JP2021055677A - Thrust bearing device - Google Patents

Thrust bearing device Download PDF

Info

Publication number
JP2021055677A
JP2021055677A JP2019176178A JP2019176178A JP2021055677A JP 2021055677 A JP2021055677 A JP 2021055677A JP 2019176178 A JP2019176178 A JP 2019176178A JP 2019176178 A JP2019176178 A JP 2019176178A JP 2021055677 A JP2021055677 A JP 2021055677A
Authority
JP
Japan
Prior art keywords
plate
thrust bearing
convex portion
bearing device
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019176178A
Other languages
Japanese (ja)
Other versions
JP7366675B2 (en
Inventor
和徳 池田
Kazunori Ikeda
和徳 池田
謙司 吉水
Kenji Yoshimizu
謙司 吉水
勇樹 見村
Yuki Mimura
勇樹 見村
駿介 牧野
Shunsuke Makino
駿介 牧野
忠利 佐藤
Tadatoshi Sato
忠利 佐藤
淳二 森
Junji Mori
淳二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019176178A priority Critical patent/JP7366675B2/en
Publication of JP2021055677A publication Critical patent/JP2021055677A/en
Application granted granted Critical
Publication of JP7366675B2 publication Critical patent/JP7366675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

To provide a thrust bearing device capable of elastically supporting a stationary plate even in a case where a large load is applied from a rotary plate, and at the same time, capable of absorbing an assembly error.SOLUTION: In order to solve this problem, the present invention provides a thrust bearing device in which when a vertical rotary electric machine is stationary, a convex part is bent to the extent that a stationary plate and a plate-shaped elastic body do not come into contact with each other except for a contact portion between the top surface of the convex part and the bottom surface of a concave part, and in a process of operating the vertical rotary electric machine and increasing the load received from a rotary plate, the convex part has an elastic force such that the convex part is bent to the extent that the stationary plate and the plate-shaped elastic body come into contact with each other on the entire surface.SELECTED DRAWING: Figure 1

Description

本発明は、立軸型回転電機に用いられるスラスト軸受装置に関する。 The present invention relates to a thrust bearing device used in a vertical shaft type rotary electric machine.

一般に立軸型回転電機、例えば水車発電機あるいは揚水発電電動機に使用されるスラスト
軸受装置は、発電機と水車の回転体の重量と、回転電機の運転にともなって生じる水スラ
ストを支持している。近年の回転電機の高速大容量化に伴って、運転中の水スラストが回
転体重量の3倍に達する場合もある。
Thrust bearing devices generally used in vertical shaft type rotary electric machines, for example, water turbine generators or pumping power generators, support the weight of the rotating body of the generator and the water turbine and the water thrust generated by the operation of the rotary electric machine. With the recent increase in high speed and capacity of rotating electric machines, the water thrust during operation may reach three times the weight of the rotating body.

図15は従来技術のスラスト軸受装置を模式的に示す縦断面図である。回転軸1にはスラ
ストカラー2が取り付けられ、その下部には回転板3が設けられている。静止板4の上部
には、静止板4と比較して剛性の低い摺動部材5が取り付けられており、回転板3との摺
動面を形成している。油槽8内には潤滑油が満たされており、上記摺動面を潤滑している
。静止板4は、コイルスプリング6を介して支持板7の上に設けられている。油槽8には
、スラストカラー2の周囲を囲う形でガイド軸受9が支持部材18を介して固定されてい
る。図16は静止板4の配置を示す平面図であり、扇型をした複数の静止板4が、回転軸
1のまわりに放射状に配置されている。
FIG. 15 is a vertical cross-sectional view schematically showing a thrust bearing device of the prior art. A thrust collar 2 is attached to the rotating shaft 1, and a rotating plate 3 is provided below the thrust collar 2. A sliding member 5 having a lower rigidity than the stationary plate 4 is attached to the upper portion of the stationary plate 4 to form a sliding surface with the rotating plate 3. The oil tank 8 is filled with lubricating oil to lubricate the sliding surface. The stationary plate 4 is provided on the support plate 7 via the coil spring 6. A guide bearing 9 is fixed to the oil tank 8 via a support member 18 so as to surround the thrust collar 2. FIG. 16 is a plan view showing the arrangement of the stationary plates 4, in which a plurality of fan-shaped stationary plates 4 are arranged radially around the rotation shaft 1.

図17は、1個の静止板周辺の詳細図を示している。回転板3が回転すると、静止板4の
摺動部材5との隙間に潤滑油が巻き込まれて油膜10が形成される。前記隙間は数10〜
数100μm程度の狭小隙間であり、そこに回転板3に付着した潤滑油が数10m/sの
高速度で流入するため、油膜10には圧力が発生し、回転軸の重量や運転中の水スラスト
が支持される。静止板4を支持するコイルスプリング6の機能としては以下の2点がある
FIG. 17 shows a detailed view around one stationary plate. When the rotating plate 3 rotates, lubricating oil is caught in the gap between the stationary plate 4 and the sliding member 5, and an oil film 10 is formed. The gap is several tens to ten
Since the lubricating oil adhering to the rotating plate 3 flows into the narrow gap of about several hundred μm at a high speed of several tens of m / s, pressure is generated in the oil film 10, and the weight of the rotating shaft and water during operation are generated. Thrust is supported. The coil spring 6 that supports the stationary plate 4 has the following two functions.

(機能1)回転電機の運転中、回転数の変動や水スラストによる荷重の変動が生じる。 (Function 1) During the operation of the rotary electric machine, the rotation speed fluctuates and the load fluctuates due to water thrust.

静止板4を弾性支持にすることで、静止板4の位置や傾きに自由度を持たせ、上記の変動
が生じても適切な油膜形状と油膜圧力を維持する。
By making the stationary plate 4 elastically supported, the position and inclination of the stationary plate 4 are given a degree of freedom, and an appropriate oil film shape and oil film pressure are maintained even if the above fluctuations occur.

