例えばレーダーシステムからの信号に関する特定のバンド上でリッスンする。DFSシステムが信号を検出した場合、DFSシステムは、異なる周波数を自動的に選択し、その上で動作する任意の他の機器が存在するかどうかを確認するために、異なる周波数を調査する。DFSシステムは次いで、任意のレーダーシステムと干渉しない5GHz周波数チャネルを選択および使用する。
[00023] DFSルールは、天気および軍事レーダーによって使用される周波数バンドである、5.250〜5.725GHz間の周波数バンドにのみ適用する。DFSベースのシステムは、現在のシステム(incumbent system)が同じ周波数チャネル上で動作する送信機を含むときにのみ効率的であり、そのため、その周波数チャネル上の受信機の存在を通知することに留意されたい。
[00024] 高優先度の機器の受信機がWi−Fi機器からの干渉によって影響を受けないことをDFSが保証する一方、それは、Wi−Fiネットワークユーザのニーズを解決しない。具体的には、必要とされるのは、DFSが5GHz周波数チャネルをシャットダウンしたときに、どのAPが使用されるべきかを決定するための方法である。
[00025] 5GHz周波数バンドで動作するAPが、そのAPによって使用される通信チャネルで動作している別のデバイスからの信号を検出したとき、DFS規定に準拠するために、APは、別の通信チャネルに切り替え、回避すべきチャネルの「ブラックリスト」に該通信チャネルを追加する。高優先度機器からの送信を検出/受信しない他のAPは、該通信チャネルを使用することを継続し得る。5GHz周波数バンド全体を高優先度機器、例えば天気レーダーが使用することをAPが検出した場合、そのAPは5GHzスペクトルを使用することを停止しなければならず、2.4GHz周波数バンドの3つの重複していない通信チャネルのみの使用に後退(fall back)する。
[00026] (いくつかまたは全ての)5GHzチャネルが利用可能であるときにWi−Fiネットワークが設計およびまたは展開されているため、いくつか(または全て)の5GHzチャネルが利用可能ではないという事実は、Wi−Fiネットワークの再構成を必要とし得る。より具体的には、必要なのは、どの無線機(radios)がオフにされるまたはそうでなければ抑制されるべきか、どの無線機が他のチャネルに切り替えるべきか、およびどのチャネルにそれらを切り替えるべきか(例えば、2.4GHzバンド上のチャネル)、そして最終的に、これらの新規の通信チャネル上でどの電力でAPを送信するべきかを決定するためのシステムおよび方法である。これらの決定がなされると、開示された実施形態のうちのいくつかは、これらの新規のパラメータ(抑制されたまたはアクティブな、特定のチャネル、特定の電力など)を用いてWi−Fiネットワークを自動的に再構成し、および/または例えば新規のパラメータを示す電子ディスプレイに出力することによって、IT技術者に新規のパラメータに関する情報を提供する。
[00027] いくつかの実施形態では、Wi−Fiネットワーク容量が第1に決定される。この決定は、隣接するAP送信から各APによって受信された信号の信号強度測定値(例えば、RSSI)に基づいており、かつ各APのエアタイムの使用にさらに基づいている。高優先度受信機、例えば、天気レーダーの受信機、軍事用途の受信機などと干渉し得る無線送信機を抑制する前に信号強度測定がなされるため、その測定値は、少なくともいくつかの実施形態では、5GHz周波数バンドにおけるチャネルなどをオフにする必要があり得る通信チャネルについての信号強度の測定値を含む。
[00028] 測定された信号強度は、Wi−Fiネットワークトポロジを示す。各信号強度測定値が送信APの送信電力にも依存する場合、開示された実施形態のうちのいくつかは、第2のAPからの第1のAPによって受信される信号の信号強度測定値が第1のAPと第2のAPとの距離も示すように動作する。いくつかの実施形態では、1つまたは複数のAP無線機の送信電力設定は、距離決定をさらに洗練するために、トポロジアセスメントで使用される。
[00029] Wi−Fiネットワークの容量を決定するために、いくつかの実施形態はWi−Fiネットワークグラフを構築する。ネットワークグラフは、APごとに、それぞれのAPで最も強い信号を有する隣接APを識別する。第1のAPからの第2のAPによって受信された信号が所定の閾値よりも高い信号強度を有する場合、第1のAPは、第2のAPに対しての強いネイバー(strong neighbor)であると定義される。例えば、いくつかの実施形態では、第2のAPによって受信された、第1のAPの生成した信号が−75dbよりも大きい場合、第1のAPは、強いネイバーであると第2のAPによって見なされる。
[00030] 一方、以下の記載は、両方向において測定された信号強度が、所定の閾値を超えるエッジ(2つのAP間の通信経路)のみを考慮する。いくつかの他の実施形態では、ネットワークグラフは、閾値を下回る信号強度測定値を有する追加のエッジを含むように生成される。以下の記載は、5GHzチャネルの全てが利用可能ではない実施形態を説明するが、他の実施形態は、1つまたは複数の5GHzチャネルが利用可能であるときに動作し得る。
[00031] 上述されるように、開示された実施形態のうちのいくつかは、APペア間の信号強度測定値を識別する。例えば、3つのAPを含むネットワークグラフは、複数のペア(AP 1,AP 2)、(AP 1,AP 3)および(AP 2,AP 3)を定義し得る。いくつかの実施形態では、ネットワークグラフは、そのペアの第1のAPによって生成され、そのペアの第2のAPによって受信された信号のための信号強度測定値を示すように構成される。開示された実施形態は、次いで、各個々のAPとペアになるAPの数をカウントする。いくつかの実施形態は、ネットワークグラフを明示的に構成していないが、それでも、ネットワーク中のAP間の信号強度測定値(例えば、受信した信号強度インジケーション(RSSI))を決定する。
[00032] 5GHzチャネルが使用されない(例えば、全てがブラックリスト化された)可能性があるとき、開示された実施形態のうちのいくつかは、5GHz無線機をオフにし、2.4GHzバンド上で動作するように切り替える。いくつかの実施形態では、3つの通信チャネル、すなわち、1、6、および11のみが2.4GHzバンドで利用可能である。この少ない数のチャネルを使用するときの干渉を避けるために、開示された実施形態は、閾値数(例えば、3)の強いネイバーだけ(no more than)を有するように、各APを制限しようとする。1つまたは複数のAPが閾値数よりも多くのネイバーを有すると処理が決定した場合、開示された実施形態は、閾値を下回る数に低減するために1つまたは複数のAPをオフにし、従って干渉が低減される。以下の説明は、どのAPが、具体的にはこれらのAP中のどの無線機がオフにされるべきか、およびどの無線機が2.4GHz周波数バンドで動作するために切り替えられるべきかを決める処理をネットワークが自動化する処理を説明している。
[00033] APペア間の信号強度測定が決定されると、AP容量は、APが「オン」であるときと、APが「オフ」であるときとの両方に関して決定される。
[00034] 「オン」状態でのAPの容量が定義され、いくつかの実施形態では、以下の通りである:
Figure 2021057883
[00035] 「オフ」状態でのAPの容量が定義され、いくつかの実施形態では、以下の通りである:
Figure 2021057883
Figure 2021057883
[00036] あるサイトについての平均信号強度が計算され、いくつかの実施形態では、以下の通りである:
Figure 2021057883
[00037] 標準偏差が計算され、いくつかの実施形態では、以下で導かれる:
Figure 2021057883
[00038] 上記の式3は平均信号強度を使用するが、いくつかの実施形態は、中央値または他の値に従って低減されることができる他の適切な測定値を利用する。
[00039] どのAPがオフにされるべきかを決定するために、開示された実施形態のうちのいくつかは、閾値数よりも多くの強いネイバーを有しているAPを考慮し、APごとに「オン」および「オフ」容量を比較する。いくつかの実施形態は、「オン」および「オフ」容量間のデルタが最小であるAPを識別し、そのAPをオフにする。いくつかの実施形態では、特定のAP中の特定の無線機をオフにするために、無線リソースマネージャ(RRM:radio resource manager)に指示することによってAPがオフにされる。APが複数の無線機を有するとき、いくつかの実施形態は、AP中の無線機ごとに分析を行う。
[00040] 開示された実施形態のうちの1つまたは複数が、特定の無線機がオフにされるべきであると決定した場合、(該APからの)そのAPのネイバーによって受信された信号についての信号強度測定値は、ゼロへと下降する。ネットワークグラフは、適宜更新され、そのため、隣接するAP(エッジ)によって観察される強いネイバーの数が1へと下降する。
[00041] 少ない数の残りのアクティブなAP(オフにされていないAP)を用いて従来のカバレッジを保証するために、残りのAP(AP中の無線機)の各1つの電力が、いくつかの実施形態では、以下のように調整される:
Figure 2021057883
[00042] いくつかの実施形態では、オフにされた1つまたは複数のAPのための電力設定は、ゼロに設定される。
[00043] SS(i→j)は、(新しい電力設定に調整される前の)現在の送信電力設定に関連する信号強度測定値である。新しい電力設定(ゼロまたは式6による値のいずれか)を用いて、いくつかの実施形態は、残りのアクティブなAPによって、それらのネイバーから受信された信号の相互信号強度を反復(iterate back)および測定し、上記のような新規のグラフを生成する。これはまた、各APが観察する強いネイバー(所定の閾値を上回る信号強度)の数を適宜更新することを含む。
[00044] 強いネイバーの数が更新されると、開示された実施形態は、閾値数よりも多くの強いネイバーを未だ有している任意のAPを反復および識別する。これは、いくつかの実施形態では、APごとの強いネイバーの数が、閾値数の強いネイバー以下であるなどの基準を満たすまで継続し得る。これが達成されると、いくつかの実施形態は、(2.4GHz周波数バンド中の)3つの通信チャネルを、未だ動作しているAPに割り当てる。この方法は、未だ動作しているAP間の干渉の可能性を低減する。
[00045] いくつかの実施形態では、特定のAP(APの無線機)がオフにされると、残りのAPに関連付けられた容量が再計算される。いくつかの実施形態では、1つのAPの修正は、それらが必ずしも再計算される必要がないように、他のAP容量に対して十分大きい変化をもたらすものではない。この場合、特定のAPの修正の前に決定された容量は、オフにされるべき1よりも多くのAP(無線機)を選択するためにさらに利用される。
