JP2021050768A - Sliding structure - Google Patents

Sliding structure Download PDF

Info

Publication number
JP2021050768A
JP2021050768A JP2019173633A JP2019173633A JP2021050768A JP 2021050768 A JP2021050768 A JP 2021050768A JP 2019173633 A JP2019173633 A JP 2019173633A JP 2019173633 A JP2019173633 A JP 2019173633A JP 2021050768 A JP2021050768 A JP 2021050768A
Authority
JP
Japan
Prior art keywords
sliding
dimples
dimple
adjacent
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173633A
Other languages
Japanese (ja)
Inventor
石井 聡
Satoshi Ishii
聡 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2019173633A priority Critical patent/JP2021050768A/en
Publication of JP2021050768A publication Critical patent/JP2021050768A/en
Pending legal-status Critical Current

Links

Images

Abstract

To more improve sliding characteristics than before, in a sliding structure having a plurality of dimples on a sliding surface.SOLUTION: In a sliding structure, a first sliding surface (20a) of a first member (20) and a second sliding surface (30a) of a second member (30) slide against each other in a predetermined sliding direction (SD). The first sliding surface (20a) has a plurality of dimples (21) and satisfies the following condition A. Condition A: a distance Px in an x direction between at least one dimple (21) and a first adjacent dimple (21x) closest to the x direction among the other dimples (21) adjacent to the x direction in the sliding direction (SD) is larger than a distance Py in a y direction between at least one dimple and a second adjacent dimple 21y closest to the y direction among the other dimples (21) adjacent in the y direction.SELECTED DRAWING: Figure 3

Description

本発明は、摺動構造に関する。 The present invention relates to a sliding structure.

従来、表面改質技術の1つとして、摺動面に微細加工を施すことで摩擦係数などの摺動特性を改善させる表面テクスチャリングが知られている。
例えば特許文献1には、多数の微細なディンプル状の凹部を摺動面に設けることにより、凹部に保持された潤滑油を平坦部に滲み出させ、摩擦損失や摩耗を抑制することが記載されている。
Conventionally, as one of the surface modification techniques, surface texturing that improves sliding characteristics such as friction coefficient by finely processing the sliding surface is known.
For example, Patent Document 1 describes that by providing a large number of fine dimple-shaped recesses on a sliding surface, lubricating oil held in the recesses is exuded to a flat portion to suppress friction loss and wear. ing.

特許第5636748号公報Japanese Patent No. 5636748

しかしながら、上記特許文献1では、凹部(ディンプル)の開口面積率(全体に占める開口面積の比率)や深さ、断面形状等については言及されているものの、凹部の形状や配列と摺動方向との関連については触れられていない。特にこの点において、上記特許文献1に記載の技術では十分に摺動特性を改善・向上できているとは言い難い。 However, although Patent Document 1 mentions the opening area ratio (ratio of the opening area to the whole), the depth, the cross-sectional shape, etc. of the recesses (dimples), the shape and arrangement of the recesses and the sliding direction There is no mention of the relationship between. In particular, in this respect, it cannot be said that the technique described in Patent Document 1 can sufficiently improve / improve the sliding characteristics.

本発明は、上記事情に鑑みてなされたもので、摺動面に複数のディンプルを有する摺動構造において、従来よりも摺動特性を向上させることを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve sliding characteristics in a sliding structure having a plurality of dimples on a sliding surface as compared with the conventional case.

本発明は、第1部材の第1摺動面と第2部材の第2摺動面とが所定の摺動方向に互いに摺動する摺動構造であって、
前記第1摺動面は、複数のディンプルを有し、
以下の条件Aを満足するように構成した。
条件A:前記複数のディンプルのうち少なくとも一のディンプルは、前記摺動方向に隣接する他のディンプルのうち前記摺動方向に最も近い第1隣接ディンプルとの間の前記摺動方向の距離が、前記摺動方向と直交する直交方向に隣接する他のディンプルのうち前記直交方向に最も近い第2隣接ディンプルとの間の前記直交方向の距離よりも大きい。
The present invention has a sliding structure in which the first sliding surface of the first member and the second sliding surface of the second member slide with each other in a predetermined sliding direction.
The first sliding surface has a plurality of dimples and has a plurality of dimples.
It was configured to satisfy the following condition A.
Condition A: At least one of the plurality of dimples has a distance in the sliding direction between the other dimples adjacent to the sliding direction and the first adjacent dimple closest to the sliding direction. It is larger than the distance in the orthogonal direction between the other dimples adjacent in the orthogonal direction orthogonal to the sliding direction and the second adjacent dimple closest to the orthogonal direction.

