JP2021050605A - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP2021050605A
JP2021050605A JP2019171918A JP2019171918A JP2021050605A JP 2021050605 A JP2021050605 A JP 2021050605A JP 2019171918 A JP2019171918 A JP 2019171918A JP 2019171918 A JP2019171918 A JP 2019171918A JP 2021050605 A JP2021050605 A JP 2021050605A
Authority
JP
Japan
Prior art keywords
amount
temperature
nox
exhaust gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019171918A
Other languages
Japanese (ja)
Inventor
宗近 堤
Munechika Tsutsumi
宗近 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2019171918A priority Critical patent/JP2021050605A/en
Publication of JP2021050605A publication Critical patent/JP2021050605A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an exhaust purification device which enables an NH3 absorption amount to be accurately estimated while preventing a model calculation from getting complicated.SOLUTION: An exhaust purification device 100 comprises: an SCR 9c which reduces NOx included in exhaust gas of an engine 1; an addition valve 9e which adds urea water to the SCR 9c; an upstream NOx sensor 23 which acquires an upstream NOx amount; a downstream NOx sensor 25 which acquires a downstream NOx amount; an exhaust temperature sensor 24 which acquires a temperature of the SCR 9c; and a reducing agent control section 12 which estimates an NH3 absorption amount using a predetermined model of the SCR 9c on the basis of the upstream NOx amount, the downstream NOx amount and the temperature of the SCR 9c. The reducing agent control section 12 estimates the NH3 absorption amount using the model including a reaction speed equation representing a reaction speed when NH3 undergoes absorption or desorption with respect to an absorption site of NH3 on the SCR 9c. The reaction speed equation includes a proportionality coefficient to be set in accordance with the temperature of the SCR 9c.SELECTED DRAWING: Figure 1

Description

本発明は、排気浄化装置に関する。 The present invention relates to an exhaust gas purification device.

従来、排気ガスに尿素水を添加する添加弁と、添加弁の下流に位置する選択還元触媒とを備え、排気ガスに含まれる窒素酸化物(NOx)を浄化する排気浄化装置として、例えば特許文献1に記載された装置が知られている。特許文献1に記載された装置では、モデルを用いて、選択還元触媒を通過した排気ガスのアンモニアの濃度が推定される。 Conventionally, as an exhaust purification device that is provided with an addition valve that adds urea water to the exhaust gas and a selective reduction catalyst located downstream of the addition valve to purify nitrogen oxides (NOx) contained in the exhaust gas, for example, Patent Documents. The device described in 1 is known. In the apparatus described in Patent Document 1, the concentration of ammonia in the exhaust gas that has passed through the selective reduction catalyst is estimated using a model.

特開2018−100615号公報Japanese Unexamined Patent Publication No. 2018-100615

上述したような排気浄化装置にあっては、還元触媒へのNH吸着量の推定値をモデルを用いて算出することがある。NH吸着量の推定値の算出精度を高めるために、一般的な手法として、現状のモデルに対して、例えば反応式の細分化又は追加あるいは反応速度式の補正項追加をしたモデルを用いることが考えられる。しかしながら、この手法では、モデルの計算の複雑化により、計算量が増大してしまう。 In the exhaust gas purifying apparatus as described above, may be calculated using the model estimates the adsorbed NH 3 amount to the reducing catalyst. In order to improve the calculation accuracy of the estimated value of NH 3 adsorption amount, as a general method, a model in which the reaction formula is subdivided or added or a correction term of the reaction rate formula is added is used as a general method. Can be considered. However, in this method, the amount of calculation increases due to the complexity of model calculation.

本発明は、モデルの計算の複雑化を抑制しつつ、NH吸着量の推定値を精度良く算出することが可能となる排気浄化装置を提供することを目的とする。 An object of the present invention is to provide an exhaust gas purification device capable of accurately calculating an estimated value of NH 3 adsorption amount while suppressing the complexity of model calculation.

本発明の一態様に係る排気浄化装置は、内燃機関の排気通路に設けられ、内燃機関の排気ガスに含まれるNOxを還元する還元触媒と、還元触媒の上流側に設けられ、還元触媒に尿素水を添加する添加弁と、還元触媒の上流側の排気ガスに含まれるNOx量である上流NOx量を取得する上流NOx量取得部と、還元触媒の下流側の排気ガスに含まれるNOx量である下流NOx量を取得する下流NOx量取得部と、還元触媒の触媒温度を取得する触媒温度取得部と、上流NOx量と下流NOx量と触媒温度とに基づいて、予め設定された還元触媒のモデルを用いてNH吸着量を推定する吸着量推定部と、を備え、吸着量推定部は、還元触媒上におけるNHの吸着サイトに対してNHが吸着又は脱離する反応速度を表す反応速度式を含むモデルを用いてNH吸着量を推定し、反応速度式は、触媒温度に応じて設定される比例係数を含む。 The exhaust purification device according to one aspect of the present invention is provided in the exhaust passage of the internal combustion engine, has a reduction catalyst for reducing NOx contained in the exhaust gas of the internal combustion engine, and is provided on the upstream side of the reduction catalyst. An addition valve for adding water, an upstream NOx amount acquisition unit for acquiring the amount of NOx contained in the exhaust gas on the upstream side of the reduction catalyst, and an amount of NOx contained in the exhaust gas on the downstream side of the reduction catalyst. A downstream NOx amount acquisition unit that acquires a certain downstream NOx amount, a catalyst temperature acquisition unit that acquires the catalyst temperature of the reduction catalyst, and a preset reduction catalyst based on the upstream NOx amount, the downstream NOx amount, and the catalyst temperature. The adsorption amount estimation unit includes an adsorption amount estimation unit that estimates the NH 3 adsorption amount using a model, and the adsorption amount estimation unit represents the reaction rate at which NH 3 is adsorbed or desorbed from the adsorption site of NH 3 on the reduction catalyst. The NH 3 adsorption amount is estimated using a model including a reaction rate formula, and the reaction rate formula includes a proportional coefficient set according to the catalyst temperature.