[00046] いくつかの実施形態では、アルゴリズムを繰り返すのではなく、所定の閾値数よりも多くの強いネイバーを有するAPに対して、所定のパラメータが、オフにすべきAPの割合を定義する。例えば、所定のパラメータが0.3に設定された場合、これらの実施形態は、所定の数よりも多くの強いネイバーを有することを継続するAPのうちの30%だけをオフにする。例えば、閾値数よりも多くの強いネイバーを有する7つのAPが識別されたと仮定する。第1の反復では、いくつかの実施形態は、7*0.3=2.1だけ、すなわち、具体的には2つのAPをオフにする。特定のネットワークのトポロジに依存して、1つまたは2つのAPを調整すること(turning)は、問題を緩和させることができ、所定の閾値を下回るいくつかの強いネイバーを有するAPを用いたネットワークをもたらす。
[00047] 所定のパラメータ(例えば、上記の例では2)によって定義されたAPの数によって送信を抑制した後、所定の閾値よりも多くの強いネイバーを有する1つまたは複数のAPが残っている場合、これらの実施形態は、例えば、2つのノードがオフにされた後、ネットワークの動作をモニタし、具体的には、所定の持続期間、例えば、1時間、1日などの間、ネットワークによって示されたシステムレベル経験(SLE:system level experience)をモニタする。SLEが所定の目標、例えば所定の値よりも干渉が小さいことを満たす場合、オフにされたAPの数は、一定の値に保持される。システムレベル経験は、様々な実施形態では、干渉レベル、レイテンシ、スループット、ジッタ、切られた接続(dropped connection)の割合、パケットエラーおよび/または衝突の量または割合、あるいは他のネットワークパフォーマンスパラメータを含むがこれらに限定されない、1つまたは複数のパラメータの組み合わせによって測定される。いくつかの実施形態では、これらの様々な測定値のうちの1つまたは複数は、SLE測定値を形成するためにアグリゲートされる。例えば、測定値のうちの1つまたは複数が追加または平均化され、あるいは、各測定値の中央値が決定される。いくつかの態様では、各測定値は、その測定値の移動平均に基づいて標準化され、その標準化された値は、SLE測定値を形成するためにアグリゲート(平均化、追加など)される。いくつかの場合、測定値がアグリゲートされる前に、変動重み(varying weights)が測定値の各々に与えられる。
[00048] 所定のSLE目標が達成されなかった場合、開示された実施形態のうちのいくつかは、少なくとも1つの追加の反復を行う。この追加の反復は、上述された処理を使用して少なくとも1つの追加のAPによる送信を抑制することをもたらす。具体的には、AP容量が計算され(「オン」および「オフ」状態の両方)、「オン」容量と「オフ」容量との間の最も低いデルタを有するAP(または、閾値よりも多くの強いネイバーの数)が選択され、オフにされる。いくつかの実施形態は、閾値数よりも多くの強いネイバーを有するAPがそれ以上なくなるまで、またはAPの所定の部分(例えば0.3)がオフにされるまで、反復する。いくつかの実施形態は、所定のSLEが達成されるまで、あるいは、残りのAPが閾値数またはより少ない強いネイバーを有するまで、反復する。
[00049] 図1は、開示された実施形態のうちの少なくともいくつかによって実装された例示的なシステム100を示す。この例示的なシステム100は、複数のアクセスポイント(AP 1 142,...,AP X 144,AP 1’ 150,...,AP X’ 152)を含み、ここで、アクセスポイントは、ワイヤレスアクセスポイントルータ、スイッチ、またはネットワークアクセス、複数の認証、認証およびアカウンティング(AAA:Authorization and Accounting)サーバ(1つのAAAサーバ110のみが示されている)、複数の動的ホスト構成プロトコル(DHCP:Dynamic Host Configuration Protocol)サーバ(1つのDHCPサーバ116のみが示されている)、複数のドメイン名システム(DNS:Domain Name System)サーバ(1つのDNSサーバ122のみが示されている)、複数のウェブサーバ(1つのウェブサーバ128のみが示されている)、およびネットワーク管理システム(NMS:network management system)136、例えば、自動化されたネットワーク構成システム(サーバ)を提供することができる任意の他のデバイスであり得、これらは、ネットワーク134、例えば、インターネットおよび/または企業内イントラネットを介して共に接続されている。ネットワーク134は、多数のルータ185および多数のスイッチ180からなる。ネットワーク通信リンク(143,145,171,173)は、アクセスポイント(AP 1 142,AP X 144,AP 1’ 150,AP X’ 152)を、それぞれ、ネットワーク134に結合する。ネットワーク通信リンク111は、ネットワーク134に複数のAAAサーバ(AAAサーバ110のみが示されている)を結合する。ネットワーク通信リンク117は、ネットワーク134に複数のDHCPサーバ(1つのDHCPサーバ116のみが示されている)を結合する。ネットワーク通信リンク123は、ネットワーク134に複数のDNSサーバ(1つのDNSサーバ122のみが示されている)を結合する。ネットワーク通信リンク129は、ネットワーク134にウェブサーバ(1つのウェブサーバ128のみが示されている)を結合する。システム100は、いくつかの実施形態では、複数のユーザ機器デバイス(UE 1 138,...,UE Z 140,UE 1’ 146,...,UE Z’ 148)を含み、ここで、ユーザ機器は、任意のワイヤード、ワイヤレス、あるいは、人間のようなユーザによって使用されるデバイスまたはIoTデバイスのような自動化されたデバイスを通信するためにネットワークアクセスを提供する光学機器である。UE(138,140,146,148)のうちのいくつかは、システム100全体を通して移動し得るワイヤレスデバイスである。
[00050] いくつかの実施形態では、アクセスポイントは、異なる顧客施設サイト(customer premise site)に位置付けられる。顧客施設サイト1 102、例えば、モールは、アクセスポイント(AP 1 142、...、AP X 144)を含む。顧客施設サイト2 104、例えば、スタジアムは、アクセスポイント(AP 1’ 150、...、AP X’ 152)を含む。図1に示されるように、UE(UE 1 138,...,UE Z 140)は、顧客施設サイト1 102に現在位置しており、UE(UE 1’ 146,...,UE Z’ 148)は、顧客施設サイト2 104に現在位置している。サーバ、ルータ、スイッチ、AP、UE、NMS、およびネットワークに付加された他のサーバの各1つは、いくつかの実施形態では、システムログまたはエラーログモジュールを含み、ここで、これらのデバイスの各1つは、通常の動作状態を含むデバイスの状態およびエラー状況を記録する。
[00051] 図2は、開示された実施形態のうちの1つまたは複数による、アクセスポイント200(例えば、アクセスポイントAP 1 142,...,AP X 144,AP 1’ 150...,AP X’ 152)の例を示す。
[00052] アクセスポイント200は、ワイヤードインターフェース230、ワイヤレスインターフェース236、242、プロセッサ206、例えば、CPU、メモリ212、および様々な要素がそれを通してデータおよび情報を交換し得るバス209を介して共に結合されたコンポーネントのアセンブリ208、例えば、ハードウェアコンポーネントのアセンブリ、例えば、回路のアセンブリを含む。ワイヤードインターフェース230は、受信機232および送信機234を含む。ワイヤードインターフェースは、図1のネットワークおよび/またはインターネット134にアクセスポイント200を結合する。第1のワイヤレスインターフェース236(例えば、Wi−Fiインターフェース、IEEE802.11インターフェース)は、アクセスポイントがそれを介して通信デバイス、例えば、ワイヤレス端末からワイヤレス信号を受信し得る受信アンテナ239に結合された受信機238と、アクセスポイントがそれを介して通信デバイス、例えば、ワイヤレス端末にワイヤレス信号を送信し得る送信アンテナ241に結合された送信機240とを含む。第2のワイヤレスインターフェース242(例えば、Bluetooth(登録商標)インターフェース)は、アクセスポイントがそれを介して通信デバイス、例えば、ワイヤレス端末からワイヤレス信号を受信し得る受信アンテナ245に結合された受信機244と、アクセスポイントがそれを介して通信デバイス、例えば、ワイヤレス端末にワイヤレス信号を送信し得る送信アンテナ247に結合された送信機246とを含む。
[00053] メモリ212は、ルーチン214およびデータ/情報216を含む。ルーチン214は、コンポーネントのアセンブリ218、例えば、ソフトウェアコンポーネントのアセンブリ、およびアプリケーションプログラミングインターフェース(API)220を含む。データ/情報216は、構成情報222、システムログまたはエラーログ224中のメッセージとしてキャプチャされたエラーイベントおよび通常イベントを含むデバイスステータスログ、および天気レーダー、軍事通信機器などのような高優先度デバイスが前に発見されており、かつ使用されるべきではない5GHzチャネルの全てを識別するブラックリスト226を含む。
[00054] 図3は、開示された実施形態のうちの1つまたは複数による、例示的なネットワーク管理装置300、例えば、自動化されたネットワーク再構成ネットワーク管理ノードを示す。いくつかの実施形態では、ネットワーク管理装置300は、ネットワーク管理ノード、例えば、ネットワーク管理自動化ネットワーク再構成サーバなどのネットワーク管理サーバである。いくつかの実施形態では、図3のネットワーク管理装置300は、図1のネットワーク管理システム(NMS)136である。いくつかの実施形態では、ネットワーク管理装置300は、図1に示されるアクセスポイントまたはデバイスのうちのいずれか1つのようなアクセスポイントであるか、またはその一部である。
[00055] ネットワーク管理装置300は、通信インターフェース330、プロセッサ306、出力デバイス308、例えば、ディスプレイ、プリンタなど、入力デバイス310、例えば、キーボード、キーパッド、タッチスクリーン、マウスなど、メモリ312、および様々な要素がそれを通してデータおよび情報を交換し得るバス309を介して共に結合されたコンポーネントのアセンブリ340、例えば、ハードウェアコンポーネントのアセンブリ、例えば、回路のアセンブリを含む。通信インターフェース330は、いくつかの実施形態では、イーサネット(登録商標)インターフェースを含む。通信インターフェース330は、ネットワークおよび/またはインターネットにネットワークモニタリングシステム300を結合する。通信インターフェース330は、ネットワークモニタリング装置が、それを介してデータおよび情報、例えば、サービス関連情報を含む、例えば、AAAサーバ、DHCPサーバ、ウェブサーバ、ルータ、スイッチ、および送信機334などの様々なデバイスからのシステムログまたはエラーログ中のロギングされたメッセージのようなメッセージを受信することができ、並びに、ネットワークモニタリング装置300が、それを介してデータおよび情報、例えば、構成情報および命令を含む、例えば、再開、動作パラメータを変更、ダウンロード、および別のSWバージョンをインストールするなどのために、ネットワークに付加されたアクセスポイント、ルータ、スイッチ、または任意の他のサーバへの命令を送ることができる、受信機332を含む。