(機能2)回転電機の組み立て時に、回転軸の傾きや静止板間の高さの差が生じ得る。 (Function 2) When assembling the rotary electric machine, the inclination of the rotating shaft and the difference in height between the stationary plates may occur.

静止板4を弾性支持にすることで、上記の組み立て誤差を吸収し、運転中に各静止板4に
加わる荷重を均等に維持する。
By making the stationary plate 4 elastically supported, the above-mentioned assembly error is absorbed, and the load applied to each stationary plate 4 during operation is maintained evenly.

なお、従来技術のスラスト軸受装置では、各静止板を支持するコイルスプリングの設置密
度を、回転上流側に向かうほど粗くすることがある。図18はその例であり、A列とB列
のコイルスプリング6の個数を図17よりも削減している。このような構成にすると、静
止板の支持剛性が回転上流側に向かうほど低くなり、図18の下図に示すように、回転上
流側から下流側に向かうほど油膜が薄くなるよう静止板4が傾きやすくなる。その結果、
くさび膜効果で油膜圧力発生が促進され、スラスト軸受の負荷容量を向上することができ
る。
In the thrust bearing device of the prior art, the installation density of the coil springs that support each stationary plate may become coarser toward the upstream side of rotation. FIG. 18 is an example thereof, and the number of coil springs 6 in rows A and B is reduced as compared with FIG. With such a configuration, the support rigidity of the stationary plate decreases toward the upstream side of rotation, and as shown in the lower figure of FIG. 18, the stationary plate 4 tilts so that the oil film becomes thinner from the upstream side of rotation toward the downstream side. It will be easier. resulting in,
The wedge film effect promotes the generation of oil film pressure, and the load capacity of the thrust bearing can be improved.

近年、回転電機の効率向上のため、スラスト軸受装置の機械損失低減が望まれている。そ
のためにはスラスト軸受装置の小型化が有効であるが、小型化のためコイルスプリングの
個数を減らすと、コイルスプリング1個当たりに加わる荷重が大きくなる。しかしながら
、コイルスプリングは構造上、部材の一部に応力集中が起きることがあり、特に運転中に
大きな水スラストが作用すると、材料の強度限界に達して前記(機能1)が損なわれるリ
スクがある。
In recent years, in order to improve the efficiency of rotary electric machines, it has been desired to reduce the mechanical loss of thrust bearing devices. For that purpose, it is effective to reduce the size of the thrust bearing device, but if the number of coil springs is reduced for the purpose of miniaturization, the load applied to each coil spring becomes large. However, due to the structure of the coil spring, stress concentration may occur in a part of the member, and especially when a large water thrust acts during operation, there is a risk that the strength limit of the material is reached and the above (function 1) is impaired. ..

このような背景を受け、特許文献1のように、コイルスプリングに替えてゴム製や樹脂製
の平板形状をした板状弾性体により静止板を支持するスラスト軸受装置が提案されている
。板状弾性体は、その構造上応力集中が起きにくく、大きな荷重が加わっても前記(機能
1)を維持できることが特長である。
Against this background, as in Patent Document 1, a thrust bearing device has been proposed in which a stationary plate is supported by a flat plate-shaped elastic body made of rubber or resin instead of a coil spring. The plate-shaped elastic body is characterized in that stress concentration is unlikely to occur due to its structure, and the above (function 1) can be maintained even when a large load is applied.

特許第5185377号公報Japanese Patent No. 5185377

特許文献1などに記載の板状弾性体は、その厚さ方向の弾性変形で静止板の位置や傾きに
自由度を持たせるものであり、線材が弾性変形するコイルスプリングと比較して変形量が
小さい。したがって、前記(機能2)の「組み立て誤差を吸収し、運転中に各静止板に加
わる荷重を均等に維持する機能」については、コイルスプリングよりも不利であり、組み
立て誤差の管理をより厳しく行う必要がある。
The plate-shaped elastic body described in Patent Document 1 and the like has a degree of freedom in the position and inclination of the stationary plate by elastic deformation in the thickness direction, and the amount of deformation is compared with a coil spring in which the wire rod is elastically deformed. Is small. Therefore, the above-mentioned (function 2) "function of absorbing the assembly error and maintaining the load applied to each stationary plate evenly during operation" is more disadvantageous than the coil spring, and the assembly error is managed more strictly. There is a need.

本発明の目的は、板状弾性体で静止板を支持するスラスト軸受装置において、大きな荷重
に耐えうるという従来技術の長所を維持しつつ、組み立て誤差を吸収しにくいという従来
技術の短所を解決することである。
An object of the present invention is to solve a disadvantage of the prior art that it is difficult to absorb an assembly error while maintaining the advantage of the prior art that it can withstand a large load in a thrust bearing device that supports a stationary plate with a plate-shaped elastic body. That is.

本発明では、立軸型回転電機が静止した状態では、静止板と板状弾性体とが、凸部の頂面
と凹部の底面との接触部分以外は接触しない程度に凸部がたわみ、立軸型回転電機が運転
され、回転板から受ける荷重が増加する過程で、静止板と板状弾性体とが、全面で接触す
る程度に凸部がたわむような弾性力を凸部が有するスラスト軸受装置を提供する。
In the present invention, when the vertical shaft type rotary electric machine is stationary, the convex portion is bent to such an extent that the stationary plate and the plate-shaped elastic body do not come into contact with each other except for the contact portion between the top surface of the convex portion and the bottom surface of the concave portion. A thrust bearing device in which the convex portion has an elastic force such that the convex portion bends to the extent that the stationary plate and the plate-shaped elastic body come into contact with each other in the process of operating the rotary electric machine and increasing the load received from the rotating plate. provide.

本発明は、板状弾性体と静止板との構造を改善したことにより、従来構造では同時に解決
できなかった課題、すなわち、回転板から大きな荷重が加わった場合でも静止板を弾性支
持することと、組み立て誤差を吸収することを同時に解決することができる。
In the present invention, by improving the structure of the plate-shaped elastic body and the stationary plate, a problem that cannot be solved at the same time by the conventional structure, that is, elastically supporting the stationary plate even when a large load is applied from the rotating plate. , It is possible to solve the problem of absorbing assembly errors at the same time.