本発明の一態様に係る排気浄化装置では、触媒温度に応じて設定される比例係数を含む反応速度式を含むモデルを用いて、NH吸着量が推定される。よって、比例係数を触媒温度に応じて調整することで、還元触媒上におけるNHの吸着サイトに対してNHが吸着又は脱離する反応速度を触媒温度に応じて適切に設定することが可能となる。その結果、比例係数が触媒温度によらずに設定される場合と比べて、モデルの計算の複雑化を抑制しつつ、NH吸着量の推定値を精度良く算出することが可能となる。 In the exhaust gas purification device according to one embodiment of the present invention, by using a model including a rate equation that contains a proportionality coefficient set according to the catalyst temperature, NH 3 adsorption amount is estimated. Therefore, by adjusting the proportionality coefficient according to the catalyst temperature, it is possible to appropriately set the reaction rate at which NH 3 is adsorbed or desorbed from the adsorption site of NH 3 on the reduction catalyst according to the catalyst temperature. It becomes. As a result, it is possible to accurately calculate the estimated value of the NH 3 adsorption amount while suppressing the complexity of the model calculation as compared with the case where the proportionality coefficient is set regardless of the catalyst temperature.

一実施形態において、反応速度式は、触媒温度に応じて設定される指数パラメータを含んでもよい。この場合、指数パラメータを触媒温度に応じて調整することで、触媒温度に応じてより適切に反応速度を算出することが可能となる。 In one embodiment, the rate equation may include exponential parameters set according to the catalyst temperature. In this case, by adjusting the exponential parameter according to the catalyst temperature, the reaction rate can be calculated more appropriately according to the catalyst temperature.

一実施形態において、反応速度式は、還元触媒上においてNHが単一の吸着サイトに吸着又は脱離する反応速度を表してもよい。この場合、反応速度式における反応速度がNHの複数の吸着サイトへの吸着又は脱離を表す場合と比べて、モデルの計算の複雑化を抑制することができる。 In one embodiment, the rate equation may represent the rate at which NH 3 adsorbs or desorbs to a single adsorption site on a reduction catalyst. In this case, the complexity of the model calculation can be suppressed as compared with the case where the reaction rate in the reaction rate equation represents the adsorption or desorption of NH 3 to a plurality of adsorption sites.

本発明によれば、モデルの計算の複雑化を抑制しつつ、NH吸着量の推定値を精度良く算出することが可能となる。 According to the present invention, while suppressing the complexity of the model calculation, it becomes possible to accurately calculate the estimated value of the adsorbed NH 3 amount.

実施形態の排気浄化装置を備えたエンジンシステムの概略構成図である。It is a schematic block diagram of the engine system provided with the exhaust gas purification device of embodiment. 図1の触媒コンバータの内部構成を例示する図である。It is a figure which illustrates the internal structure of the catalytic converter of FIG. モデルにおける吸着サイトへの吸着又は脱離を表す概念図である。It is a conceptual diagram which shows the adsorption or desorption to the adsorption site in a model. (a)は、図3の吸着サイトへの吸着又は脱離の反応を表す反応式及び反応速度式の比較例である。(b)は、実施形態の排気浄化装置における反応速度式の一例である。(A) is a comparative example of a reaction equation and a reaction rate equation representing the reaction of adsorption or desorption to the adsorption site of FIG. (B) is an example of a reaction rate equation in the exhaust gas purification device of the embodiment. 図4(a)の反応速度式の場合のNH吸着量を表す図である。Is a diagram representing the adsorbed NH 3 amount when the rate equations of FIG. 4 (a). 図4(b)の反応速度式の場合のNH吸着量を表す図である。It is a diagram representing the adsorbed NH 3 amount when the reaction rate equation in Figure 4 (b).

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are designated by the same reference numerals, and duplicate description will be omitted.

[エンジンシステムの構成]
図1は、実施形態の排気浄化装置を備えたエンジンシステムの概略構成図である。図1に示されるように、排気浄化装置100は、例えばトラック等の車両に搭載されており、内燃機関であるディーゼルエンジン(以下、単にエンジンという)1から排出される排気ガスを浄化する。エンジン1は、複数の気筒にそれぞれ燃料を噴射する複数のインジェクタ2を有している。なお、排気浄化装置100が搭載される車両としては、トラックの他、トラクター又はバス等の大型の車両であってもよいし、中型自動車、小型自動車、及び軽自動車であってもよい。
[Engine system configuration]
FIG. 1 is a schematic configuration diagram of an engine system including the exhaust gas purification device of the embodiment. As shown in FIG. 1, the exhaust gas purification device 100 is mounted on a vehicle such as a truck and purifies the exhaust gas discharged from a diesel engine (hereinafter, simply referred to as an engine) 1 which is an internal combustion engine. The engine 1 has a plurality of injectors 2 that inject fuel into a plurality of cylinders. The vehicle on which the exhaust gas purification device 100 is mounted may be a large vehicle such as a tractor or a bus, a medium-sized vehicle, a small vehicle, and a light vehicle, in addition to a truck.

エンジン1の吸気通路3には、吸入空気の流れ方向上流側から順にエアクリーナ4、ターボチャージャのコンプレッサ5、及びインタークーラ6が設けられている。エンジン1は、排気ガスの一部をEGR(排気再循環)ガスとして還流させるEGRユニット7を備えている。エンジン1には、排気ガスを排出するための排気通路8が接続されている。排気通路8には、触媒コンバータ9が設けられている。 The intake passage 3 of the engine 1 is provided with an air cleaner 4, a turbocharger compressor 5, and an intercooler 6 in this order from the upstream side in the flow direction of the intake air. The engine 1 includes an EGR unit 7 that recirculates a part of the exhaust gas as EGR (exhaust gas recirculation) gas. An exhaust passage 8 for exhausting exhaust gas is connected to the engine 1. A catalytic converter 9 is provided in the exhaust passage 8.