[00056] メモリ312は、ルーチン314およびデータ/情報317を含む。ルーチン314は、コンポーネントのアセンブリ318、例えば、ソフトウェアコンポーネントのアセンブリ、およびアプリケーションプログラミングインターフェース(API)320を含む。データ/情報317は、動作可能なAPの各1つからの信号強度測定値を含む信号強度測定ログ324を記憶した、構成情報322を含む。メモリ312はまた、受信APのID325、送信APのID326、および送信APによって送信され受信APによって受信された信号の信号強度測定値327を含む、ネットワークトポロジを示すAPの能力を含む信号強度統計319を含む。例えば、表は、AP ID 1が、AP ID 2からの信号強度測定値1を有する信号を受信し、および、AP ID 2から信号強度測定値2を有する第2の信号を受信することを示している。AP ID2は、AP IDjから信号強度測定値xを有する第3の信号を受信した。一般に、縦列325は受信APのリストであり、縦列326は送信APのリストであり、縦列327は測定された信号強度のリストである。本明細書で開示されるこの表および他の表は、例として提供される。他の実施形態は、異なるデータ構造を利用し得る。
[00057] メモリ312はまた、「オン」状態について計算されたAP容量351、計算された「オフ」容量352、および「オン」容量と「オフ」容量との間のデルタが最小であるAPを含むアクティブなAPの全てに対する「オン」容量と「オフ」容量との間のデルタ353を含む。上記で説明されるように、「オン」状態および「オフ」状態におけるそれらの容量間の最小デルタを表すAPは、オフにされる(デアクティベートされるか、またはそうでなければ抑制される)候補である。
[00058] 図4は、例示的なネットワークノード400、例えば、デバイスまたはネットワーク134に付加されたサーバ、例えば、ルータ、スイッチ、AAAサーバ、DHCPサーバ、DNSサーバ、ウェブサーバなど、またはネットワークデバイス、例えば、ルータ185、スイッチ180などを示す。いくつかの実施形態では、図4のネットワークノード400は、図1のサーバ110、116、122、128、または図1のルータ185、スイッチ180である。ネットワークノード400、例えばサーバは、通信インターフェース402、例えば、イーサネットインターフェース、プロセッサ406、出力デバイス408、例えば、ディスプレイ、プリンタなど、入力デバイス410、例えば、キーボード、キーパッド、タッチスクリーン、マウスなど、メモリ412、および様々な要素がそれを通してデータおよび情報を交換し得るバス409を介して共に結合されたコンポーネントのアセンブリ416、例えば、ハードウェアモジュールのアセンブリ、例えば、回路のアセンブリを含む。通信インターフェース402は、ネットワークおよび/またはインターネットにネットワークノード400を結合する。1つのインターフェースのみが示されているが、当業者は、ルータおよびスイッチが複数の通信インターフェースを有し得ること、通常はそれらを有していることを認識するべきである。通信インターフェース402は、ネットワークノード400、例えばサーバが、データ、および例えば、登録要求、AAAサービス、DHCP要求、SNS(Simple Notification Service)ルックアップ、およびウェブページ要求のような動作関連情報を含む情報を受信することができる受信機420と、ネットワークノード400、例えばサーバがそれを介して、例えば、構成情報、認証情報、ウェブページデータなどを含むデータおよび情報を送ることができる送信機422とを含む。
[00059] メモリ412は、ルーチン428およびデータ/情報430を含む。ルーチン428は、コンポーネントのアセンブリ432、例えば、ソフトウェアコンポーネントのアセンブリ、およびデータ情報430を含む。データ情報430は、システムログおよび/またはエラーログを含む。
[00060] 図5は、開示された実施形態のうちの1つまたは複数による、例示的な通信デバイス500、例えばユーザ機器(UE)デバイス(例えば、ユーザ機器UE 1 138,...UE Z 140,UE 1’ 146,...,UE Z’ 148)を示す。通信デバイス500、例えばUEは、ワイヤードインターフェース502、ワイヤレスインターフェース504、CPUのようなプロセッサ506、メモリ512、および、例えば回路のアセンブリといったハードウェアモジュールのアセンブリのように、様々な要素がそれを通してデータおよび情報を交換し得るバス509を介して共に結合されたコンポーネントのアセンブリ516を含む。ワイヤードインターフェース502は、受信機520および送信機522を含む。ワイヤードインターフェース502は、図1のネットワークおよび/またはインターネット134に、通信デバイス500、例えばUEを結合する。
[00061] ワイヤレスインターフェース504は、セルラインターフェース524、第1の追加のワイヤレスインターフェース526、例えば802.11Wi−Fiインターフェース、および第2の追加のワイヤレスインターフェース528、例えばBluetoothインターフェースを含む。セルラインターフェース524は、通信デバイス500、例えばUEが、それを介してアクセスポイント、例えばAP 1 142,...,AP X 144,AP 1’ 150,...,AP X’ 152からのワイヤレス信号を受信し得る受信機アンテナ533に結合された受信機532と、通信デバイス500、例えばUEが、それを介してAP、例えばAP 1 142,...,AP X 144,AP 1’ 150,...,AP X’ 152にワイヤレス信号を送信し得る送信アンテナ535に結合された送信機534とを含む。例えば802.11インターフェースのようなWi−Fiインターフェースなどの第1の追加のワイヤレスインターフェース526は、例えばUEのような通信デバイス500が、例えばAPのような通信デバイスからのワイヤレス信号を受信し得る受信アンテナ537に結合された受信機536と、例えばUEのような通信デバイス500が、例えばAPのような通信デバイスにワイヤレス信号を送信し得る送信アンテナ539に結合された送信機538とを含む。例えばBluetoothインターフェースなどの第2の追加のワイヤレスインターフェース528は、例えばUEのような通信デバイス500が、例えばAPのような通信デバイスからのワイヤレス信号を受信し得る受信アンテナ541に結合された受信機540と、例えばUEのような通信デバイス500が、例えばAPのような通信デバイスにワイヤレス信号を送信し得る送信アンテナ543に結合された送信機542とを含む。
[00062] メモリ512は、ルーチン528およびデータ/情報517を含む。ルーチン528は、コンポーネントのアセンブリ515、例えば、ソフトウェアコンポーネントのアセンブリを含む。データ/情報517は、構成情報、並びにUE500の通常動作に必要とされる任意の追加の情報を含み得る。データ情報はまた、システムログまたはエラーログを含む。
[00063] 図6Aは、図1のシステムなどのネットワークのための例示的なネットワークグラフ600aである。図示されたネットワークは、ノード(AP){A,B,C,D,E,F,およびG}を有する。これらノードは、それぞれ、{4,4,4,3,3,4,および6}個のネイバーを有する。このネットワークの関連した5GHzのWi−Fiの全てがブラックリスト化されたとき、そのままの状態で(as is)3つのみの利用可能な2.4GHzを有するこのネットワークを動作することは、干渉を引き起こし得る。干渉に起因したSLE劣化を防ぐため、ネットワークは、1つまたは複数のAPをデアクティベートしなければならない。上記の説明により、ネットワークは、「オン」容量と「オフ」容量との間のデルタが最小であるノード(AP)を選択し、それらをオフにする。例えば、図示されたネットワークでは、システムは、ノードGを自動的にデアクティベートし(オフにし)得、図6bのネットワークグラフをもたらす。
[00064] 図6Bは、1つのAP、具体的にはノードGが抑制またはオフにされた後のネットワークをネットワークグラフ600bが図示していることを除いて、図6Aのネットワークグラフによって図示されたものと同じネットワークのネットワークグラフ600bである。グラフ600bは、多くとも3つの強いネイバーを有する複数のノードを有している。このグラフは、3つの利用可能な2.4GHzを介して構成される(accommodated)ことができる。いくつかの実施形態は、残りのアクティブなAPの各1つに、これら3つのチャネルのうちの1つを自動的に割り当てる。
[00065] 図6Cは、図1のシステムのような別のネットワークの別の例示的なネットワークグラフ600cである。例となるネットワークは、8つのノード(AP){A,B,C,D,E,F,G,およびH}を有する。これらノードは、それぞれ、{4,6,6,5,5,4,6,および2}個のネイバーを有する。このネットワークの関連した5GHzのWi−Fiの全てがブラックリスト化されたとき、そのままの状態で(as is)3つのみの利用可能な2.4GHzを有するこのネットワークを動作することは、干渉を引き起こし得る。干渉に起因したSLE劣化を防ぐため、ネットワークは、1つまたは複数のAPをデアクティベートしなければならない。上記の説明により、ネットワークは、「オン」容量と「オフ」容量との間のデルタが最小であるノード(AP)を選択し、それらをオフにする。例えば、図示されたネットワークでは、システムは、ノードGを自動的にデアクティベートし(オフにし)得、図6Dのネットワークグラフをもたらす。
[00066] 図6Dは、1つのAPまたはノード、例えばGが抑制またはオフにされた後のネットワークをネットワーク600dが示していることを除いて、図6Cのネットワークグラフ600cによって図示されたのと同じネットワークの例示的なネットワークグラフ600dである。残りのネットワークは、ノード{A,B,C,D,E,F,およびH}を有する。これらノードは、それぞれ、{3,5,5,4,4,3,および2}個のネイバーを有する。ネットワークグラフ600dが3よりも多くの強いネイバーを有するノードを未だ有しているため、開示された実施形態のうちのいくつかは、残りのアクティブなAPのうちの最小である「オン」状態と「オフ」状態との差またはデルタ値を有する追加のAPを選択し、このAPまたはノードをデアクティベートする。例えば、ノードCは、いくつかの実施形態によってデアクティベートされ、図6Eに図示されるネットワークをもたらす。