第1実施形態のスラスト軸受装置(回転板から受ける荷重が小さい状態)Thrust bearing device of the first embodiment (state in which the load received from the rotating plate is small) 第1実施形態のスラスト軸受装置(回転板から受ける荷重が大きい状態)Thrust bearing device of the first embodiment (state in which the load received from the rotating plate is large) 静止板単体を水平面内にスライドさせて分解組立を行う構造のスラスト軸受装置において、スライド方向の一例を示す図The figure which shows an example of the sliding direction in the thrust bearing apparatus of the structure which disassembles and assembles by sliding a single stationary plate in a horizontal plane. 第2実施形態のスラスト軸受装置Thrust bearing device of the second embodiment 第2実施形態の変形例を示す図The figure which shows the modification of 2nd Embodiment 第3実施形態のスラスト軸受装置(回転板から受ける荷重が小さい状態)Thrust bearing device of the third embodiment (state in which the load received from the rotating plate is small) 第3実施形態のスラスト軸受装置(回転板から受ける荷重が大きい状態)Thrust bearing device of the third embodiment (state in which the load received from the rotating plate is large) 第4実施形態のスラスト軸受装置Thrust bearing device of the fourth embodiment 第4実施形態のスラスト軸受装置の作用を示す図The figure which shows the operation of the thrust bearing apparatus of 4th Embodiment 第5実施形態のスラスト軸受装置(第1実施形態のスラスト軸受装置に適用)Thrust bearing device of the fifth embodiment (applicable to the thrust bearing device of the first embodiment) 第5実施形態のスラスト軸受装置(第3実施形態のスラスト軸受装置に適用)Thrust bearing device of the fifth embodiment (applicable to the thrust bearing device of the third embodiment) 第6実施形態のスラスト軸受装置(第1実施形態のスラスト軸受装置に適用)Thrust bearing device of the sixth embodiment (applicable to the thrust bearing device of the first embodiment) 第6実施形態のスラスト軸受装置(第3実施形態のスラスト軸受装置に適用)Thrust bearing device of the sixth embodiment (applicable to the thrust bearing device of the third embodiment) 第7実施形態のスラスト軸受装置(第1実施形態のスラスト軸受装置に適用)Thrust bearing device of the 7th embodiment (applicable to the thrust bearing device of the 1st embodiment) 第7実施形態のスラスト軸受装置(第3実施形態のスラスト軸受装置に適用)Thrust bearing device of the 7th embodiment (applicable to the thrust bearing device of the 3rd embodiment) 従来技術のスラスト軸受装置(縦断面図)Conventional Thrust Bearing Device (Vertical Section) 従来技術のスラスト軸受装置(平面図)Conventional thrust bearing device (plan view) 従来技術のスラスト軸受装置(1個の静止板周辺の詳細図)Conventional thrust bearing device (detailed view around one stationary plate) 従来技術のスラスト軸受装置(コイルスプリングの設置密度を変えた場合)Conventional thrust bearing device (when the installation density of the coil spring is changed)

<第1実施形態>
(構成)
図1は、第1実施形態のスラスト軸受装置である。本実施形態は従来技術のスラスト軸受
装置(図17)におけるコイルスプリングを、板状弾性体に置き換えた軸受装置を前提と
している。図1において、回転板3と対向する静止板4は、板状弾性体11で支持されて
いる。板状弾性体11の材料としては、金属よりも弾性変形しやすいゴムや樹脂などが考
えられる。板状弾性体11の上面に凸部12を設け、静止板4の下面のうち凸部12と対
向する位置に凹部13を設ける。各凸部12の高さはそれと対向する凹部13の深さより
も大きくし、各凸部12の頂面と、対向する凹部13の底面が接触するように、静止板4
を板状弾性体11の上に置く。
<First Embodiment>
(Constitution)
FIG. 1 is a thrust bearing device of the first embodiment. This embodiment is premised on a bearing device in which the coil spring in the thrust bearing device (FIG. 17) of the prior art is replaced with a plate-shaped elastic body. In FIG. 1, the stationary plate 4 facing the rotating plate 3 is supported by the plate-shaped elastic body 11. As the material of the plate-shaped elastic body 11, rubber or resin, which is more easily elastically deformed than metal, can be considered. A convex portion 12 is provided on the upper surface of the plate-shaped elastic body 11, and a concave portion 13 is provided on the lower surface of the stationary plate 4 at a position facing the convex portion 12. The height of each convex portion 12 is made larger than the depth of the concave portion 13 facing the convex portion 12, and the stationary plate 4 is provided so that the top surface of each convex portion 12 and the bottom surface of the opposing concave portion 13 are in contact with each other.
Is placed on the plate-shaped elastic body 11.

なお、上記の構成は、1個の静止板4に対して、最少で1個の板状弾性体11を準備し、
その板状弾性体11に凸部12を加工することで実現できる。
In the above configuration, at least one plate-shaped elastic body 11 is prepared for one stationary plate 4.
This can be achieved by processing the convex portion 12 on the plate-shaped elastic body 11.

つまり、立軸型回転電機が静止した状態では、静止板4と板状弾性体11とが、凸部12
と凹部13との接触部分以外は接触しない程度に凸部12がたわむような弾性力を凸部1
2が有し、立軸型回転電機が運転され、回転板3から受ける荷重が増加する過程で、図2
に示すように静止板4と板状弾性体11とが全面で接触する程度に凸部12がたわむよう
な弾性力を凸部12が有している。
That is, when the vertical shaft type rotary electric machine is stationary, the stationary plate 4 and the plate-shaped elastic body 11 are formed by the convex portion 12.
The convex portion 1 exerts an elastic force that causes the convex portion 12 to bend so as not to contact the portion other than the contact portion between the concave portion 13 and the concave portion 13.
2 has, and in the process of operating the vertical shaft type rotary electric machine and increasing the load received from the rotary plate 3, FIG.
As shown in the above, the convex portion 12 has an elastic force such that the convex portion 12 bends to such an extent that the stationary plate 4 and the plate-shaped elastic body 11 are in full contact with each other.