図2は、図1の触媒コンバータ9の内部構成を例示する図である。図1及び図2に示されるように、触媒コンバータ9では、排気ガスの流れ方向の上流側から下流側に向かって順に、酸化触媒[DOC:Diesel Oxidation Catalyst]9a、ディーゼル排気微粒子除去フィルタ[DPF:Diesel Particulate Filter]9b、選択還元触媒[SCR:Selective Catalytic Reduction](還元触媒)9c、及び、NHスリップ触媒9dが配設されている。 FIG. 2 is a diagram illustrating the internal configuration of the catalytic converter 9 of FIG. As shown in FIGS. 1 and 2, in the catalyst converter 9, the oxidation catalyst [DOC: Diesel Oxidation Catalyst] 9a and the diesel exhaust particulate filter [DPF] are sequentially arranged from the upstream side to the downstream side in the exhaust gas flow direction. : Diesel Particulate Filter] 9b, selective reduction catalyst [SCR: Selective Catalytic Reduction] (reduction catalyst) 9c, and NH 3 slip catalyst 9d are arranged.

DOC9aは、排気ガスに含まれるHC及びCO等を酸化して浄化する。DPF9bは、排気ガスに含まれる粒子状物質[PM:Particulate Matter]を捕集することで、排気ガスからPMを取り除く。SCR9cは、排気ガスに含まれるNOxを還元して浄化する。NHスリップ触媒9dは、SCR9cを通過した排気ガスに含まれるNHを酸化して浄化する。 DOC9a oxidizes and purifies HC, CO, etc. contained in the exhaust gas. DPF9b removes PM from the exhaust gas by collecting particulate matter [PM: Particulate Matter] contained in the exhaust gas. SCR9c reduces and purifies NOx contained in the exhaust gas. The NH 3 slip catalyst 9d oxidizes and purifies NH 3 contained in the exhaust gas that has passed through the SCR 9c.

排気浄化装置100は、SCR9cの上流側、具体的には触媒コンバータ9におけるDPF9bとSCR9cとの間に配設された添加弁9eを備えている。添加弁9eは、供給管を介して尿素水タンクと接続され(図示省略)、SCR9cに尿素水を添加する。添加弁9eにより尿素水がSCR9cに添加されると、尿素水がNHとなってSCR9cに吸着され、そのNHが排気ガス中のNOxと反応することで、NOxが還元される。 The exhaust gas purification device 100 includes an addition valve 9e arranged on the upstream side of the SCR9c, specifically, between the DPF9b and the SCR9c in the catalytic converter 9. The addition valve 9e is connected to the urea water tank via a supply pipe (not shown), and urea water is added to the SCR9c. When urea water is added to SCR9c by the addition valve 9e, the urea water becomes NH 3 and is adsorbed on SCR 9c, and the NH 3 reacts with NOx in the exhaust gas to reduce NOx.

排気浄化装置100は、エアフロセンサ21と、エンジン状態センサ22と、上流NOxセンサ(上流NOx量取得部)23と、排気温度センサ(触媒温度取得部)24と、下流NOxセンサ(下流NOx量取得部)25と、ECU[Electronic Control Unit](制御部)10と、を備えている。ECU10には、上記各センサ21〜25、及び、添加弁9eが接続されている。 The exhaust purification device 100 includes an air flow sensor 21, an engine state sensor 22, an upstream NOx sensor (upstream NOx amount acquisition unit) 23, an exhaust temperature sensor (catalyst temperature acquisition unit) 24, and a downstream NOx sensor (downstream NOx amount acquisition unit). A unit) 25 and an ECU [Electronic Control Unit] 10. The sensors 21 to 25 and the addition valve 9e are connected to the ECU 10.

エアフロセンサ21は、例えばエンジン1の吸気通路3に設けられ、エンジン1の吸入空気量を検出する検出器である。エアフロセンサ21は、検出した吸入空気量の検出信号をECU10に送信する。 The air flow sensor 21 is, for example, a detector provided in the intake passage 3 of the engine 1 to detect the intake air amount of the engine 1. The air flow sensor 21 transmits a detection signal of the detected intake air amount to the ECU 10.

エンジン状態センサ22は、エンジン状態を取得するためのセンサである。エンジン状態センサ22は、例えば、エンジン1の回転数(エンジン回転数)、エンジン1の負荷等を検出する検出器を含む。エンジン状態センサ22は、検出したエンジン状態に関する検出信号をECU10に送信する。 The engine state sensor 22 is a sensor for acquiring the engine state. The engine state sensor 22 includes, for example, a detector that detects the rotation speed of the engine 1 (engine rotation speed), the load of the engine 1, and the like. The engine state sensor 22 transmits a detection signal regarding the detected engine state to the ECU 10.

上流NOxセンサ23は、触媒コンバータ9におけるDPF9bと添加弁9eとの間に設けられ、上流NOx量を検出する検出器である。上流NOx量は、SCR9cの上流の排気ガスに含まれるNOx量(例えばNOx濃度)である。上流NOxセンサ23は、検出した上流NOx量の検出信号をECU10に送信する。 The upstream NOx sensor 23 is a detector provided between the DPF 9b and the addition valve 9e in the catalytic converter 9 and detects the amount of upstream NOx. The upstream NOx amount is the NOx amount (for example, NOx concentration) contained in the exhaust gas upstream of the SCR9c. The upstream NOx sensor 23 transmits a detection signal of the detected upstream NOx amount to the ECU 10.

排気温度センサ24は、触媒コンバータ9におけるDPF9bとSCR9cとの間の排気ガスの温度を検出する検出器である。排気温度センサ24は、検出した排気温度の検出信号をECU10に送信する。 The exhaust temperature sensor 24 is a detector that detects the temperature of the exhaust gas between the DPF 9b and the SCR 9c in the catalytic converter 9. The exhaust temperature sensor 24 transmits the detected exhaust temperature detection signal to the ECU 10.

下流NOxセンサ25は、触媒コンバータ9におけるNHスリップ触媒9dの下流(つまりSCR9cの下流側)に設けられ、下流NOx量を検出する検出器である。下流NOx量は、NHスリップ触媒9dの下流の排気ガスに含まれるNOx量(NOx濃度)である。下流NOxセンサ25は、検出した下流NOx量の検出信号をECU10に送信する。 The downstream NOx sensor 25 is a detector provided downstream of the NH 3 slip catalyst 9d in the catalyst converter 9 (that is, on the downstream side of the SCR 9c) and detects the amount of downstream NOx. The amount of downstream NOx is the amount of NOx (NOx concentration) contained in the exhaust gas downstream of the NH 3 slip catalyst 9d. The downstream NOx sensor 25 transmits a detection signal of the detected downstream NOx amount to the ECU 10.