[00067] 図6Eは、それぞれ、図6C〜6Dのネットワークグラフ600cおよび600dによって図示されたのと同じネットワークの別の例示的なネットワークグラフであるが、図6Eは、2つのAPがネットワークグラフ600cに対して抑制された後のネットワーク示す。ネットワークはここでは、それぞれ、{2,4,3,3,3,および1}個のネイバーを有するノード{A,B,D,E,F,およびH}を有する。いくつかの実施形態は、2つのAPが既にデアクティベートされているため、いくらかの所定の時間の間、他のAPの任意のさらなるデアクティベーションを休止する。この休止は、閾値によって制御され得、例えば、アクティブなノードの所定の割合(例えば、30%)がデアクティベートされた後に、休止が開始される。この例では、ネットワークは、8つのアクティブなノードを用いて始まった。30%の所定の割合とともに、2.4は例示的な閾値である。いくつかの実施形態では、2つのAPまたはノードをデアクティベートした後、第3のノードは所定の割合を超えるため、休止が開始される。この休止は、所定の持続期間D(例えば、D=1日)の間、持続し得る。休止時間中、いくつかの実施形態は、SLEパラメータ値を管理および記録する。持続期間Dが満了すると、いくつかの実施形態は、SLEパラメータをモニタリングすることを再開する。パフォーマンスの改善をSLEモニタリングが示す場合、いくつかの実施形態は、現在の構成を維持する。低減されたSLEをAPのデアクティベーションがもたらす場合、いくつかの実施形態は、デアクティベーションに戻り、よって、前に抑制されたそれらのAPを復活させる。
[00068] 代替の実施形態は、強いネイバーの所定の閾値(例えば、3)だけを有するノードまたはAPが存在しなくなるまで、APまたはノードをデアクティベートすることを継続する。
[00069] 式6を参照して説明されるように、特定のAPによる送信を抑制することに加えて、いくつかの実施形態は、代替的に、アクティブなAPの送信制御パラメータを修正し得る。送信制御パラメータは、送信のために使用される送信電力および/またはアンテナのうちの1つまたは複数を含み得る。
[00070] 図6Fは、図6C〜6Eによって表されたのと同じネットワークの例示的なネットワークグラフを図示する。図6Fは、2つのAPが抑制された後のネットワークを示しており、アクティブなAPの送信電力が調整されている。いくつかの場合には、特定のAPの電力が調整されるとき、いくつかのリンクのための信号強度測定が所定の閾値を下回って下降する可能性がある。これは、下降したいくつかのノード間のエッジをもたらし得る。図6Fは、ノードBとノードEとの間のリンク(エッジ)が所定のレベルを下回って下降した場合、すなわち、リンクがグラフ600fにもはや存在しない場合を図示する。このグラフのノードは各々、閾値数(例えば、3)未満の強いネイバーを有している。これは、比較的少ない数の強いネイバーが、利用可能な(例えば、3個の)2.4GHzチャネルによる干渉なしに、デバイスがサービスされることができる可能性を増大させる。
[00071] 図7は、DFSを使用するAPによって行われる例示的な処理を図示するフローチャートである。いくつかの実施形態では、処理700および図7に関して以下で説明される機能のうちの1つまたは複数は、ネットワーク管理装置300、ネットワークノード400、または通信デバイス500によって行われる。いくつかの実施形態では、以下で説明される機能のうちの1つまたは複数は、ハードウェア処理回路(例えば、206,306,406,または506のうちのいずれか1つ)によって行われる。いくつかの実施形態では、メモリ(例えば、212,312,412,または512)に記憶された命令は、図7および処理700に関して以下で説明される機能のうちの1つまたは複数を行うハードウェア処理回路を構成する。
[00072] 処理700は、動作705で始まり、動作710に進む。動作710は、天気レーダーまたは5GHz周波数バンドにおける他の高優先度デバイスの動作を用いて、潜在的な干渉を識別する。動作710がいずれの干渉も検出しなかった場合、処理700は、動作710を介してワイヤレス媒体をモニタすることを継続する。干渉が検出された場合、処理700は、動作715に移動する。
[00073] 動作715では、方法は、使用すべき代替の5GHzチャネルをAPが有しているかどうかを決定する。APが代替の5GHzチャネルを有している場合、方法は、APの無線が代替のチャネルに切り替えられる動作720へと進む。処理は動作722へと進み、ここで、干渉しているチャネルがそのAP中のチャネルのブラックリストに追加される。方法は、動作710に戻る(loops back)。
[00074] そのAPの5GHzチャネルが既にブラックリスト化されており、APが使用されるべき代替の5GHzチャネルを有していないことを動作715が決定した場合、処理700は、動作725へと進む。動作725では、APの干渉している無線機がデアクティベートされ(オフにされるか、またはそうでなければ送信が抑制されている)、残りの(last)5GHzチャネルがブラックリストに追加される。
[00075] 処理は、新規のネットワークグラフが生成されるか、または古いネットワークグラフが前の動作でAPのデアクティベーションまたは抑制を反映するために更新される、動作730へと進む。
[00076] 新規のネットワークグラフは、単独のネットワークセグメントが存在するかどうかをシステムが決定する動作735で調査される。いくつかの実施形態では、これらのネットワークノード/セグメントは、2.4GHzチャネルを使用してネットワークの残りに相互接続される。
[00077] 処理は、ネットワーク管理サーバがネットワークの自動化された再構成を開始するためにトリガされる動作740へと進む。処理は、接続動作745を介して図8、具体的には図8の接続動作A805へと続く。
[00078] 図8は、自動化されたネットワーク構成システムによって行われる例示的な処理を図示するフローチャートである。いくつかの実施形態では、処理800および図8に関して以下で説明される機能のうちの1つまたは複数は、ネットワーク管理装置300、ネットワークノード400、または通信デバイス500によって行われる。いくつかの実施形態では、以下で説明される機能のうちの1つまたは複数は、ハードウェア処理回路(例えば、206,306,406,または506のうちのいずれか1つ)によって行われる。いくつかの実施形態では、メモリ(例えば、212,312,412,または512)に記憶された命令は、図8および処理800に関して以下で説明される機能のうちの1つまたは複数を行うハードウェア処理回路を構成する。
[00079] 処理は、接続動作805で始まり、次いで、動作806に移動する。動作806は、図1を参照して上述される、例えば、サイト104のサイト102などのワイヤレスアクセスポイントシステムのサービスレベル経験を表す、1つまたは複数のシステムパフォーマンスマトリックスを記憶する。
[00080] 動作810では、これらのネイバーから受信した信号の信号強度測定値をAPが記憶する。これらの信号強度測定値は、ネットワーク管理サーバに提供される。いくつかの実施形態では、これは、自動化されたネットワーク構成サーバである。
[00081] 動作815では、ネットワークグラフが更新される。いくつかの実施形態では、この更新は、図6A〜6Fのネットワークグラフ更新の表現と一致する方法で行われる。更新の一部として、様々なAPによって報告される信号強度測定値は、所定の閾値と比較され、所定の閾値よりも高い信号強度を有するAPのみがグラフ中のエッジとして構成される。
[00082] 動作820は、ネットワークグラフを調査し、閾値数よりも多くの強いネイバーを有する1つのノード(または1よりも多いノード)が存在するかどうかを決定する。閾値数よりも多くの強いネイバーを有するノードが存在しないことを動作が決定した場合、処理800は、接続動作B895へと移動し、それは、接続動作B750を介して処理700に戻る。
[00083] 閾値数よりも多くの強いネイバーを有する1つ(または複数)のノードが存在することを動作820が決定した場合、処理800は動作825へと移動する。
[00084] 動作825のいくつかの実施形態では、処理800は、「オン」状態と「オフ」状態との両方におけるアクティブなAPの容量を計算するために、式1〜式5のうちの任意の1つまたは複数を利用する。これは、いくつかの実施形態では、「オン」状態および「オフ」状態における容量間の容量デルタの決定を含む。処理800は、「オン」状態と「オフ」状態との最小デルタ容量を用いてAP(ノード)を識別および選択する、動作830へと続く。
[00085] 動作835では、選択されたAPがデアクティベートされる(オフにされるか、またはそうでなければ抑制される)。代替的に、APにおける特定の無線機は、オフにされるか、またはそうでなければ抑制される。オフにされたまたはそうでなければ抑制されたAPを用いて、処理800は、残りのアクティブな(抑制されていない)APの電力レベルが調整される動作840へと移動する。いくつかの実施形態では、この調整は、上述された式6によって行われる。
[00086] 動作845は、(残りのアクティブなAPSにおいて調整された電力およびオフにされたいくつかのAPを用いて)新規で構成されたシステムを用いて達成されるサービスレベル経験(SLE)を、前のSLEと比較する。この調整がSLEを改善した場合、処理は、新規の信号強度測定値が記憶される動作810へと戻り、新規の調整された電力レベルを用いて処理が繰り返される。
[00087] しかしながら、新規の調整されたネットワークパラメータがSLEを改善しなかった場合、処理は、動作845から、より良いSLEをもたらす前のパラメータにネットワークのパラメータが戻る動作850へと進む。いくつかの実施形態では、オフにされるか、またはそうでなければ抑制されたAPは、後に再有効化される(reenabled)。APの送信電力は、いくつかの実施形態では、前の設定に戻される。
[00088] 処理は、図7の接続動作B 750と同様のものであり得る、接続動作B 895に戻る。
[00089] 図9は、開示された実施形態のうちの1つまたは複数によって行われる例示的な処理のフローチャートである。いくつかの実施形態では、処理900および図9に関して以下で説明される機能のうちの1つまたは複数は、ネットワーク管理装置300、ネットワークノード400、または通信デバイス500によって行われる。いくつかの実施形態では、以下で説明される機能のうちの1つまたは複数は、ハードウェア処理回路(例えば、206,306,406,または506のうちのいずれか1つ)によって行われる。いくつかの実施形態では、メモリ(例えば、212,312,412,または512)に記憶された命令は、図9および処理900に関して以下で説明される機能のうちの1つまたは複数を行うハードウェア処理回路を構成する。
[00090] 動作905では、信号強度測定値が決定される。信号強度測定値は、複数のAPのAPによって受信された信号のものである。信号は、(受信AP以外の)複数のAPのうちの1つのAPによって生成される。
[00091] 動作910では、各APの強いネイバーAPが決定される。強いネイバーAPは、所定の強度閾値を上回る信号強度測定値(例えば、RSSI)を有するAPである。
