JP2021057236A - Separator for lithium ion secondary battery - Google Patents

Separator for lithium ion secondary battery Download PDF

Info

Publication number
JP2021057236A
JP2021057236A JP2019180431A JP2019180431A JP2021057236A JP 2021057236 A JP2021057236 A JP 2021057236A JP 2019180431 A JP2019180431 A JP 2019180431A JP 2019180431 A JP2019180431 A JP 2019180431A JP 2021057236 A JP2021057236 A JP 2021057236A
Authority
JP
Japan
Prior art keywords
separator
base material
ion secondary
coating
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019180431A
Other languages
Japanese (ja)
Inventor
誉子 笠井
Takako Kasai
誉子 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2019180431A priority Critical patent/JP2021057236A/en
Publication of JP2021057236A publication Critical patent/JP2021057236A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a separator for a lithium ion secondary battery having high heat resistance and high productivity.SOLUTION: In a separator for a lithium ion secondary battery, a coating layer containing inorganic particles, an organic polymer binder, and fine fibers is provided on at least one surface of a porous substrate, and the fine fibers are total aromatic polyamide fibers.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用セパレータに関する。 The present invention relates to a separator for a lithium ion secondary battery.

近年、リチウムイオン二次電池(以下、「リチウムイオン二次電池」を「電池」と記す場合がある)の高容量化・高エネルギー密度化に伴い、安全性が重大な問題になっている。電池の安全性向上のため、電解液に難燃剤を含有する、正極・負極の熱安定性を向上させるなどの対策がなされている。リチウムイオン二次電池用セパレータ(以下、「リチウムイオン二次電池用セパレータ」を「セパレータ」と記す場合がある)においては、耐熱性が高いほど電池の安全性も高くなるとされている(例えば、特許文献1)。そこで、ポリオレフィン系微多孔膜、ポリエステル不織布などの多孔性基材に無機粒子を塗工した高耐熱セパレータが提案されている(例えば、特許文献2、3参照)。 In recent years, with the increase in capacity and energy density of lithium ion secondary batteries (hereinafter, "lithium ion secondary batteries" may be referred to as "batteries"), safety has become a serious problem. In order to improve the safety of the battery, measures have been taken such as containing a flame retardant in the electrolytic solution and improving the thermal stability of the positive electrode and the negative electrode. In a separator for a lithium ion secondary battery (hereinafter, "separator for a lithium ion secondary battery" may be referred to as a "separator"), it is said that the higher the heat resistance, the higher the safety of the battery (for example). Patent Document 1). Therefore, a highly heat-resistant separator in which inorganic particles are coated on a porous base material such as a polyolefin-based microporous membrane or a polyester non-woven fabric has been proposed (see, for example, Patent Documents 2 and 3).

しかし、無機粒子を塗工することでセパレータの耐熱性は一定程度上がるものの、その効果は限定的で、多孔性基材の耐熱性に大きく依存しているといった問題があった。 However, although the heat resistance of the separator is increased to some extent by coating with inorganic particles, the effect is limited, and there is a problem that the heat resistance of the porous base material is largely dependent on it.

ポリエステル不織布などの不織布基材は、多孔性基材そのものの耐熱性がポリオレフィン系微多孔膜より高く、安全性が期待できる。しかし、不織布基材に塗液を塗工するセパレータの製造方法では、塗工装置における強い動圧のために、塗液が多孔性基材の内部に押し込まれやすく、また、高速で乾燥させるための大量の熱風からくる風圧によっても、塗液が多孔性基材の内部に押し込まれやすい。とりわけ、セパレータを高速で製造しようとする場合、この傾向が顕著である。そのため、塗液を付与したのとは反対面から、押し込まれた塗液が滲出する現象(以下、「塗液の裏抜け」と記す場合がある)が生じ、塗工装置のロールを汚すことや、ロールに付着した汚れがセパレータに再転写して、その表面を不均一にすることがあり、この製造方法ではセパレータを高速で生産することが著しく困難であった。 Nonwoven fabric base materials such as polyester non-woven fabrics have higher heat resistance of the porous base materials themselves than polyolefin-based microporous membranes, and can be expected to be safe. However, in the method for manufacturing a separator in which a coating liquid is applied to a non-woven fabric base material, the coating liquid is easily pushed into the inside of the porous base material due to the strong dynamic pressure in the coating device, and the coating liquid is dried at high speed. Even with the wind pressure coming from the large amount of hot air, the coating liquid is likely to be pushed into the inside of the porous substrate. This tendency is particularly remarkable when the separator is to be manufactured at high speed. Therefore, a phenomenon in which the pushed coating liquid exudes from the surface opposite to the one to which the coating liquid is applied (hereinafter, may be referred to as “striking through the coating liquid”) occurs, and the roll of the coating device is soiled. In addition, dirt adhering to the roll may be retransferred to the separator and the surface thereof may become non-uniform, and it has been extremely difficult to produce the separator at high speed by this production method.