ECU10は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]、CAN[Controller Area Network]通信回路等を有する電子制御ユニットである。ECU10では、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種の機能を実現する。ECU10は、複数の電子制御ユニットから構成されていてもよい。 The ECU 10 is an electronic control unit having a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], a CAN [Controller Area Network] communication circuit, and the like. The ECU 10 realizes various functions by loading the program stored in the ROM into the RAM and executing the program loaded in the RAM in the CPU. The ECU 10 may be composed of a plurality of electronic control units.

ECU10は、機能的構成として、エンジン状態取得部(上流NOx量取得部、触媒温度取得部)11と、還元剤制御部(吸着量推定部)12と、を有している。 The ECU 10 has an engine state acquisition unit (upstream NOx amount acquisition unit, catalyst temperature acquisition unit) 11 and a reducing agent control unit (adsorption amount estimation unit) 12 as functional configurations.

エンジン状態取得部11は、エアフロセンサ21、エンジン状態センサ22、上流NOxセンサ23、排気温度センサ24、及び下流NOxセンサ25の検出信号に基づいて、各種エンジン状態を取得する。エンジン状態取得部11は、例えば、エアフロセンサ21の検出信号に基づいて、エンジン1の吸入空気量をSCR9cにおける排気流量として取得する。 The engine state acquisition unit 11 acquires various engine states based on the detection signals of the airflow sensor 21, the engine state sensor 22, the upstream NOx sensor 23, the exhaust temperature sensor 24, and the downstream NOx sensor 25. The engine state acquisition unit 11 acquires, for example, the intake air amount of the engine 1 as the exhaust flow rate in the SCR 9c based on the detection signal of the air flow sensor 21.

エンジン状態取得部11は、上流NOxセンサ23の検出信号に基づいて、SCR9cの上流側の排気ガスに含まれるNOx量である上流NOx量を取得する。あるいは、エンジン状態取得部11は、エンジン回転数と負荷とから燃料噴射量を算出し、燃料噴射量と吸入空気量とから上流NOx量の推定値を取得してもよい。この場合、上流NOxセンサ23が省略されてもよい。 The engine state acquisition unit 11 acquires the amount of upstream NOx, which is the amount of NOx contained in the exhaust gas on the upstream side of the SCR9c, based on the detection signal of the upstream NOx sensor 23. Alternatively, the engine state acquisition unit 11 may calculate the fuel injection amount from the engine rotation speed and the load, and acquire an estimated value of the upstream NOx amount from the fuel injection amount and the intake air amount. In this case, the upstream NOx sensor 23 may be omitted.

エンジン状態取得部11は、下流NOxセンサ25の検出信号に基づいて、SCR9cの下流側の排気ガスに含まれるNOx量である下流NOx量を取得する。 The engine state acquisition unit 11 acquires the amount of downstream NOx, which is the amount of NOx contained in the exhaust gas on the downstream side of the SCR9c, based on the detection signal of the downstream NOx sensor 25.

エンジン状態取得部11は、排気温度センサ24の検出信号に基づいて、触媒コンバータ9におけるDPF9bとSCR9cとの間の排気ガスの温度をSCR9cの温度(触媒温度)として取得する。あるいは、エンジン状態取得部11は、エンジン回転数と負荷とから燃料噴射量を算出し、燃料噴射量と吸入空気量とからSCR9cの推定温度(触媒温度)を取得してもよい。この場合、排気温度センサ24が省略されてもよい。 The engine state acquisition unit 11 acquires the temperature of the exhaust gas between the DPF 9b and the SCR 9c in the catalyst converter 9 as the temperature of the SCR 9c (catalyst temperature) based on the detection signal of the exhaust temperature sensor 24. Alternatively, the engine state acquisition unit 11 may calculate the fuel injection amount from the engine speed and the load, and acquire the estimated temperature (catalyst temperature) of the SCR 9c from the fuel injection amount and the intake air amount. In this case, the exhaust temperature sensor 24 may be omitted.

還元剤制御部12は、上流NOx量に基づいて、添加弁9eによる尿素水の添加量を算出する。還元剤制御部12は、例えば、上流NOx量に応じて、SCR9cの上流の排気ガスに含まれるNOxを浄化するために必要な尿素水の添加量を取得する。還元剤制御部12は、算出した尿素水の添加量で、所定の添加タイミングにて添加弁9eに尿素水を添加させる。還元剤制御部12は、下流NOxセンサ25の検出結果に基づいて、添加弁9eによる尿素水の添加量の補正値を算出してフィードバック制御を実施してもよい。 The reducing agent control unit 12 calculates the amount of urea water added by the addition valve 9e based on the amount of upstream NOx. The reducing agent control unit 12 acquires, for example, the amount of urea water added to purify the NOx contained in the exhaust gas upstream of the SCR9c according to the amount of upstream NOx. The reducing agent control unit 12 adds urea water to the addition valve 9e at a predetermined addition timing with the calculated addition amount of urea water. The reducing agent control unit 12 may perform feedback control by calculating a correction value of the amount of urea water added by the addition valve 9e based on the detection result of the downstream NOx sensor 25.

ここでの還元剤制御部12は、上流NOx量と下流NOx量とSCR9cの温度とに基づいて、予め設定されたSCR9cのモデルを用いて、NH吸着量の推定値を算出する。NH吸着量は、例えば、NHのSCR9cへの吸着率であってもよい。以下の説明では、一例としてNH吸着率を挙げているが、これに限定されない。 Here, the reducing agent control unit 12 calculates an estimated value of the NH 3 adsorption amount using a preset model of SCR9c based on the amount of upstream NOx, the amount of downstream NOx, and the temperature of SCR9c. The amount of NH 3 adsorbed may be, for example, the adsorption rate of NH 3 on SCR9c. In the following description, it cites NH 3 adsorption rate as an example and is not limited to this.

