JP2021056503A - Diffusion element - Google Patents

Diffusion element Download PDF

Info

Publication number
JP2021056503A
JP2021056503A JP2020157164A JP2020157164A JP2021056503A JP 2021056503 A JP2021056503 A JP 2021056503A JP 2020157164 A JP2020157164 A JP 2020157164A JP 2020157164 A JP2020157164 A JP 2020157164A JP 2021056503 A JP2021056503 A JP 2021056503A
Authority
JP
Japan
Prior art keywords
coordinate
derivative
diffusion
vertex
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020157164A
Other languages
Japanese (ja)
Inventor
大介 関
Daisuke Seki
関  大介
幸暢 西尾
Yukinobu Nishio
幸暢 西尾
亨 猪股
Toru Inomata
亨 猪股
岡野 正登
Masato Okano
正登 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalux Co Ltd
Original Assignee
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co Ltd filed Critical Nalux Co Ltd
Publication of JP2021056503A publication Critical patent/JP2021056503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission

Abstract

To provide a diffusion element which makes optical intensity uniform at a prescribed value or more at a diffusion angle of a maximal value or lower of an absolute value of a diffusion angle in a prescribed direction, and which is capable of making the optical intensity 0 at a diffusion angle exceeding the maximal value of the absolute value of the diffusion angle in the prescribed direction.SOLUTION: A diffusion element includes a plurality of shapes obtained according to parallel displacement on at least one xy plane out of a shape represented by z=g(x,y) and a shape represented by z=-g(x,y), where a center of a rectangle with an x-direction side and a y-direction side on an (x,y) plane is an origin, and a smooth function in the rectangle is z=g(x,y). On an xz cross section, an angle formed between a light ray emitted from the diffusion element and a z-axis direction is an absolute value of a diffusion angle on the xz cross section. On a yz cross section, an angle formed between a light ray emitted from the diffusion element and a z-axis direction is an absolute value of a diffusion angle on the yz cross section. In the diffusion element, a desired maximal value of the absolute value of the diffusion angle of the xz cross section, and a desired maximal value of the absolute value of the diffusion angle of the yz cross section can be obtained.SELECTED DRAWING: Figure 17

Description

本発明は、光源から射出された光を拡散させる拡散素子に関する。 The present invention relates to a diffusing element that diffuses light emitted from a light source.

種々の応用分野において、光源から射出された光を拡散させる拡散素子が使用されている(たとえば、特許文献1)。 In various application fields, a diffusing element that diffuses light emitted from a light source is used (for example, Patent Document 1).

拡散素子において、拡散された光線の拡散角度を制御するために、たとえば、マイクロレンズアレイのように、複数個の同一の形状を組み合わせた拡散素子が使用される場合がある。このような場合に、拡散素子の全体の形状が滑らかでないと、たとえば、拡散素子用の金型を製造する際に金型の加工が困難となる。したがって、拡散素子の全体の形状はなめらかであるのが好ましい。 In the diffusing element, in order to control the diffusion angle of the diffused light rays, a diffusing element that combines a plurality of the same shapes, such as a microlens array, may be used. In such a case, if the overall shape of the diffusion element is not smooth, for example, it becomes difficult to process the mold when manufacturing the mold for the diffusion element. Therefore, it is preferable that the overall shape of the diffusion element is smooth.

また、拡散素子によって拡散される光の強度は、所定の方向の拡散角度の絶対値の最大値以下の拡散角度の絶対値においては所定値以上で一様であり、所定の方向の拡散角度の絶対値の最大値を超える拡散角度の絶対値においては0であるのが望ましい。 Further, the intensity of the light diffused by the diffusing element is uniform at the predetermined value or more in the absolute value of the diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in the predetermined direction, and the diffusion angle in the predetermined direction. It is desirable that the absolute value of the diffusion angle exceeding the maximum absolute value is 0.

また、拡散素子の凸の部分及び凹の部分が同じ形状であり、一定の周期で配置されていると、拡散素子を通過した光線が互いに干渉して回折が生じ、照射面における強度が一様ではなくなり好ましくない。そこで、凸の部分及び凹の部分の配置や形状をばらつかせることが考えられる。しかし、そのような処理は設計及び製造プロセスを複雑にする。 Further, if the convex portion and the concave portion of the diffusing element have the same shape and are arranged at regular intervals, the light rays that have passed through the diffusing element interfere with each other to cause diffraction, and the intensity on the irradiation surface is uniform. It is no longer preferable. Therefore, it is conceivable to disperse the arrangement and shape of the convex portion and the concave portion. However, such processing complicates the design and manufacturing process.

このように、所定の方向の拡散角度の絶対値の最大値以下の拡散角度の絶対値においては光の強度を所定値以上で一様とし、所定の方向の拡散角度の絶対値の最大値を超える拡散角度の絶対値においては光の強度を0とすることが可能で、全体として滑らかな形状を有し、回折を生じることがなく、しかも、設計及び製造プロセスが簡単な拡散素子は開発されていない。 In this way, in the absolute value of the diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in the predetermined direction, the light intensity is made uniform above the predetermined value, and the maximum value of the absolute value of the diffusion angle in the predetermined direction is set. A diffuser element has been developed that allows the light intensity to be zero in the absolute value of the diffusion angle that exceeds it, has a smooth shape as a whole, does not cause diffraction, and is easy to design and manufacture. Not.

US6352359B1US6352359B1

したがって、所定の方向の拡散角度の絶対値の最大値以下の拡散角度の絶対値においては光の強度を所定値以上で一様とし、所定の方向の拡散角度の絶対値の最大値を超える拡散角度の絶対値においては光の強度を0とすることが可能で、全体として滑らかな形状を有し、回折を生じることがなく、しかも、製造プロセスが簡単な拡散素子ニーズがある。本発明の課題は、所定の方向の拡散角度の絶対値の最大値以下の拡散角度の絶対値においては光の強度を所定値以上で一様とし、所定の方向の拡散角度の絶対値の最大値を超える拡散角度の絶対値においては光の強度を0とすることが可能で、全体として滑らかな形状を有し、回折を生じることがなく、しかも、設計及び製造プロセスが簡単な拡散素子を提供することである。 Therefore, in the absolute value of the diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in the predetermined direction, the light intensity is made uniform above the predetermined value, and the diffusion exceeds the maximum value of the absolute value of the diffusion angle in the predetermined direction. There is a need for a diffusing element which can have the light intensity of 0 in the absolute value of the angle, has a smooth shape as a whole, does not cause diffraction, and has a simple manufacturing process. An object of the present invention is to make the light intensity uniform above a predetermined value at an absolute value of a diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in a predetermined direction, and to maximize the absolute value of the diffusion angle in a predetermined direction. In the absolute value of the diffusion angle exceeding the value, the light intensity can be set to 0, the diffusion element has a smooth shape as a whole, does not cause diffraction, and is easy to design and manufacture. To provide.

本発明の第1の態様の拡散素子は、(x,y)面上のx方向の長さsの辺、及びy方向の長さtの辺を有する矩形の中心を原点とし該矩形内の滑らかな関数をz=g(x,y)として、z=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって得られた複数の形状を備え、xz断面において、該拡散素子から射出された光線がz軸方向となす角度をxz断面の拡散角度の絶対値とし、yz断面において、該拡散素子から射出された光線がz軸方向となす角度をyz断面の拡散角度の絶対値として、xz断面及びyz断面の拡散角度の絶対値の最大値を所望の値とするように構成された拡散素子であって、
該矩形の辺上において

Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
であり、z=g(x,y)は該矩形内において単一の頂点を有し、該矩形の辺上の任意の点と該頂点とを結ぶ直線に沿って該任意の点から該頂点までzは単調に増加し、
Figure 2021056503
で表され、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のx座標において0であり、x座標が該頂点のx座標より小さい領域の1階微分が正でx座標が該頂点のx座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、x座標が該頂点のx座標より小さい領域及びx座標が該頂点のx座標より大きい領域においてそれぞれ単一の不連続な点を有し、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のy座標において0であり、y座標が該頂点のy座標より小さい領域の1階微分が正でy座標が該頂点のy座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、y座標が該頂点のy座標より小さい領域及びy座標が該頂点のy座標より大きい領域においてそれぞれ単一の不連続な点を有し、
h1(x)の2階微分の少なくとも一つの不連続点のx座標におけるh1(x)の1階微分の絶対値がxz断面の拡散角度の絶対値の所望の最大値に対応し、h2(y)の2階微分の少なくとも一つの不連続点のy座標におけるh2(y)の1階微分の絶対値がyz断面の拡散角度の絶対値の所望の最大値に対応するように定められている。 The diffusion element of the first aspect of the present invention has the center of a rectangle having a side having a length s in the x direction and a side having a length t in the y direction on the (x, y) plane as the origin, and is within the rectangle. Let z = g (x, y) be the smooth function, and on at least one of the xy planes of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). It has a plurality of shapes obtained by parallel movement, and the angle formed by the light beam emitted from the diffusing element in the xz cross section with respect to the z-axis direction is taken as the absolute value of the diffusing angle of the xz cross section, and in the yz cross section, from the diffusing element. A diffusion element configured such that the angle formed by the emitted light beam in the z-axis direction is the absolute value of the diffusion angle of the yz cross section, and the maximum value of the absolute value of the diffusion angle of the xz cross section and the yz cross section is a desired value. There,
On the sides of the rectangle
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Z = g (x, y) has a single vertex in the rectangle, and the vertex from the arbitrary point along the straight line connecting the arbitrary point on the side of the rectangle and the vertex. Z increases monotonically until
Figure 2021056503
Represented by
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the x-coordinate of the vertex, the first derivative of the region where the x-coordinate is smaller than the x-coordinate of the vertex is positive, and the first-order derivative of the region whose x-coordinate is larger than the x-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the x-coordinate is smaller than the x-coordinate of the vertex and in a region where the x-coordinate is larger than the x-coordinate of the vertex.
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the y-coordinate of the vertex, the first derivative of the region where the y-coordinate is smaller than the y-coordinate of the vertex is positive, and the first-order derivative of the region where the y-coordinate is larger than the y-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the y-coordinate is smaller than the y-coordinate of the vertex and in a region where the y-coordinate is larger than the y-coordinate of the vertex.
the absolute value of the first derivative of h 1 (x) corresponds to the desired maximum value of the absolute value of the diffusion angle of the xz cross section in the second floor x-coordinate of the at least one discontinuity of the derivative of h 1 (x), as the absolute value of the first derivative of h 2 (y) in at least one of y coordinate of the point of discontinuity second derivative of h 2 (y) corresponds to the desired maximum value of the absolute value of the diffusion angle of the yz cross section It is stipulated in.

本態様による拡散素子は、

Figure 2021056503
の形状的な特徴によって、所定の方向の拡散角度の絶対値の最大値以下の拡散角度の絶対値においては光の強度を所定値以上でほぼ一様とし、所定の方向の拡散角度の絶対値の最大値を超える拡散角度の絶対値においては光の強度を0とすることが可能で、全体として滑らかな形状を有し、製造プロセスが簡単である。 The diffusion element according to this aspect is
Figure 2021056503
Due to the shape characteristics of, the light intensity is made almost uniform above the predetermined value at the absolute value of the diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in the predetermined direction, and the absolute value of the diffusion angle in the predetermined direction. In the absolute value of the diffusion angle exceeding the maximum value of, the light intensity can be set to 0, the shape is smooth as a whole, and the manufacturing process is simple.

本発明の第1の実施形態による拡散素子は、x、y方向の矩形の位置を示す番号をm、nとして、形状が

Figure 2021056503
で表され、m及びnは、それぞれx、y方向の矩形の位置を示す整数であり、m及びnの最小値は0であり、mの最大値は該拡散素子のx方向の寸法で定まり、nの最大値は該拡散素子のy方向の寸法で定まる。 The diffusion element according to the first embodiment of the present invention has a shape in which the numbers indicating the positions of the rectangles in the x and y directions are m and n.
Figure 2021056503
Represented by, m and n are integers indicating the positions of rectangles in the x and y directions, respectively, the minimum value of m and n is 0, and the maximum value of m is determined by the dimension of the diffusion element in the x direction. , N is determined by the dimension of the diffusion element in the y direction.

本発明の第2の実施形態による拡散素子は、x、y方向の矩形の位置を示す番号をm、nとして、形状が

Figure 2021056503
で表され、m及びnは、それぞれx、y方向の矩形の位置を示す整数であり、m及びnの最小値は0であり、mの最大値は該拡散素子のx方向の寸法で定まり、nの最大値は該拡散素子のy方向の寸法で定まる。 The diffusion element according to the second embodiment of the present invention has a shape in which the numbers indicating the positions of the rectangles in the x and y directions are m and n.
Figure 2021056503
Represented by, m and n are integers indicating the positions of rectangles in the x and y directions, respectively, the minimum value of m and n is 0, and the maximum value of m is determined by the dimension of the diffusion element in the x direction. , N is determined by the dimension of the diffusion element in the y direction.

本発明の第3の実施形態による拡散素子は、

Figure 2021056503
がxの2次以上の関数であり、
Figure 2021056503
によって表され、
Figure 2021056503
がyの2次以上の関数であって、
Figure 2021056503
によって表される。 The diffusion element according to the third embodiment of the present invention is
Figure 2021056503
Is a quadratic or higher function of x
Figure 2021056503
Represented by
Figure 2021056503
Is a quadratic or higher function of y
Figure 2021056503
Represented by.

本発明の第4の実施形態による拡散素子において、

Figure 2021056503
及び
Figure 2021056503
が偶数次の多項式である。 In the diffusion element according to the fourth embodiment of the present invention
Figure 2021056503
as well as
Figure 2021056503
Is an even-order polynomial.