本発明によれば、摺動面に複数のディンプルを有する摺動構造において、従来よりも摺動特性を向上させることができる。 According to the present invention, in a sliding structure having a plurality of dimples on the sliding surface, the sliding characteristics can be improved as compared with the conventional case.

本発明の実施形態に係る摺動構造を有する摺動構造体を示す図であり、(a)が摺動構造体の斜視図、(b)が(a)のA−A線での断面図である。It is a figure which shows the sliding structure which has the sliding structure which concerns on embodiment of this invention, (a) is the perspective view of the sliding structure, (b) is the sectional view in line AA of (a). Is. 第1部材の第1摺動面を示す平面図である。It is a top view which shows the 1st sliding surface of 1st member. 複数のディンプルの配列を説明するための図である。It is a figure for demonstrating the arrangement of a plurality of dimples. 各ディンプルの形状を説明するための図である。It is a figure for demonstrating the shape of each dimple. 解析例の解析モデルを示す図である。It is a figure which shows the analysis model of the analysis example. 解析結果のうち、ディンプルを有する第1摺動面上の圧力分布のコンター図である。Among the analysis results, it is a contour diagram of the pressure distribution on the first sliding surface having dimples.

以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態に係る摺動構造を有する摺動構造体10を示す図であり、(a)が摺動構造体10の斜視図、(b)が(a)のA−A線での断面図である。
図1(a)、(b)に示すように、摺動構造体10は、各々平板状の第1部材20と第2部材30を備える。第1部材20と第2部材30とは、互いの摺動面(第1摺動面20a、第2摺動面30a)を対向させた状態で、所定の摺動方向SDに互いに摺動する。この摺動は、第1部材20と第2部材30の双方が動くものでもよいし、いずれか一方のみが動くものでもよい。第1摺動面20aと第2摺動面30aとの間は、潤滑油(潤滑剤)L雰囲気となっている。
1A and 1B are views showing a sliding structure 10 having a sliding structure according to the present embodiment, in which FIG. 1A is a perspective view of the sliding structure 10 and FIG. 1B is a line AA of FIG. It is a cross-sectional view in.
As shown in FIGS. 1A and 1B, the sliding structure 10 includes a flat plate-shaped first member 20 and a second member 30, respectively. The first member 20 and the second member 30 slide against each other in a predetermined sliding direction SD with their sliding surfaces (first sliding surface 20a, second sliding surface 30a) facing each other. .. In this sliding, both the first member 20 and the second member 30 may move, or only one of them may move. A lubricating oil (lubricant) L atmosphere is formed between the first sliding surface 20a and the second sliding surface 30a.

第2部材30の第2摺動面30aは、平坦面状に形成されている。
一方、第1部材20の第1摺動面20aは、第2摺動面30aに平行な平坦面を基調とし、当該平坦面上に複数のディンプル(凹部)21を有している。
The second sliding surface 30a of the second member 30 is formed in a flat surface shape.
On the other hand, the first sliding surface 20a of the first member 20 is based on a flat surface parallel to the second sliding surface 30a, and has a plurality of dimples (recesses) 21 on the flat surface.

図2は、第1部材20の第1摺動面20aを示す平面図であり、図3は、複数のディンプル21の配列を説明するための図であり、図4は、各ディンプル21の形状を説明するための図である。なお、以下の説明では、第1摺動面20aの面内方向のうち、摺動方向SDに沿った方向をx方向、摺動方向SDと直交する方向をy方向という。
図2に示すように、本実施形態における複数のディンプル21は、x方向及びy方向に沿って、各方向とも均一のピッチでマトリクス状に配列されている。また、x方向(摺動方向SD)に隣接する2つのディンプル21間のピッチ(xピッチ)が、y方向に隣接する2つのディンプル21間のピッチ(yピッチ)よりも大きくなっている。
FIG. 2 is a plan view showing a first sliding surface 20a of the first member 20, FIG. 3 is a view for explaining an arrangement of a plurality of dimples 21, and FIG. 4 is a view showing the shape of each dimple 21. It is a figure for demonstrating. In the following description, among the in-plane directions of the first sliding surface 20a, the direction along the sliding direction SD is referred to as the x direction, and the direction orthogonal to the sliding direction SD is referred to as the y direction.
As shown in FIG. 2, the plurality of dimples 21 in the present embodiment are arranged in a matrix along the x-direction and the y-direction at a uniform pitch in each direction. Further, the pitch (x pitch) between the two dimples 21 adjacent to each other in the x direction (sliding direction SD) is larger than the pitch (y pitch) between the two dimples 21 adjacent to each other in the y direction.