塗液の裏抜けを防ぐ方法として、塗液に微細セルロースを添加する方法が提案されている(例えば、特許文献4)。しかしこの方法では、塗液の裏抜けは改善されるものの、セパレータの耐熱性の面では、微細セルロースによって大きな改善は見られなかった。 As a method of preventing strike-through of the coating liquid, a method of adding fine cellulose to the coating liquid has been proposed (for example, Patent Document 4). However, although this method improves the strike-through of the coating liquid, the heat resistance of the separator is not significantly improved by the fine cellulose.

国際公開第2006/061936号パンフレットInternational Publication No. 2006/061936 Pamphlet 特開2008−4439号公報Japanese Unexamined Patent Publication No. 2008-4439 特表2011−505663号公報Japanese Patent Application Laid-Open No. 2011-505663 特開2015−84318号公報JP-A-2015-84318

本発明の課題は、耐熱性が高く、生産性の高いリチウムイオン二次電池用セパレータを提供することにある。 An object of the present invention is to provide a separator for a lithium ion secondary battery having high heat resistance and high productivity.

上記課題を解決するために鋭意研究した結果、下記発明が見出された。 As a result of diligent research to solve the above problems, the following inventions have been found.

(1)多孔性基材の少なくとも1面に無機粒子、有機ポリマーバインダー及び微細繊維を含む塗層を設けてなるリチウムイオン二次電池用セパレータにおいて、該微細繊維が、全芳香族ポリアミド繊維であることを特徴とするリチウムイオン二次電池用セパレータ。 (1) In a separator for a lithium ion secondary battery in which a coating layer containing inorganic particles, an organic polymer binder and fine fibers is provided on at least one surface of a porous substrate, the fine fibers are all aromatic polyamide fibers. A separator for a lithium-ion secondary battery.

(2)前記多孔性基材が不織布基材である(1)記載のリチウムイオン二次電池用セパレータ。 (2) The separator for a lithium ion secondary battery according to (1), wherein the porous base material is a non-woven fabric base material.

本発明によって、耐熱性が高く、生産性の高いリチウムイオン二次電池用セパレータを提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a separator for a lithium ion secondary battery having high heat resistance and high productivity.

本発明のリチウムイオン二次電池用セパレータは、多孔性基材の少なくとも1面に無機粒子、有機ポリマーバインダー及び微細繊維を含む塗層が設けられており、該微細繊維が、全芳香族ポリアミド繊維であることを特徴とする。 The separator for a lithium ion secondary battery of the present invention is provided with a coating layer containing inorganic particles, an organic polymer binder and fine fibers on at least one surface of a porous base material, and the fine fibers are all aromatic polyamide fibers. It is characterized by being.

本発明において、多孔性基材としては、微多孔膜、不織布基材が挙げられる。微多孔膜は、一般的にポリプロピレン、ポリエチレン等のポリオレフィンを一軸延伸又は二軸延伸することで得られる。そのほか、ポリアミドやポリイミドからなる多孔性基材に関しても、微多孔膜の一例として挙げられる。本発明では、塗層に含まれる全芳香族ポリアミドの微細繊維が無機粒子とともに多孔性基材と混ざり合うことで、耐熱性を発現していると考えられる。多孔性基材の内部まで塗層が入り込んでいるほど、塗層と多孔性基材が混ざり合っていることから、多孔性基材が不織布基材であることが好ましい。 In the present invention, examples of the porous substrate include a microporous membrane and a non-woven fabric substrate. The microporous membrane is generally obtained by uniaxially stretching or biaxially stretching a polyolefin such as polypropylene or polyethylene. In addition, a porous base material made of polyamide or polyimide is also mentioned as an example of a microporous membrane. In the present invention, it is considered that the fine fibers of the total aromatic polyamide contained in the coating layer are mixed with the porous base material together with the inorganic particles to exhibit heat resistance. The more the coating layer penetrates into the porous substrate, the more the coating layer and the porous substrate are mixed. Therefore, it is preferable that the porous substrate is a non-woven fabric substrate.

不織布基材に含まれる繊維としては、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート、ポリエチレンナフタレート等のポリエステル、ポリアクリロニトリル等のアクリル、6,6ナイロン、6ナイロン等のポリアミド等の各種合成繊維、木材パルプ、麻パルプ、コットンパルプ等の各種セルロースパルプ、レーヨン、リヨセルなどのセルロース系再生繊維等が例示さる。これらの中で、耐熱性、低吸湿性等の理由から、ポリエステル又はポリプロピレンを含有する不織布基材が好ましい。 Fibers contained in the non-woven substrate include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate (PET), polyethylene isophthalate and polyethylene naphthalate, acrylics such as polyacrylonitrile, and polyamides such as 6,6 nylon and 6 nylon. Examples thereof include various synthetic fibers such as wood pulp, hemp pulp, and various cellulose pulps such as cotton pulp, and cellulose-based regenerated fibers such as rayon and lyocell. Among these, a non-woven fabric base material containing polyester or polypropylene is preferable because of heat resistance, low hygroscopicity, and the like.