本発明の第5の実施形態による拡散素子において、xy面上への射影面積に対するxy面上の平面の面積の比率が1%以下である。 In the diffusion element according to the fifth embodiment of the present invention, the ratio of the area of the plane on the xy plane to the projected area on the xy plane is 1% or less.

本発明の第6の実施形態による拡散素子は、上記のいずれかの拡散素子の形状に対して、それぞれの単位図形のそれぞれの頂点を、xy面内において所定の範囲でランダムにずらし、基準の単位図形から、ずらした後の頂点によって形成されるそれぞれの凸多角形内の任意の第1の点に対応する該基準の単位図形内の第2の点に対応するf(x,y)の値を第1の点に対応する値とする関数によって形状を定めた拡散素子である。 The diffusion element according to the sixth embodiment of the present invention randomly shifts the vertices of each unit figure within a predetermined range with respect to the shape of any of the above diffusion elements, and is a reference. From the unit figure, of f (x, y) corresponding to the second point in the reference unit figure corresponding to any first point in each convex polygon formed by the shifted vertices. It is a diffusion element whose shape is determined by a function whose value is a value corresponding to the first point.

本実施形態の拡散素子は、周期的な構造に起因する回折を生じることがなく、照射面における照度分布をより一様にすることができる。 The diffusion element of the present embodiment does not cause diffraction due to the periodic structure, and can make the illuminance distribution on the irradiation surface more uniform.

本発明の第7の実施形態による拡散素子は、上記のいずれかの拡散素子の各矩形内のz座標をγ倍した拡散素子であって、γの値を矩形ごとに0.9から1.1の範囲で変化させた拡散素子である。 The diffusion element according to the seventh embodiment of the present invention is a diffusion element obtained by multiplying the z coordinate in each rectangle of any of the above diffusion elements by γ, and the value of γ is 0.9 to 1. It is a diffusion element changed in the range of 1.

本実施形態の拡散素子は、周期的な構造に起因する回折を生じることがなく、照射面における照度分布をより一様にすることができる。 The diffusion element of the present embodiment does not cause diffraction due to the periodic structure, and can make the illuminance distribution on the irradiation surface more uniform.

本発明の第8の実施形態による拡散素子は、曲面上に形状を備えており、該形状は上記の拡散素子のxy面上の形状の射影であり、該射影はxy平面を該曲面へ射影するものである。 The diffusion element according to the eighth embodiment of the present invention has a shape on a curved surface, and the shape is a projection of the shape on the xy surface of the diffusion element, and the projection projects the xy plane onto the curved surface. Is what you do.

本発明の第2の態様による拡散素子の製造方法は、(x,y)面上のx方向の長さsの辺、及びy方向の長さtの辺を有する矩形の中心を原点とし該矩形内の滑らかな関数をz=g(x,y)として、z=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって得られた複数の形状を備えた拡散素子の製造方法であって、
該矩形の辺上において

Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
であり、z=g(x,y)は該矩形内において単一の頂点を有し、該矩形の辺上の任意の点と該頂点とを結ぶ直線に沿って該任意の点から該頂点までzは単調に増加し、
Figure 2021056503
で表され、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点において0であり、x座標が該頂点のx座標より小さい領域の1階微分が正でx座標が該頂点のx座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、x座標が該頂点のx座標より小さい領域及びx座標が該頂点のx座標より大きい領域においてそれぞれ単一の不連続な点を有し、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のy座標において0であり、y座標が該頂点のy座標より小さい領域の1階微分が正でy座標が該頂点のy座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、y座標が該頂点のy座標より小さい領域及びy座標が該頂点のy座標より大きい領域においてそれぞれ単一の不連続な点を有する関数z=g(x,y)を定めるステップと、
xz断面において、該拡散素子から射出された光線がz軸方向となす角度をxz断面の拡散角度の絶対値とし、yz断面において、該拡散素子から射出された光線がz軸方向となす角度をyz断面の拡散角度の絶対値として、h1(x)の2階微分の少なくとも一つの不連続点のx座標におけるh1(x)の1階微分の絶対値がxz断面の拡散角度の絶対値の所望の最大値に対応し、h2(y)の2階微分の少なくとも一つの不連続点のy座標におけるh2(y)の1階微分の絶対値がyz断面の拡散角度の絶対値の所望の最大値に対応するようにh1(x)及びh2(y)の係数を調整するステップと、
z=g(x,y)で表される形状及びz=-g(x,y) で表される形状のそれぞれのxy平面上の平行移動によって全体の形状を定めるステップと、を含む。 In the method for manufacturing a diffuser element according to the second aspect of the present invention, the origin is the center of a rectangle having a side having a length s in the x direction and a side having a length t in the y direction on the (x, y) plane. Let z = g (x, y) be the smooth function in the rectangle, and at least one xy of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). A method for manufacturing a diffuser element having a plurality of shapes obtained by translation on a plane.
On the sides of the rectangle
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Z = g (x, y) has a single vertex in the rectangle, and the vertex from the arbitrary point along the straight line connecting the arbitrary point on the side of the rectangle and the vertex. Z increases monotonically until
Figure 2021056503
Represented by
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, is 0 at the vertex, the first derivative of the region whose x-coordinate is smaller than the x-coordinate of the vertex is positive, and the first derivative of the region whose x-coordinate is larger than the x-coordinate of the vertex is negative.
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the x-coordinate is smaller than the x-coordinate of the vertex and in a region where the x-coordinate is larger than the x-coordinate of the vertex.
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the y-coordinate of the vertex, the first derivative of the region where the y-coordinate is smaller than the y-coordinate of the vertex is positive, and the first-order derivative of the region where the y-coordinate is larger than the y-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of z = g (x, y) has a single discontinuous point in the region where the y-coordinate is smaller than the y-coordinate of the vertex and in the region where the y-coordinate is larger than the y-coordinate of the vertex. Steps to determine and
In the xz cross section, the angle formed by the light beam emitted from the diffusing element in the z-axis direction is defined as the absolute value of the diffusion angle in the xz cross section, and in the yz cross section, the angle formed by the light beam emitted from the diffusing element in the z-axis direction is defined as the absolute value. As the absolute value of the diffusion angle of the yz cross section, the absolute value of the first derivative of h 1 (x) at the x coordinate of at least one discontinuity of the second derivative of h 1 (x) is the absolute value of the diffusion angle of the xz cross section. corresponding to the desired maximum value, h 2 2 floor absolute value of the first derivative of h 2 (y) in the y-coordinate of the at least one discontinuity of the differential absolute diffusion angle yz cross section of the (y) Steps to adjust the derivatives of h 1 (x) and h 2 (y) to correspond to the desired maximum value, and
It includes a step of defining the overall shape by translation on each xy plane of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y).

本態様の拡散素子の製造方法によって、所定の方向の拡散角度の絶対値の最大値以下の拡散角度の絶対値においては拡散素子によって拡散される光の強度を所定値以上でほぼ一様とし、所定の方向の拡散角度の絶対値の最大値を超える拡散角度の絶対値においては拡散素子によって拡散される光の強度を0とする拡散素子が得られる。 According to the method for manufacturing a diffusing element of this embodiment, the intensity of light diffused by the diffusing element is made substantially uniform at an absolute value of a diffusing angle equal to or less than the maximum value of the absolute value of the diffusing angle in a predetermined direction. At an absolute value of the diffusion angle exceeding the maximum value of the absolute value of the diffusion angle in a predetermined direction, a diffusion element having the intensity of light diffused by the diffusion element of 0 can be obtained.

本発明の一実施形態の拡散素子の形状を説明するための図である。It is a figure for demonstrating the shape of the diffusion element of one Embodiment of this invention. h1(x)及びh2(y)の形状を示す図である。It is a figure which shows the shape of h 1 (x) and h 2 (y). 全体の形状z=f(x,y)を説明するための図である。It is a figure for demonstrating the whole shape z = f (x, y). 全体の形状z=f(x,y)のうち、凸の部分に対応するz = f(x,0)及びz = f(0,y)を示す図である。It is a figure which shows z = f (x, 0) and z = f (0, y) corresponding to the convex part in the whole shape z = f (x, y). 全体の形状z=f(x,y)のうち、凹の部分に対応するz = f(x,0.8)及びz = f(0.4,y)を示す図である。It is a figure which shows z = f (x, 0.8) and z = f (0.4, y) corresponding to the concave part in the whole shape z = f (x, y). 隣接する凸の部分、または隣接する凹の部分の間の間隔をばらつかせる方法を示す流れ図である。It is a flow chart which shows the method which disperses the space between adjacent convex part or adjacent concave part. xy面上の格子点、及び格子点を移動させる所定の範囲を示す図である。It is a figure which shows the lattice point on the xy plane, and the predetermined range which moves the lattice point. それぞれの格子点を移動させた後のそれぞれの格子点に対応する点の位置を示す図である。It is a figure which shows the position of the point corresponding to each grid point after moving each grid point. 移動させた後の点によって形成される凸四角形を示す図である。It is a figure which shows the convex quadrangle formed by the point after moving. 移動させた後の点によって形成される凸四角形及び原矩形を示す図である。It is a figure which shows the convex quadrangle and the original rectangle formed by the point after moving. 格子点の位置、及び高さをばらつかせていないz = f(x,y)の形状を有する拡散素子に平行光を入射することによって得られる光の強度分布を示す図である。It is a figure which shows the intensity distribution of the light obtained by injecting parallel light into the diffusing element which has the shape of z = f (x, y) which does not disperse the position and height of a lattice point. 格子点の位置、及び高さをばらつかせたz = f’’(x,y)の形状を有する拡散素子に平行光を入射することによって得られる光の強度分布を示す図である。It is a figure which shows the intensity distribution of the light obtained by injecting parallel light into the diffusing element which has the shape of z = f ″ (x, y) which dispersed the position and height of a lattice point. 拡散素子によって拡散される光線の拡散角を説明するための図である。It is a figure for demonstrating the diffusion angle of the light ray diffused by a diffusing element. 拡散素子の形状と拡散角度との関係を説明するための図である。It is a figure for demonstrating the relationship between the shape of a diffusion element, and a diffusion angle. 実施例1の拡散素子の平面図である。It is a top view of the diffusion element of Example 1. FIG. 実施例1の拡散素子の、図15の直線A及び直線Bに対応するxz断面図である。It is an xz cross-sectional view corresponding to the straight line A and the straight line B of FIG. 15 of the diffusion element of Example 1. FIG. 実施例1の拡散素子のh1(x)の形状を示す図である。It is a figure which shows the shape of h 1 (x) of the diffusion element of Example 1. FIG. 図17に示す形状の1階微分を示す図である。It is a figure which shows the 1st derivative of the shape shown in FIG. 図17に示す形状の2階微分を示す図である。It is a figure which shows the 2nd derivative of the shape shown in FIG. 実施例1の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 1 has passed through a diffusing element. 実施例1の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 1 has passed through a diffusing element. 実施例2の拡散素子の平面図である。It is a top view of the diffusion element of Example 2. FIG. 実施例2の拡散素子の、図22の直線A及び直線Bに対応するxz断面図である。It is an xz cross-sectional view corresponding to the straight line A and the straight line B of FIG. 22 of the diffusion element of Example 2. FIG. 図23に示す形状の1階微分を示す図である。It is a figure which shows the 1st derivative of the shape shown in FIG. 図23に示す形状の2階微分を示す図である。It is a figure which shows the 2nd derivative of the shape shown in FIG. 実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 2 has passed through a diffusing element. 実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 2 has passed through a diffusing element. 実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 2 has passed through a diffusing element. 実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 2 has passed through a diffusing element. 実施例3の拡散素子のh1(x)の形状を示す図である。It is a figure which shows the shape of h 1 (x) of the diffusion element of Example 3. 図28に示す形状の1階微分を示す図である。It is a figure which shows the 1st derivative of the shape shown in FIG. 28. 図28に示す形状の2階微分を示す図である。It is a figure which shows the 2nd derivative of the shape shown in FIG. 28. 実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 3 has passed through a diffusing element. 実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 3 has passed through a diffusing element. 実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 3 has passed through a diffusing element. 実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 3 has passed through a diffusing element. 実施例4の拡散素子のh1(x)の形状を示す図である。図33の断面はxz断面である。It is a figure which shows the shape of h 1 (x) of the diffusion element of Example 4. The cross section of FIG. 33 is an xz cross section. 図33に示す形状の1階微分を示す図である。It is a figure which shows the 1st derivative of the shape shown in FIG. 33. 図33に示す形状の2階微分を示す図である。It is a figure which shows the 2nd derivative of the shape shown in FIG. 33. 実施例4の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 4 passes through a diffusing element. 実施例4の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of Example 4 passes through a diffusing element. 実施例4の変形例の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the xz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of the modification of Example 4 passes through a diffusing element. 実施例4の変形例の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。It is a figure which shows the intensity distribution in the yz cross section after the parallel light incident perpendicular to the xy plane of the diffusing element of the modification of Example 4 passes through a diffusing element. 本発明による拡散素子の製造方法を示す流れ図である。It is a flow chart which shows the manufacturing method of the diffusion element by this invention.