ここでのモデルとは、NHのSCR9cへの吸着又は脱離に関する反応を模擬したモデルである。例えば、モデルは、例えば、予め行った実験やシミュレーションの結果から導出された排気流量、SCR9cの温度、目標添加量等をパラメータに含んで構成されている。モデルは、NHの吸着反応、NHの脱離反応、NHの酸化反応、NOの酸化反応、及びNOxの還元反応の各化学反応の反応速度をアレニウス式で表した反応速度式を有している。つまり、還元剤制御部12は、SCR9c上におけるNHの吸着サイトに対してNHが吸着又は脱離する反応速度を表す反応速度式を含むモデルを用いてNH吸着率を推定する。 The model here is a model simulating the reaction related to the adsorption or desorption of NH 3 to SCR9c. For example, the model is configured to include, for example, the exhaust flow rate derived from the results of experiments and simulations performed in advance, the temperature of SCR9c, the target addition amount, and the like as parameters. The model has a reaction rate formula that expresses the reaction rate of each chemical reaction of NH 3 adsorption reaction, NH 3 elimination reaction, NH 3 oxidation reaction, NO oxidation reaction, and NOx reduction reaction by the Arenius formula. are doing. That is, the reducing agent control unit 12 estimates the NH 3 adsorption rate using a model including a reaction rate equation representing the reaction rate at which NH 3 is adsorbed or desorbed from the adsorption site of NH 3 on SCR9c.

例えば、NHが吸着又は脱離する反応速度を表す反応速度式は、SCR9c上においてNHが単一の吸着サイトに吸着又は脱離する反応速度を表すものであってもよい。図3は、モデルにおける吸着サイトへの吸着又は脱離を表す概念図である。図3に示されるように、モデルMでは、SCR9c上の単一の吸着サイトSが定義されており、この吸着サイトSに対してNHが吸着する反応速度radと、この吸着サイトSに吸着していたNHが脱離する反応速度rdeと、を定義することができる。 For example, the rate equation representing the reaction rate at which NH 3 adsorbs or desorbs may represent the reaction rate at which NH 3 adsorbs or desorbs to a single adsorption site on the SCR9c. FIG. 3 is a conceptual diagram showing adsorption or desorption to an adsorption site in the model. As shown in FIG. 3, the model M, a single adsorption site S are defined on SCR9c, NH 3 and a reaction rate r ad to adsorb for this adsorption sites S, in the adsorption sites S The reaction rate r de in which the adsorbed NH 3 is eliminated can be defined.

図4(a)に示されるように、吸着サイトSに対してNHが吸着する反応は、
NH+S→NH(S)
と表すことができる。吸着サイトSに吸着していたNHが脱離する反応は、
NH(S)→NH+S
と表すことができる。この場合、反応速度rad及び反応速度rdeは、一般的には、図4(a)の(式1)及び(式2)のようにそれぞれ表すことができる。(式1)及び(式2)は、SCR9c上においてNHが単一の吸着サイトSに吸着又は脱離する反応速度を表している。この場合、複数の吸着サイトSを定義してNH吸着率を推定する場合と比べて、モデルの計算の複雑化を抑制でき、計算負荷が軽くなるため、ECU10への実装性が良いということができる。
As shown in FIG. 4A, the reaction in which NH 3 is adsorbed on the adsorption site S is
NH 3 + S → NH 3 (S)
It can be expressed as. The reaction in which NH 3 adsorbed on the adsorption site S is eliminated is
NH 3 (S) → NH 3 + S
It can be expressed as. In this case, the reaction rate rad and the reaction rate rd de can be generally expressed as shown in (Equation 1) and (Equation 2) of FIG. 4 (a), respectively. (Equation 1) and (Equation 2) represent the reaction rate at which NH 3 is adsorbed or desorbed on a single adsorption site S on SCR9c. In this case, as compared with the case where a plurality of adsorption sites S are defined and the NH 3 adsorption rate is estimated, the calculation complexity of the model can be suppressed and the calculation load is lightened, so that the mountability on the ECU 10 is good. Can be done.

なお、図4(a)及び(b)において、反応式における「S」は、図3の吸着サイトSを意味し、Kは頻度因子を意味し、Eは活性化温度を意味し、Cは濃度を意味し、θはNH吸着率を意味し、εは補正係数を意味する。なお、添え字のadは、吸着サイトSに対してNHが吸着する反応[adsorption]におけるパラメータであることを意味し、添え字のdeは、吸着サイトSに吸着していたNHが脱離する反応[desorption]におけるパラメータであることを意味する。ここで、一般的な(式1)及び(式2)にあっては、頻度因子K及び活性化温度Eは、SCR9cの温度によらない値とされている。 In FIGS. 4A and 4B, "S" in the reaction formula means the adsorption site S in FIG. 3, K means a frequency factor, E means an activation temperature, and C means an activation temperature. It means the concentration, θ means the NH 3 adsorption rate, and ε means the correction coefficient. The subscript ad means that it is a parameter in the reaction [adsorption] in which NH 3 is adsorbed to the adsorption site S, and the subscript de means that NH 3 adsorbed on the adsorption site S is eliminated. It means that it is a parameter in the desorption reaction. Here, in the general (Equation 1) and (Equation 2), the frequency factor K and the activation temperature E are set to values that do not depend on the temperature of SCR9c.

ここで、一般的な(式1)及び(式2)の反応速度rad及び反応速度rdeを用いてNH吸着率を推定すると、一部のSCR9cの温度条件下で、他のSCR9cの温度条件下と比べて、NH吸着率の推定値が精度良く算出されないことがある。例えば、図5に示されるように、SCR9cの温度が100℃の場合において、SCR9cの温度が200℃〜500℃の場合と比べて、NH吸着率の推定値(図5の白丸印)がNH吸着率の実測値(図5の黒四角印)に対して精度良く算出されないことが生じ得る。このような推定結果は、特に単一の吸着サイトSを定義してNH吸着率を推定する推定手法において、一般的な(式1)及び(式2)を採用する場合には、現実のNHの吸着反応又は脱離反応を適切に記述できていないものと考えることができる。しかしながら、複数の吸着サイトSを定義してNH吸着率を推定する推定手法においては、モデルの計算が複雑となり、計算負荷が大きいため、NH吸着率の推定精度の向上とECU10への実装性とが両立しない可能性がある。 Here, when estimating the NH 3 adsorption rate by using a general formula (1) and the reaction rate r ad and reaction rate r de (Formula 2), at a temperature of a portion of SCR9c, other SCR9c compared with the temperature conditions, the estimated value of the NH 3 adsorption rate may not be accurately calculated. For example, as shown in FIG. 5, when the temperature of SCR9c is 100 ° C., the estimated value of NH 3 adsorption rate (white circle in FIG. 5) is higher than that when the temperature of SCR9c is 200 ° C. to 500 ° C. It may happen that the NH 3 adsorption rate is not calculated accurately with respect to the measured value (black square mark in FIG. 5). Such estimation result, in the estimation method of particular estimate NH 3 adsorption rate defines a single adsorption sites S, common when employing (Equation 1) and (Equation 2), the actual It can be considered that the adsorption reaction or elimination reaction of NH 3 has not been properly described. However, in the estimation method in which a plurality of adsorption sites S are defined and the NH 3 adsorption rate is estimated, the calculation of the model becomes complicated and the calculation load is large. Therefore, the estimation accuracy of the NH 3 adsorption rate is improved and the NH 3 adsorption rate is mounted on the ECU 10. There is a possibility that it is incompatible with sex.