不織布基材の製造方法は、特に制限されない。繊維をシート状にする方法としては、スパンボンド法、メルトブロー法、静電紡糸法、湿式法等が挙げられる。これらの中で、薄くて緻密な構造の不織布基材を得ることができることから、湿式法が好ましい。 The method for producing the non-woven fabric base material is not particularly limited. Examples of the method for forming the fiber into a sheet include a spunbond method, a melt blow method, an electrostatic spinning method, a wet method and the like. Among these, the wet method is preferable because a non-woven fabric base material having a thin and dense structure can be obtained.

本発明の多孔性基材の坪量、厚みは特に制限されないが、リチウムイオン二次電池用セパレータの多孔性基材としては、坪量5〜30g/m、厚み8〜30μmが好適であり、坪量6〜15g/m、厚み10〜20μmがより好適である。なお、坪量はJIS P8124:2011(紙及び板紙−坪量測定法)に規定された方法に基づき測定された値、厚みはJIS B 7502:2016(マイクロメータ)に規定された外側マイクロメーターを使用して、7N荷重時で測定された値を意味する。 The basis weight and thickness of the porous substrate of the present invention are not particularly limited, but the porous substrate of the separator for a lithium ion secondary battery preferably has a basis weight of 5 to 30 g / m 2 and a thickness of 8 to 30 μm. , Basis weight 6 to 15 g / m 2 , thickness 10 to 20 μm are more preferable. The basis weight is a value measured based on the method specified in JIS P8124: 2011 (paper and paperboard-basis weight measurement method), and the thickness is the outer micrometer specified in JIS B 7502: 2016 (micrometer). In use, it means the value measured under a 7N load.

無機粒子としては、セパレータの塗層に用いるのに好適なものであれば、特に制限はされない。例としては、α−アルミナ、β−アルミナ、γ−アルミナ等のアルミナ、ベーマイト等のアルミナ水和物、酸化マグネシウム、水酸化マグネシウム等のマグネシウム化合物、酸化カルシウム等が挙げられる。これらの中でも、リチウムイオン二次電池に用いられる電解液に対する安定性が高い点で、α−アルミナ、アルミナ水和物、酸化マグネシウム、水酸化マグネシウムが好ましく用いられる。 The inorganic particles are not particularly limited as long as they are suitable for use in the coating layer of the separator. Examples include alumina such as α-alumina, β-alumina and γ-alumina, alumina hydrate such as boehmite, magnesium compounds such as magnesium oxide and magnesium hydroxide, and calcium oxide. Among these, α-alumina, alumina hydrate, magnesium oxide, and magnesium hydroxide are preferably used because of their high stability to the electrolytic solution used in the lithium ion secondary battery.

本発明において、塗層には、塗層の強度を高めるため、有機ポリマーバインダーを含有させる。有機ポリマーバインダーは、セパレータの塗層に用いるのに好適なものであれば特に制限はされない。その例としては、アクリル酸エステルポリマー、メタクリル酸エステル系ポリマー、スチレン−ブタジエン系ポリマー、ポリフッ化ビニリデン等を挙げることができる。 In the present invention, the coating layer contains an organic polymer binder in order to increase the strength of the coating layer. The organic polymer binder is not particularly limited as long as it is suitable for use in the coating layer of the separator. Examples thereof include acrylic acid ester polymers, methacrylic acid ester polymers, styrene-butadiene polymers, polyvinylidene fluoride and the like.

有機ポリマーバインダーの含有量は、無機粒子に対し0.5質量%〜20.0質量%が好ましく、1.0質量%〜10.0質量%がより好ましい。有機ポリマーバインダーの含有量が無機粒子に対し0.5質量%未満の場合、多孔性基材との接着や塗層強度が弱くなり、無機粒子が脱落しやすくなる。一方、有機ポリマーバインダーの含有量が無機粒子に対し20.0質量%を超える場合、有機ポリマーバインダーが被膜化し、セパレータの内部抵抗が高くなる場合がある。 The content of the organic polymer binder is preferably 0.5% by mass to 20.0% by mass, more preferably 1.0% by mass to 10.0% by mass, based on the inorganic particles. When the content of the organic polymer binder is less than 0.5% by mass with respect to the inorganic particles, the adhesion to the porous substrate and the coating layer strength are weakened, and the inorganic particles are likely to fall off. On the other hand, when the content of the organic polymer binder exceeds 20.0% by mass with respect to the inorganic particles, the organic polymer binder may be coated and the internal resistance of the separator may be increased.

微細繊維には、全芳香族ポリアミド繊維を使用する。本発明における微細繊維とは、変法濾水度400ml以下の繊維であることが好ましい。変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度を0.1%にした以外はJIS P8121:2012に準拠して測定した値である。 Total aromatic polyamide fibers are used as the fine fibers. The fine fibers in the present invention are preferably fibers having a modified drainage degree of 400 ml or less. The modified drainage degree was measured in accordance with JIS P8121: 2012 except that an 80-mesh wire mesh with a wire diameter of 0.14 mm and a mesh size of 0.18 mm was used as a sieving plate and the sample concentration was 0.1%. The value.