図1は、本発明の一実施形態の拡散素子の形状を説明するための図である。(x,y)面上において、x方向の間隔s、y方向の間隔tの矩形格子を定める。x方向の辺の長さs、y方向の辺の長さtの矩形の一つを基準の矩形とする。矩形のx方向の位置を整数mで表し、y方向の位置を整数nで表す。m及びnの最小値は0であり、mの最大値は該拡散素子のx方向の寸法で定まり、nの最大値は該拡散素子のy方向の寸法で定まる。基準の矩形はm=0及びn=0で表す。基準の矩形における形状をg(x,y)で表す。(x,y)座標の原点は基準の矩形の中心とする。Sを基準の矩形内の領域、

Figure 2021056503
をその境界、すなわち基準の矩形の辺とすると、以下の関係が成立する。
Figure 2021056503
のとき
Figure 2021056503
Figure 2021056503
のとき
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
FIG. 1 is a diagram for explaining the shape of the diffusion element according to the embodiment of the present invention. On the (x, y) plane, a rectangular grid with an interval s in the x direction and an interval t in the y direction is defined. Let one of the rectangles having the length s of the side in the x direction and the length t of the side in the y direction be the reference rectangle. The position of the rectangle in the x direction is represented by the integer m, and the position in the y direction is represented by the integer n. The minimum values of m and n are 0, the maximum value of m is determined by the dimension of the diffusion element in the x direction, and the maximum value of n is determined by the dimension of the diffusion element in the y direction. The reference rectangle is represented by m = 0 and n = 0. The shape of the reference rectangle is represented by g (x, y). The origin of the (x, y) coordinates is the center of the reference rectangle. Area within a rectangle relative to S,
Figure 2021056503
Let be the boundary, that is, the side of the reference rectangle, and the following relationship holds.
Figure 2021056503
When
Figure 2021056503
Figure 2021056503
When
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503

z=g(x,y)によって表される形状は該矩形内において単一の頂点を有し、該矩形の辺上の任意の点と該頂点とを結ぶ直線に沿って該任意の点から該頂点までzは単調に増加し、

Figure 2021056503
で表され、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のx座標において0であり、x座標が該頂点のx座標より小さい領域の1階微分が正でx座標が該頂点のx座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、x座標が該頂点のx座標より小さい領域及びx座標が該頂点のx座標より大きい領域においてそれぞれ単一の不連続な点を有し、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のy座標において0であり、y座標が該頂点のy座標より小さい領域の1階微分が正でy座標が該頂点のy座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、y座標が該頂点のy座標より小さい領域及びy座標が該頂点のy座標より大きい領域においてそれぞれ単一の不連続な点を有する。 The shape represented by z = g (x, y) has a single vertex within the rectangle, from any point along the straight line connecting the apex to any point on the side of the rectangle. Z monotonically increases to the apex,
Figure 2021056503
Represented by
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the x-coordinate of the vertex, the first derivative of the region where the x-coordinate is smaller than the x-coordinate of the vertex is positive, and the first-order derivative of the region whose x-coordinate is larger than the x-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the x-coordinate is smaller than the x-coordinate of the vertex and in a region where the x-coordinate is larger than the x-coordinate of the vertex.
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the y-coordinate of the vertex, the first derivative of the region where the y-coordinate is smaller than the y-coordinate of the vertex is positive, and the first-order derivative of the region where the y-coordinate is larger than the y-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the y-coordinate is smaller than the y-coordinate of the vertex and in a region where the y-coordinate is larger than the y-coordinate of the vertex.

z=g(x,y)は領域全体で滑らかな関数である。さらに、領域の中心を通るX軸、及びy軸に関して対称であり、極値が一つであり、極値のx、y座標が、領域の中心のx、y座標と一致するのが好ましい。 z = g (x, y) is a smooth function over the entire region. Further, it is preferable that the X-axis and the y-axis passing through the center of the region are symmetric, the extremum is one, and the x and y coordinates of the extremum match the x and y coordinates of the center of the region.

拡散素子の全体の形状をz=f(x,y)として、z=f(x,y)は以下の式で表せる。

Figure 2021056503
Assuming that the overall shape of the diffusing element is z = f (x, y), z = f (x, y) can be expressed by the following equation.
Figure 2021056503

全体の形状z=f(x,y)は、格子の各矩形の中心に配置したg(x,y)と同一の形状

Figure 2021056503
及び各格子点に配置したg(x,y)の符号を反転させた形状
Figure 2021056503
を組み合わせた形状である。このように、互いに符号の異なる同一の形状を組み合わせた形状を使用するのは、拡散角の比較的大きな形状の領域を増加させることによって、拡散された光による照射面における強度をより一様にするためである。全体の形状z=f(x,y)は、滑らかな関数である。 The overall shape z = f (x, y) is the same shape as g (x, y) placed in the center of each rectangle of the grid.

Figure 2021056503
And the shape in which the sign of g (x, y) placed at each grid point is inverted.
Figure 2021056503
It is a combination of. In this way, the use of shapes that combine the same shapes with different signs makes the intensity on the irradiated surface by the diffused light more uniform by increasing the region of the shape with a relatively large diffusion angle. To do. The overall shape z = f (x, y) is a smooth function.

拡散素子の全体の形状が滑らかであると、たとえば、拡散素子用の金型を製造する際に、金型の加工が容易になる。 If the overall shape of the diffusing element is smooth, for example, when manufacturing a mold for the diffusing element, the processing of the mold becomes easy.

g(x,y)として以下に示す関数を採用してもよい。

Figure 2021056503
Figure 2021056503

Figure 2021056503

上記の式において、
Figure 2021056503
はxが(a,b)の範囲に属することを表し、
Figure 2021056503
はxが(a,b)の範囲に属さないことを表す。 The following functions may be adopted as g (x, y).
Figure 2021056503
Figure 2021056503

Figure 2021056503

In the above formula
Figure 2021056503
Indicates that x belongs to the range (a, b)
Figure 2021056503
Indicates that x does not belong to the range (a, b).

図2は、h1(x)及びh2(y)の形状を示す図である。図2の横軸は、x軸またはy軸を表し、図2の縦軸はh1(x)またはh2(y)を表す。h1(x)及びh2(y)の形状は、拡散された光による照射面における強度ができるだけ一様になるように定められている。 FIG. 2 is a diagram showing the shapes of h 1 (x) and h 2 (y). The horizontal axis of FIG. 2 represents the x-axis or the y-axis, and the vertical axis of FIG. 2 represents h 1 (x) or h 2 (y). The shapes of h 1 (x) and h 2 (y) are defined so that the intensity on the surface irradiated by the diffused light is as uniform as possible.

図3は、全体の形状z=f(x,y)を説明するための図である。図3において、格子点を黒い点で示し、矩形の中心を白い点で示す。基準の矩形の中心を原点(0,0)とする。 FIG. 3 is a diagram for explaining the overall shape z = f (x, y). In FIG. 3, the grid points are indicated by black dots, and the center of the rectangle is indicated by white dots. The origin (0,0) is the center of the reference rectangle.

図3において、点線で示した菱形の辺に相当する部分はz=0となる。点線で囲まれたひし形のうち、白い点を含む領域には凸部が形成され、黒い点を含む領域には凹部が形成される。 In FIG. 3, the portion corresponding to the side of the rhombus shown by the dotted line is z = 0. Of the rhombuses surrounded by the dotted lines, convex portions are formed in the regions including white dots, and concave portions are formed in the regions including black dots.

図4は、全体の形状z=f(x,y)のうち、凸の部分に対応するz = f(x,0)及びz = f(0,y)を示す図である。図4の横軸はx軸座標またはy軸座標を表し、図4の縦軸はz軸座標を表す。 FIG. 4 is a diagram showing z = f (x, 0) and z = f (0, y) corresponding to the convex portion of the overall shape z = f (x, y). The horizontal axis of FIG. 4 represents the x-axis coordinate or the y-axis coordinate, and the vertical axis of FIG. 4 represents the z-axis coordinate.

図5は、全体の形状z=f(x,y)のうち、凹の部分に対応するz = f(x,0.8)及びz = f(0.4,y)を示す図である。図5の横軸は(0.4,0.8)を原点としたx軸座標またはy軸座標を表し、図5の縦軸座標はzを表す。 FIG. 5 is a diagram showing z = f (x, 0.8) and z = f (0.4, y) corresponding to the concave portion in the overall shape z = f (x, y). The horizontal axis of FIG. 5 represents the x-axis coordinate or the y-axis coordinate with the origin at (0.4, 0.8), and the vertical axis coordinate of FIG. 5 represents z.

ところで、拡散素子の凸の部分及び凹の部分が同じ形状であり、一定の周期で配置されていると、拡散素子を通過した光線が互いに干渉して回折が生じ、照射面における強度が一様ではなくなり好ましくない。そこで、拡散された光による照射面における強度をできるだけ一様にするように、隣接する凸の部分、または隣接する凹の部分の間の間隔、または凸の部分、または凹の部分の高さをばらつかせることが考えられる。 By the way, if the convex portion and the concave portion of the diffusing element have the same shape and are arranged at regular intervals, the light rays that have passed through the diffusing element interfere with each other to cause diffraction, and the intensity on the irradiation surface is uniform. It is no longer preferable. Therefore, in order to make the intensity on the irradiated surface by the diffused light as uniform as possible, the distance between the adjacent convex portions or the adjacent concave portions, or the height of the convex portion or the concave portion is set. It is possible to disperse.

図6は、隣接する凸の部分、または隣接する凹の部分の間の間隔をばらつかせる方法を示す流れ図である。 FIG. 6 is a flow chart showing a method of varying the spacing between adjacent convex portions or adjacent concave portions.

図7乃至図10は、図6に示した、隣接する凸の部分、または隣接する凹の部分の間の間隔をばらつかせる方法を説明するための図である。 7 to 10 are views for explaining a method of varying the spacing between adjacent convex portions or adjacent concave portions shown in FIG.

図6のステップS1010において、xy面上のそれぞれの格子点を所定の範囲でランダムに移動させる。 In step S1010 of FIG. 6, each grid point on the xy plane is randomly moved within a predetermined range.

図7は、xy面上の格子点、及び格子点を移動させる所定の範囲を示す図である。該所定の範囲は、一例として、x軸方向の軸の長さがα・sであり、y軸方向の長さがβ・tである楕円である。α及びβの値は、0.1から0.4の範囲であるのが好ましい。それぞれの格子点を、該格子点に対応する楕円内で移動させる。移動させた後の格子点の、楕円内の相対的な位置が楕円内において一様に分布するようにそれぞれの格子点を移動させる。一般的に、それぞれの格子点を移動させる範囲は、それぞれの格子点の周囲の所定の範囲であってよい。すなわち、移動させた後の格子点の、所定の範囲内の相対的な位置が所定の範囲において一様に分布するようにそれぞれの格子点を移動させてもよい。 FIG. 7 is a diagram showing grid points on the xy plane and a predetermined range for moving the grid points. The predetermined range is, for example, an ellipse in which the length of the axis in the x-axis direction is α · s and the length in the y-axis direction is β · t. The values of α and β are preferably in the range of 0.1 to 0.4. Each grid point is moved within the ellipse corresponding to the grid point. Move each grid point so that the relative positions in the ellipse of the grid points after moving are evenly distributed in the ellipse. In general, the range for moving each grid point may be a predetermined range around each grid point. That is, each grid point may be moved so that the relative positions of the grid points after the movement within the predetermined range are uniformly distributed in the predetermined range.

図8は、それぞれの格子点を移動させた後のそれぞれの格子点に対応する点の位置を示す図である。 FIG. 8 is a diagram showing the positions of the points corresponding to the respective grid points after moving the respective grid points.

図6のステップS1020において、原矩形から、移動させた後の格子点によって形成される凸四角形への射影行列を求める。ここで、上記のそれぞれの格子点の周囲の所定の範囲は、移動させた後の格子点によって形成される図形が凸四角形(一般的には、凸多角形)となるように定める必要がある。 In step S1020 of FIG. 6, the projection matrix from the original rectangle to the convex quadrangle formed by the grid points after being moved is obtained. Here, the predetermined range around each of the above grid points needs to be defined so that the figure formed by the grid points after being moved becomes a convex quadrangle (generally, a convex polygon). ..

図9は、移動させた後の点によって形成される凸四角形を示す図である。凸四角形の頂点の座標(X1,Y1)、(X2,Y2)、(X3,Y3)及び(X4,Y4)は、移動させる前の矩形の頂点の内、左下の頂点に対応する座標を原点(0,0)として定義する。 FIG. 9 is a diagram showing a convex quadrangle formed by points after being moved. The coordinates (X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4) of the vertices of the convex quadrangle are the origins of the coordinates corresponding to the lower left vertices of the vertices of the rectangle before moving. Defined as (0,0).

図10は、移動させた後の点によって形成される凸四角形及び原矩形を規格化した矩形を示す図である。規格化した矩形は、一例として、左下の頂点が原点に位置し、x軸方向及びy軸方向の辺の長さが1の正方形である。 FIG. 10 is a diagram showing a convex quadrangle formed by points after being moved and a rectangle obtained by normalizing the original rectangle. As an example, the standardized rectangle is a square in which the lower left vertex is located at the origin and the side lengths in the x-axis direction and the y-axis direction are 1.