なお、複数のディンプル21の配列は、図2に示すようなマトリクス状の配列に限定されない。ディンプル21は、図3(a)に示すように、x方向に隣接する他のディンプル21のうちx方向に最も近い第1隣接ディンプル21xとの間のx方向の距離Pxが、y方向に隣接する他のディンプル21のうちy方向に最も近い第2隣接ディンプルとの間のy方向の距離Pyよりも大きくなるように形成されていればよい(条件A)。ここで、或る方向に「隣接する」他のディンプル21とは、基準とするディンプル21から当該方向を中心とする所定の角度範囲(例えば±45°、或いはx方向では±30°、y方向では±60°など)にある直近の他のディンプル21をいう。この場合、Px/Py>2となるのが好ましい。
さらに言えば、第1摺動面20aの全てのディンプル21が上記条件Aを満足する必要はない。少なくとも1つのディンプル21が上記条件Aを満足していればよく、全てのディンプル21のうちの半数以上が上記条件Aを満足しているのがより好ましい。したがって、各ディンプル21は、隣接する他のディンプル21とx方向又はy方向の位置がずれていてもよい。
The arrangement of the plurality of dimples 21 is not limited to the matrix-like arrangement as shown in FIG. As shown in FIG. 3A, the dimple 21 has a distance Px in the x direction between the other dimples 21 adjacent in the x direction and the first adjacent dimple 21x closest to the x direction, which is adjacent in the y direction. It suffices that the dimples 21 are formed so as to be larger than the distance Py in the y direction between the other dimples 21 and the second adjacent dimple closest to the y direction (condition A). Here, the other dimples 21 "adjacent" in a certain direction are a predetermined angular range (for example, ± 45 °, or ± 30 ° in the x direction, y direction) centered on the reference dimple 21. Then, it means the other most recent dimple 21 at ± 60 °, etc.). In this case, it is preferable that Px / Py> 2.
Furthermore, it is not necessary for all the dimples 21 of the first sliding surface 20a to satisfy the above condition A. It is sufficient that at least one dimple 21 satisfies the above condition A, and it is more preferable that more than half of all the dimples 21 satisfy the above condition A. Therefore, each dimple 21 may be displaced in the x-direction or the y-direction from other adjacent dimples 21.

ただし、図3(b)に示すように、ディンプル21は、x方向から見て第1隣接ディンプル21xと少なくとも一部が重なり、y方向から見て第2隣接ディンプル21yと少なくとも一部が重なっていることが好ましい(条件B)。しかし、ディンプル21は、本実施形態のようにx方向及びy方向に沿ったマトリクス状の配列であること、すなわち、x方向から見て第1隣接ディンプル21xと全体が重なり、y方向から見て第2隣接ディンプル21yと全体が重なることがより好ましい。
さらに言えば、第1摺動面20aの全てのディンプル21が上記条件Bを満足する必要はない。上記条件Aを満足する少なくとも1つのディンプル21が上記条件Bを満足していればよく、当該ディンプル21を含む全てのディンプル21のうちの半数以上が上記条件Bを満足しているのがより好ましい。
However, as shown in FIG. 3B, the dimple 21 overlaps at least a part with the first adjacent dimple 21x when viewed from the x direction, and at least a part overlaps with the second adjacent dimple 21y when viewed from the y direction. (Condition B). However, the dimples 21 are arranged in a matrix along the x-direction and the y-direction as in the present embodiment, that is, they overlap with the first adjacent dimples 21x when viewed from the x-direction, and are viewed from the y-direction. It is more preferable that the whole overlaps with the second adjacent dimple 21y.
Furthermore, it is not necessary for all the dimples 21 of the first sliding surface 20a to satisfy the above condition B. It is sufficient that at least one dimple 21 satisfying the above condition A satisfies the above condition B, and it is more preferable that more than half of all the dimples 21 including the dimple 21 satisfy the above condition B. ..