微細繊維は、湿式ボールミル、湿式振動ミル、湿式ペイントシェーカー、リファイナー、ビーター、摩砕装置、高圧ホモジナイザー、高速ホモジナイザー、超音波破砕器などを用いて全芳香族ポリアミド繊維を処理することで得られる。微細繊維が全芳香族ポリアミド繊維であることで、セルロース等他の素材を用いたときに比べ、セパレータの耐熱性向上効果が高くなる。これは、多孔性基材が熱溶融した際、全芳香族ポリアミド繊維が混ざり合うためと考えられる。これによってセパレータ全体の粘度が高くなるため、溶融した状態でも分離機能を維持し続け、耐熱性が向上する。微細な繊維であるほど熱溶融時の多孔性基材の粘度上昇効果は高く、耐熱性の高い繊維ほど高温でも強度を維持できる。本発明における微細繊維の変法濾水度は、0〜400mlであることが好ましく、好ましくは0〜350mlであり、更に好ましくは0〜250mlである。変法濾水度が400mlを超えると、多孔性基材と微細繊維が混ざり合ったときの粘度が低く、耐熱性が向上しにくくなる。 Fine fibers are obtained by treating all aromatic polyamide fibers using a wet ball mill, a wet vibration mill, a wet paint shaker, a refiner, a beater, a grinder, a high pressure homogenizer, a high speed homogenizer, an ultrasonic crusher and the like. Since the fine fibers are all aromatic polyamide fibers, the effect of improving the heat resistance of the separator is higher than when other materials such as cellulose are used. It is considered that this is because the total aromatic polyamide fibers are mixed when the porous substrate is hot-melted. As a result, the viscosity of the entire separator is increased, so that the separation function is maintained even in the molten state, and the heat resistance is improved. The finer the fiber, the higher the effect of increasing the viscosity of the porous substrate during hot melting, and the higher the heat resistance, the higher the strength can be maintained even at high temperatures. The modified drainage degree of the fine fibers in the present invention is preferably 0 to 400 ml, preferably 0 to 350 ml, and more preferably 0 to 250 ml. When the modified water flow rate exceeds 400 ml, the viscosity when the porous base material and the fine fibers are mixed is low, and it becomes difficult to improve the heat resistance.

微細繊維の含有量は、好ましくは多孔性基材に対し0.5質量%以上4.0質量%以下であり、より好ましくは1.0質量%以上2.0質量%以下である。微細繊維の含有量が多孔性基材に対し0.5質量%未満である場合、耐熱性を発現しにくくなる。微細繊維の含有量が多孔性基材に対し4.0質量%を超える場合、セパレータの内部抵抗が高くなる場合がある。 The content of the fine fibers is preferably 0.5% by mass or more and 4.0% by mass or less, and more preferably 1.0% by mass or more and 2.0% by mass or less with respect to the porous substrate. When the content of the fine fibers is less than 0.5% by mass with respect to the porous substrate, it becomes difficult to develop heat resistance. When the content of fine fibers exceeds 4.0% by mass with respect to the porous substrate, the internal resistance of the separator may increase.

塗層には、前記無機粒子、有機ポリマーバインダー及び微細繊維の他に、ポリアクリル酸、カルボキシメチルセルロースナトリウム等の各種分散剤、ヒドロキシエチルセルロース、カルボキシメチルセルロースナトリウム、ポリエチレンオキサイド等の各種増粘剤、各種の濡れ剤、防腐剤、消泡剤等の各種添加剤を、必要に応じ配合せしめることもできる。 In addition to the inorganic particles, organic polymer binder and fine fibers, various dispersants such as polyacrylic acid and sodium carboxymethyl cellulose, various thickeners such as hydroxyethyl cellulose, sodium carboxymethyl cellulose and polyethylene oxide, and various thickeners are used in the coating layer. Various additives such as a wetting agent, an antiseptic agent, and an antifoaming agent can be added as needed.

本発明において、塗層の含有量(塗液の乾燥後の塗工量)は、好ましくは5〜30g/mであり、より好ましくは8〜20g/mである。塗工量が少なすぎると、ピンホールが発生する場合がある。塗工量が多すぎると、内部抵抗が高くなりすぎることがある。また、セパレータの厚みが厚くなる。本発明において、セパレータの厚さは、好ましくは10〜40μmであり、より好ましくは15〜25μmである。セパレータが厚すぎると、高エネルギー密度化が困難となり、セパレータが薄すぎると、安全性が確保できないことがある。本発明のセパレータを製造するに際し、本発明において、塗層は不織布基材の片面にのみ塗工しても良いし、両面に塗工しても良い。また、各面に2回以上塗布しても良い。 In the present invention, the content of the coating layer (coating amount after drying of the coating liquid) is preferably 5 to 30 g / m 2 , and more preferably 8 to 20 g / m 2 . If the amount of coating is too small, pinholes may occur. If the amount of coating is too large, the internal resistance may become too high. In addition, the thickness of the separator becomes thicker. In the present invention, the thickness of the separator is preferably 10 to 40 μm, more preferably 15 to 25 μm. If the separator is too thick, it becomes difficult to increase the energy density, and if the separator is too thin, safety may not be ensured. In producing the separator of the present invention, in the present invention, the coating layer may be applied to only one side of the non-woven fabric base material, or may be applied to both sides. Moreover, you may apply it to each surface twice or more.