規格化した矩形から、移動させた後の格子点によって形成される凸四角形への射影行列Aの一例は、以下のとおりである。

Figure 2021056503
A13 = X1
A23 = Y1
A31 = {(X4-X3)*(Y1-Y2)-(Y4-Y3)*(X1-X2)}/{(Y4-Y3)*(X4-X2)-(X4-X3)*(Y4-Y2)}
A32 = {(X4-X2)*(Y1-Y3)-(Y4-Y2)*(X1-X3)}/{(Y4-Y2)*(X4-X3)-(X4-X2)*(Y4-Y3)}
A11 = (A31+1)*X2-X1
A12 = (A32+1)*X3-X1
A21 = (A31+1)*Y2-Y1
A22 = (A32+1)*Y3-Y1
A33 = 1
An example of the projection matrix A from the normalized rectangle to the convex quadrangle formed by the grid points after being moved is as follows.
Figure 2021056503
A13 = X1
A23 = Y1
A31 = {(X4-X3) * (Y1-Y2)-(Y4-Y3) * (X1-X2)} / {(Y4-Y3) * (X4-X2)-(X4-X3) * (Y4-Y4- Y2)}
A32 = {(X4-X2) * (Y1-Y3)-(Y4-Y2) * (X1-X3)} / {(Y4-Y2) * (X4-X3)-(X4-X2) * (Y4-Y4- Y3)}
A11 = (A31 + 1) * X2-X1
A12 = (A32 + 1) * X3-X1
A21 = (A31 + 1) * Y2-Y1
A22 = (A32 + 1) * Y3-Y1
A33 = 1

射影行列Aによって、規格化した矩形内の任意の点(X’,Y’)が、凸四角形内の任意の点(X,Y)に射影される。

Figure 2021056503
The projection matrix A projects any point (X', Y') in the normalized rectangle onto any point (X, Y) in the convex quadrangle.
Figure 2021056503

規格化した矩形の頂点は、上記の射影行列Aによって、たとえば、
X’=0,Y’=0は、X=X1,Y=Y1、
X’=1,Y’=0は、X=X2,Y=Y2
へ射影される。
The vertices of the normalized rectangle are, for example, by the projection matrix A above.
X'= 0, Y'= 0 means X = X1, Y = Y1,
X'= 1, Y'= 0 means X = X2, Y = Y2
Projected to.

図6のステップS1030において、射影行列Aの逆行列A−1を求める。 In step S1030 of FIG. 6, the inverse matrix A -1 of the projection matrix A is obtained.

図6のステップS1040において、逆行列A−1によって凸四角形内の任意の第1の点(X,Y)に対応する、規格化した矩形内の第2の点(X’,Y’)を求める。

Figure 2021056503
In step S1040 of FIG. 6, the inverse matrix A -1 sets the second point (X', Y') in the normalized rectangle corresponding to any first point (X, Y) in the convex quadrangle. Ask.
Figure 2021056503

図6のステップS1050において、第2の点(X’,Y’)に対応する規格化関数f’(x,y)の値を求める。ここで、規格化関数f’(x,y)とは、f(x,y)のx:(-0.3,0.3),y:(-0.6,0.6)の領域をx:(0,1),y:(0,1)に規格化した関数である。 In step S1050 of FIG. 6, the value of the normalized function f'(x, y) corresponding to the second point (X', Y') is obtained. Here, the normalization function f'(x, y) is the region of x: (-0.3,0.3), y: (-0.6,0.6) of f (x, y) x: (0,1). , y: A function standardized to (0,1).

図6のステップS1060において、第2の点(X’,Y’)に対応する規格化関数f’(x,y)の値を、第1の点(X,Y)に対応する値とする関数f’’(x,y)を求める。関数f’’(x,y)は、関数f(x,y)と同様になめらかな関数である。 In step S1060 of FIG. 6, the value of the normalization function f'(x, y) corresponding to the second point (X', Y') is set to the value corresponding to the first point (X, Y). Find the function f'' (x, y). The function f ″ (x, y) is as smooth as the function f (x, y).

上記において、移動させた後の点によって形成される凸四角形の点に対応する関数f’’(x,y)の値を求めるのに、原矩形を規格化した矩形を使用した。他の実施形態として、原矩形をそのまま使用してもよい。 In the above, a rectangle standardized from the original rectangle was used to obtain the value of the function f ″ (x, y) corresponding to the points of the convex quadrangle formed by the points after the movement. As another embodiment, the original rectangle may be used as it is.

図6のステップS1070において、関数z = f’’(x,y)によって、頂点の座標が(X1,Y1)、(X2,Y2)、(X3,Y3)及び(X4,Y4)である凸四角形に対応する拡散素子の形状を定める。格子点の位置をばらつかせて同一の形状を有する複数の矩形を、種々の形状を有する凸四角形に変形しても滑らかな形状を有する拡散素子を得ることができる。 In step S1070 of FIG. 6, by the function z = f''(x, y), the coordinates of the vertices are (X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4). Determine the shape of the diffuser corresponding to the quadrangle. A diffusion element having a smooth shape can be obtained even if a plurality of rectangles having the same shape are transformed into convex quadrangles having various shapes by varying the positions of the lattice points.

図6のステップS1080において、それぞれの凸四角形に対応する形状の高さをランダムにばらつかせる。形状の高さは、関数z = f’’(x,y)の値を0.9倍から1.1倍の範囲で一様にばらつかせるのが好ましい。 In step S1080 of FIG. 6, the height of the shape corresponding to each convex quadrangle is randomly varied. The height of the shape is preferably such that the value of the function z = f ″ (x, y) can be uniformly varied in the range of 0.9 to 1.1 times.

上記のように形状を定めることにより、周期的な構造に起因する回折の影響を減少させ、拡散された光による照射面における強度をより一様にすることができる。 By defining the shape as described above, the influence of diffraction due to the periodic structure can be reduced, and the intensity on the irradiated surface by the diffused light can be made more uniform.

図11は、格子点の位置、及び高さをばらつかせていないz = f(x,y)の形状を有する拡散素子にxy面に垂直な平行光を入射することによって得られる光の強度分布を示す図である。xz断面における拡散角度は±6度であり、yz断面における拡散角度は±4.4度である。 FIG. 11 shows the intensity of light obtained by injecting parallel light perpendicular to the xy plane onto a diffusing element having a shape of z = f (x, y) in which the positions and heights of the lattice points are not dispersed. It is a figure which shows the distribution. The diffusion angle in the xz cross section is ± 6 degrees, and the diffusion angle in the yz cross section is ± 4.4 degrees.

図12は、格子点の位置、及び高さをばらつかせたz = f’’(x,y)の形状を有する拡散素子にxy面に垂直な平行光を入射することによって得られる光の強度分布を示す図である。xz断面における拡散角度は±6度であり、yz断面における拡散角度±4.4度である。 FIG. 12 shows the light obtained by injecting parallel light perpendicular to the xy plane onto a diffusing element having the shape of z = f''(x, y) with varying positions and heights of the lattice points. It is a figure which shows the intensity distribution. The diffusion angle in the xz cross section is ± 6 degrees, and the diffusion angle in the yz cross section is ± 4.4 degrees.

図11及び図12において光の強度、照射面における照度は濃淡で表され、白い箇所は照度が高い。図11と図12とを比較すると、図12における照度分布は、図11における照度分布よりも一様である。 In FIGS. 11 and 12, the intensity of light and the illuminance on the irradiated surface are represented by shading, and the white portion has high illuminance. Comparing FIGS. 11 and 12, the illuminance distribution in FIG. 12 is more uniform than the illuminance distribution in FIG.

図13は、拡散素子によって拡散される光線の拡散角を説明するための図である。拡散素子において、図4及び図5で説明したz軸方向に進行する光が拡散されるとする。拡散素子の面上で光線が通過する点からz軸までの距離をlとし、光線の該面への入射角及び該面からの出射角を、それぞれθ及びθとし、拡散素子の材料の屈折率をnとし、該点における面の曲率半径をRとする。拡散角、すなわち、拡散素子を通過した光線がz軸となす角度をθとすると、θ及びθが十分に小さい場合に、以下の関係が成立する。

Figure 2021056503
上記の関係から、以下の式が導かれる。
Figure 2021056503
ここで、lを、たとえば図4における凸の部分の長さの四分の一の長さとし、Rを曲率半径の平均値として、これらの値を上記の式に代入すると拡散角が求まる。このように、拡散角は拡散素子の形状によって定まる。 FIG. 13 is a diagram for explaining the diffusion angle of the light rays diffused by the diffusion element. It is assumed that the light traveling in the z-axis direction described with reference to FIGS. 4 and 5 is diffused in the diffusing element. The distance from the point through which the light ray passes on the surface of the diffusing element to the z-axis is l, the angle of incidence of the light ray on the surface and the angle of emission from the surface are θ 1 and θ 2 , respectively, and the material of the diffusing element is Let n be the refractive index of, and let R be the radius of curvature of the surface at that point. Assuming that the diffusion angle, that is, the angle formed by the light rays passing through the diffusion element with the z-axis is θ, the following relationship is established when θ 1 and θ 2 are sufficiently small.
Figure 2021056503
From the above relationship, the following equation is derived.
Figure 2021056503
Here, l is, for example, a quarter of the length of the convex portion in FIG. 4, R is the average value of the radius of curvature, and these values are substituted into the above equation to obtain the diffusion angle. In this way, the diffusion angle is determined by the shape of the diffusion element.

上記の実施例の拡散素子は、矩形格子を基準とした形状を有する。他の実施形態として、矩形格子の代わりに、菱形格子、六角格子、正方格子、平行体格子を含む平面格子を使用した形状としてもよい。その場合に、関数z=g(x,y)は、たとえば、菱形、正六角形など平面格子を構成する単位図形の中心を原点とし、x軸及びy軸に関して対称で滑らかな形状を含む形状としてもよい。さらに、z軸上に単一の極値を有する形状としてもよい。該形状は、Sを単位図形内の領域、

Figure 2021056503
をその境界、すなわち単位図形の辺として、以下の関係を満たす。
Figure 2021056503
のとき
Figure 2021056503
Figure 2021056503
のとき
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
The diffusion element of the above embodiment has a shape based on a rectangular grid. As another embodiment, instead of the rectangular lattice, a planar lattice including a rhombic lattice, a hexagonal lattice, a square lattice, and a parallel lattice may be used. In that case, the function z = g (x, y) is a shape that includes a symmetric and smooth shape with respect to the x-axis and y-axis, with the center of the unit figure that constitutes the plane grid such as a rhombus and a regular hexagon as the origin. May be good. Further, the shape may have a single extremum on the z-axis. The shape has S as a region within the unit figure.
Figure 2021056503
Is the boundary, that is, the side of the unit figure, and the following relationship is satisfied.
Figure 2021056503
When
Figure 2021056503
Figure 2021056503
When
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503

この実施形態の場合にも、矩形格子の実施例の場合と同様に、拡散素子の全体の形状をz=f(x,y)として、任意の単位図形の中心の座標を

Figure 2021056503
該任意の単位図形に隣接する単位図形の中心の座標を
Figure 2021056503
で表すと、
Figure 2021056503
Figure 2021056503
で表せる形状が得られる。 Also in the case of this embodiment, as in the case of the rectangular lattice embodiment, the overall shape of the diffusion element is z = f (x, y), and the coordinates of the center of an arbitrary unit figure are set.
Figure 2021056503
The coordinates of the center of the unit figure adjacent to the arbitrary unit figure
Figure 2021056503
Expressed in
Figure 2021056503
Figure 2021056503
A shape that can be represented by is obtained.

また、矩形格子の場合と同様に、格子点を所定の範囲でばらつかせることにより、単位図形を変形させ、変形させた単位図形について関数f’’(x,y)を求め、関数f’’(x,y)によって、変形させた単位図形に対応する拡散素子の形状を定めることができる。さらに、単位図形に対応する形状の高さをランダムにばらつかせることができる。 Further, as in the case of the rectangular grid, the unit figure is deformed by scattering the grid points within a predetermined range, and the function f''(x, y) is obtained for the deformed unit figure, and the function f'(x, y) is obtained. The shape of the diffuser element corresponding to the deformed unit figure can be determined by'(x, y). Further, the height of the shape corresponding to the unit figure can be randomly varied.

このように、矩形格子の代わりに、菱形格子、六角格子、正方格子、平行体格子を使用した場合にも、周期的な構造に起因する回折の影響を減少させ、拡散された光による照射面における強度をより一様にすることができる。 In this way, even when a rhombic lattice, a hexagonal lattice, a square lattice, or a parallelepiped lattice is used instead of the rectangular lattice, the influence of diffraction due to the periodic structure is reduced, and the irradiated surface by the diffused light is used. The strength in can be made more uniform.

また、球面及び非球面を含む曲面上に格子形状を形成してもよい。その場合に、平面格子を曲面上に射影することにより本発明を適用できる。 Further, a lattice shape may be formed on a curved surface including a spherical surface and an aspherical surface. In that case, the present invention can be applied by projecting a planar grid onto a curved surface.

拡散素子の形状と拡散角度との関係をさらに説明する。拡散角度とは、拡散素子の基準面、すなわちx、y平面に垂直な平面、一例として、xz平面において、xy平面に垂直な直線、例えばz軸と拡散素子を通過した後の光線とがなす角度(鋭角)である。 The relationship between the shape of the diffusion element and the diffusion angle will be further described. The diffusion angle is formed by a reference plane of the diffusion element, that is, a plane perpendicular to the x and y planes, for example, a straight line perpendicular to the xy plane in the xz plane, for example, the z-axis and the light beam after passing through the diffusion element. The angle (acute angle).