[00092] 動作915では、(例えば、上記の式1によって)複数のAPのうちの1つのAPで利用可能なエアタイムのフラクションと、APの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差が(例えば、上記の式2によって)決定される。いくつかの実施形態では、APで利用可能なフラクションエアタイムは、それぞれのAPの最大スループットの利用割合である。
[00093] 動作915のいくつかの態様は、複数の差、複数のAPにおけるAPごとの1つの差を決定する。動作915のいくつかの態様は、所定の閾値を上回る強いAPのカウントを用いて、複数のAPの一部を決定する。これらの態様では、差は、APの一部のためのみに決定される。
[00094] 動作920では、APによる送信は、動作915で決定された差に基づいて抑制される。いくつかの実施形態では、最も小さい決定された差を有するAPが抑制される。いくつかの実施形態では、APの送信機は、5Ghzチャネルが複数のAPで利用可能ではないと検出することに応答して、抑制される。APによる送信を抑制することは、APを、ワイヤレスネットワーク上でそのAPが送信しないような、またはそのワイヤレス送信が大幅に低減されるような状態にする。例えば、いくつかの実施形態では、抑制されたAPは、メッセージを管理および/または制御するために未だ応答しているが、データサービスを提供しない。他の実施形態では、抑制されたAPは、全ての送信を中止する。
[00095] いくつかの実施形態では、送信を抑制することは、(例えば、送信機240,246,334,422,522,534,538,または542のいずれかのような)APの送信コンポーネントを電力オフにすることを含むことができる。電力は、APによる送信を再有効化するために送信コンポーネントに戻る。いくつかの他の実施形態では、送信を抑制することは、APによる送信を無効化する。例えば、これらの実施形態では、APによる送信の抑制は、APデバイスで動作するファームウェアまたはソフトウェアによって制御され、APの送信ハードウェアの動作状態を変更しない。いくつかの他の実施形態では、送信ハードウェアは、複数のモードで動作するように構成される。複数のモードのうちの1つは、送信ハードウェアによって送信を抑制する。よって、いくつかの実施形態では、送信を抑制することは、送信の抑制を達成するために、送信ハードウェアのモードを変更することを含む。ハードウェアはまた、少なくともいくつかの態様では、APによる送信を再開するためにこのモードから除外される。
[00096] 動作920のいくつかの実施形態は、残りのAPのうちの1つまたは複数の送信電力レベルを調整する(例えば、シャットダウン、デアクティベート、またはそうでなければ送信を抑制しないそれらのAP)。
[00097] いくつかの実施形態は、動作920においてAPをシャットダウンした後、処理900、または少なくとも動作910および915を反復して行う。例えば、残りのAPごとの強いネイバーは、APが動作920において抑制された後に決定される。強いネイバーのこの新規の組に基づいて、新規の差が決定される。この新規の差は、いくつかの実施形態では、所定のネイバー閾値を上回るいくつかの強いネイバーを有するそれらの残りのAPのために決定される。第2のAPは、いくつかの実施形態では、新規の差に基づいて抑制される。例えば、最小の新規の差を有するAPは、いくつかの実施形態では、さらなる送信を送ることを抑制される。いくつかの実施形態は、複数のAPのうち、閾値数よりも多くの強いネイバー(例えば、3)を有するAPがなくなるまで、動作910および915(または、概して処理900)を反復して行うことを継続する。
[00098] いくつかの実施形態は、各反復する送信の抑制間の1つまたは複数のシステムレベル経験(SLE)パラメータを記録し、第1の反復の記憶されたSLEパラメータを、後続の反復の記憶されたSLEパラメータと比較し、その比較に応答して、前に抑制された送信機を再有効化する。
[00099] 上記の開示はアクセスポイントを指すが、いくつかの実施形態は、アクセスポイント内に一体化されたコンポーネントの無線機に同様に適用され得ることに留意されたい。同様に、アクセスポイントをオン/オフにすること、または調整することに対する参照は、アクセスポイントの1つまたは複数のコンポーネント無線機上の同様の動作に等しく適用され得る。
[000100] 様々な実施形態の技法が、ソフトウェア、ハードウェア、および/またはソフトウェアとハードウェアとの組み合わせを使用して実装され得る。様々な実施形態は、ネットワークモニタリングノードのような管理エンティティなどの装置、ルータ、ゲートウェイ、スイッチ、アクセスポイント、DHCPサーバ、DNSサーバ、AAAサーバ、モバイルワイヤレス端末のようなワイヤレスノードなどのユーザ機器デバイス、基地局、通信ネットワーク、および通信システムに向けられる。様々な実施形態はまた、方法、例えば、ネットワーク管理ノード、アクセスポイント、ワイヤレス端末(UE)、基地局、制御ノード、DHCPノード、DNSサーバ、AAAノード、モビリティ管理エンティティ(MME)、ネットワークのような1つまたは複数の通信デバイス、および/または通信システムを制御および/または動作する方法に向けられる。様々な実施形態はまた、非一時的機械、例えば、例えば、コンピュータ可読媒体、例えば、ROM、RAM、CD、ハードディスクなどのコンピュータ可読媒体、に向けられており、それらは、方法の1つまたは複数の動作を実装するために機械を制御するための機械可読命令を含む。
[000101] 開示された処理における動作の特定の順序または階層は単なる例に過ぎないことを理解されたい。設計の選択に基づいて、これら処理における動作の具体的な順序または階層は、本開示の範囲内に留まりつつ再構成され得ることが理解される。添付の方法クレームは、様々な動作の要素をサンプルとなる順序で提示したものであり、提示された特定の順序または階層に限定されることを意味するものではない。
[000102] 様々な実施形態では、本明細書に説明されたデバイスおよびノードは、1つまたは複数の方法に対応する動作、例えば、信号生成、送信、処理、解析、および/または受信動作に対応する動作を行うために、1つまたは複数のモジュールを使用して実装される。よって、いくつかの実施形態では、様々な特徴が、モジュールを使用して実装される。このようなモジュールは、ソフトウェア、ハードウェア、またはソフトウェアとハードウェアとの組み合わせを使用して実装され得る。いくつかの実施形態では、各モジュールは、各説明されたモジュールに対応する機能を実装するための別個の回路を含むデバイスまたはシステムで個々の回路として実装される。上述された方法または方法の動作の多くは、例えば、1つまたは複数のノードにおいて上述された方法の全てまたは一部を実装するために、例えば、追加のハードウェアを有するまたは有していない汎用コンピュータなどの機械を制御するために、例えば、RAM、フロッピー(登録商標)ディスクなどのメモリデバイスのような機械可読媒体に含まれる、ソフトウェアのような機械実行可能命令を使用して実装される。従って、特に、様々な実施形態は、機械、例えば、プロセッサおよび関連するハードウェアに、上述された方法の動作のうちの1つまたは複数を実行させるための機械実行可能命令を含む機械可読媒体、例えば、非一時的コンピュータ可読媒体に向けられている。いくつかの実施形態は、開示された実施形態の1つまたは複数の方法の動作のうちの1つ、複数、または全てを実装するように構成されたプロセッサを含むデバイスに向けられている。
[000103] いくつかの実施形態では、1つまたは複数のデバイス、例えば、ルータ、スイッチ、ネットワーク付加サーバ、ネットワーク管理ノード、ワイヤレス端末(UE)および/またはアクセスノードのような通信デバイスなどの1つまたは複数の装置の1つまたは複数のプロセッサ、例えば、CPUは、それらデバイスによって行われるものとして説明された方法の動作を行うように構成される。プロセッサの構成は、プロセッサ構成を制御するために、1つまたは複数のモジュール、例えば、ソフトウェアモジュールを使用することによって、および/または、記載された動作を行うおよび/またはプロセッサ構成を制御するために、プロセッサ中にハードウェア、例えば、ハードウェアモジュールを含めることによって、達成され得る。従って、全てではないがいくつかの実施形態は、プロセッサが含まれるデバイスによって行われる様々な説明された方法の動作の各々に対応するモジュールを含むそのプロセッサを有する通信デバイス、例えば、ユーザ機器に向けられている。全てではないがいくつかの実施形態では、通信デバイスは、プロセッサが含まれるデバイスによって実行される様々な説明された方法の動作の各々に対応するモジュールを含む。モジュールは、例えば、回路として、純粋にハードウェアにおいて実装され得るか、または、ソフトウェアおよび/またはハードウェア、あるいはソフトウェアとハードウェアとの組み合わせを使用して実装され得る。
[000104] いくつかの実施形態は、1つまたは複数のコンピュータに、様々な機能、ステップ、挙動、および/または動作、例えば、上述された1つまたは複数の動作を実装させるためのコードを備えるコンピュータ可読媒体を備えるコンピュータプログラム製品に向けられている。実施形態に依存して、コンピュータプログラム製品は、実行されるべき各ステップについての異なるコードを含むことができる、および含むことがある。よって、コンピュータプログラム製品は、方法の個々の動作、例えば通信デバイス、例えば、ネットワーク管理ノード、アクセスポイント、基地局、ワイヤレス端末またはノードを動作する方法ごとのコードを含み得る、およびそれらを含むことがある。コードは、機械の形態、例えば、RAM(ランダムアクセスメモリ)、ROM(読み取り専用メモリ)または他のタイプの記憶デバイスのようなコンピュータ可読媒体上に記憶されたコンピュータ実行可能命令であり得る。コンピュータプログラム製品に向けられていることに加えて、いくつかの実施形態は、上述された1つまたは複数の方法の様々な機能、ステップ、挙動、および/または動作のうちの1つまたは複数を実装するように構成されたプロセッサに向けられている。従って、いくつかの実施形態は、本明細書で説明された方法の動作のいくつかまたは全てを実装するように構成された、例えばCPUなどのプロセッサに向けられる。そのプロセッサは、例えば、本願に説明された通信デバイスまたは他のデバイス中で使用するためのものであり得る。
[000105] ワイヤード、光学、セルラ、Wi−Fi、Bluetooth、およびBLEを含む通信システムのコンテキストで説明されるが、様々な実施形態の方法および装置の少なくともいくつかは、IPおよび非IPベースの、OFDMおよび非OFDMおよび/または非セルラシステムを含む広範囲の通信システムに適用される。