各ディンプル21の平面視形状は、x方向に長軸を有する楕円形状に形成されている。
ただし、各ディンプル21は、x方向に長尺に、すなわち、x方向の最大幅aがy方向の最大幅bよりも大きく形成されていればよい(条件C)。したがって、各ディンプル21は、例えば図4(a)に示すように、長円形(角丸長方形)でもよいし、x方向(及び/又はy方向)に幅が変化する平面視形状などでもよい。
さらに言えば、第1摺動面20aの全てのディンプル21が上記条件Cを満足する必要はない。上記条件Aを満足する少なくとも1つのディンプル21が上記条件Cを満足していればよく、当該ディンプル21を含む全てのディンプル21のうちの半数以上が上記条件Cを満足しているのがより好ましい。
また、各ディンプル21の幅(x方向の最大幅a及びy方向の最大幅b)は、5〜500μmの範囲内が好ましい。
The plan view shape of each dimple 21 is formed into an elliptical shape having a long axis in the x direction.
However, each dimple 21 may be formed to be elongated in the x direction, that is, the maximum width a in the x direction is larger than the maximum width b in the y direction (condition C). Therefore, each dimple 21 may be an oval shape (rounded rectangle) or a plan view shape whose width changes in the x direction (and / or the y direction), as shown in FIG. 4A, for example.
Furthermore, it is not necessary for all the dimples 21 of the first sliding surface 20a to satisfy the above condition C. It is sufficient that at least one dimple 21 satisfying the above condition A satisfies the above condition C, and it is more preferable that more than half of all the dimples 21 including the dimple 21 satisfy the above condition C. ..
The width of each dimple 21 (maximum width a in the x direction and maximum width b in the y direction) is preferably in the range of 5 to 500 μm.

各ディンプル21の深さ方向の断面形状は特に限定されない。したがって、この断面形状は、例えば図4(b)に示すように、部分球状又は円弧状でもよいし、矩形状などでもよい。
また、各ディンプル21の深さdは、0.5〜20μmの範囲内が好ましい。
The cross-sectional shape of each dimple 21 in the depth direction is not particularly limited. Therefore, as shown in FIG. 4B, for example, the cross-sectional shape may be a partial spherical shape, an arc shape, a rectangular shape, or the like.
The depth d of each dimple 21 is preferably in the range of 0.5 to 20 μm.

以上のように、本実施形態によれば、ディンプル21は、x方向(摺動方向SD)に隣接する他のディンプル21のうちx方向に最も近い第1隣接ディンプル21xとの間のx方向の距離Pxが、y方向に隣接する他のディンプル21のうちy方向に最も近い第2隣接ディンプル21yとの間のy方向の距離Pyよりも大きく形成されている。
これにより、負荷能力を向上させることができる。すなわち、摺動時において、ディンプル21の周辺では、摺動方向SDの一方側に正の動圧、他方側に負の動圧が生じるところ、x方向に隣接する2つのディンプル21間の距離が近いと、これらの間で正の動圧が負の動圧に相殺されてしまう。一方、摺動方向SDと直交するy方向では、隣接する2つのディンプル21で同様に動圧が生じるため、この現象は生じない。したがって、x方向に隣接する第1隣接ディンプル21xとの間の距離Pxを、y方向に隣接する第2隣接ディンプル21yとの間の距離Pyよりも大きくすることで、摺動方向SDのディンプル21間での動圧の相殺を抑制し、負荷能力を向上させることができる。ひいては摩擦係数を低減させることができる。
よって、第1摺動面20aに複数のディンプル21を有する摺動構造において、ディンプルの構成に及ぼす摺動方向の影響が考慮されていなかった従来に比べ、負荷能力や摩擦係数などの摺動特性を向上させることができる。ひいては、摺動面の直接接触や油膜破断を防ぎ、凝着やアブレッシブ摩耗を抑制することができる。
As described above, according to the present embodiment, the dimple 21 is located in the x direction between the first adjacent dimple 21x closest to the x direction among the other dimples 21 adjacent in the x direction (sliding direction SD). The distance Px is formed to be larger than the distance Py in the y direction between the other dimples 21 adjacent in the y direction and the second adjacent dimple 21y closest to the y direction.
Thereby, the load capacity can be improved. That is, when sliding, a positive dynamic pressure is generated on one side of the sliding direction SD and a negative dynamic pressure is generated on the other side around the dimples 21, and the distance between two dimples 21 adjacent to each other in the x direction is If they are close to each other, the positive dynamic pressure will be offset by the negative dynamic pressure. On the other hand, in the y direction orthogonal to the sliding direction SD, dynamic pressure is similarly generated in the two adjacent dimples 21, so that this phenomenon does not occur. Therefore, by making the distance Px between the first adjacent dimples 21x adjacent in the x direction larger than the distance Py between the second adjacent dimples 21y adjacent in the y direction, the dimples 21 in the sliding direction SD It is possible to suppress the cancellation of dynamic pressure between them and improve the load capacity. As a result, the coefficient of friction can be reduced.
Therefore, in the sliding structure having a plurality of dimples 21 on the first sliding surface 20a, the sliding characteristics such as the load capacity and the friction coefficient are compared with the conventional case in which the influence of the sliding direction on the dimple configuration is not considered. Can be improved. As a result, direct contact with the sliding surface and breakage of the oil film can be prevented, and adhesion and absorptive wear can be suppressed.