本発明のセパレータの製造において、塗液を多孔性基材に塗工する方法としては、各種の塗工装置を用いることができる。塗工装置としては、グラビアコーター、ダイコーター、ブレードコーター、ロッドコーター、ロールコーター等の各種コーターを用いることができる。多孔性基材が不織布基材の場合、塗液が裏抜けしてしまうため、塗工時に深さ方向の動圧が加わる塗工装置の使用が困難であった従来の塗液と比較して、より多様な塗工装置を生産性等の観点から選択可能になることも、本発明で使用される塗液の優れた特徴である。 In the production of the separator of the present invention, various coating devices can be used as a method of coating the coating liquid on the porous substrate. As the coating device, various coaters such as a gravure coater, a die coater, a blade coater, a rod coater, and a roll coater can be used. When the porous base material is a non-woven fabric base material, the coating liquid strikes through, so compared to the conventional coating liquid, which is difficult to use with a coating device that applies dynamic pressure in the depth direction during coating. It is also an excellent feature of the coating liquid used in the present invention that a wider variety of coating devices can be selected from the viewpoint of productivity and the like.

以下、実施例により本発明を更に詳しく説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples.

<不織布基材の作製>
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)短繊維60質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET短繊維(軟化点120℃、融点230℃)40質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、傾斜型抄紙機にて、湿式方式で抄き上げ、135℃のシリンダードライヤーによって、バインダー用PET系短繊維同士、及びバインダー用PET系短繊維と配向結晶化PET系短繊維の交点を融着させて引張強度を発現させ、目付10g/mの不織布とした。更に、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み15μmの不織布基材を作製した。
<Preparation of non-woven fabric base material>
A single fiber with a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, 60 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers and a fineness of 0.2 dtex (average fiber diameter of 4.3 μm) with a fiber length of 3 mm. 40 parts by mass of PET short fibers for component type binders (softening point 120 ° C., melting point 230 ° C.) were dispersed in water with a pulper to prepare a uniform papermaking slurry having a concentration of 1% by mass. This slurry for making is made by a wet method with a tilting paper machine, and PET-based short fibers for binders, and PET-based short fibers for binders and oriented crystallized PET-based short fibers are used by a cylinder dryer at 135 ° C. The intersections of the above were fused to develop tensile strength, and a non-woven fabric having a grain size of 10 g / m 2 was obtained. Further, this non-woven fabric is subjected to the conditions of a thermal roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min using a 1-nip thermal calendar composed of a dielectric heating jacket roll (metal thermal roll) and an elastic roll. A non-woven fabric base material having a thickness of 15 μm was prepared by thermal calendar treatment.

<微多孔膜>
厚み15μmのポリエチレン微多孔膜を使用した。
<Microporous membrane>
A polyethylene microporous membrane having a thickness of 15 μm was used.

<微細繊維懸濁液Aの作製>
全芳香族ポリアミド繊維であるティアラ(登録商標)KY400S(ダイセルファインケム社製)を1質量%濃度になるようにイオン交換水中に分散させ、VFポンプ(新浜ポンプ製作所製)を用いて5分間処理することで、変法濾水度50ml、固形分濃度1質量%の微細繊維懸濁液Aを作製した。
<Preparation of fine fiber suspension A>
Tiara (registered trademark) KY400S (manufactured by Daicel FineChem), which is an all-aromatic polyamide fiber, is dispersed in ion-exchanged water so as to have a concentration of 1% by mass, and treated with a VF pump (manufactured by Shinhama Pump Mfg. Co., Ltd.) for 5 minutes. As a result, a fine fiber suspension A having a modified drainage degree of 50 ml and a solid content concentration of 1% by mass was prepared.

<微細繊維懸濁液Bの作製>
全芳香族ポリアミド繊維であるティアラKY400S(ダイセルファインケム社製)を2質量%濃度になるようにイオン交換水中に分散させ、VFポンプ(新浜ポンプ製作所製)を用いて5分間処理することで、変法濾水度50ml、固形分濃度2質量%の微細繊維懸濁液Bを作製した。
<Preparation of fine fiber suspension B>
Tiara KY400S (manufactured by Daicel FineChem), which is an all-aromatic polyamide fiber, is dispersed in ion-exchanged water so as to have a concentration of 2% by mass, and treated with a VF pump (manufactured by Shinhama Pump Mfg. Co., Ltd.) for 5 minutes to change the concentration. A fine fiber suspension B having a legal drainage degree of 50 ml and a solid content concentration of 2% by mass was prepared.