図14は、拡散素子の形状と拡散角度との関係を説明するための図である。図14は、拡散素子のxz断面を示す。図14における矢印は光線の進行方向を示す。光線はxy平面に垂直に進行し拡散素子に入射する。θinは拡散素子の凸部の面への光線の入射角を表し、θoutは上記の面からの光線の出射角を表す。θは拡散角度を表す。図14において拡散素子の面を表す曲線上の点における接線とx軸とのなす角度の絶対値を接線角φと呼称する。接線角の定義から光線が該面を通過する点において以下の関係が成立する。

Figure 2021056503
さらに、スネルの法則から光線が該面を通過する点において以下の関係が成立する。
Figure 2021056503
式(1)においてnは拡散素子の材料の屈折率を示す。式(1)によれば、xy平面に垂直な光線が拡散素子の凸部の頂点を通過する場合に光線の入射角θin及び接線角φが0度であり拡散角度θも0度となる。断面形状が滑らかな場合に拡散角度θの絶対値は接線角φにしたがって増加し、接線角φが最大の時に最大となると考えられる。他方、接線角φの正接の絶対値は、拡散素子のxz断面形状を示す曲線z=f(x)の一階微分の絶対値に等しく以下のように表される。
Figure 2021056503
このように、拡散素子のxz断面における拡散角度の絶対値の最大値は、拡散素子のxz断面の接線角の絶対値の最大値、すなわち拡散素子の断面形状を示す曲線の一階微分の絶対値の最大値によって定まる。 FIG. 14 is a diagram for explaining the relationship between the shape of the diffusion element and the diffusion angle. FIG. 14 shows the xz cross section of the diffusing element. The arrow in FIG. 14 indicates the traveling direction of the light ray. The light beam travels perpendicular to the xy plane and enters the diffusing element. θin represents the angle of incidence of the light beam on the surface of the convex portion of the diffusing element, and θout represents the angle of emission of the light ray from the above-mentioned surface. θ represents the diffusion angle. In FIG. 14, the absolute value of the angle formed by the tangent line and the x-axis at a point on the curve representing the surface of the diffusing element is referred to as a tangent line angle φ. From the definition of the tangent angle, the following relationship holds at the point where the light ray passes through the surface.
Figure 2021056503
Further, according to Snell's law, the following relationship is established at the point where a light ray passes through the surface.
Figure 2021056503
In the formula (1), n represents the refractive index of the material of the diffusing element. According to the equation (1), when a light ray perpendicular to the xy plane passes through the apex of the convex portion of the diffusion element, the incident angle θin and the tangent angle φ of the light ray are 0 degrees, and the diffusion angle θ is also 0 degrees. When the cross-sectional shape is smooth, the absolute value of the diffusion angle θ increases according to the tangent angle φ, and it is considered that the absolute value becomes maximum when the tangent angle φ is maximum. On the other hand, the absolute value of the tangent of the tangent angle φ is equal to the absolute value of the first derivative of the curve z = f (x) indicating the xz cross-sectional shape of the diffusing element and is expressed as follows.
Figure 2021056503
In this way, the maximum value of the absolute value of the diffusion angle in the xz cross section of the diffuser is the maximum value of the absolute value of the tangential angle of the xz cross section of the diffuser, that is, the absolute value of the first derivative of the curve indicating the cross section shape of the diffuser Determined by the maximum value.

本発明の他の実施例について以下に説明する。実施例の基準の矩形における形状は以下の式で表される。基準の矩形のx軸方向の辺の長さはsミリメータであり、y軸方向の辺の長さはtミリメータである。

Figure 2021056503
Figure 2021056503
Figure 2021056503
Other examples of the present invention will be described below. The shape of the reference rectangle of the embodiment is expressed by the following equation. The length of the side of the reference rectangle in the x-axis direction is s millimeter, and the length of the side in the y-axis direction is t millimeter.
Figure 2021056503
Figure 2021056503
Figure 2021056503

実施例1
実施例1において、h1(x)のAiのA2以外は0であり、h2(y)のBiのB2以外は0である。xz断面の拡散角度の最大値及び最小値は±9度、yz断面における拡散角度の最大値及び最小値は±7度としてh1(x)及びh2(y)を定め、係数は以下のとおりである。
s = 0.3, A1 = 0, A2 = 10, A3 = 0, 4次以降の係数 = 0
t = 0.4, B1 = 0, B2 = 10, B3 = 0, 4次以降の係数 = 0
h1(x)及びh2(y)は以下のように表される。

Figure 2021056503
Figure 2021056503
Example 1
In the first embodiment, all but A 2 of A i of h 1 (x) are 0, and all but B 2 of B i of h 2 (y) are 0. H 1 (x) and h 2 (y) are defined with the maximum and minimum values of the diffusion angle of the xz cross section being ± 9 degrees and the maximum and minimum values of the diffusion angle of the yz cross section being ± 7 degrees, and the coefficients are as follows. That's right.
s = 0.3, A 1 = 0, A 2 = 10, A 3 = 0, 4th and subsequent coefficients = 0
t = 0.4, B 1 = 0, B 2 = 10, B 3 = 0, 4th and subsequent coefficients = 0
h 1 (x) and h 2 (y) are expressed as follows.
Figure 2021056503
Figure 2021056503

実施例1の拡散素子の形状f(x,y)は、凸の形状g(x,y)と凹の形状- g(x,y)とを組み合わせた形状であり、以下の式で表される。

Figure 2021056503
The shape f (x, y) of the diffusion element of the first embodiment is a combination of a convex shape g (x, y) and a concave shape-g (x, y), and is expressed by the following equation. To.
Figure 2021056503

図15は、実施例1の拡散素子の平面図である。 FIG. 15 is a plan view of the diffusion element of the first embodiment.

図16は、実施例1の拡散素子の、図15においてAで示す2本の直線から等距離で平行な直線及びBで示す2本の直線から等距離で平行な直線に対応するxz断面図である。図16の横軸はx座標を示し、単位はミリメータである。図16の縦軸はz座標を示し、単位はミリメータである。 FIG. 16 is an xz cross-sectional view of the diffusion element of Example 1 corresponding to a straight line equidistant and parallel to the two straight lines shown by A in FIG. 15 and a straight line equidistant and parallel to the two straight lines shown by B. Is. The horizontal axis of FIG. 16 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 16 indicates the z coordinate, and the unit is millimeter.

図17は、実施例1の拡散素子のh1(x)の形状を示す図である。図17の断面はxz断面である。図17の横軸はx座標を示し、単位はミリメータである。図17の縦軸はz座標を示し、単位はミリメータである。 FIG. 17 is a diagram showing the shape of h 1 (x) of the diffusion element of the first embodiment. The cross section of FIG. 17 is an xz cross section. The horizontal axis of FIG. 17 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 17 shows the z coordinate, and the unit is millimeter.

図18は、図17に示す形状の1階微分を示す図である。図18の横軸はx座標を示し、単位はミリメータである。図18の縦軸はzの1階微分値を示し、単位は無名数である。図18から1階微分の絶対値

Figure 2021056503
の最大値は0.3である。したがって、式(2)から接線角φの最大値は16.7度である。この値及びn=1.5を式(1)に代入すると、拡散角度の最大値θは約9度となる。 FIG. 18 is a diagram showing the first derivative of the shape shown in FIG. The horizontal axis of FIG. 18 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 18 shows the first derivative value of z, and the unit is a dimensionless number. Absolute value of first derivative from FIG.
Figure 2021056503
The maximum value of is 0.3. Therefore, from the equation (2), the maximum value of the tangent angle φ is 16.7 degrees. Substituting this value and n = 1.5 into Eq. (1), the maximum value θ of the diffusion angle is about 9 degrees.

図19は、図17に示す形状の2階微分を示す図である。図19の横軸はx座標を示し、単位はミリメータである。図19の縦軸はzの2階微分値を示し、単位はミリメータの逆数である。 FIG. 19 is a diagram showing the second derivative of the shape shown in FIG. The horizontal axis of FIG. 19 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 19 shows the second derivative value of z, and the unit is the reciprocal of the millimeter.

図20は、実施例1の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。図の20の横軸はxz断面における拡散角度を示し単位は度である。図20の縦軸は光のxz断面における強度を示し、単位は実施例1における相対強度を表す任意単位である。図20によると、最大の拡散角度は約±9度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 20 is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 1 has passed through the diffusing element. The horizontal axis of 20 in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 20 shows the intensity of light in the xz cross section, and the unit is an arbitrary unit representing the relative intensity in Example 1. According to FIG. 20, the maximum diffusion angle is about ± 9 degrees, and the shape of the intensity distribution shows a steep near this angle.

図21は、実施例1の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。図の21の横軸はyz断面における拡散角度を示し単位は度である。図21の縦軸は光のyz断面における強度分布を示し、単位は実施例1における相対強度を表す任意単位である。図21によると、最大の拡散角度は約±7度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 21 is a diagram showing the intensity distribution in the yz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 1 has passed through the diffusing element. The horizontal axis of 21 in the figure indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 21 shows the intensity distribution in the yz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 1. According to FIG. 21, the maximum diffusion angle is about ± 7 degrees, and the shape of the intensity distribution shows a steep near this angle.

図20及び図21によると、実施例1の拡散素子による光の強度分布の形状は、拡散角度の絶対値が、最大値よりも大きいときに0であり、最大値以下のときに一様である理想的な矩形形状に近い形状である。 According to FIGS. 20 and 21, the shape of the light intensity distribution by the diffusion element of the first embodiment is 0 when the absolute value of the diffusion angle is larger than the maximum value, and is uniform when the absolute value is equal to or less than the maximum value. It is a shape close to an ideal rectangular shape.

実施例2
実施例2のg(x,y)は実施例1のg(x,y)と同じである。実施例2の拡散素子の形状f(x,y)は、凸の形状g(x,y)のみを組み合わせた形状であり、以下の式で表される。

Figure 2021056503
Example 2
The g (x, y) of Example 2 is the same as the g (x, y) of Example 1. The shape f (x, y) of the diffusion element of the second embodiment is a shape in which only the convex shape g (x, y) is combined, and is represented by the following equation.
Figure 2021056503

図22は、実施例2の拡散素子の平面図である。 FIG. 22 is a plan view of the diffusion element of the second embodiment.

図23は、実施例2の拡散素子の、図22のAで示す2本の直線から等距離で平行な直線及びBで示す2本の直線から等距離で平行な直線に対応するxz断面図である。図23の横軸はx座標を示し、単位はミリメータである。図23の縦軸はz座標を示し、単位はミリメータである。 FIG. 23 is an xz cross-sectional view of the diffusion element of the second embodiment corresponding to a straight line equidistant and parallel to the two straight lines shown by A in FIG. 22 and a straight line equidistant and parallel to the two straight lines shown by B. Is. The horizontal axis of FIG. 23 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 23 shows the z coordinate, and the unit is millimeter.

図24は、図23に示す形状の1階微分を示す図である。図24の横軸はx座標を示し、単位はミリメータである。図24の縦軸はzの1階微分値を示し、単位は無名数である。 FIG. 24 is a diagram showing the first derivative of the shape shown in FIG. 23. The horizontal axis of FIG. 24 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 24 shows the first derivative value of z, and the unit is a dimensionless number.

図25は、図23に示す形状の2階微分を示す図である。図25の横軸はx座標を示し、単位はミリメータである。図25の縦軸はzの2階微分値を示し、単位はミリメータの逆数である。 FIG. 25 is a diagram showing the second derivative of the shape shown in FIG. 23. The horizontal axis of FIG. 25 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 25 shows the second derivative value of z, and the unit is the reciprocal of the millimeter.

図26Aは、実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。図の26Aの横軸はxz断面における拡散角度を示し単位は度である。図26Aの縦軸は光のxz断面における強度分布を示し、単位は実施例2における相対強度を表す任意単位である。 FIG. 26A is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 2 has passed through the diffusing element. The horizontal axis of 26A in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 26A shows the intensity distribution in the xz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 2.

図26Bは、実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。図の26Bの横軸はxz断面における拡散角度を示し単位は度である。図26Bの縦軸は光のxz断面における強度分布を対数目盛で示し、単位は実施例2における相対強度を表す任意単位である。図26Bによると、最大の拡散角度は約±9度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 26B is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 2 has passed through the diffusing element. The horizontal axis of 26B in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 26B shows the intensity distribution in the xz cross section of light on a logarithmic scale, and the unit is an arbitrary unit representing the relative intensity in Example 2. According to FIG. 26B, the maximum diffusion angle is about ± 9 degrees, and the shape of the intensity distribution shows a steep near this angle.

図27Aは、実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。図の27Aの横軸はyz断面における拡散角度を示し単位は度である。図27Aの縦軸は光のyz断面における強度分布を示し、単位は実施例2における相対強度を表す任意単位である。 FIG. 27A is a diagram showing the intensity distribution in the yz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 2 has passed through the diffusing element. The horizontal axis of 27A in the figure indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 27A shows the intensity distribution in the yz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 2.

図27Bは、実施例2の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。図の27Bの横軸はyz断面における拡散角度を示し単位は度である。図27Bの縦軸は光のyz断面における強度分布を対数目盛で示し、単位は実施例2における相対強度を表す任意単位である。図27Bによると、最大の拡散角度は約±7度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 27B is a diagram showing the intensity distribution in the yz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 2 has passed through the diffusing element. The horizontal axis of 27B in the figure indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 27B shows the intensity distribution in the yz cross section of light on a logarithmic scale, and the unit is an arbitrary unit representing the relative intensity in Example 2. According to FIG. 27B, the maximum diffusion angle is about ± 7 degrees, and the shape of the intensity distribution shows a steep near this angle.

図26A、図26B、図27A、及び図27Bにおいて、拡散角度0度に対応する光の強度が図20及び図21の場合よりも大きい理由は、実施例2の形状のxy平面に平行な部分の面積が実施例1の形状のxy平面に平行な部分の面積と比較して大きいためと考えられる。 In FIGS. 26A, 26B, 27A, and 27B, the reason why the light intensity corresponding to the diffusion angle of 0 degrees is higher than that in the cases of FIGS. 20 and 21, is that the portion of the shape of Example 2 parallel to the xy plane. It is considered that this is because the area of is larger than the area of the portion of the shape of Example 1 parallel to the xy plane.