そこで、本実施形態の排気浄化装置100では、単一の吸着サイトSを定義してNH吸着率を推定する推定手法を採用しつつ、図4(b)の(式3)及び(式4)に示されるように、反応速度rad及び反応速度rdeの右辺において、頻度因子K(Tc)がSCR9cの温度の関数とされている。すなわち、反応速度式(式3)及び(式4)は、SCR9cの温度に応じて設定される比例係数である頻度因子K(Tc)を含む。 Therefore, in the exhaust purification device 100 of the present embodiment, while adopting an estimation method in which a single adsorption site S is defined and the NH 3 adsorption rate is estimated, (Equation 3) and (Equation 4) of FIG. 4 (b) are adopted. as shown in), the reaction rate r ad and reaction rate r de of the right side, the frequency factor K (Tc) is a function of the temperature of the SCR9c. That is, the reaction rate equations (Equation 3) and (Equation 4) include a frequency factor K (Tc) which is a proportional coefficient set according to the temperature of SCR9c.

これにより、SCR9cの温度に応じて頻度因子K(Tc)が可変となるため、一部のSCR9cの温度条件下で、他のSCR9cの温度条件下と比べて、NH吸着率の推定値が精度良く算出されないことを抑制し得る。例えば、予め行った実験やシミュレーションの結果からSCR9cの温度に応じて頻度因子K(Tc)を設定することで、反応速度rad及び反応速度rdeを現実のNHの吸着反応又は脱離反応に近付けることが可能となる。SCR9cの温度に応じて頻度因子K(Tc)を設定する手法としては、所定の温度閾値を設けて、SCR9cの温度が温度閾値以上であるか否かに応じて頻度因子K(Tc)の値を変化させてもよいし、SCR9cの温度を引数とする予め記憶されたマップを読み出してもよい。その結果、例えば図6に示されるように、SCR9cの温度が100℃の場合であっても、SCR9cの温度が200℃〜500℃の場合と同様に、NH吸着率の推定値(図6の白丸印)がNH吸着率の実測値(図6の黒四角印)に対して精度良く算出されるようにすることが可能となる。 Thus, since the frequency factor K (Tc) is variable depending on the temperature of SCR9c, at a temperature of a portion of SCR9c, compared to the temperature of the other SCR9c, an estimate of the NH 3 adsorption rate It is possible to suppress that the calculation is not accurate. For example, previously performed from the results of experiments or simulations by setting the frequency factor K (Tc) in accordance with the temperature of SCR9c, adsorption or desorption reaction kinetics r ad and reaction rate r de a reality NH 3 It becomes possible to approach. As a method of setting the frequency factor K (Tc) according to the temperature of the SCR9c, a predetermined temperature threshold value is set, and the value of the frequency factor K (Tc) depends on whether or not the temperature of the SCR9c is equal to or higher than the temperature threshold value. May be changed, or a pre-stored map with the temperature of SCR9c as an argument may be read out. As a result, for example, as shown in FIG. 6, even when the temperature of SCR9c is 100 ° C., the estimated value of NH 3 adsorption rate (FIG. 6) is the same as when the temperature of SCR9c is 200 ° C. to 500 ° C. (White circle mark) can be calculated accurately with respect to the measured value of NH 3 adsorption rate (black square mark in FIG. 6).

なお、反応速度rad及び反応速度rdeの右辺の反応速度式は、SCR9cの温度に応じて設定される指数パラメータである活性化温度E(Tc)を含んでいてもよい。活性化温度E(Tc)は、上述の頻度因子K(Tc)を設定する手法と同様にして、温度閾値を用いた値の変化又はマップの読み出しにより、SCR9cの温度に応じて設定することができる。 Incidentally, the reaction rate equation of the right side of the reaction rate r ad and reaction rate r de may comprise an activation temperature E (Tc) is an index parameter that is set according to the temperature of SCR9c. The activation temperature E (Tc) can be set according to the temperature of SCR9c by changing the value using the temperature threshold value or reading the map in the same manner as the method for setting the frequency factor K (Tc) described above. it can.

[作用及び効果]
以上、本実施形態に係る排気浄化装置100によれば、SCR9cの温度に応じて設定される頻度因子K(Tc)を含む反応速度式(式3)及び(式4)を含むモデルMを用いて、NH吸着量が推定される。よって、頻度因子K(Tc)をSCR9cの温度に応じて調整することで、SCR9c上におけるNHの吸着サイトSに対してNHが吸着又は脱離する反応速度rad及び反応速度rdeをSCR9cの温度に応じて適切に設定することが可能となる。その結果、頻度因子KがSCR9cの温度によらずに設定される場合と比べて、モデルの計算の複雑化を抑制しつつ、NH吸着量の推定値を精度良く算出することが可能となる。
[Action and effect]
As described above, according to the exhaust gas purification device 100 according to the present embodiment, the model M including the reaction rate equations (Equation 3) and (Equation 4) including the frequency factor K (Tc) set according to the temperature of the SCR9c is used. Therefore, the amount of NH 3 adsorbed is estimated. Therefore, by adjusting accordingly the frequency factor K a (Tc) to a temperature of SCR9c, the reaction rate r ad and reaction rate r de of NH 3 is adsorbed or desorbed against adsorption site S of NH 3 on SCR9c It is possible to set appropriately according to the temperature of SCR9c. As a result, compared to the case where the frequency factor K is set regardless of the temperature of SCR9c, while suppressing the complexity of the model calculation, it becomes possible to accurately calculate the estimated value of the adsorbed NH 3 amount ..