また、本実施形態によれば、ディンプル21はx方向の最大幅aがy方向の最大幅bよりも大きい、つまり摺動方向SDに長尺に形成されている。
これにより、ディンプル21と潤滑油による微小くさび効果を効果的に生じさせ、流体圧力を向上させて、さらに負荷能力を向上させることができる。
Further, according to the present embodiment, the dimple 21 is formed so that the maximum width a in the x direction is larger than the maximum width b in the y direction, that is, the dimple 21 is elongated in the sliding direction SD.
As a result, the fine wedge effect of the dimples 21 and the lubricating oil can be effectively generated, the fluid pressure can be improved, and the load capacity can be further improved.

[解析例]
続いて、本実施形態に係る摺動構造の効果を確認した解析例について説明する。
本解析では、ディンプルの配列や形状を変えた複数の解析モデルについて、以下の論文を参照し、潤滑油の運動を記述するレイノルズ方程式及びキャビテーションモデルを用いて、各々の負荷能力を計算した。
・Elrod, H, G., "A Cavitation Algorithm," Trans. ASME, J.Lub. Tech., 103, 1981, 350-354.
・Vijayaraghavan, D. and Keith Jr, T. G., "Development and Evaluation of a Cavita-tion Algorithm," Tribol. Trans., 32, 1989, 225-233.
[Analysis example]
Next, an analysis example in which the effect of the sliding structure according to the present embodiment has been confirmed will be described.
In this analysis, for multiple analytical models with different dimple arrangements and shapes, the load capacity of each was calculated using the Reynolds equation and cavitation model that describe the motion of the lubricating oil with reference to the following papers.
・ Elrod, H, G., "A Cavitation Algorithm," Trans. ASME, J.Lub. Tech., 103, 1981, 350-354.
・ Vijayaraghavan, D. and Keith Jr., TG, "Development and Evaluation of a Cavita-tion Algorithm," Tribol. Trans., 32, 1989, 225-233.

<解析モデル>
解析モデルを図5に示す。また、各解析モデルにおけるディンプルのx方向のピッチ(xピッチ)、y方向のピッチ(yピッチ)、面積率を以下の表1に示す。ディンプルの「面積率」(以下、単に「面積率」という。)とは、第1摺動面の全領域面積(5mm角)に占めるディンプルの開口面積の総和の割合をいう。

Figure 2021050768
<Analysis model>
The analysis model is shown in FIG. Table 1 below shows the x-direction pitch (x-pitch), y-direction pitch (y-pitch), and area ratio of the dimples in each analysis model. The "area ratio" of the dimples (hereinafter, simply referred to as "area ratio") refers to the ratio of the total opening area of the dimples to the total area area (5 mm square) of the first sliding surface.
Figure 2021050768