[000106] 上述された様々な実施形態の方法および装置に対する多数の追加のバリエーションは、上記の説明を鑑みて当業者に明らかとなるであろう。このようなバリエーションは、範囲内であると見なされる。方法および装置は、様々な実施形態では、IPベースおよび非IPベース、CDMAのようなワイヤードおよびワイヤレス、直交周波数分割多元接続(OFDM)、Wi−Fi、Bluetooth、BLE、光学、および/または方法を実施するための、受信機/送信機回路および論理および/またはルーチンを含むネットワークに付加されたまたは関連したデバイスまたは他のデバイス間に通信リンクを提供するために使用され得る通信技法の様々な他のタイプを用いて使用され得る。
[000107] 実施例1は、通信ネットワークを動作する方法である。方法は、通信ネットワーク中の複数のAPについてのRSSI情報を記憶デバイスに記憶することと、高優先度機器と干渉し得るAPによる送信の無線機をオフにするか、あるいはまたはそうでなければ送信を抑制することと、測定されたRSSIに基づいてネットワークトポロジを決定することと、5GHz接続がなく3よりも多い強いネイバーを有しているAPを識別することに応答して、a)該APの各1つの「オン」容量と「オフ」容量との間のデルタを決定し、b)「オン」容量と「オフ」容量との間の最小デルタを有するAPを選択し、c)選択されたAPをオフにし、d)2.4GHzスペクトルで動作する残りのAPの各1つの電力を自動的に調整し、e)自動的に調整されたAP電力からもたらされるRSSIに基づいてネットワークトポロジを更新し、全てのアクティブなAPが3またはそれより少ない強いネイバーを有するまでステップa)〜e)を繰り返すことと、を含む。
[000108] 実施例2では、実施例1の主題は、オプションで、全てのアクティブなAPによって、全ての他のアクティブなAPからの信号のRSSIを 測定することと、RSSI閾値を決定することと、該閾値よりも小さいRSSIを無視することと、第1のAPによって送信された信号からの、第2のAPによって測定されたRSSIが所定の閾値よりも大きい場合、第1のAPが第2のAPの強いネイバーであるとみなすことと、を含む。
[000109] 実施例3では、実施例1の主題は、オプションで、第1のAPが第2のAPの強いネイバーである場合、2つのネットワークアクセスポイントが接続されることを含む。
[000110] 実施例4では、実施例1の主題は、オプションで、APがアクティブであるときに、APの「オン」容量は、クライアントが使用するための利用可能なエアタイムのフラクションの測定値に対応することを含む。実施例5では、実施例1の主題は、オプションで、該APがデアクティベートされる(オフにされるか、またはそうでなければ抑制される)ときに、APの「オフ」容量は、隣接するAPによって提供されるエアタイムのフラクションの測定値に対応することを含む。
[000111] 実施例5では、実施例1の主題は、オプションで、アクティブなノードの全てが閾値数の強いネイバーよりも少数を有するまで、ステップa)〜e)を行うことを含む。
[000112] 実施例6では、請求項1の主題は、オプションで、ステップa)〜e)を行う前のサービスレベル経験パラメータを、ループを行った後に達成されたSLEと比較することと、ループを行った結果としてSLEが改善される場合にシステムパラメータを維持することと、SLEが改善されなかった場合に前の動作パラメータに戻ることと、を含む。
[000113] 実施例7は、通信ネットワークを動作する方法であり、方法は、複数のAPの各々について強いネイバーAPを決定することと、ここで、強いネイバーAPは、所定の信号強度閾値を上回るそれぞれのAPにおける信号強度測定値を有する他のAPとして決定され、複数のAPのうちの1つのAPで利用可能なエアタイムのフラクションと、APの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、差に基づいてAPによる送信を抑制することと、を備える。
[000114] 実施例8では、実施例7の主題は、オプションで、複数のAPのAPごとに、それぞれのAPの強いネイバーAPをカウントすることと、所定のネイバー閾値を上回るカウントを有する第2の複数のAPを決定することと、第2の複数のAPの各APで利用可能なエアタイムのフラクションと、それぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することとを含み、抑制することは、決定された差に基づく。
[000115] 実施例9では、実施例8の主題は、オプションで、第2の複数のAPから抑制されたAPを除外することによって、第3の複数のAPを決定することと、第3の複数のAP中のAPごとに、それぞれのAPの強いネイバーAPの第2のカウントを決定することと、所定のネイバー閾値を上回る第2のカウントを有する第4の複数のAPを決定することと、第4の複数のAPの各々について第2の差を決定することと、第2の差に基づいて第4の複数のAPのうちの1つにおける送信を抑制することと、を含む。
[000116] 実施例10では、実施例9の主題は、オプションで、第2の複数のAP中のどのAPが最小の差を有するかを決定することを含み、シャットダウンすることは、最小の差を有すると決定されたAPの送信機をシャットダウンすることを備える。
[000117] 実施例11では、実施例7〜10のうちの任意の1つまたは複数の主題は、オプションで、APで利用可能なエアタイムのフラクションは、それぞれのAPの最大スループットの利用率であることを含む。
[000118] 実施例12では、実施例7〜11のうちの任意の1つまたは複数の主題は、オプションで、APによる送信の抑制に基づいて、複数のAPの残りの部分の送信電力を調整することを含む。
[000119] 実施例13では、実施例7〜12のうちの任意の1つまたは複数の主題は、オプションで、複数のAPのうち、強いネイバー閾値よりも多くの強いネイバーを有するAPがなくなるまで、複数のAP中の他のAPによる送信を反復して抑制することを含む。
[000120] 実施例14では、実施例13の主題は、オプションで、各反復する送信の抑制間のシステムレベル経験(SLE)パラメータを記憶することと、第1の反復の記憶されたSLEパラメータを、後続の反復の記憶されたSLEパラメータと比較することと、比較8が親9がないことに応答して、前に抑制されたAPの送信を再開することと、を含む。実施例7の方法は、11Ghzチャネルが複数のAPで利用可能ではないと検出することをさらに備え、送信の抑制は、検出に応答する。
[000121] 実施例15は、通信ネットワークを動作するためのシステムであり、ハードウェア処理回路と、1つまたは複数のハードウェアメモリと、を備え、該ハードウェアメモリは、実行されたとき、複数のAPの各々について強いネイバーAPを決定することと、ここで、強いネイバーAPは、所定の強度閾値を上回るそれぞれのAPにおける信号強度測定値を有する他のAPとして決定され、複数のAPのうちの1つのAPについて、APで利用可能なエアタイムのフラクションと、APの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、差に基づいてAPによる送信を抑制することと、を備える動作を行うようにハードウェア処理回路を構成する命令を記憶する。
[000122] 実施例16では、実施例15の主題は、オプションで、複数のAPのAPごとに、それぞれのAPの強いネイバーAPをカウントすることと、所定のネイバー閾値を上回るカウントを有する第2の複数のAPを決定することと、第2の複数のAP中のAPごとに、それぞれのAPで利用可能なエアタイムのフラクションと、それぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、をさらに備える動作を含み、送信機のシャットダウンは、APごとの決定された差に基づく。
[000123] 実施例17では、実施例16の主題は、オプションで、第2の複数のAPから抑制されたAPを除外することによって、第3の複数のAPを決定することと、第3の複数のAP中のAPごとに、それぞれのAPの強いネイバーAPの第2のカウントを決定することと、所定のネイバー閾値を上回る第2のカウントを有する第4の複数のAPを決定することと、第4の複数のAPのAPごとに、それぞれのAPで利用可能なエアタイムのフラクション、とそれぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの第2の差を決定することと、第2の差に基づいて第4の複数のAPのうちの1つによる送信を抑制することと、をさらに備える動作を含む。
[000124] 実施例18では、実施例16〜17のうちの任意の1つまたは複数の主題は、オプションで、第2の複数のAP中のどのAPが最小の差を有するかを決定することをさらに備える動作を含み、シャットダウンすることは、最小の差を有すると決定されたAPの送信機をシャットダウンすることを備える。
[000125] 実施例19では、実施例15〜18のうちの任意の1つまたは複数の主題は、オプションで、APで利用可能なエアタイムのフラクションは、APの最大スループットの利用率であることを含む。
[000126] 実施例20では、実施例15〜19のうちの任意の1つまたは複数の主題は、オプションで、APによる送信の抑制に基づいて、複数のAPのうちの少なくとも1つの残りの部分の送信電力を調整することをさらに備える動作を含む。
[000127] 実施例21では、実施例15〜20のうちの任意の1つまたは複数の主題は、オプションで、強いネイバー閾値よりも多くの強いネイバーを有するAPがなくなるまで、AP中の送信機を反復してシャットダウンすることをさらに備える動作を含む。
[000128] 実施例22では、実施例21の任意の主題は、オプションで、各反復する送信の抑制間のサービスレベル経験(SLE)パラメータを記憶することと、第1の反復の記憶されたSLEパラメータを、後続の反復の記憶されたSLEパラメータと比較することと、比較に応答して、抑制されたAPによる送信を再開することと、をさらに備える動作を含む。
[000129] 実施例23では、実施例15〜22のうちの任意の1つまたは複数の主題は、オプションで、Ghzチャネルが複数のAPで利用可能でないことを含み、送信機のシャットダウンは、検出に応答する。
[000130] 実施例24は、非一時的コンピュータ可読記憶媒体であり、実行されると、複数のAPの各々について強いネイバーAPを決定することと、ここで、強いネイバーAPは、所定の信号強度閾値を上回るそれぞれのAPにおける信号強度測定値を有する他のAPとして決定され、複数のAPのうちの1つのAPで利用可能なエアタイムのフラクションと、APの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、差に基づいてAPによる送信を抑制することと、を備える動作を行うようにハードウェア処理回路を構成する命令を備える。
[000131] 実施例25では、実施例24の主題は、オプションで、複数のAPのAPごとに、それぞれのAPの強いネイバーAPをカウントすることと、所定のネイバー閾値を上回るカウントを有する第2の複数のAPを決定することと、第2の複数のAPの各APで利用可能なエアタイムのフラクションと、それぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、をさらに備える動作を含み、送信の抑制は、決定された差に基づく。