<微細繊維懸濁液Cの作製>
全芳香族ポリアミド繊維であるトワロン(登録商標)1094(帝人社製)を1質量%濃度になるようにイオン交換水中に分散させ、VFポンプ(新浜ポンプ製作所製)を用いて5分間処理することで、変法濾水度340ml、固形分濃度1質量%の微細繊維懸濁液Cを作製した。
<Preparation of fine fiber suspension C>
Towaron (registered trademark) 1094 (manufactured by Teijin Limited), which is a total aromatic polyamide fiber, is dispersed in ion-exchanged water so as to have a concentration of 1% by mass, and treated with a VF pump (manufactured by Shinhama Pump Mfg. Co., Ltd.) for 5 minutes. Then, a fine fiber suspension C having a modified drainage degree of 340 ml and a solid content concentration of 1% by mass was prepared.

<微細繊維懸濁液Dの作製>
セルロース繊維であるセリッシュ(登録商標)KY−100G(ダイセルファインケム社製)を1質量%濃度になるようにイオン交換水中に分散させ、VFポンプ(新浜ポンプ製作所製)を用いて5分間処理することで、変法濾水度220ml、固形分濃度1質量%の微細繊維懸濁液Dを作製した。
<Preparation of fine fiber suspension D>
Cellulose fiber Serish (registered trademark) KY-100G (manufactured by Daicel FineChem) is dispersed in ion-exchanged water so as to have a concentration of 1% by mass, and treated with a VF pump (manufactured by Shinhama Pump Mfg. Co., Ltd.) for 5 minutes. A fine fiber suspension D having a modified drainage content of 220 ml and a solid content concentration of 1% by mass was prepared.

(実施例1)
微細繊維懸濁液A100質量部に、平均粒子径3.0μmの水酸化マグネシウム100質量部を加えて攪拌・混合した。次に、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2質量%水溶液75質量部を添加・攪拌混合した。続いて、ガラス転移点−18℃、平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン系ポリマーのエマルション(固形分濃度50質量%)5質量部を添加・攪拌混合した。最後に、固形分濃度が25質量%になるように、調製水を加えて、塗液を調製した。作製した塗液を黒画用紙に載せた不織布基材の上に、固形分塗工量が10g/mとなるように手塗りバーで塗工し、80℃の熱風乾燥機で乾燥し、セパレータを得た。
(Example 1)
To 100 parts by mass of the fine fiber suspension A, 100 parts by mass of magnesium hydroxide having an average particle size of 3.0 μm was added, and the mixture was stirred and mixed. Next, 75 parts by mass of a 2% by mass aqueous solution of carboxymethyl cellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. of the 1% by mass aqueous solution was added and stirred and mixed. Subsequently, 5 parts by mass of an emulsion (solid content concentration: 50% by mass) of a carboxy-modified styrene-butadiene polymer having a glass transition point of −18 ° C. and an average particle size of 0.2 μm was added and stirred and mixed. Finally, a coating solution was prepared by adding prepared water so that the solid content concentration became 25% by mass. The prepared coating liquid is applied onto a non-woven fabric substrate placed on black drawing paper with a hand coating bar so that the solid content coating amount is 10 g / m 2 , dried with a hot air dryer at 80 ° C., and separated. Got

(実施例2)
微細繊維懸濁液Aを微細繊維懸濁液Bに変更した以外は、実施例1と同様にして塗液の調製・不織布基材への塗工を行い、セパレータを得た。
(Example 2)
A separator was obtained by preparing a coating liquid and coating the non-woven fabric substrate in the same manner as in Example 1 except that the fine fiber suspension A was changed to the fine fiber suspension B.

(実施例3)
微細繊維懸濁液Aを微細繊維懸濁液Cに変更した以外は、実施例1と同様にして塗液の調製・不織布基材への塗工を行い、セパレータを得た。
(Example 3)
A separator was obtained by preparing a coating liquid and coating the non-woven fabric substrate in the same manner as in Example 1 except that the fine fiber suspension A was changed to the fine fiber suspension C.

(実施例4)
実施例2と同様にして、塗液を調製した。作製した塗液を黒画用紙に載せた微多孔膜の上に、固形分塗工量が10g/mとなるように手塗りバーで塗工し、80℃の熱風乾燥機で乾燥し、セパレータを得た。
(Example 4)
A coating solution was prepared in the same manner as in Example 2. The prepared coating liquid is applied onto a microporous film placed on black drawing paper with a hand coating bar so that the solid content coating amount is 10 g / m 2 , dried with a hot air dryer at 80 ° C., and separated. Got

(比較例1)
微細繊維懸濁液Aを微細繊維懸濁液Dに変更した以外は、実施例1と同様にして塗液の調製・不織布基材への塗工を行い、セパレータを得た。
(Comparative Example 1)
A separator was obtained by preparing a coating liquid and coating the non-woven fabric substrate in the same manner as in Example 1 except that the fine fiber suspension A was changed to the fine fiber suspension D.