図5及び表1に示すように、本解析では、上記実施形態の摺動構造に相当する実施例と、実施例と同じ面積率を有し、円形ディンプルを等ピッチ配列とした比較例1と、比較例1のxピッチを1.26倍した比較例2と、比較例1のxピッチを2倍した比較例3との4つの解析モデルについて解析を行った。円形のディンプルは全て直径200μmとした。楕円形のディンプルは長軸400μm、短軸200μmとした。また、ディンプルの深さ方向の断面形状は矩形断面(図4(b)の右側図参照)とした。 As shown in FIGS. 5 and 1, in this analysis, there is an example corresponding to the sliding structure of the above embodiment, and a comparative example 1 having the same area ratio as that of the embodiment and having circular dimples arranged at an equal pitch. , Four analysis models of Comparative Example 2 in which the x-pitch of Comparative Example 1 was multiplied by 1.26 and Comparative Example 3 in which the x-pitch of Comparative Example 1 was doubled were analyzed. All circular dimples had a diameter of 200 μm. The elliptical dimples had a major axis of 400 μm and a minor axis of 200 μm. The cross-sectional shape of the dimples in the depth direction was a rectangular cross section (see the right side view of FIG. 4B).

<解析条件>
ディンプルを設けた第1部材を固定し、他方の第2部材を摺動方向に移動させた。両部材の摺動方向(図5の左右方向)の両側は周期境界条件(無限遠境界)とし、摺動方向と直交する方向(図5の上下方向)の両側は大気圧条件とした。
その他の解析条件を以下の表1に示す。表中の「クリアランス」は摺動面間の隙間を、「深さ」はディンプルの深さを示す。なお、表1では、10のべき乗数を「E」を用いて表している。

Figure 2021050768
<Analysis conditions>
The first member provided with dimples was fixed, and the other second member was moved in the sliding direction. Both sides of the sliding direction (horizontal direction in FIG. 5) of both members were set to periodic boundary conditions (infinity boundary), and both sides in the direction orthogonal to the sliding direction (vertical direction in FIG. 5) were set to atmospheric pressure conditions.
Other analysis conditions are shown in Table 1 below. In the table, "clearance" indicates the gap between the sliding surfaces, and "depth" indicates the depth of the dimples. In Table 1, the power of 10 is represented by using "E".
Figure 2021050768

<解析結果>
ディンプルを有する第1摺動面の圧力分布のコンター図を図6に示す。また、解析結果をまとめたものを以下の表3に示す。表3中の「平均圧力」は圧力分布から算出し、「負荷能力」は平均圧力から基準圧力として大気圧(1atm)を減じて算出した。なお、本解析では、負荷能力に影響する面積率を解析モデル間で合わせ込めていないため、負荷能力を面積率で除したパラメータにより簡易的に面積率の影響を排除して各解析モデルの負荷能力を評価した。

Figure 2021050768
<Analysis result>
FIG. 6 shows a contour diagram of the pressure distribution of the first sliding surface having dimples. Table 3 below summarizes the analysis results. The "average pressure" in Table 3 was calculated from the pressure distribution, and the "load capacity" was calculated by subtracting the atmospheric pressure (1 atm) as the reference pressure from the average pressure. In this analysis, the area ratio that affects the load capacity is not matched between the analysis models, so the load capacity of each analysis model is simply eliminated by the parameter obtained by dividing the load capacity by the area ratio. Evaluated ability.
Figure 2021050768

表3から、比較例1よりも摺動方向のxピッチが長い比較例2、3の方が、負荷能力を面積率で除した値が大きいことが分かる。したがって、摺動方向のxピッチをyピッチよりも大きくすることにより、負荷能力が向上し、ひいては摩擦係数が低減すると考えられる。この効果は、図6の圧力分布図より、xピッチを広げることで、各ディンプルによる正の動圧が、そのx方向に隣接する他のディンプルによる負圧で相殺されにくくなるためと考えられる。
また、表3から、負荷能力を面積率で除した値は、いずれの比較例よりも実施例の方が大きいことが分かる。したがって、円形のディンプルを摺動方向に長尺な楕円形のディンプルとすることにより、さらに負荷能力が向上し、ひいては摩擦係数が低減すると考えられる。
From Table 3, it can be seen that the values obtained by dividing the load capacity by the area ratio are larger in Comparative Examples 2 and 3 in which the x-pitch in the sliding direction is longer than in Comparative Example 1. Therefore, it is considered that the load capacity is improved and the friction coefficient is reduced by making the x-pitch in the sliding direction larger than the y-pitch. From the pressure distribution diagram of FIG. 6, it is considered that this effect is due to the fact that by widening the x-pitch, the positive dynamic pressure of each dimple is less likely to be offset by the negative pressure of other dimples adjacent in the x-direction.
Further, from Table 3, it can be seen that the value obtained by dividing the load capacity by the area ratio is larger in the examples than in any of the comparative examples. Therefore, it is considered that the load capacity is further improved and the friction coefficient is reduced by making the circular dimples into elliptical dimples that are long in the sliding direction.