(作用)
図1は、回転電機の組み立て時であって回転電機の静止状態では、静止板4が回転板3か
ら受ける荷重が比較的小さい状態を想定している。各凸部12の高さはそれと対向する凹
部13の深さよりも大きいため、静止板4と板状弾性体11とは全面接触せず、凸部12
の頂面と凹部13の底面だけで接触する。このように狭い面積で部材が接触するため、板
状弾性体の凸部12は容易に変形し得る。
(Action)
FIG. 1 assumes a state in which the load received by the stationary plate 4 from the rotating plate 3 is relatively small when the rotating electric machine is assembled and the rotating electric machine is in a stationary state. Since the height of each convex portion 12 is larger than the depth of the concave portion 13 facing the convex portion 12, the stationary plate 4 and the plate-shaped elastic body 11 do not come into full contact with each other, and the convex portion 12
Only the top surface of the recess 13 and the bottom surface of the recess 13 come into contact with each other. Since the members come into contact with each other in such a narrow area, the convex portion 12 of the plate-shaped elastic body can be easily deformed.

図2は、回転電機の運転状態であって、回転板3から受ける荷重が増加する過程において
、静止板4が回転板3から受ける荷重が比較的大きい状態を想定している。荷重増加に伴
って凸部12の変形が進行すると、同図のように静止板4と板状弾性体11が全面で接触
する。
FIG. 2 assumes a state in which the stationary plate 4 receives a relatively large load from the rotating plate 3 in the process of increasing the load received from the rotating plate 3 in the operating state of the rotating electric machine. As the deformation of the convex portion 12 progresses as the load increases, the stationary plate 4 and the plate-shaped elastic body 11 come into contact with each other on the entire surface as shown in the figure.

(効果)
回転電機の組み立て時には、スラスト軸受装置に回転体の重量のみ作用する。これは、図
1のように静止板4が回転板3から受ける荷重が比較的小さい状態であり、板状弾性体の
凸部12が容易に変形し得るため、組み立て誤差を吸収することができる。
(effect)
When assembling the rotary electric machine, only the weight of the rotating body acts on the thrust bearing device. This is a state in which the load received by the stationary plate 4 from the rotating plate 3 is relatively small as shown in FIG. 1, and the convex portion 12 of the plate-shaped elastic body can be easily deformed, so that an assembly error can be absorbed. ..

回転電機の運転中は、スラスト軸受装置に回転体の重量に加えて、大きな水スラストが作
用することがある。これは、図2のように静止板4が回転板3から受ける荷重が比較的大
きい状態であり、静止板4と板状弾性体11は全面で接触するため、従来技術の板状弾性
体と同等の弾性が得られる。
During operation of the rotary electric machine, a large amount of water thrust may act on the thrust bearing device in addition to the weight of the rotating body. This is a state in which the load received by the stationary plate 4 from the rotating plate 3 is relatively large as shown in FIG. 2, and the stationary plate 4 and the plate-shaped elastic body 11 are in contact with each other on the entire surface. Equivalent elasticity can be obtained.

以上より、回転板から大きな荷重が加わった場合でも静止板を弾性支持することができ、
かつ組み立て誤差も吸収できるような板状弾性体が得られる。
From the above, the stationary plate can be elastically supported even when a large load is applied from the rotating plate.
In addition, a plate-shaped elastic body that can absorb assembly errors can be obtained.

なお本実施形態では、1個の静止板に対して、最少で1個の板状弾性体を配置すれば良い
。よって、多数のコイルバネを配置する従来技術のスラスト軸受装置(図17、図18)
と比較して、組み立て作業が容易となる。
In this embodiment, at least one plate-shaped elastic body may be arranged for one stationary plate. Therefore, a conventional thrust bearing device in which a large number of coil springs are arranged (FIGS. 17 and 18).
Compared with, the assembly work becomes easier.

<第2実施形態>
(構成)
図3は、静止板単体を水平面内にスライドさせて分解組立を行う構造のスラスト軸受装置
において、スライド方向の一例を示す図である。スラスト軸受装置の保守点検では、回転
軸1を油圧ジャッキ等で浮かせて、静止板4単体を水平面内にスライドさせて分解組立す
ることがある。その場合、静止板4同士の干渉を防止するために、スライド方向16を各
静止板4の外径方向とすれば良い。
<Second Embodiment>
(Constitution)
FIG. 3 is a diagram showing an example of the sliding direction in a thrust bearing device having a structure in which a single stationary plate is slid in a horizontal plane for disassembly and assembly. In the maintenance and inspection of the thrust bearing device, the rotating shaft 1 may be floated by a hydraulic jack or the like, and the stationary plate 4 alone may be slid in a horizontal plane for disassembly and assembly. In that case, in order to prevent the stationary plates 4 from interfering with each other, the slide direction 16 may be the outer diameter direction of each stationary plate 4.

図4は、第2実施形態のスラスト軸受装置である。第1実施形態のスラスト軸受装置にお
いて、静止板4の下面に設ける凹部13、および板状弾性体11の上面に設ける凸部12
を、前記スライド方向16と平行に連続的に伸びる形状とする。
FIG. 4 is a thrust bearing device of the second embodiment. In the thrust bearing device of the first embodiment, the concave portion 13 provided on the lower surface of the stationary plate 4 and the convex portion 12 provided on the upper surface of the plate-shaped elastic body 11.
Is formed to have a shape that continuously extends in parallel with the slide direction 16.

(作用)
静止板4をスライドさせて分解組立する際、板状弾性体11に加工された凸部12がガイ
ドとなる。
(Action)
When the stationary plate 4 is slid and disassembled and assembled, the convex portion 12 processed into the plate-shaped elastic body 11 serves as a guide.

(効果)
前記ガイドにより、静止板4の分解組立作業が容易となる。
(effect)
The guide facilitates the disassembly and assembly work of the stationary plate 4.