実施例3
実施例3において、h1(x)のAiのA3以外は0であり、h2(y)のBiのB3以外は0である。xz断面における拡散角度の最大値及び最小値は±10度、yz断面における拡散角度の最大値及び最小値は±5度として設計し、係数は以下のとおりである。
s = 0.3, A1 = 0, A2 = 0, A3 = 55, 4次以降の係数 = 0
t = 0.6, B1 = 0, B2 = 0, B3 = 55, 4次以降の係数 = 0
Example 3
In the third embodiment, all but A 3 of A i of h 1 (x) are 0, and all but B 3 of B i of h 2 (y) are 0. The maximum and minimum values of the diffusion angle in the xz cross section are designed to be ± 10 degrees, and the maximum and minimum values of the diffusion angle in the yz cross section are designed to be ± 5 degrees, and the coefficients are as follows.
s = 0.3, A 1 = 0, A 2 = 0, A 3 = 55, 4th and subsequent coefficients = 0
t = 0.6, B 1 = 0, B 2 = 0, B 3 = 55, 4th and subsequent coefficients = 0

実施例3の拡散素子の形状f(x,y)は、凸の形状g(x,y)と凹の形状- g(x,y)とを組み合わせた形状であり、以下の式で表される。

Figure 2021056503
The shape f (x, y) of the diffusion element of the third embodiment is a combination of a convex shape g (x, y) and a concave shape-g (x, y), and is expressed by the following equation. To.
Figure 2021056503

図28は、実施例3の拡散素子のh1(x)の形状を示す図である。図28の断面はxz断面である。図28の横軸はx座標を示し、単位はミリメータである。図28の縦軸はz座標を示し、単位はミリメータである。 FIG. 28 is a diagram showing the shape of h 1 (x) of the diffusion element of the third embodiment. The cross section of FIG. 28 is an xz cross section. The horizontal axis of FIG. 28 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 28 indicates the z coordinate, and the unit is millimeter.

図29は、図28に示す形状の1階微分を示す図である。図29の横軸はx座標を示し、単位はミリメータである。図29の縦軸はzの1階微分値を示し、単位は無名数である。 FIG. 29 is a diagram showing the first derivative of the shape shown in FIG. 28. The horizontal axis of FIG. 29 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 29 shows the first derivative value of z, and the unit is a dimensionless number.

図30は、図28に示す形状の2階微分を示す図である。図30の横軸はx座標を示し、単位はミリメータである。図30の縦軸はzの2階微分値を示し、単位はミリメータの逆数である。 FIG. 30 is a diagram showing the second derivative of the shape shown in FIG. 28. The horizontal axis of FIG. 30 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 30 shows the second derivative value of z, and the unit is the reciprocal of the millimeter.

図31Aは、実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。図の31Aの横軸はxz断面における拡散角度を示し単位は度である。図31Aの縦軸は光のxz断面における強度分布を示し、単位は実施例3における相対強度を表す任意単位である。 FIG. 31A is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 3 has passed through the diffusing element. The horizontal axis of 31A in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 31A shows the intensity distribution in the xz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 3.

図31Bは、実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。図の31Bの横軸はxz断面における拡散角度を示し単位は度である。図31Bの縦軸は光のxz断面における強度分布を対数目盛で示し、単位は実施例3における相対強度を表す任意単位である。図31Bによると、最大の拡散角度は約±10度度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 31B is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 3 has passed through the diffusing element. The horizontal axis of 31B in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 31B shows the intensity distribution in the xz cross section of light on a logarithmic scale, and the unit is an arbitrary unit representing the relative intensity in Example 3. According to FIG. 31B, the maximum diffusion angle is about ± 10 degrees, and the shape of the intensity distribution shows a steep near this angle.

図32Aは、実施例3の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。図の32Aの横軸はyz断面における拡散角度を示し単位は度である。図32Aの縦軸は光のyz断面における強度分布を示し、単位は実施例3における相対強度を表す任意単位である。 FIG. 32A is a diagram showing the intensity distribution in the yz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 3 has passed through the diffusing element. The horizontal axis of 32A in the figure indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 32A shows the intensity distribution in the yz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 3.

図32Bは、実施例3の拡散素子を通過した光のyz断面における強度分布を示す図である。図の32Bの横軸はyz断面における拡散角度を示し単位は度である。図32Bの縦軸は光のyz断面における強度分布を対数目盛で示し、単位は実施例3における相対強度を表す任意単位である。図32Bによると、最大の拡散角度は約±5度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 32B is a diagram showing the intensity distribution of the light passing through the diffusing element of Example 3 in the yz cross section. The horizontal axis of 32B in the figure indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 32B shows the intensity distribution in the yz cross section of light on a logarithmic scale, and the unit is an arbitrary unit representing the relative intensity in Example 3. According to FIG. 32B, the maximum diffusion angle is about ± 5 degrees, and the shape of the intensity distribution shows a steep near this angle.

実施例4
実施例4において、h1(x)のAiのA2及びA4以外は0であり、h2(y)のBiのB2及びB4以外は0である。xz断面における拡散角度の最大値及び最小値は±20度、yz断面における拡散角度の最大値及び最小値は±10度として設計し、係数は以下のとおりである。
s = 0.6, A2 =-3.6, A4 =-0.5
t = 1.2, B2 =-3.6, B4 = -0.5
Ai及びBiはiが5以上のときに0である。
Example 4
In Example 4, h 1 (x) A i other than A 2 and A 4 is 0, and h 2 (y) B i other than B 2 and B 4 is 0. The maximum and minimum values of the diffusion angle in the xz cross section are designed to be ± 20 degrees, and the maximum and minimum values of the diffusion angle in the yz cross section are designed to be ± 10 degrees, and the coefficients are as follows.
s = 0.6, A 2 = -3.6, A 4 = -0.5
t = 1.2, B 2 = -3.6, B 4 = -0.5
A i and B i are 0 when i is 5 or more.

実施例4の拡散素子の形状f(x,y)は、凸の形状g(x,y)と凹の形状- g(x,y)とを組み合わせた形状であり、以下の式で表される。

Figure 2021056503
The shape f (x, y) of the diffusion element of the fourth embodiment is a combination of a convex shape g (x, y) and a concave shape-g (x, y), and is expressed by the following equation. To.
Figure 2021056503

図33は、実施例4の拡散素子のh1(x)の形状を示す図である。図33の断面はxz断面である。図33の横軸はx座標を示し、単位はミリメータである。図33の縦軸はz座標を示し、単位はミリメータである。 FIG. 33 is a diagram showing the shape of h 1 (x) of the diffusion element of the fourth embodiment. The cross section of FIG. 33 is an xz cross section. The horizontal axis of FIG. 33 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 33 indicates the z coordinate, and the unit is millimeter.

図34は、図33に示す形状の1階微分を示す図である。図34の横軸はx座標を示し、単位はミリメータである。図34の縦軸はzの1階微分値を示し、単位は無名数である。図34から1階微分の絶対値

Figure 2021056503
の最大値は0.7である。 FIG. 34 is a diagram showing the first derivative of the shape shown in FIG. 33. The horizontal axis of FIG. 34 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 34 shows the first derivative value of z, and the unit is a dimensionless number. Absolute value of first derivative from Fig. 34
Figure 2021056503
The maximum value of is 0.7.

図35は、図33に示す形状の2階微分を示す図である。図35の横軸はx座標を示し、単位はミリメータである。図35の縦軸はzの2階微分値を示し、単位はミリメータの逆数である。 FIG. 35 is a diagram showing the second derivative of the shape shown in FIG. 33. The horizontal axis of FIG. 35 indicates the x-coordinate, and the unit is millimeter. The vertical axis of FIG. 35 shows the second derivative value of z, and the unit is the reciprocal of the millimeter.

図36は、実施例4の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。図の36の横軸はxz断面における拡散角度を示し単位は度である。図36の縦軸は光のxz断面における強度分布を示し、単位は実施例4における相対強度を表す任意単位である。図36によると、最大の拡散角度は約±19度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 36 is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 4 has passed through the diffusing element. The horizontal axis of 36 in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 36 shows the intensity distribution in the xz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 4. According to FIG. 36, the maximum diffusion angle is about ± 19 degrees, and the shape of the intensity distribution shows a steep near this angle.

図37は、実施例4の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。図37の横軸はyz断面における拡散角度を示し単位は度である。図37の縦軸は光のyz断面における強度分布を示し、単位は実施例4における相対強度を表す任意単位である。図37によると、最大の拡散角度は約±10度であり、この角度の付近で強度分布の形状は急勾配(a steep)を示す。 FIG. 37 is a diagram showing the intensity distribution in the yz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of Example 4 has passed through the diffusing element. The horizontal axis of FIG. 37 indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 37 shows the intensity distribution in the yz cross section of light, and the unit is an arbitrary unit representing the relative intensity in Example 4. According to FIG. 37, the maximum diffusion angle is about ± 10 degrees, and the shape of the intensity distribution shows a steep near this angle.

図38は、実施例4の変形例の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のxz断面における強度分布を示す図である。実施例4の変形例は実施例4の格子点の位置及び高さを上述の方法によってばらつかせたものである。図の38の横軸はxz断面における拡散角度を示し単位は度である。図38の縦軸は光のxz断面における強度分布を示し、単位は実施例4の変形例における相対強度を表す任意単位である。 FIG. 38 is a diagram showing the intensity distribution in the xz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of the modified example of Example 4 passes through the diffusing element. In the modified example of the fourth embodiment, the positions and heights of the grid points of the fourth embodiment are dispersed by the above-mentioned method. The horizontal axis of 38 in the figure indicates the diffusion angle in the xz cross section, and the unit is degrees. The vertical axis of FIG. 38 shows the intensity distribution in the xz cross section of light, and the unit is an arbitrary unit representing the relative intensity in the modified example of Example 4.

図39は、実施例4の変形例の拡散素子のxy平面に垂直に入射した平行光が拡散素子を通過した後のyz断面における強度分布を示す図である。図の39の横軸はyz断面における拡散角度を示し単位は度である。図39の縦軸は光のyz断面における強度分布を示し、単位は実施例4の変形例における相対強度を表す任意単位である。 FIG. 39 is a diagram showing the intensity distribution in the yz cross section after the parallel light incident perpendicularly to the xy plane of the diffusing element of the modified example of Example 4 passes through the diffusing element. The horizontal axis of 39 in the figure indicates the diffusion angle in the yz cross section, and the unit is degrees. The vertical axis of FIG. 39 shows the intensity distribution in the yz cross section of light, and the unit is an arbitrary unit representing the relative intensity in the modified example of Example 4.

図36乃至図39によると、実施例4及びその変形例の拡散素子による光の強度分布の形状は、拡散角度の絶対値が、最大値よりも大きいときに0であり、最大値以下のときに一様である理想的な矩形形状に近い形状である。図39−39を図36−37と比較すると、図39−39における照度分布は、図36−37における照度分布よりも一様である。 According to FIGS. 36 to 39, the shape of the light intensity distribution by the diffusion element of Example 4 and its modified example is 0 when the absolute value of the diffusion angle is larger than the maximum value, and is 0 when the absolute value is greater than or equal to the maximum value. The shape is close to the ideal rectangular shape that is uniform. Comparing FIG. 39-39 with FIG. 36-37, the illuminance distribution in FIG. 39-39 is more uniform than the illuminance distribution in FIG. 36-37.

実施例1−実施例4の拡散素子の形状の特徴
図17、図23、図28及び図33によると、実施例1−実施例4のh1(x)の形状は滑らかであり、x軸に関して対称である。x=0においてh1(x)は最大値を有する。
Characteristics of the shape of the diffusing element of Example 1-Example 4 According to FIGS. 17, 23, 28 and 33, the shape of h 1 (x) of Example 1-Example 4 is smooth and the x-axis. Symmetrical with respect to. At x = 0, h 1 (x) has the maximum value.

図18、図24、図29及び図34によると、h1(x)の1階微分の絶対値は、h1(x)の最大値に対応するx=0において0であり、xの絶対値が増加するにしたがって増加し最大値に到達し、その後xの絶対値が増加するにしたがって0まで減少する。h1(x)の1階微分の絶対値は接線角の正接の絶対値に等しい。接線角が最大となるときに拡散角度の絶対値は最大となるので、拡散角度の絶対値の最大値はh1(x)の1階微分の絶対値の最大値によって定まる。 18, according to FIG. 24, 29 and 34, the absolute value of the first derivative of h 1 (x) is 0 in x = 0 corresponding to the maximum value of h 1 (x), the absolute of x It increases as the value increases and reaches the maximum value, and then decreases to 0 as the absolute value of x increases. The absolute value of the first derivative of h 1 (x) is equal to the absolute value of the tangent of the tangent angle. Since the absolute value of the diffusion angle becomes the maximum when the tangent angle becomes the maximum, the maximum value of the absolute value of the diffusion angle is determined by the maximum value of the absolute value of the first derivative of h 1 (x).

図19、図25、図30及び図35によると、h1(x)の1階微分の絶対値の最大値に対応するxの絶対値よりxの絶対値が小さい領域において、h1(x)の2階微分は0または負であり、h1(x)の1階微分の絶対値の最大値に対応するxの絶対値よりxの絶対値が大きい領域において、h1(x)の2階微分は0または正であり、h1(x)の2階微分はh1(x)の1階微分の絶対値の最大値に対応するxにおいて不連続である。すなわち、h1(x)の2階微分のそれぞれの不連続点のx座標においてh1(x)の1階微分の絶対値が最大値を示し、この値はxz断面の拡散角度の絶対値の最大値に対応する。 19, FIG. 25, according to FIGS. 30 and 35, in the region has a smaller absolute value of the absolute value than the x of x corresponding to the maximum value of the absolute value of the first derivative of h 1 (x), h 1 (x second derivative of) is zero or negative, in the region having a larger absolute value of x than the absolute value of x corresponding to the maximum value of the absolute value of the first derivative of h 1 (x), h 1 of (x) second derivative is zero or a positive second derivative of h 1 (x) is discontinuous at x corresponding to the maximum value of the absolute value of the first derivative of h 1 (x). That is, the absolute value of the first derivative of h 1 (x) in the x-coordinate of the respective discontinuity point second derivative of h 1 (x) indicates the maximum value, the absolute value of the diffusion angle of the value xz section Corresponds to the maximum value of.