[その他]
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限られない。
例えば、上記実施形態では、摺動面(第1摺動面20a及び第2摺動面30a)が平面同士である場合について説明したが、摺動面は曲面同士であってもよい。したがって、本発明に係る摺動構造は、摺動面が平面同士であるリニアガイドなどは勿論のこと、摺動面が曲面同士であるピン−ブッシュやピン−ピン溝などにも広く適用することができる。
[Other]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
For example, in the above embodiment, the case where the sliding surfaces (first sliding surface 20a and second sliding surface 30a) are flat surfaces has been described, but the sliding surfaces may be curved surfaces. Therefore, the sliding structure according to the present invention is widely applied not only to linear guides in which sliding surfaces are flat surfaces, but also to pin-bush and pin-pin grooves in which sliding surfaces are curved surfaces. Can be done.

また、複数のディンプル21は、2つの摺動面(第1摺動面20a及び第2摺動面30a)のうちの少なくとも一方に形成されていればよく、2つの摺動面の双方に形成されていてもよい。
また、複数のディンプルの形成方法は特に限定されず、レーザー加工、ショットピーニング、切削加工その他の加工方法を用いることができる。
その他、上記実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
Further, the plurality of dimples 21 need only be formed on at least one of the two sliding surfaces (first sliding surface 20a and second sliding surface 30a), and are formed on both of the two sliding surfaces. It may have been.
Further, the method for forming the plurality of dimples is not particularly limited, and laser processing, shot peening, cutting processing and other processing methods can be used.
In addition, the details shown in the above-described embodiment can be appropriately changed without departing from the spirit of the invention.

10 摺動構造体
20 第1部材
20a 第1摺動面
21 複数のディンプル
21x 第1隣接ディンプル
21y 第2隣接ディンプル
30 第2部材
30a 第2摺動面
a x方向の最大幅
b y方向の最大幅
L 潤滑油
Px 第1隣接ディンプルとのx方向の距離
Py 第2隣接ディンプルとのy方向の距離
SD 摺動方向
10 Sliding structure 20 1st member 20a 1st sliding surface 21 Multiple dimples 21 x 1st adjacent dimple 21y 2nd adjacent dimple 30 2nd member 30a 2nd sliding surface ax direction maximum width by direction maximum Significantly L Lubricating oil Px Distance in x direction from the first adjacent dimple Py Distance in the y direction from the second adjacent dimple SD Sliding direction

Claims (7)