排気浄化装置100によれば、反応速度式(式3)及び(式4)は、SCR9cの温度に応じて設定される活性化温度E(Tc)を含む。これにより、活性化温度E(Tc)をSCR9cの温度に応じて調整することで、SCR9cの温度に応じてより適切に反応速度rad及び反応速度rdeを算出することが可能となる。 According to the exhaust gas purification device 100, the reaction rate equations (Equation 3) and (Equation 4) include an activation temperature E (Tc) set according to the temperature of the SCR9c. Thus, by adjusting accordingly the activation temperature E and (Tc) to a temperature of SCR9c, it is possible to calculate more appropriate reaction rate r ad and reaction rate r de according to the temperature of SCR9c.

排気浄化装置100によれば、反応速度式(式3)及び(式4)は、SCR9c上においてNHが単一の吸着サイトに吸着又は脱離する反応速度rad及び反応速度rdeを表す。これにより、反応速度式における反応速度がNHの複数の吸着サイトへの吸着又は脱離を表す場合と比べて、モデルの計算の複雑化を抑制することができる。 According to the exhaust purification apparatus 100, the reaction rate equation (Equation 3) and (Equation 4), NH 3 represents the reaction rate r ad and reaction rate r de adsorption or desorption into a single adsorption sites on SCR9c .. As a result, the complexity of the calculation of the model can be suppressed as compared with the case where the reaction rate in the reaction rate equation represents the adsorption or desorption of NH 3 to a plurality of adsorption sites.

[変形例]
以上、本発明に係る実施形態について説明したが、本発明は、上述した実施形態に限られるものではない。
[Modification example]
Although the embodiments according to the present invention have been described above, the present invention is not limited to the above-described embodiments.

上記実施形態では、ECU10への実装性を比較的重視していたため、反応速度式(式3)及び(式4)は、SCR9c上においてNHが単一の吸着サイトに吸着又は脱離する反応速度rad及び反応速度rdeを表した。しかしながら、例えば、すでに複数の吸着サイトに吸着又は脱離するモデルを用いており且つ頻度因子K及び活性化温度EがSCR9cの温度によらない値とされるモデルを用いている場合においても、頻度因子K(Tc)をSCR9cの温度に応じて調整するようにしてもよい。この場合には、例えばモデルの複数の吸着サイトの数を更に増やしてNH吸着量の推定値の算出精度向上を図る場合と比べて、モデルの計算の複雑化を抑制しつつ、NH吸着量の推定値を精度良く算出し得る。 In the above embodiment, since the mountability to the ECU 10 is relatively emphasized, the reaction rate equations (Equation 3) and (Equation 4) are reactions in which NH 3 is adsorbed or desorbed on a single adsorption site on the SCR9c. The rate rad and the reaction rate r de were shown. However, even when, for example, a model in which adsorption or desorption to a plurality of adsorption sites is already used and a model in which the frequency factor K and the activation temperature E are set to values independent of the temperature of SCR9c is used, the frequency is also used. Factor K (Tc) may be adjusted according to the temperature of SCR9c. In this case, as compared with the case where the number of multiple adsorption sites of the model is further increased to improve the calculation accuracy of the estimated value of the NH 3 adsorption amount, the NH 3 adsorption is suppressed while suppressing the complexity of the model calculation. The estimated value of the quantity can be calculated accurately.

上記実施形態では、DOC9a、DPF9b、SCR9c、及び、NHスリップ触媒9dが一体的に配設された触媒コンバータ9を例示したが、これに限定されない。 In the above embodiment, the catalyst converter 9 in which the DOC9a, the DPF9b, the SCR9c, and the NH 3 slip catalyst 9d are integrally arranged has been exemplified, but the present invention is not limited thereto.

上記実施形態では、内燃機関としてディーゼルエンジン1を例示したが、例えばガソリンエンジン等、その他の内燃機関であってもよい。 In the above embodiment, the diesel engine 1 is exemplified as the internal combustion engine, but other internal combustion engines such as a gasoline engine may be used.

8…排気通路、9c…SCR(還元触媒)、9e…添加弁、12…還元剤制御部(吸着量推定部)、23…上流NOxセンサ(上流NOx量取得部)、24…排気温度センサ(触媒温度取得部)、25…下流NOxセンサ(下流NOx量取得部)、100…排気浄化装置、M…モデル、rad,rde…反応速度、S…吸着サイト。 8 ... Exhaust passage, 9c ... SCR (reduction catalyst), 9e ... Addition valve, 12 ... Reducing agent control unit (adsorption amount estimation unit), 23 ... Upstream NOx sensor (upstream NOx amount acquisition unit), 24 ... Exhaust temperature sensor ( catalyst temperature acquiring unit), 25 ... downstream NOx sensor (downstream NOx amount acquiring unit), 100 ... exhaust gas purifying apparatus, M ... model, r ad, r de ... reaction rate, S ... adsorption sites.

Claims (3)