拡散角度θの絶対値は接線角に従って変化し、h1(x)の1階微分の絶対値は接線角の正接の絶対値に等しく、拡散角度の絶対値の最大値はh1(x)の1階微分の絶対値によって定める。さらに、h1(x)の2階微分はh1(x)の1階微分の絶対値の最大値に対応するxにおいて不連続であり、h1(x)の2階微分の符号はh1(x)の1階微分の絶対値の最大値に対応するxにおいて変化する。このことは、xに対して拡散角度をプロットした場合に、1階微分の絶対値の最大値に対応するxにおいて拡散角度が急峻に変化することを意味する。この結果、xz断面における拡散角度に対してプロットした光の強度分布の形状は、xz断面における拡散角度の絶対値の最大値付近で急峻に変化する。このように、xz断面における拡散角度の絶対値の最大値以下の拡散角度の絶対値においては光がほぼ一様な強度を有し、xz断面における拡散角度の絶対値の最大値を超える拡散角度の絶対値においては光の強度が0である理想の特性に近い特性の拡散素子が得られる。 The absolute value of the diffusion angle θ changes according to the tangent angle, the absolute value of the first-order differential of h 1 (x) is equal to the absolute value of the tangent of the tangent angle, and the maximum value of the absolute value of the diffusion angle is h 1 (x). Determined by the absolute value of the first-order differential of. Further, the second-order differential of h 1 (x) is discontinuous at x corresponding to the maximum value of the absolute value of the first derivative of h 1 (x), the second order derivative of the code of h 1 (x) is h It changes at x corresponding to the maximum absolute value of the first derivative of 1 (x). This means that when the diffusion angle is plotted against x, the diffusion angle changes sharply at x corresponding to the maximum absolute value of the first derivative. As a result, the shape of the light intensity distribution plotted against the diffusion angle in the xz cross section changes sharply near the maximum value of the absolute value of the diffusion angle in the xz cross section. As described above, the light has almost uniform intensity at the absolute value of the diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in the xz cross section, and the diffusion angle exceeds the maximum value of the absolute value of the diffusion angle in the xz cross section. In the absolute value of, a diffusing element having characteristics close to the ideal characteristics in which the light intensity is 0 can be obtained.

実施例1−4のh2(y)もh1(x)と同様な形状を有する。すなわち、h2(y)の形状は滑らかであり、y軸に関して対称である。y=0においてh2(y)は最大値を有する。h2(y)の1階微分の絶対値は、h2(y)の最大値に対応するy=0において0であり、yの絶対値が増加するにしたがって増加し最大値に到達し、その後yの絶対値が増加するにしたがって0まで減少する。h2(y)の1階微分の絶対値の最大値に対応するyの絶対値よりyの絶対値が小さい領域において、h2(y)の2階微分は0または負であり、h2(y)の1階微分の絶対値の最大値に対応するyの絶対値よりyの絶対値が大きい領域において、h2(y)の2階微分は0または正であり、h2(y)の2階微分はh2(y)の1階微分の絶対値の最大値に対応するyにおいて不連続である。すなわち、h2(y)の2階微分のそれぞれの不連続点のx座標においてh2(y)の1階微分の絶対値が最大値を示し、この値はyz断面の拡散角度の絶対値の最大値に対応する。したがって、yz断面における拡散角度の絶対値の最大値以下の拡散角度の絶対値においては光がほぼ一様な強度を有し、yz断面における拡散角度の絶対値の最大値を超える拡散角度の絶対値においては光の強度が0である理想の特性に近い特性の拡散素子が得られる。 H 2 (y) of Examples 1-4 also has the same shape as h 1 (x). That is, the shape of h 2 (y) is smooth and symmetric with respect to the y-axis. At y = 0, h 2 (y) has the maximum value. the absolute value of the first derivative of h 2 (y), in the y = 0 corresponding to the maximum value of h 2 (y) is 0, it reaches the increased maximum value as the absolute value of y increases, After that, as the absolute value of y increases, it decreases to 0. In the region having a small absolute value of y than the absolute value of y corresponding to the maximum value of the absolute value of the first derivative of h 2 (y), 2 differential of h 2 (y) is zero or negative, h 2 In the region where the absolute value of y is greater than the absolute value of y, which corresponds to the maximum absolute value of the first derivative of (y), the second derivative of h 2 (y) is 0 or positive, h 2 (y). The second derivative of) is discontinuous in y, which corresponds to the maximum absolute value of the first derivative of h 2 (y). That, h 2 absolute value of the first derivative of h 2 (y) in each of the x coordinate of the point of discontinuity second derivative of (y) is the maximum value, the absolute value of the diffusion angle of the value yz section Corresponds to the maximum value of. Therefore, light has almost uniform intensity at the absolute value of the diffusion angle equal to or less than the maximum value of the absolute value of the diffusion angle in the yz cross section, and the absolute value of the diffusion angle exceeding the maximum value of the absolute value of the diffusion angle in the yz cross section. In terms of value, a diffusing element having characteristics close to the ideal characteristic in which the light intensity is 0 can be obtained.

実施例1−4はh1(x)及びh2(y)の形状によって特徴づけられる。すなわち、

Figure 2021056503
が、特徴的な形状を有する。実施例1−4においては、g(x,y)及び- g(x,y)の少なくとも一方で表される形状が式(3)または式(4)に示すようにxy平面上に配置されている。一般的に、拡散素子はz=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって得られた複数の形状から構成してもよい。拡散素子のxy面上への射影面積に対するxy面上の平面の面積の比率が所定値以下となるようにxy平面上に上記の複数の形状を配置することによって理想の特性に近い特性の拡散素子が得られる。上記の所定値は1%である。 Examples 1-4 are characterized by the shapes of h 1 (x) and h 2 (y). That is,
Figure 2021056503
However, it has a characteristic shape. In Examples 1-4, the shapes represented by at least one of g (x, y) and −g (x, y) are arranged on the xy plane as shown in the formula (3) or the formula (4). ing. In general, the diffusing element is a plurality of diffusing elements obtained by translation on at least one xy plane of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). It may be composed of the shape of. By arranging the above-mentioned plurality of shapes on the xy plane so that the ratio of the area of the plane on the xy plane to the projected area on the xy plane of the diffusing element is equal to or less than a predetermined value, diffusion of characteristics close to the ideal characteristics is performed. The element is obtained. The above predetermined value is 1%.

本発明による拡散素子の製造方法を説明する。 A method for manufacturing a diffusion element according to the present invention will be described.

図40は、本発明による拡散素子の製造方法を示す流れ図である。 FIG. 40 is a flow chart showing a method for manufacturing a diffusion element according to the present invention.

図40のステップS2010において関数z=g(x,y)= h1(x)・h2(y)を定める。 In step S2010 of FIG. 40, the functions z = g (x, y) = h 1 (x) · h 2 (y) are defined.

基準の矩形における形状をz=g(x,y)で表す。(x,y)座標の原点は基準の矩形の中心とする。Sを基準の矩形内の領域、

Figure 2021056503
をその境界、すなわち基準の矩形の辺とすると、以下の関係が成立する。
Figure 2021056503
のとき
Figure 2021056503
Figure 2021056503
のとき
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
The shape of the reference rectangle is represented by z = g (x, y). The origin of the (x, y) coordinates is the center of the reference rectangle. Area within a rectangle relative to S,
Figure 2021056503
Let be the boundary, that is, the side of the reference rectangle, and the following relationship holds.
Figure 2021056503
When
Figure 2021056503
Figure 2021056503
When
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503

z=g(x,y)は該矩形内において単一の頂点を有し、該矩形の辺上の任意の点と該頂点とを結ぶ直線に沿って該任意の点から該頂点までzは単調に増加し、

Figure 2021056503
で表され、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のx座標において0であり、x座標が該頂点のx座標より小さい領域の1階微分が正でx座標が該頂点のx座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、x座標が該頂点のx座標より小さい領域及びx座標が該頂点のx座標より大きい領域においてそれぞれ単一の不連続な点を有し、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のy座標において0であり、y座標が該頂点のy座標より小さい領域の1階微分が正でy座標が該頂点のy座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、y座標が該頂点のy座標より小さい領域及びy座標が該頂点のy座標より大きい領域においてそれぞれ単一の不連続な点を有する。 z = g (x, y) has a single vertex in the rectangle, and z is from any point to the vertex along a straight line connecting any point on the side of the rectangle to the vertex. Monotonically increasing,
Figure 2021056503
Represented by
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the x-coordinate of the vertex, the first derivative of the region where the x-coordinate is smaller than the x-coordinate of the vertex is positive, and the first-order derivative of the region whose x-coordinate is larger than the x-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the x-coordinate is smaller than the x-coordinate of the vertex and in a region where the x-coordinate is larger than the x-coordinate of the vertex.
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the y-coordinate of the vertex, the first derivative of the region where the y-coordinate is smaller than the y-coordinate of the vertex is positive, and the first-order derivative of the region where the y-coordinate is larger than the y-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the y-coordinate is smaller than the y-coordinate of the vertex and in a region where the y-coordinate is larger than the y-coordinate of the vertex.

h1(x)及びh2(y)は実施例に示す関数式であってもよい。 h 1 (x) and h 2 (y) may be the functional expressions shown in the examples.

図40のステップS2020において、h1(x)の2階微分の少なくとも一つの不連続点のx座標におけるh1(x)の1階微分の絶対値の最大値がxz断面の拡散角度の絶対値の所望の最大値に対応し、h2(y)の2階微分の少なくとも一つの不連続点のy座標におけるh2(y)の1階微分の絶対値の最大値がyz断面の拡散角度の絶対値の所望の最大値に対応するようにh1(x)及びh2(y)の係数を調整する。 In step S2020 of FIG. 40, h 1 (x) 2 floor absolute first floor diffusion angle of maximum xz cross section of the absolute value of the differential of h 1 (x) in the x-coordinate of the at least one discontinuity of the derivative of corresponding to the desired maximum value, the diffusion of the second floor maximum yz cross section of the absolute value of the first derivative of h 2 (y) in the y-coordinate of the at least one discontinuity of the derivative of h 2 (y) Adjust the derivatives of h 1 (x) and h 2 (y) to correspond to the desired maximum absolute value of the angle.

図14を使用して説明したようにh1(x)及びh2(y)のそれぞれの1階微分の絶対値の最大値によって式(2)から入射角θinの最大値が定まり、さらに式(1)から拡散角度θの絶対値の最大値が求まる。したがって、h1(x) 及びh2(y)のそれぞれの係数を調整することにより拡散角度θの絶対値の所望の最大値を実現することができる。 As explained with reference to FIG. 14, the maximum value of the incident angle θin is determined from Eq. (2) by the maximum absolute value of the first derivative of h 1 (x) and h 2 (y), and further Eq. From (1), the maximum value of the absolute value of the diffusion angle θ can be obtained. Therefore, the desired maximum value of the absolute value of the diffusion angle θ can be realized by adjusting the respective coefficients of h 1 (x) and h 2 (y).

図40のステップS2030において、z=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって拡散素子の全体の形状を定める。 In step S2030 of FIG. 40, the entire diffusing element is translated by translation on at least one xy plane of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). Determine the shape of.

全体の形状は、式(3)または式(4)で表される形状であってもよい。 The overall shape may be a shape represented by the formula (3) or the formula (4).

Claims (10)