なお、本実施形態で、板状弾性体11の上面に設ける凸部12は連続的な形状としたが、
図4aのように、スライド方向16と平行に凸部12が複数不連続的に設けられるように
しても同様の作用と効果が得られる。
In the present embodiment, the convex portion 12 provided on the upper surface of the plate-shaped elastic body 11 has a continuous shape.
As shown in FIG. 4a, the same action and effect can be obtained even if a plurality of convex portions 12 are provided discontinuously in parallel with the slide direction 16.

<第3実施形態>
(構成)
図5は、第3実施形態のスラスト軸受装置である。本実施形態は従来技術のスラスト軸受
装置(図17)におけるコイルスプリングを、弾性体セグメントに置き換えた軸受装置を
前提としている。図5において、回転板3と対向する静止板4は、複数の弾性体セグメン
ト14で支持されている。各弾性体セグメント14は、上ふた15とその下部の板状弾性
体11から構成され、板状弾性体11の上面に凸部12を設け、上ふた15の下面のうち
凸部12と対向する位置に凹部13を設ける。各凸部12の高さはそれと対向する凹部1
3の深さよりも大きくし、各凸部12の頂面と、対向する凹部13の底面が接触するよう
に、上ふた15を板状弾性体11の上に置く。
<Third Embodiment>
(Constitution)
FIG. 5 is a thrust bearing device of the third embodiment. This embodiment is premised on a bearing device in which the coil spring in the thrust bearing device (FIG. 17) of the prior art is replaced with an elastic segment. In FIG. 5, the stationary plate 4 facing the rotating plate 3 is supported by a plurality of elastic body segments 14. Each elastic body segment 14 is composed of an upper lid 15 and a plate-shaped elastic body 11 below the upper lid 15, and a convex portion 12 is provided on the upper surface of the plate-shaped elastic body 11 so as to face the convex portion 12 on the lower surface of the upper lid 15. A recess 13 is provided at the position. The height of each convex portion 12 is the concave portion 1 facing it.
The upper lid 15 is placed on the plate-shaped elastic body 11 so as to be larger than the depth of 3 so that the top surface of each convex portion 12 and the bottom surface of the opposite concave portion 13 come into contact with each other.

立軸型回転電機が静止した状態では、上ふた15と板状弾性体11とが、凸部12と凹部
13との接触部分以外は接触しない程度に凸部12がたわむような弾性力を凸部12は有
し、立軸型回転電機が運転され、回転板3から受ける荷重が増加する過程で、図6に示す
ように、上ふた15と板状弾性体11とが全面で接触する程度に凸部12がたわむような
弾性力を凸部12が有する。
When the vertical rotary electric machine is stationary, the convex portion exerts an elastic force such that the upper lid 15 and the plate-shaped elastic body 11 bend so that the convex portion 12 does not contact other than the contact portion between the convex portion 12 and the concave portion 13. 12 is provided, and as shown in FIG. 6, the upper lid 15 and the plate-shaped elastic body 11 are convex to the extent that they come into full contact with each other in the process of operating the vertical shaft type rotary electric machine and increasing the load received from the rotating plate 3. The convex portion 12 has an elastic force that causes the portion 12 to bend.

(作用)
図5は、静止板4が回転板3から受ける荷重が比較的小さい状態を想定している。各凸部
12の高さはそれと対向する凹部13の深さよりも大きいため、上ふた15と板状弾性体
11とは全面接触せず、凸部12の頂面と凹部13の底面だけで接触する。このように狭
い面積で部材が接触するため、板状弾性体の凸部12は容易に変形し得る。
(Action)
FIG. 5 assumes a state in which the load received by the stationary plate 4 from the rotating plate 3 is relatively small. Since the height of each convex portion 12 is larger than the depth of the concave portion 13 facing the convex portion 12, the upper lid 15 and the plate-shaped elastic body 11 do not come into full contact with each other, but only the top surface of the convex portion 12 and the bottom surface of the concave portion 13. To do. Since the members come into contact with each other in such a narrow area, the convex portion 12 of the plate-shaped elastic body can be easily deformed.

図6は、静止板4が回転板3から受ける荷重が比較的大きい状態を想定している。荷重増
加に伴って凸部12の変形が進行すると、同図のように上ふた4と板状弾性体11が全面
で接触する。
FIG. 6 assumes a state in which the static plate 4 receives a relatively large load from the rotating plate 3. As the deformation of the convex portion 12 progresses as the load increases, the upper lid 4 and the plate-shaped elastic body 11 come into contact with each other on the entire surface as shown in the figure.

(効果)
第1実施形態と同様に、回転板から大きな荷重が加わった場合でも静止板を弾性支持する
ことができ、かつ組み立て誤差も吸収できるような板状弾性体が得られる。
(effect)
Similar to the first embodiment, a plate-shaped elastic body that can elastically support the stationary plate even when a large load is applied from the rotating plate and can absorb assembly errors can be obtained.

複数の弾性体セグメントを配置するため、組み立て作業の手間は従来技術のスラスト軸受
装置(図17、図18)と同等であるが、弾性体セグメントを任意の位置に配置できるの
で、第1実施形態と比較して設計の自由度は大きくなる。
Since a plurality of elastic body segments are arranged, the labor of assembling work is the same as that of the thrust bearing device (FIGS. 17 and 18) of the prior art, but since the elastic body segments can be arranged at arbitrary positions, the first embodiment The degree of freedom in design is greater than that.

<第4実施形態>
(構成)
図7は、第4実施形態のスラスト軸受装置である。本実施形態は第3実施形態のスラスト
軸受装置を前提としており、弾性セグメント14の設置密度を、回転上流側に向かうほど
粗くする。例えば図7では、図5の第3実施形態のスラスト軸受装置と比較して、A列の
弾性セグメントを撤去し、B列の弾性セグメントの個数を削減している。
<Fourth Embodiment>
(Constitution)
FIG. 7 is a thrust bearing device according to a fourth embodiment. This embodiment is premised on the thrust bearing device of the third embodiment, and the installation density of the elastic segment 14 is made coarser toward the upstream side of rotation. For example, in FIG. 7, as compared with the thrust bearing device of the third embodiment of FIG. 5, the elastic segments in the A row are removed and the number of elastic segments in the B row is reduced.