第1部材の第1摺動面と第2部材の第2摺動面とが所定の摺動方向に互いに摺動する摺動構造であって、
前記第1摺動面は、複数のディンプルを有し、
以下の条件Aを満足する摺動構造。
条件A:前記複数のディンプルのうち少なくとも一のディンプルは、前記摺動方向に隣接する他のディンプルのうち前記摺動方向に最も近い第1隣接ディンプルとの間の前記摺動方向の距離が、前記摺動方向と直交する直交方向に隣接する他のディンプルのうち前記直交方向に最も近い第2隣接ディンプルとの間の前記直交方向の距離よりも大きい。
A sliding structure in which the first sliding surface of the first member and the second sliding surface of the second member slide with each other in a predetermined sliding direction.
The first sliding surface has a plurality of dimples and has a plurality of dimples.
A sliding structure that satisfies the following condition A.
Condition A: At least one of the plurality of dimples has a distance in the sliding direction between the other dimples adjacent to the sliding direction and the first adjacent dimple closest to the sliding direction. It is larger than the distance in the orthogonal direction between the other dimples adjacent in the orthogonal direction orthogonal to the sliding direction and the second adjacent dimple closest to the orthogonal direction.
前記複数のディンプルのうちの半数以上が前記条件Aを満足する、
請求項1に記載の摺動構造。
More than half of the plurality of dimples satisfy the condition A.
The sliding structure according to claim 1.
以下の条件Bを満足する、
請求項1又は請求項2に記載の摺動構造。
条件B:前記少なくとも一のディンプルは、前記摺動方向から見て前記第1隣接ディンプルと少なくとも一部が重なり、前記直交方向から見て前記第2隣接ディンプルと少なくとも一部が重なる。
Satisfy the following condition B,
The sliding structure according to claim 1 or 2.
Condition B: The at least one dimple overlaps at least a part with the first adjacent dimple when viewed from the sliding direction, and at least a part overlaps with the second adjacent dimple when viewed from the orthogonal direction.
前記少なくとも一のディンプルは、前記摺動方向から見て前記第1隣接ディンプルと全体が重なり、前記直交方向から見て前記第2隣接ディンプルと全体が重なる、
請求項3に記載の摺動構造。
The at least one dimple overlaps the first adjacent dimple when viewed from the sliding direction, and overlaps the entire second adjacent dimple when viewed from the orthogonal direction.
The sliding structure according to claim 3.
前記複数のディンプルのうちの半数以上が前記条件Bを満足する、
請求項3又は請求項4に記載の摺動構造。
More than half of the plurality of dimples satisfy the condition B.
The sliding structure according to claim 3 or 4.
以下の条件Cを満足する、
請求項1から請求項5のいずれか一項に記載の摺動構造。
条件C:前記少なくとも一のディンプルは、前記摺動方向の最大幅が、前記直交方向の最大幅よりも大きい。
Satisfy the following condition C,
The sliding structure according to any one of claims 1 to 5.
Condition C: The maximum width of the at least one dimple in the sliding direction is larger than the maximum width in the orthogonal direction.
前記複数のディンプルのうちの半数以上が前記条件Cを満足する、
請求項6に記載の摺動構造。
More than half of the plurality of dimples satisfy the condition C.
The sliding structure according to claim 6.
JP2019173633A 2019-09-25 2019-09-25 Sliding structure Pending JP2021050768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173633A JP2021050768A (en) 2019-09-25 2019-09-25 Sliding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173633A JP2021050768A (en) 2019-09-25 2019-09-25 Sliding structure

Publications (1)

Publication Number Publication Date
JP2021050768A true JP2021050768A (en) 2021-04-01

Family

ID=75157425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173633A Pending JP2021050768A (en) 2019-09-25 2019-09-25 Sliding structure

Country Status (1)

Country Link
JP (1) JP2021050768A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159420A (en) * 2017-03-22 2018-10-11 大豊工業株式会社 bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159420A (en) * 2017-03-22 2018-10-11 大豊工業株式会社 bearing

Similar Documents

Publication Publication Date Title
JP6626006B2 (en) Disc brake pads for vehicles
US9321090B2 (en) Forming tools having textured surfaces
Ren et al. Micro textures in concentrated-conformal-contact lubrication: effect of distribution patterns
JP6169801B2 (en) Heat transfer plate and plate heat exchanger
JP2011027248A (en) Plate material having irregular part and method for designing irregular shape thereof
JP6365026B2 (en) Linear motion guide device
JP2021050768A (en) Sliding structure
JP2003247606A (en) Element of belt for continuously variable transmission and manufacturing method therefor
JP5429329B2 (en) Low friction sliding member
JP2007321860A (en) Low-friction sliding member
CN109070178A (en) Restrain material and the processing unit (plant) using it, conveying device
TWI526632B (en) A track member and a motion guiding device using the rail member
KR101867261B1 (en) A compressor swash plate and a compressor equipped with the swash plate
CN114742851A (en) Multi-laser powder bed fusion load balancing method and device based on contour features
JP2009052665A (en) Belt for continuously variable transmission
WO2009084459A1 (en) Motion guide device
Hashim et al. Effect of textured curved surface on hydrodynamic pressure
KR20150090007A (en) Sliding motion assembly
JP5918841B1 (en) Crossed roller bearing with spacer
JP6314055B2 (en) Silent chain
US11852192B2 (en) Motion guide apparatus
CN209743373U (en) Crankshaft
JP2014169735A (en) Slide bearing
JP2007247725A (en) Cross roller guide
JP2022174624A (en) Half-split bearing, internal combustion engine, and vehicle

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711