Claims (20)

  1. 通信ネットワークを動作する方法であって、前記方法は、
    複数のAPの各々について強いネイバーAPを決定することと、ここで、前記強いネイバーAPは、所定の信号強度閾値を上回るそれぞれのAPにおける信号強度測定値を有する他のAPとして決定され、
    前記複数のAPのうちの1つのAPで利用可能なエアタイムのフラクションと、前記APの前記強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、
    前記差に基づいて前記APによる送信を抑制することと
    を備える、方法。
  2. 前記複数のAPのAPごとに、前記それぞれのAPの強いネイバーAPをカウントすることと、
    所定のネイバー閾値を上回るカウントを有する第2の複数のAPを決定することと、
    前記第2の複数のAPの各APで利用可能なエアタイムのフラクションと、前記それぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、
    をさらに備え、前記抑制することは、前記決定された差に基づく、請求項1に記載の方法。
  3. 前記第2の複数のAPから前記抑制されたAPを除外することによって、第3の複数のAPを決定することと、
    前記第3の複数のAP中のAPごとに、前記それぞれのAPの強いネイバーAPの第2のカウントを決定することと、
    前記所定のネイバー閾値を上回る第2のカウントを有する第4の複数のAPを決定することと、
    前記第4の複数のAPの各々について第2の差を決定することと、
    前記第2の差に基づいて前記第4の複数のAPのうちの1つにおける送信を抑制することと
    をさらに備える、請求項2に記載の方法。
  4. 前記第2の複数のAP中のどの前記APが最小の差を有するかを決定することをさらに備え、シャットダウンすることは、前記最小の差を有すると決定された前記APの送信機をシャットダウンすることを備える、請求項3に記載の方法。
  5. 前記APで利用可能な前記エアタイムのフラクションは、前記それぞれのAPの最大スループットの利用率である、請求項1に記載の方法。
  6. 前記APによる送信の前記抑制に基づいて、前記複数のAPの残りの部分の送信電力を調整することをさらに備える、請求項1に記載の方法。
  7. 前記複数のAPのうち、前記強いネイバー閾値よりも多くの強いネイバーを有するAPがなくなるまで、前記複数のAP中の他のAPによる送信を反復して抑制することをさらに備える、請求項1に記載の方法。
  8. 各反復する送信の抑制間のシステムレベル経験(SLE)パラメータを記憶することと、第1の反復の前記記憶されたSLEパラメータを、後続の反復の記憶されたSLEパラメータと比較することと、前記比較に応答して、前に抑制されたAPの送信を再開することと、をさらに備える、請求項7に記載の方法。
  9. 5Ghzチャネルが前記複数のAPで利用可能ではないと検出することをさらに備え、前記送信の抑制は、前記検出に応答する、請求項1に記載の方法。
  10. 通信ネットワークを動作するためのシステムであって、
    ハードウェア処理回路と、
    1つまたは複数のハードウェアメモリであって、実行されたとき、
    複数のAPの各々について強いネイバーAPを決定することと、ここで、前記強いネイバーAPは、所定の強度閾値を上回るそれぞれのAPにおける信号強度測定値を有する他のAPとして決定され、
    前記複数のAPのうちの1つのAPについて、前記APで利用可能なエアタイムのフラクションと、前記APの前記強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、
    前記差に基づいて前記APによる送信を抑制することと
    を備える動作を行うように前記ハードウェア処理回路を構成する命令を記憶する、1つまたは複数のハードウェアメモリと
    を備える、システム。
  11. 前記動作は、
    前記複数のAPのAPごとに、前記それぞれのAPの強いネイバーAPをカウントすることと、
    所定のネイバー閾値を上回るカウントを有する第2の複数のAPを決定することと、
    前記第2の複数のAP中のAPごとに、前記それぞれのAPで利用可能なエアタイムのフラクションと、前記それぞれのAPの前記強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと
    をさらに備え、送信機のシャットダウンは、APごとの前記決定された差に基づく、請求項10に記載のシステム。
  12. 前記動作は、
    前記第2の複数のAPから前記抑制されたAPを除外することによって、第3の複数のAPを決定することと、
    前記第3の複数のAP中のAPごとに、前記それぞれのAPの強いネイバーAPの第2のカウントを決定することと、
    前記所定のネイバー閾値を上回る第2のカウントを有する第4の複数のAPを決定することと、
    前記第4の複数のAPのAPごとに、前記それぞれのAPで利用可能なエアタイムのフラクションと、前記それぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの第2の差を決定することと、
    前記第2の差に基づいて前記第4の複数のAPのうちの1つによる送信を抑制することと
    をさらに備える、請求項11に記載のシステム。
  13. 前記動作は、前記第2の複数のAP中のどの前記APが最小の差を有するかを決定することをさらに備え、シャットダウンすることは、前記最小の差を有すると決定された前記APの送信機をシャットダウンすることを備える、請求項11に記載のシステム。
  14. 前記APで利用可能な前記エアタイムのフラクションは、前記APの最大スループットの利用率である、請求項10に記載のシステム。
  15. 前記動作は、前記APによる送信の前記抑制に基づいて、前記複数のAPのうちの前記少なくとも1つの残りの部分の送信電力を調整することをさらに備える、請求項10に記載のシステム。
  16. 前記動作は、前記強いネイバー閾値よりも多くの強いネイバーを有するAPがなくなるまで、AP中の送信機を反復してシャットダウンすることをさらに備える、請求項10に記載のシステム。
  17. 前記動作は、各反復する送信の抑制間のサービスレベル経験(SLE)パラメータを記憶することと、第1の反復の前記記憶されたSLEパラメータを、後続の反復の記憶されたSLEパラメータと比較することと、前記比較に応答して、抑制されたAPによる送信を再開することと、をさらに備える、請求項16に記載のシステム。
  18. 前記動作は、5Ghzチャネルが前記複数のAPで利用可能ではないと検出することをさらに備え、送信機のシャットダウンは、前記検出に応答する、請求項10に記載のシステム。
  19. 非一時的コンピュータ可読記憶媒体であって、実行されると、
    複数のAPの各々について強いネイバーAPを決定することと、ここで、前記強いネイバーAPは、所定の信号強度閾値を上回るそれぞれのAPにおける信号強度測定値を有する他のAPとして決定され、
    前記複数のAPのうちの1つのAPで利用可能なエアタイムのフラクションと、前記APの前記強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと、
    前記差に基づいて前記APによる送信を抑制することと
    を備える動作を行うようにハードウェア処理回路を構成する命令を備える、非一時的コンピュータ可読記憶媒体。
  20. 前記動作は、
    前記複数のAPのAPごとに、前記それぞれのAPの強いネイバーAPをカウントすることと、
    所定のネイバー閾値を上回るカウントを有する第2の複数のAPを決定することと、
    前記第2の複数のAPの各APで利用可能なエアタイムのフラクションと、前記それぞれのAPの強いネイバーAPによって集合的に提供されるエアタイムのフラクションとの差を決定することと
    をさらに備え、前記送信の抑制は、前記決定された差に基づく、請求項19に記載の非一時的コンピュータ可読記憶媒体。
JP2020112609A 2019-09-30 2020-06-30 インテリジェントな無線バンド再構成 Withdrawn JP2021057883A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962907889P 2019-09-30 2019-09-30
US62/907,889 2019-09-30
US16/696,231 US11129027B2 (en) 2019-09-30 2019-11-26 Intelligent radio band reconfiguration of access points in a wireless network
US16/696,231 2019-11-26

Publications (1)

Publication Number Publication Date
JP2021057883A true JP2021057883A (ja) 2021-04-08

Family

ID=71401644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112609A Withdrawn JP2021057883A (ja) 2019-09-30 2020-06-30 インテリジェントな無線バンド再構成

Country Status (6)

Country Link
US (3) US11129027B2 (ja)
EP (2) EP4080930A1 (ja)
JP (1) JP2021057883A (ja)
CN (2) CN112584385B (ja)
AU (1) AU2020203981A1 (ja)
CA (1) CA3083400A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129027B2 (en) 2019-09-30 2021-09-21 Juniper Networks, Inc. Intelligent radio band reconfiguration of access points in a wireless network
US20230047635A1 (en) * 2021-08-13 2023-02-16 Juniper Networks, Inc. Wireless access point proximity zones

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430395B2 (en) * 2000-04-07 2002-08-06 Commil Ltd. Wireless private branch exchange (WPBX) and communicating between mobile units and base stations