(作用)
静止板4の支持剛性が回転上流側に向かうほど低くなり、図8の下図に示すように、回転
上流側から下流側に向かうほど油膜が薄くなるよう静止板4が傾きやすくなる。その結果
、くさび膜効果で油膜圧力発生が促進される。
(Action)
The support rigidity of the stationary plate 4 decreases toward the upstream side of rotation, and as shown in the lower figure of FIG. 8, the stationary plate 4 tends to tilt so that the oil film becomes thinner from the upstream side of rotation toward the downstream side. As a result, the generation of oil film pressure is promoted by the wedge film effect.

(効果)
油膜圧力発生が促進されると、回転板3と摺動部材5とが接触するリスクが低下し、スラ
スト軸受の負荷容量を向上することができる。
(effect)
When the generation of oil film pressure is promoted, the risk of contact between the rotating plate 3 and the sliding member 5 is reduced, and the load capacity of the thrust bearing can be improved.

<第5実施形態>
(構成)
図9は、第5実施形態のスラスト軸受装置である。第1実施形態のスラスト軸受装置に対
して、ある凸部12と凹部13の接触面積を、それより下流側に位置する凸部12と凹部
13の接触面積よりも小さくする。例えば図9では、A列<B列<C列<D列の順で、凸
部12と凹部13の接触面積を小さくしている。
<Fifth Embodiment>
(Constitution)
FIG. 9 is a thrust bearing device according to a fifth embodiment. With respect to the thrust bearing device of the first embodiment, the contact area between the convex portion 12 and the concave portion 13 is made smaller than the contact area between the convex portion 12 and the concave portion 13 located on the downstream side thereof. For example, in FIG. 9, the contact area between the convex portion 12 and the concave portion 13 is reduced in the order of row A <row B <row C <row D.

(作用)
凸部12と凹部13の接触面積を小さくすると、凸部12に荷重が加わったときの変形量
は大きくなる。よって本実施形態では、静止板4の支持剛性が回転上流側に向かうほど低
くなり、図8の第4実施形態と同様に、回転上流側から下流側に向かうほど油膜が薄くな
るよう静止板4が傾きやすくなる。その結果、くさび膜効果で油膜圧力発生が促進される
(Action)
When the contact area between the convex portion 12 and the concave portion 13 is reduced, the amount of deformation when a load is applied to the convex portion 12 increases. Therefore, in the present embodiment, the support rigidity of the stationary plate 4 becomes lower toward the upstream side of rotation, and the oil film becomes thinner from the upstream side of rotation toward the downstream side as in the fourth embodiment of FIG. Is easy to tilt. As a result, the generation of oil film pressure is promoted by the wedge film effect.

(効果)
油膜圧力発生が促進されると、回転板3と摺動部材5とが接触するリスクが低下し、スラ
スト軸受の負荷容量を向上することができる。
(effect)
When the generation of oil film pressure is promoted, the risk of contact between the rotating plate 3 and the sliding member 5 is reduced, and the load capacity of the thrust bearing can be improved.

なお、本実施形態は、第3実施形態のスラスト軸受に対しても適用することができる。図
10はその例であり、得られる作用と効果は上記と同様である。
The present embodiment can also be applied to the thrust bearing of the third embodiment. FIG. 10 is an example, and the obtained actions and effects are the same as described above.

<第6実施形態>
(構成)
図11は、第6実施形態のスラスト軸受装置である。第1実施形態のスラスト軸受装置に
対して、ある凸部12の高さを、それより下流側に位置する凸部12よりも高くする。例
えば図11では、A列>B列>C列>D列の順で、凸部12を高くしている。
<Sixth Embodiment>
(Constitution)
FIG. 11 shows the thrust bearing device of the sixth embodiment. With respect to the thrust bearing device of the first embodiment, the height of a certain convex portion 12 is made higher than that of the convex portion 12 located on the downstream side of the convex portion 12. For example, in FIG. 11, the convex portion 12 is raised in the order of A column> B column> C column> D column.

(作用)
凸部12を高くすると、凸部12に荷重が加わったときの変形量は大きくなる。よって本
実施形態では、静止板4の支持剛性が回転上流側に向かうほど低くなり、図8の第4実施
形態と同様に、回転上流側から下流側に向かうほど油膜が薄くなるよう静止板4が傾きや
すくなる。その結果、くさび膜効果で油膜圧力発生が促進される。
(Action)
When the convex portion 12 is raised, the amount of deformation when a load is applied to the convex portion 12 increases. Therefore, in the present embodiment, the support rigidity of the stationary plate 4 becomes lower toward the upstream side of rotation, and the oil film becomes thinner from the upstream side of rotation toward the downstream side as in the fourth embodiment of FIG. Is easy to tilt. As a result, the generation of oil film pressure is promoted by the wedge film effect.

(効果)
油膜圧力発生が促進されると、回転板3と摺動部材5とが接触するリスクが低下し、スラ
スト軸受の負荷容量を向上することができる。
(effect)
When the generation of oil film pressure is promoted, the risk of contact between the rotating plate 3 and the sliding member 5 is reduced, and the load capacity of the thrust bearing can be improved.

なお、本実施形態は、第3実施形態のスラスト軸受に対しても適用することができる。図
12はその例であり、得られる作用と効果は上記と同様である。
The present embodiment can also be applied to the thrust bearing of the third embodiment. FIG. 12 is an example, and the obtained actions and effects are the same as described above.