(比較例2)
微細繊維懸濁液Aをイオン交換水に変更した以外は、実施例1と同様にして塗液の調製・不織布基材への塗工を行い、セパレータを得た。
(Comparative Example 2)
A separator was obtained by preparing a coating liquid and coating the non-woven fabric substrate in the same manner as in Example 1 except that the fine fiber suspension A was changed to ion-exchanged water.

(比較例3)
比較例2と同様にして、塗液を調製した。作製した塗液を黒画用紙に載せた微多孔膜の上に、固形分塗工量が10g/mとなるように手塗りバーで塗工し、80℃の熱風乾燥機で乾燥し、セパレータを得た。
(Comparative Example 3)
A coating solution was prepared in the same manner as in Comparative Example 2. The prepared coating liquid is applied onto a microporous film placed on black drawing paper with a hand coating bar so that the solid content coating amount is 10 g / m 2 , dried with a hot air dryer at 80 ° C., and separated. Got

Figure 2021057236
Figure 2021057236

[塗液の裏抜け評価]
実施例1〜4、比較例1〜3で作製したセパレータを乾燥後に黒画用紙から剥がし、下記の基準で塗液の裏抜けを評価した。
[Evaluation of strike-through of coating liquid]
The separators prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were peeled off from the black drawing paper after drying, and the strike-through of the coating liquid was evaluated according to the following criteria.

○:黒画用紙への塗液の付着が見られない。
△:黒画用紙に塗液が付着しているが、乾燥後に黒画用紙とセパレータは貼りつかない。
×:黒画用紙に塗液が付着しており、乾燥後に黒画用紙からセパレータを剥がす際に黒画用紙又はセパレータが一部破損する。
◯: No adhesion of the coating liquid to the black drawing paper is observed.
Δ: The coating liquid is attached to the black drawing paper, but the black drawing paper and the separator do not stick to each other after drying.
X: The coating liquid is attached to the black drawing paper, and the black drawing paper or the separator is partially damaged when the separator is peeled off from the black drawing paper after drying.

[耐熱温度評価]
50mm角の穴をあけた金属フレームに60mm角にカットした実施例1〜4、比較例1〜3のセパレータ及び不織布基材、微多孔膜を貼り付け、中央を針(フランス刺繍針No.7、太さ0.69mm)で刺し穴をあけた。針穴をあけた部分にホットエアガンで10秒間熱風を当て、穴が拡大しない(直径2.0mm以上とならない)最大温度を耐熱温度とした。このとき、ホットエアガンの吹き出し口と金属フレームとの距離は5mmに固定した。結果を表1に示す。
[Heat-resistant temperature evaluation]
The separators, non-woven fabric base material, and microporous film of Examples 1 to 4 and Comparative Examples 1 to 3 cut into 60 mm square were attached to a metal frame having a 50 mm square hole, and the center was a needle (French embroidery needle No. 7). , Thickness 0.69 mm). Hot air was blown to the portion where the needle hole was made with a hot air gun for 10 seconds, and the maximum temperature at which the hole did not expand (the diameter did not become 2.0 mm or more) was set as the heat resistant temperature. At this time, the distance between the outlet of the hot air gun and the metal frame was fixed at 5 mm. The results are shown in Table 1.

○:多孔性基材とセパレータの耐熱温度の差が100℃以上
△:多孔性基材とセパレータの耐熱温度の差が50℃以上100℃未満
×:多孔性基材とセパレータの耐熱温度の差が50℃未満
◯: Difference in heat resistant temperature between the porous base material and the separator is 100 ° C. or more Δ: Difference in heat resistant temperature between the porous base material and the separator is 50 ° C. or more and less than 100 ° C. ×: Difference in heat resistant temperature between the porous base material and the separator Is less than 50 ° C

表1に示した通り、実施例1〜4のリチウムイオン二次電池用セパレータは、塗層に無機粒子、有機ポリマーバインダー及び全芳香族ポリアミド繊維(微細繊維)を含んでいるため、塗液の裏抜けが起こらず、高耐熱性を示していた。 As shown in Table 1, the separators for lithium ion secondary batteries of Examples 1 to 4 contain inorganic particles, an organic polymer binder, and total aromatic polyamide fibers (fine fibers) in the coating layer, and therefore, therefore, the coating liquid. No strike-through occurred and it showed high heat resistance.