US6934298B2 (en) * 2003-01-09 2005-08-23 Modular Mining Systems, Inc. Hot standby access point
US7616966B2 (en) 2004-10-29 2009-11-10 Hien Nguyen Determining optimal access point locations for access points that perform automatic channel selection and automatic power adjustment
US20110099126A1 (en) * 2005-08-30 2011-04-28 Sensact Applications, Inc. Automated Parking Policy Enforcement System
US8681810B2 (en) * 2006-04-13 2014-03-25 Qualcomm Incorporated Dynamic carrier sensing thresholds
KR101558304B1 (ko) * 2008-11-20 2015-10-07 삼성전자주식회사 무선 근거리 통신망에서 셀 경계에서의 서비스 불균형을 개선하기 위한 방법 및 장치
CN101521924B (zh) * 2009-04-27 2011-11-16 杭州华三通信技术有限公司 一种无线局域网中的切换方法和设备
CN102577537A (zh) * 2009-10-15 2012-07-11 日本电气株式会社 移动通信系统、无线基站装置、小区区域的协作控制方法以及程序
US8942717B2 (en) * 2009-11-30 2015-01-27 Intel Corporation Load balancing techniques in wireless networks
US8787907B2 (en) * 2010-04-08 2014-07-22 Qualcomm Incorporated Frequency selection and transition over white space
US9197528B2 (en) * 2011-03-02 2015-11-24 3Inova Networks Inc. Traffic management in distributed wireless networks
US9451503B2 (en) * 2011-08-31 2016-09-20 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal and method for controlling rate change
US9161293B2 (en) 2011-09-28 2015-10-13 Avaya Inc. Method and apparatus for using received signal strength indicator (RSSI) filtering to provide air-time optimization in wireless networks
US9060352B2 (en) 2012-08-14 2015-06-16 Cisco Technology, Inc. Dynamic channel assignment for WLAN deployments with IEEE 802.11ac access points
US20150038148A1 (en) * 2013-08-01 2015-02-05 Electronics And Telecommunications Research Institute Method and apparatus for handover based on cooperation between base stations
US9451612B2 (en) 2014-12-12 2016-09-20 Huawei Technologies Co., Ltd. Method and system for joint coordination and coexistence in unlicensed spectrum
US10070450B2 (en) 2014-12-30 2018-09-04 Adtran, Inc. Providing airtime fairness in wireless systems
US9832082B2 (en) 2015-06-30 2017-11-28 Mist Systems, Inc. Monitoring wireless access point events
US9432999B1 (en) 2015-11-19 2016-08-30 Uwatec Sárl Optimization of airtime among Wi-Fi clients connected to an access point
US10575338B2 (en) * 2016-02-04 2020-02-25 Samsung Electronics Co., Ltd. Method and apparatus for UE signal transmission in 5G cellular communications
US10433189B2 (en) * 2016-05-09 2019-10-01 Cisco Technology, Inc. Flexible radio assignment
US10536871B2 (en) 2017-06-30 2020-01-14 Cisco Technology, Inc. Radio sensor coverage estimation for wireless network assurance
US10958585B2 (en) 2018-12-31 2021-03-23 Juniper Networks, Inc. Methods and apparatus for facilitating fault detection and/or predictive fault detection
US10958537B2 (en) 2019-01-18 2021-03-23 Juniper Networks, Inc. Method for spatio-temporal monitoring
US10985969B2 (en) 2019-02-19 2021-04-20 Juniper Networks, Inc. Systems and methods for a virtual network assistant
US10862742B2 (en) 2019-03-08 2020-12-08 Juniper Networks, Inc. Method for conveying AP error codes over BLE advertisements
US11129027B2 (en) 2019-09-30 2021-09-21 Juniper Networks, Inc. Intelligent radio band reconfiguration of access points in a wireless network
US11563481B2 (en) * 2019-11-13 2023-01-24 Electronics And Telecommunications Research Institute Method and apparatus for relay based on multiple beams in vehicle-to-everything communication system
US11405269B2 (en) * 2019-12-20 2022-08-02 Qualcomm Incorporated Beam sweep configuration for full duplex capability
US11570038B2 (en) 2020-03-31 2023-01-31 Juniper Networks, Inc. Network system fault resolution via a machine learning model
US11856391B2 (en) * 2020-04-17 2023-12-26 Qualcomm Incorporated Reusing a cross link interference framework for self-interference measurement

Also Published As

Publication number Publication date
US20210385660A1 (en) 2021-12-09
US11812275B2 (en) 2023-11-07
CN115866613A (zh) 2023-03-28
EP4080930A1 (en) 2022-10-26
EP3799475A1 (en) 2021-03-31
CN112584385B (zh) 2022-11-22
CA3083400A1 (en) 2021-03-30
US11129027B2 (en) 2021-09-21
AU2020203981A1 (en) 2021-04-15
EP3799475B1 (en) 2022-07-27
US20240064524A1 (en) 2024-02-22
CN112584385A (zh) 2021-03-30
US20210099887A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US11528614B2 (en) SON-controlled DFS
EP3202204B1 (en) Interference detection
US9497700B2 (en) Dynamic channel selection algorithms for interference management in Wi-Fi networks
US20240064524A1 (en) Intelligent radio band reconfiguration for access points of a wireless network
US20080107071A1 (en) Channel selection in a wireless network
US11330486B2 (en) Wireless terminal roaming
US20230396485A1 (en) Network management actions based on access point classification
US20230091127A1 (en) Wireless network control based on roaming quality assessments
Han et al. Load aware automatic channel switching for software-defined enterprise WLANs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20210416