(x,y)面上のx方向の長さsの辺、及びy方向の長さtの辺を有する矩形の中心を原点とし該矩形内の滑らかな関数をz=g(x,y)として、z=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって得られた複数の形状を備え、xz断面において、該拡散素子から射出された光線がz軸方向となす角度をxz断面の拡散角度の絶対値とし、yz断面において、該拡散素子から射出された光線がz軸方向となす角度をyz断面の拡散角度の絶対値として、xz断面の拡散角度の絶対値の所望の最大値及びyz断面の拡散角度の絶対値の所望の最大値が得られるように構成された拡散素子であって、
該矩形の辺上において
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
であり、z=g(x,y)は該矩形内において単一の頂点を有し、該矩形の辺上の任意の点と該頂点とを結ぶ直線に沿って該任意の点から該頂点までzは単調に増加し、
Figure 2021056503
で表され、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のx座標において0であり、x座標が該頂点のx座標より小さい領域の1階微分が正でx座標が該頂点のx座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、x座標が該頂点のx座標より小さい領域及びx座標が該頂点のx座標より大きい領域においてそれぞれ単一の不連続な点を有し、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のy座標において0であり、y座標が該頂点のy座標より小さい領域の1階微分が正でy座標が該頂点のy座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、y座標が該頂点のy座標より小さい領域及びy座標が該頂点のy座標より大きい領域においてそれぞれ単一の不連続な点を有し、
h1(x)の2階微分の少なくとも一つの不連続点のx座標におけるh1(x)の1階微分の絶対値がxz断面の拡散角度の絶対値の所望の最大値が得られるように定められ、h2(y)の2階微分の少なくとも一つの不連続点のy座標におけるh2(y)の1階微分の絶対値がyz断面の拡散角度の絶対値の所望の最大値が得られるように定められた拡散素子。
The smooth function in the rectangle whose origin is the center of the rectangle having the side of the length s in the x direction and the side of the length t in the y direction on the (x, y) plane is z = g (x, y). As a plurality of shapes obtained by parallel movement on at least one xy plane of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). In the xz cross section, the angle formed by the light beam emitted from the diffusing element in the z-axis direction is defined as the absolute value of the diffusion angle in the xz cross section, and in the yz cross section, the angle formed by the light beam emitted from the diffusing element in the z-axis direction is defined as the absolute value. A diffusion element configured to obtain a desired maximum value of the absolute value of the diffusion angle of the xz cross section and a desired maximum value of the absolute value of the diffusion angle of the yz cross section as the absolute value of the diffusion angle of the yz cross section. ,
On the sides of the rectangle
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Z = g (x, y) has a single vertex in the rectangle, and the vertex from the arbitrary point along the straight line connecting the arbitrary point on the side of the rectangle and the vertex. Z increases monotonically until
Figure 2021056503
Represented by
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the x-coordinate of the vertex, the first derivative of the region where the x-coordinate is smaller than the x-coordinate of the vertex is positive, and the first-order derivative of the region whose x-coordinate is larger than the x-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the x-coordinate is smaller than the x-coordinate of the vertex and in a region where the x-coordinate is larger than the x-coordinate of the vertex.
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the y-coordinate of the vertex, the first derivative of the region where the y-coordinate is smaller than the y-coordinate of the vertex is positive, and the first-order derivative of the region where the y-coordinate is larger than the y-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the y-coordinate is smaller than the y-coordinate of the vertex and in a region where the y-coordinate is larger than the y-coordinate of the vertex.
h 1 such that the desired maximum value of the second order absolute value of the first derivative of the diffusion angle of the absolute value xz section of h 1 (x) in the x-coordinate of the at least one discontinuity of the derivative of (x) is obtained stipulated in, h 2 2 floor desired maximum value of the absolute value of the diffusion angle of the absolute value yz cross section of the first derivative of h 2 (y) in the y-coordinate of the at least one discontinuity of the derivative of the (y) A diffusing element defined so that
全体の形状が
Figure 2021056503
で表され、m及びnは、それぞれx、y方向の矩形の位置を示す整数であり、m及びnの最小値は0であり、mの最大値は該拡散素子のx方向の寸法で定まり、nの最大値は該拡散素子のy方向の寸法で定まる請求項1に記載の拡散素子。
The overall shape is
Figure 2021056503
Represented by, m and n are integers indicating the positions of rectangles in the x and y directions, respectively, the minimum value of m and n is 0, and the maximum value of m is determined by the dimension of the diffusion element in the x direction. The diffusion element according to claim 1, wherein the maximum value of n is determined by the dimension of the diffusion element in the y direction.
全体の形状が
Figure 2021056503
で表され、m及びnは、それぞれx、y方向の矩形の位置を示す整数であり、m及びnの最小値は0であり、mの最大値は該拡散素子のx方向の寸法で定まり、nの最大値は該拡散素子のy方向の寸法で定まる請求項1に記載の拡散素子。
The overall shape is
Figure 2021056503
Represented by, m and n are integers indicating the positions of rectangles in the x and y directions, respectively, the minimum value of m and n is 0, and the maximum value of m is determined by the dimension of the diffusion element in the x direction. The diffusion element according to claim 1, wherein the maximum value of n is determined by the dimension of the diffusion element in the y direction.
N及びMが2以上の自然数、i及びjが自然数、Ai及びBi が定数を表すとして、
Figure 2021056503
が2次以上のxの多項式であって、
Figure 2021056503
によって表され、
Figure 2021056503
が2次以上のyの多項式であって
Figure 2021056503
によって表される請求項1から3のいずれかに記載の拡散素子。
Assuming that N and M are natural numbers of 2 or more, i and j are natural numbers, and A i and B i are constants.
Figure 2021056503
Is a polynomial of degree 2 or higher x
Figure 2021056503
Represented by
Figure 2021056503
Is a polynomial of degree 2 or higher
Figure 2021056503
The diffusion element according to any one of claims 1 to 3 represented by.
Figure 2021056503
及び
Figure 2021056503
が偶数次の多項式である請求項4に記載の拡散素子。
Figure 2021056503
as well as
Figure 2021056503
The diffusion element according to claim 4, wherein is an even-order polynomial.
xy面上への射影面積に対するxy面上の平面の面積の比率が1%以下である請求項1から5のいずれかに記載の拡散素子。 The diffusion element according to any one of claims 1 to 5, wherein the ratio of the area of the plane on the xy plane to the projected area on the xy plane is 1% or less. 請求項1に記載の拡散素子の各矩形の頂点をxy平面上の所定の範囲内で移動させて移動させた頂点によって凸四角形を形成し、新たな拡散素子の形状が、該凸四角形内の第1の点におけるzが該第1の点に対応する外各矩形内の第2の点における請求項1から6のいずれかに記載の拡散素子のzと等しくなるように定められた拡散素子。 A convex quadrangle is formed by moving the vertices of each rectangle of the diffusion element according to claim 1 within a predetermined range on the xy plane, and a new shape of the diffusion element is formed in the convex quadrangle. A diffusing element defined so that z at the first point is equal to z of the diffusing element according to any one of claims 1 to 6 at the second point in each outer rectangle corresponding to the first point. .. 請求項1から7のいずれかに記載の拡散素子の各矩形内のz座標をγ倍した拡散素子であって、γの値を矩形ごとに0.9から1.1の範囲で変化させた拡散素子。 A diffusion element obtained by multiplying the z coordinate in each rectangle of the diffusion element according to any one of claims 1 to 7 by γ, and changing the value of γ in the range of 0.9 to 1.1 for each rectangle. Diffusing element. 曲面上に形状を備えており、該形状は請求項1から8のいずれかに記載の拡散素子のxy面上の形状の射影であり、該射影はxy平面を該曲面へ射影するものである拡散素子。 The shape is provided on a curved surface, and the shape is a projection of the shape on the xy surface of the diffusion element according to any one of claims 1 to 8, and the projection projects the xy plane onto the curved surface. Diffusing element. (x,y)面上のx方向の長さsの辺、及びy方向の長さtの辺を有する矩形の中心を原点とし該矩形内の滑らかな関数をz=g(x,y)として、z=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって得られた複数の形状を備え、xz断面において、該拡散素子から射出された光線がz軸方向となす角度をxz断面の拡散角度の絶対値とし、yz断面において、該拡散素子から射出された光線がz軸方向となす角度をyz断面の拡散角度の絶対値として、xz断面の拡散角度の絶対値の所望の最大値及びyz断面の拡散角度の絶対値の所望の最大値が得られるように構成された拡散素子の製造方法であって、
該矩形の辺上において
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
であり、z=g(x,y)は該矩形内において単一の頂点を有し、該矩形の辺上の任意の点と該頂点とを結ぶ直線に沿って該任意の点から該頂点までzは単調に増加し、
Figure 2021056503
で表され、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点において0であり、x座標が該頂点のx座標より小さい領域の1階微分が正でx座標が該頂点のx座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、x座標が該頂点のx座標より小さい領域及びx座標が該頂点のx座標より大きい領域においてそれぞれ単一の不連続な点を有し、
Figure 2021056503
の1階微分が
Figure 2021056503
において連続であり、該頂点のy座標において0であり、y座標が該頂点のy座標より小さい領域の1階微分が正でy座標が該頂点のy座標より大きい領域の1階微分が負であり、
Figure 2021056503
の2階微分が、y座標が該頂点のy座標より小さい領域及びy座標が該頂点のy座標より大きい領域においてそれぞれ単一の不連続な点を有する関数z=g(x,y)を定めるステップと、
xz断面において、h1(x)の2階微分の少なくとも一つの不連続点のx座標におけるh1(x)の1階微分の絶対値がxz断面の拡散角度の絶対値の所望の最大値に対応し、h2(y)の2階微分の少なくとも一つの不連続点のy座標におけるh2(y)の1階微分の絶対値がyz断面の拡散角度の絶対値の所望の最大値に対応するようにh1(x)及びh2(y)の係数を調整するステップと、
z=g(x,y)で表される形状及びz=-g(x,y) で表される形状の少なくとも一方のxy平面上の平行移動によって全体の形状を定めるステップと、を含む拡散素子の製造方法。
z = g (x, y) is a smooth function in the (x, y) plane with the center of the rectangle having the side of the length s in the x direction and the side of the length t in the y direction as the origin. As a plurality of shapes obtained by parallel movement on at least one xy plane of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). In the xz cross section, the angle formed by the light beam emitted from the diffusing element in the z-axis direction is defined as the absolute value of the diffusion angle in the xz cross section, and in the yz cross section, the angle formed by the light beam emitted from the diffusing element in the z-axis direction is defined as the absolute value. A method for manufacturing a diffusion element configured to obtain a desired maximum value of the absolute value of the diffusion angle of the xz cross section and a desired maximum value of the absolute value of the diffusion angle of the yz cross section as the absolute value of the diffusion angle of the yz cross section. And
On the sides of the rectangle
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Figure 2021056503
Z = g (x, y) has a single vertex in the rectangle, and the vertex from the arbitrary point along the straight line connecting the arbitrary point on the side of the rectangle and the vertex. Z increases monotonically until
Figure 2021056503
Represented by
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, is 0 at the vertex, the first derivative of the region whose x-coordinate is smaller than the x-coordinate of the vertex is positive, and the first derivative of the region whose x-coordinate is larger than the x-coordinate of the vertex is negative.
Figure 2021056503
The second derivative of the above has a single discontinuous point in a region where the x-coordinate is smaller than the x-coordinate of the vertex and in a region where the x-coordinate is larger than the x-coordinate of the vertex.
Figure 2021056503
The first derivative of
Figure 2021056503
Is continuous, 0 in the y-coordinate of the vertex, the first derivative of the region where the y-coordinate is smaller than the y-coordinate of the vertex is positive, and the first-order derivative of the region where the y-coordinate is larger than the y-coordinate of the vertex is negative. And
Figure 2021056503
The second derivative of z = g (x, y) has a single discontinuous point in the region where the y-coordinate is smaller than the y-coordinate of the vertex and in the region where the y-coordinate is larger than the y-coordinate of the vertex. Steps to determine and
in the xz cross section, h 1 2 floor at least one of a desired maximum value of the first-order absolute value of the diffusion angle of the absolute value xz cross section of the derivative of h 1 (x) in the x-coordinate of the discontinuity of the derivative of (x) corresponds to, h 2 2 floor desired maximum value of the absolute value of the diffusion angle of the absolute value yz cross section of the first derivative of h 2 (y) in the y-coordinate of the at least one discontinuity of the derivative of the (y) And the step of adjusting the coefficients of h 1 (x) and h 2 (y) to correspond to
Diffusion, including the step of defining the overall shape by translation on at least one of the xy planes of the shape represented by z = g (x, y) and the shape represented by z = -g (x, y). Method of manufacturing the element.
JP2020157164A 2019-09-26 2020-09-18 Diffusion element Pending JP2021056503A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019175280 2019-09-26
JP2019175280 2019-09-26

Publications (1)

Publication Number Publication Date
JP2021056503A true JP2021056503A (en) 2021-04-08

Family

ID=74872749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020157164A Pending JP2021056503A (en) 2019-09-26 2020-09-18 Diffusion element

Country Status (3)

Country Link
JP (1) JP2021056503A (en)
CN (1) CN112558204B (en)
DE (1) DE102020124807A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065252B2 (en) * 2006-03-30 2012-10-31 株式会社きもと Method for producing surface irregularities
JP2008003234A (en) * 2006-06-21 2008-01-10 Fujifilm Corp Optical sheet and method of manufacturing the same
JP4350144B2 (en) * 2007-08-09 2009-10-21 シャープ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE EQUIPPED WITH THE SAME
CN102844618B (en) * 2010-12-01 2014-12-31 纳卢克斯株式会社 Optical element and lighting device using the same
CN102844609A (en) * 2010-12-16 2012-12-26 松下电器产业株式会社 Backlight device, liquid-crystal display device, and lens
JP5747196B2 (en) * 2011-12-20 2015-07-08 ナルックス株式会社 Optical element, illumination device including the optical element, and illumination module using the illumination device
KR101960131B1 (en) * 2012-05-03 2019-03-19 나럭스 컴퍼니 리미티드 Optical element
CN105393157B (en) * 2013-07-10 2018-01-30 纳卢克斯株式会社 Optical element
JP2016042125A (en) * 2014-08-15 2016-03-31 Hoya株式会社 Diffusion lens and illumination device
WO2016163275A1 (en) * 2015-04-06 2016-10-13 ナルックス株式会社 Diffuser, metal mold for diffuser and method for manufacturing diffuser
JP6588263B2 (en) * 2015-07-16 2019-10-09 デクセリアルズ株式会社 Diffusion plate, display device, projection device, and illumination device
JPWO2018151097A1 (en) * 2017-02-15 2019-02-21 ナルックス株式会社 Diffusion element

Also Published As

Publication number Publication date
CN112558204A (en) 2021-03-26
DE102020124807A1 (en) 2021-04-01
CN112558204B (en) 2023-07-14

Similar Documents

Publication Publication Date Title
CN107850697B (en) Diffusion plate, display device, projection device, and illumination device
US11592156B2 (en) Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device
WO2018151097A1 (en) Diffusion element
WO2015182619A1 (en) Microlens array and optics containing microlens array
CN108351437B (en) Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
CN108139512A (en) Diffuser plate, display device, projection arrangement and lighting device
US11960103B2 (en) Micro-lens array, projection type image display device, method for designing micro-lens array, and method for manufacturing micro-lens array
TW202122835A (en) Diffusion plate, display device, projection device, and illumination device
US10429551B2 (en) Microlens array
JP2021056503A (en) Diffusion element
US20190128500A1 (en) Led light source guiding device
WO2022097576A1 (en) Diffusion element and optical system including diffusion element
JP7381544B2 (en) Microlens array and projection type image display device
JP6743372B2 (en) Light wide-angle irradiation device
WO2022107772A1 (en) Micro-array-type diffusion plate
WO2023042798A1 (en) Diffuser plate, display device, projection device, and illumination device
US20230384487A1 (en) Micro Lens Array, Diffuser Plate, and Illumination Apparatus
CN117432972A (en) Lens module and lens array and lamp with same
CN115808837A (en) Projection device
JP2013089366A (en) Lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240313