<第7実施形態>
(構成)
図13は、第7実施形態のスラスト軸受装置である。第1実施形態のスラスト軸受装置に
対して、一部の凸部12の表面に切れ目を加工し、ある凸部12に加工した切れ目の本数
を、それより回転下流側に位置する凸部12よりも多くする。例えば図13では、D列以
外の凸部12に切れ目を加工し、A列>B列>C列の順で、凸部12の切れ目の本数を多
くしている。
<7th Embodiment>
(Constitution)
FIG. 13 is a thrust bearing device according to the seventh embodiment. For the thrust bearing device of the first embodiment, cuts are machined on the surface of a part of the convex portions 12, and the number of cuts machined on a certain convex portion 12 is calculated from the convex portion 12 located on the downstream side of the rotation. Also many. For example, in FIG. 13, cuts are formed in the convex portions 12 other than the D row, and the number of cuts in the convex portions 12 is increased in the order of A row> B row> C row.

(作用)
凸部12の切れ目の本数を多くすると、凸部12に荷重が加わったときの変形量は大きく
なる。よって本実施形態では、静止板4の支持剛性が回転上流側に向かうほど低くなり、
図8の第4実施形態と同様に、回転上流側から下流側に向かうほど油膜が薄くなるよう静
止板4が傾きやすくなる。その結果、くさび膜効果で油膜圧力発生が促進される。
(Action)
When the number of cuts in the convex portion 12 is increased, the amount of deformation when a load is applied to the convex portion 12 becomes large. Therefore, in the present embodiment, the support rigidity of the stationary plate 4 becomes lower toward the upstream side of rotation.
Similar to the fourth embodiment of FIG. 8, the stationary plate 4 tends to tilt so that the oil film becomes thinner from the upstream side to the downstream side of the rotation. As a result, the generation of oil film pressure is promoted by the wedge film effect.

(効果)
油膜圧力発生が促進されると、回転板3と摺動部材5とが接触するリスクが低下し、スラ
スト軸受の負荷容量を向上することができる。
(effect)
When the generation of oil film pressure is promoted, the risk of contact between the rotating plate 3 and the sliding member 5 is reduced, and the load capacity of the thrust bearing can be improved.

なお、本実施形態は、第3実施形態のスラスト軸受に対しても適用することができる。図
14はその例であり、得られる作用と効果は上記と同様である。
The present embodiment can also be applied to the thrust bearing of the third embodiment. FIG. 14 is an example, and the obtained actions and effects are the same as described above.

1…回転軸
2…スラストカラー
3…回転板
4…静止板
5…摺動部材
6…コイルスプリング
7…支持板
8…油槽
9…ガイド軸受
10…油膜
11…板状弾性体
12…凸部
13…凹部
14…弾性体セグメント
15…上ふた
16…静止板の分解組立方向
17…切れ目
18…支持部材
1 ... Rotating shaft 2 ... Thrust collar 3 ... Rotating plate 4 ... Static plate 5 ... Sliding member 6 ... Coil spring 7 ... Support plate 8 ... Oil tank 9 ... Guide bearing 10 ... Oil film 11 ... Plate-shaped elastic body 12 ... Convex portion 13 ... Recessed portion 14 ... Elastic body segment 15 ... Upper lid 16 ... Disassembly and assembly direction of stationary plate 17 ... Cut 18 ... Support member

Claims (8)