一方、比較例1のセパレータは、塗層が微細セルロースを含むものの、全芳香族ポリアミド繊維を含まないため、塗層による耐熱温度の上昇が小さかった。また、比較例2のセパレータは、塗層に微細繊維を含んでおらず、多孔性基材が不織布基材であるため、塗液の裏抜けが生じており、耐熱温度の上昇も小さかった。比較例3のセパレータは、多孔性基材が微多孔膜であるため、塗液の裏抜けは起きなかったものの、塗層が全芳香族ポリアミド繊維を含んでいないため、塗層による耐熱温度の上昇が小さかった。 On the other hand, in the separator of Comparative Example 1, although the coating layer contained fine cellulose, it did not contain all aromatic polyamide fibers, so that the increase in heat resistant temperature due to the coating layer was small. Further, in the separator of Comparative Example 2, since the coating layer did not contain fine fibers and the porous base material was a non-woven fabric base material, strike-through of the coating liquid occurred and the increase in heat resistant temperature was small. In the separator of Comparative Example 3, since the porous base material was a microporous film, strike-through of the coating liquid did not occur, but since the coating layer did not contain all aromatic polyamide fibers, the heat resistant temperature due to the coating layer was high. The rise was small.

実施例2と4の比較から、多孔性基材が不織布基材の場合と微多孔膜の場合とでは、不織布基材の方が耐熱温度の上昇が大きくなっていた。これは、多孔性基材と塗層の接触面積の差と考えられる。不織布基材では塗層が基材内部に入り込んでいるため、微多孔膜に比べて、多孔性基材と塗層の接触面積が大きい。これによって、熱溶融した多孔性基材が塗層と速やかに混ざり、粘度が上がることで、耐熱性を発現しやすくなったと考えられる。 From the comparison between Examples 2 and 4, the increase in heat resistant temperature was larger in the non-woven fabric base material in the case where the porous base material was the non-woven fabric base material and the case where the microporous membrane was used. This is considered to be the difference in the contact area between the porous substrate and the coating layer. In the non-woven fabric base material, since the coating layer penetrates inside the base material, the contact area between the porous base material and the coating layer is larger than that of the microporous film. It is considered that this caused the hot-melted porous substrate to quickly mix with the coating layer and increase the viscosity, thereby facilitating the development of heat resistance.

本発明は、リチウムイオン二次電池に用いることができる。 The present invention can be used in a lithium ion secondary battery.

Claims (2)

多孔性基材の少なくとも1面に無機粒子、有機ポリマーバインダー及び微細繊維を含む塗層を設けてなるリチウムイオン二次電池用セパレータにおいて、該微細繊維が、全芳香族ポリアミド繊維であることを特徴とするリチウムイオン二次電池用セパレータ。 A separator for a lithium ion secondary battery in which a coating layer containing inorganic particles, an organic polymer binder and fine fibers is provided on at least one surface of a porous base material, wherein the fine fibers are all aromatic polyamide fibers. Separator for lithium-ion secondary batteries. 前記多孔性基材が不織布基材である請求項1記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 1, wherein the porous base material is a non-woven fabric base material.
JP2019180431A 2019-09-30 2019-09-30 Separator for lithium ion secondary battery Pending JP2021057236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180431A JP2021057236A (en) 2019-09-30 2019-09-30 Separator for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180431A JP2021057236A (en) 2019-09-30 2019-09-30 Separator for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2021057236A true JP2021057236A (en) 2021-04-08

Family

ID=75271006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180431A Pending JP2021057236A (en) 2019-09-30 2019-09-30 Separator for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2021057236A (en)

Similar Documents

Publication Publication Date Title
JP6542343B2 (en) Non-woven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
JP5651120B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
KR20180089526A (en) Nonwoven fabric separator for lead-acid batteries and lead-acid batteries using the same
JP6018498B2 (en) Lithium ion secondary battery separator base material, method for producing lithium ion secondary battery separator base material, and lithium ion secondary battery separator
SE448658B (en) BATTERY INTERNAL Separator for use in an electrochemical cell with alkaline electrolyte as well as a process for making such a separator
US11881595B2 (en) Coating solution for lithium ion battery separators and lithium ion battery separator
JP2020191274A (en) Thermal runaway suppression fireproof sheet
JP2018006258A (en) Lead-acid battery separator and lead-acid battery using the same
JP7079267B2 (en) Separator and separator for alkaline manganese dry cell consisting of the separator
JP2017188576A (en) Separator for electrochemical device
JP2021057236A (en) Separator for lithium ion secondary battery
JP5912464B2 (en) Production method and production apparatus for porous sheet carrying coating component
JP2021507470A (en) Battery separator, its manufacturing method and application
JP2015050043A (en) Lithium ion secondary battery separator
JP2017199728A (en) Separator for solid electrolytic capacitor
JP6581533B2 (en) Lithium ion battery separator
JP7377029B2 (en) Thermal runaway suppression fireproof sheet
JP2019175703A (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP3390994B2 (en) Separator for electrolytic capacitor
JP2020161279A (en) Method for manufacturing lithium-ion secondary battery separator
JP6088166B2 (en) Base material for lithium ion secondary battery separator and lithium ion secondary battery separator
JP6545638B2 (en) Heat resistant wet non-woven
JP6016466B2 (en) Lithium ion battery separator coating liquid and lithium ion battery separator
WO2018123891A1 (en) Fibrillated polyvinyl alcohol fiber and production method therefor
JP6018526B2 (en) Metal ion secondary battery separator