内燃機関の排気通路に設けられ、前記内燃機関の排気ガスに含まれるNOxを還元する還元触媒と、
前記還元触媒の上流側に設けられ、前記還元触媒に尿素水を添加する添加弁と、
前記還元触媒の上流側の前記排気ガスに含まれるNOx量である上流NOx量を取得する上流NOx量取得部と、
前記還元触媒の下流側の前記排気ガスに含まれるNOx量である下流NOx量を取得する下流NOx量取得部と、
前記還元触媒の触媒温度を取得する触媒温度取得部と、
前記上流NOx量と前記下流NOx量と前記触媒温度とに基づいて、予め設定された前記還元触媒のモデルを用いてNH吸着量を推定する吸着量推定部と、を備え、
前記吸着量推定部は、
前記還元触媒上におけるNHの吸着サイトに対してNHが吸着又は脱離する反応速度を表す反応速度式を含む前記モデルを用いて前記NH吸着量を推定し、
前記反応速度式は、前記触媒温度に応じて設定される比例係数を含む、排気浄化装置。
A reduction catalyst provided in the exhaust passage of the internal combustion engine to reduce NOx contained in the exhaust gas of the internal combustion engine, and
An addition valve provided on the upstream side of the reduction catalyst and adding urea water to the reduction catalyst.
An upstream NOx amount acquisition unit that acquires an upstream NOx amount, which is the amount of NOx contained in the exhaust gas on the upstream side of the reduction catalyst, and an upstream NOx amount acquisition unit.
A downstream NOx amount acquisition unit that acquires a downstream NOx amount, which is the amount of NOx contained in the exhaust gas on the downstream side of the reduction catalyst, and a downstream NOx amount acquisition unit.
A catalyst temperature acquisition unit that acquires the catalyst temperature of the reduction catalyst,
Wherein the upstream NOx amount based on downstream NOx amount and said catalyst temperature, and an adsorption amount estimating unit for estimating the adsorbed NH 3 amount using the model of a preset the reducing catalyst,
The adsorption amount estimation unit is
The amount of NH 3 adsorbed was estimated using the model including the reaction rate equation representing the reaction rate at which NH 3 is adsorbed or desorbed from the adsorption site of NH 3 on the reduction catalyst.
The reaction rate equation is an exhaust gas purification device including a proportional coefficient set according to the catalyst temperature.
前記反応速度式は、前記触媒温度に応じて設定される指数パラメータを含む、請求項1に記載の排気浄化装置。 The exhaust gas purification device according to claim 1, wherein the reaction rate equation includes an exponential parameter set according to the catalyst temperature. 前記反応速度式は、前記還元触媒上においてNHが単一の前記吸着サイトに吸着又は脱離する反応速度を表す、請求項1又は2に記載の排気浄化装置。 The exhaust gas purification apparatus according to claim 1 or 2, wherein the reaction rate equation represents a reaction rate at which NH 3 is adsorbed or desorbed from a single adsorption site on the reduction catalyst.
JP2019171918A 2019-09-20 2019-09-20 Exhaust purification device Pending JP2021050605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171918A JP2021050605A (en) 2019-09-20 2019-09-20 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171918A JP2021050605A (en) 2019-09-20 2019-09-20 Exhaust purification device

Publications (1)

Publication Number Publication Date
JP2021050605A true JP2021050605A (en) 2021-04-01

Family

ID=75157278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171918A Pending JP2021050605A (en) 2019-09-20 2019-09-20 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP2021050605A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110093A (en) * 1976-03-12 1977-09-14 Nittan Co Ltd Gas sensing element
JPH09264860A (en) * 1996-03-28 1997-10-07 Ishikawajima Harima Heavy Ind Co Ltd Evaluation method for lubricating agent
JP2006304661A (en) * 2005-04-27 2006-11-09 Funayama Kk Apparatus for cooking pregelatinized rice and method for using the same
WO2011118525A1 (en) * 2010-03-25 2011-09-29 Udトラックス株式会社 Engine exhaust purification device
JP2014206150A (en) * 2013-04-16 2014-10-30 株式会社豊田中央研究所 Exhaust gas purification control device and program
US20190284981A1 (en) * 2018-03-19 2019-09-19 GM Global Technology Operations LLC Selective catalytic reduction fault detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110093A (en) * 1976-03-12 1977-09-14 Nittan Co Ltd Gas sensing element
JPH09264860A (en) * 1996-03-28 1997-10-07 Ishikawajima Harima Heavy Ind Co Ltd Evaluation method for lubricating agent
JP2006304661A (en) * 2005-04-27 2006-11-09 Funayama Kk Apparatus for cooking pregelatinized rice and method for using the same
WO2011118525A1 (en) * 2010-03-25 2011-09-29 Udトラックス株式会社 Engine exhaust purification device
JP2014206150A (en) * 2013-04-16 2014-10-30 株式会社豊田中央研究所 Exhaust gas purification control device and program
US20190284981A1 (en) * 2018-03-19 2019-09-19 GM Global Technology Operations LLC Selective catalytic reduction fault detection

Similar Documents

Publication Publication Date Title
US8596045B2 (en) On-board-diagnosis method for an exhaust aftertreatment system and on-board-diagnosis system for an exhaust aftertreatment system
US8893476B2 (en) SCR closed loop control system
US7779680B2 (en) Estimation of engine-out NOx for real time input to exhaust aftertreatment controller
KR102059602B1 (en) System and method for diagnosing the selective catalytic reduction system of a motor vehicle
US8474248B2 (en) Model based method for selective catalyst reducer urea dosing strategy
US9970344B2 (en) Method of evaluating a soot quantity accumulated in a selective catalytic reduction washcoated particulate filter (SDPF)
RU2535440C2 (en) Method and system of exhaust gases cleaning
US20110005202A1 (en) Identifying ammonia slip conditions in a selective catalytic reduction application
CN101639005A (en) Dosing agent injection control for selective catalytic reduction catalysts
CN109931129B (en) Method and device for monitoring an exhaust gas aftertreatment system of an internal combustion engine
US10436089B2 (en) Radio frequency sensor in an exhaust aftertreatment system
US9803525B2 (en) Exhaust purification device and method of calculating NOx mass adsorbed in lean NOx trap of exhaust purification device
US9594067B2 (en) Systems and methods for determining the quantity of a combustion product in a vehicle exhaust
US8682595B2 (en) Method to estimate NO2 concentration in an exhaust gas of an internal combustion engine
US9482133B2 (en) Exhaust emission control system of internal combustion engine
Haga et al. Optimized NH3 storage control for next generation urea-SCR system
CN107781009B (en) Apparatus and method for estimating the amount of soot accumulated in a selective catalytic reduction washcoated particulate filter
JP2021050701A (en) Deposit detection method and exhaust emission control system
EP3546714A2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
US20190376426A1 (en) Control apparatus and method with nox sensor cross sensitivity for operating an internal combustion engine
JP2021050605A (en) Exhaust purification device
JP2021050629A (en) Exhaust emission control device
CN111911271A (en) Method for zero calibration of a NOx sensor
US8380353B2 (en) Method for calculating loading amount of ammonia in selective catalytic reduction apparatus
KR102563490B1 (en) Regeneration control method for improving durability of exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808