立軸型回転電機に用いられるスラスト軸受装置であり、回転板と対向する静止板が、板状
弾性体で支持された構造のスラスト軸受装置において、
前記静止体に設けられ、底面を有する凹部と、
前記板状弾性体に設けられ、前記凹部に対向し、前記凹部の深さより大きい高さを有し、
前記底面と接触する頂面を有する凸部とを備え、
前記立軸型回転電機が静止した状態では、前記静止板と前記板状弾性体とが、前記凸部の
頂面と前記凹部の底面との接触部分以外は接触しない程度に前記凸部がたわみ、
前記立軸型回転電機が運転され、前記回転板から受ける荷重が増加する過程で、前記静止
板と前記板状弾性体とが、全面で接触する程度に前記凸部がたわむような弾性力を前記凸
部が有するスラスト軸受装置。
A thrust bearing device used in a vertical rotary electric machine, in a thrust bearing device having a structure in which a stationary plate facing a rotating plate is supported by a plate-shaped elastic body.
A recess provided in the stationary body and having a bottom surface,
It is provided on the plate-shaped elastic body, faces the recess, and has a height larger than the depth of the recess.
It is provided with a convex portion having a top surface in contact with the bottom surface.
When the vertical shaft type rotary electric machine is stationary, the convex portion is bent to such an extent that the stationary plate and the plate-shaped elastic body do not come into contact with each other except for the contact portion between the top surface of the convex portion and the bottom surface of the concave portion.
In the process of operating the vertical shaft type rotary electric machine and increasing the load received from the rotating plate, the elastic force is applied so that the convex portion bends to the extent that the stationary plate and the plate-shaped elastic body come into contact with each other on the entire surface. Thrust bearing device that the convex part has.
請求項1に記載のスラスト軸受装置において、各静止板を支持する板状弾性体の数を1個
ずつとしたスラスト軸受装置。
The thrust bearing device according to claim 1, wherein the number of plate-shaped elastic bodies supporting each stationary plate is one.
請求項1に記載のスラスト軸受装置であり、静止板単体を水平面内にスライドさせて分解
組立を行う構造のスラスト軸受装置において、静止板下面に設ける凹部を、前記スライド
方向と平行に連続的に伸びる形状とし、板状弾性体上面に設ける凸部を、前記スライド方
向と平行に連続的に伸びる形状、または前記スライド方向と平行に複数設けられるスラス
ト軸受装置。
The thrust bearing device according to claim 1, wherein the thrust bearing device has a structure in which a single stationary plate is slid in a horizontal plane for disassembly and assembly, and recesses provided on the lower surface of the stationary plate are continuously provided in parallel with the sliding direction. A thrust bearing device having an extendable shape and having a plurality of convex portions provided on the upper surface of a plate-shaped elastic body extending continuously in parallel with the slide direction or in parallel with the slide direction.
立軸型回転電機に用いられるスラスト軸受装置において、
回転板と対向する静止板と、
前記静止板を支持し、前記静止体の下面に設けられる上ふたと、前記上ふたの下部の板状
弾性体とから構成され、前記板状弾性体に設けられ頂面を有する凸部と、前記凸部に対向
し、前記上ふたに設けられ前記頂面と接触する底面を有する凹部とを有し、前記凸部の高
さは前記凹部の深さよりも大きくした弾性体セグメントとを備え、
前記立軸型回転電機が静止した状態では、前記上ふたと前記板状弾性体とが、前記凸部の
頂面と前記凹部の底面との接触部分以外は接触しない程度に前記凸部がたわみ、
前記立軸型回転電機が運転され、前記回転板から受ける荷重が増加する過程で、前記上ふ
たと前記板状弾性体とが、全面で接触する程度に前記凸部がたわむような弾性力を前記凸
部が有するスラスト軸受装置。
In the thrust bearing device used for vertical rotary electric machines
The stationary plate facing the rotating plate and the stationary plate
An upper lid that supports the stationary plate and is provided on the lower surface of the stationary body, and a convex portion that is provided on the plate-shaped elastic body and has a top surface and is composed of a plate-shaped elastic body below the upper lid. It has a recess facing the convex portion and having a bottom surface provided on the upper lid and in contact with the top surface, and the convex portion includes an elastic segment having a height larger than the depth of the concave portion.
When the vertical shaft type rotary electric machine is stationary, the convex portion is bent to such an extent that the upper lid and the plate-shaped elastic body do not come into contact with each other except for the contact portion between the top surface of the convex portion and the bottom surface of the concave portion.
In the process of operating the vertical shaft type rotary electric machine and increasing the load received from the rotating plate, the elastic force is applied so that the convex portion bends to the extent that the upper lid and the plate-shaped elastic body come into contact with each other on the entire surface. Thrust bearing device that the convex part has.
請求項4に記載のスラスト軸受装置において、各静止板を支持する弾性体セグメントの設
置密度を、回転上流側に向かうほど粗くしたスラスト軸受装置。
The thrust bearing device according to claim 4, wherein the installation density of the elastic segment supporting each stationary plate is made coarser toward the upstream side of rotation.
請求項1または請求項4に記載のスラスト軸受装置において、ある凸部と凹部の接触面積
を、それより回転下流側に位置する凸部と凹部の接触面積よりも小さくしたスラスト軸受
装置。
The thrust bearing device according to claim 1 or 4, wherein the contact area between a convex portion and the concave portion is smaller than the contact area between the convex portion and the concave portion located on the downstream side of the rotation.
請求項1または請求項4に記載のスラスト軸受装置において、ある凸部の高さを、それよ
り回転下流側に位置する凸部よりも高くしたスラスト軸受装置。
The thrust bearing device according to claim 1 or 4, wherein the height of a certain convex portion is higher than that of the convex portion located on the downstream side of the rotation.
請求項1または請求項4に記載のスラスト軸受装置において、一部の凸部の表面に切れ目
を加工し、ある凸部に加工した切れ目の本数を、それより回転下流側に位置する凸部より
も多くしたスラスト軸受装置。
In the thrust bearing device according to claim 1 or 4, a cut is formed on the surface of a part of the convex portion, and the number of cuts processed into a certain convex portion is calculated from the convex portion located on the downstream side of the rotation. Thrust bearing device with many.
JP2019176178A 2019-09-26 2019-09-26 Thrust bearing device Active JP7366675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019176178A JP7366675B2 (en) 2019-09-26 2019-09-26 Thrust bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019176178A JP7366675B2 (en) 2019-09-26 2019-09-26 Thrust bearing device

Publications (2)

Publication Number Publication Date
JP2021055677A true JP2021055677A (en) 2021-04-08
JP7366675B2 JP7366675B2 (en) 2023-10-23

Family

ID=75270254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019176178A Active JP7366675B2 (en) 2019-09-26 2019-09-26 Thrust bearing device

Country Status (1)

Country Link
JP (1) JP7366675B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157020U (en) * 1982-04-16 1983-10-20 株式会社東芝 Underwater thrust bearing device
JP2000046042A (en) * 1998-07-29 2000-02-15 Toshiba Corp Thrust bearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157020U (en) * 1982-04-16 1983-10-20 株式会社東芝 Underwater thrust bearing device
JP2000046042A (en) * 1998-07-29 2000-02-15 Toshiba Corp Thrust bearing device

Also Published As

Publication number Publication date
JP7366675B2 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
JP6268847B2 (en) Thrust bearing
US4116503A (en) Resilient foil thrust bearings
KR100964883B1 (en) Thrust foil air bearing
US4262975A (en) Compliant journal bearing with angular stiffness gradient
JP6221244B2 (en) Thrust bearing
JP6372062B2 (en) Thrust bearing
CA2888183C (en) Thrust bearing
US4462700A (en) Hydrodynamic fluid film thrust bearing
US4277112A (en) Stepped, split, cantilevered compliant bearing support
JP6582431B2 (en) Thrust bearing
US6558041B2 (en) Damper assembly for a rotating shaft and methods for dampening shaft vibrations
KR20110045075A (en) Tidal power generation unit and power generation method using the same
WO2019057753A1 (en) Fluid film bearing for a wind turbine
JP6921407B2 (en) Thrust foil bearing
KR101187892B1 (en) Air foil bearing
JP2021055677A (en) Thrust bearing device
JP2015140909A (en) thrust bearing
GB2546853A (en) Leveling plate and thrust bearing device using the same
JP2012127444A (en) Thrust bearing
JP2016075324A (en) Thrust bearing
KR20090040956A (en) Bearing seal for gas turbine
US3620582A (en) Thrust bearing assembly
JP5812973B2 (en) Journal bearing and steam turbine
KR20080089838A (en) Air foil bearing
CN112178044B (en) Thrust bearing, device for compressing gas and method for adjusting thrust bearing

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231011

R150 Certificate of patent or registration of utility model

Ref document number: 7366675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150