JP2021046943A - Drive transmission device and image forming device - Google Patents

Drive transmission device and image forming device Download PDF

Info

Publication number
JP2021046943A
JP2021046943A JP2020197929A JP2020197929A JP2021046943A JP 2021046943 A JP2021046943 A JP 2021046943A JP 2020197929 A JP2020197929 A JP 2020197929A JP 2020197929 A JP2020197929 A JP 2020197929A JP 2021046943 A JP2021046943 A JP 2021046943A
Authority
JP
Japan
Prior art keywords
drive transmission
intermediate member
screw
transmission device
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020197929A
Other languages
Japanese (ja)
Other versions
JP7157935B2 (en
Inventor
広彰 高木
Hiroaki Takagi
広彰 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2020197929A priority Critical patent/JP7157935B2/en
Publication of JP2021046943A publication Critical patent/JP2021046943A/en
Application granted granted Critical
Publication of JP7157935B2 publication Critical patent/JP7157935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrophotography Configuration And Component (AREA)

Abstract

To provide a drive transmission device which can be arranged in a narrow space, and an image forming device including the drive transmission device.SOLUTION: A screw joint 50 includes: a screw output joint 51 which is an output member; a screw input joint 53 which is an input member; and an intermediate member 52 held by the screw output joint 51, and having an inner gear 52a serving as a relay driving transmission part which receives a driving force from the screw output joint 51 and transmits the driving force to the screw input joint 53. On a driving side end part of the intermediate member 52, a fall-off stop part 52c is provided for preventing fall-off from the screw output joint 51. Then, an inner diameter of a tip of the fall-off stop part from a rotation center of the intermediate member 52 is made to be larger than a tip circle diameter of the inner gear 52a.SELECTED DRAWING: Figure 6

Description

本発明は、駆動伝達装置および画像形成装置に関するものである。 The present invention relates to a drive transmission device and an image forming device.

従来から、画像形成装置において、装置本体の駆動源の駆動力を、装置本体に対して着脱可能に設けられた回転体に伝達する駆動伝達装置を備えたものが知られている。上記駆動伝達装置は、駆動源側の出力軸に設けられ出力部材と、回転体側の入力軸に設けられた入力部材と、上記出力部材から駆動力が伝達され上記入力部材に駆動力を伝達する中間部材とを備えている。中間部材は筒状であり、出力部材の駆動伝達部と、入力部材の駆動伝達部とが、中間部材の内周面に形成された中継駆動伝達部と係合している。中間部材は、出力部材に対して傾き可能に保持されており、出力軸と入力軸との間の軸偏心などが存在したとき、中間部材が傾くことによりその軸偏心を吸収し、軸反力の発生を抑制することができる。 Conventionally, an image forming apparatus has been known to include a drive transmission device that transmits the driving force of a drive source of the apparatus main body to a rotating body provided detachably with respect to the apparatus main body. The drive transmission device is provided with an output member provided on an output shaft on the drive source side, an input member provided on an input shaft on the rotating body side, and a driving force is transmitted from the output member to transmit the driving force to the input member. It is equipped with an intermediate member. The intermediate member has a tubular shape, and the drive transmission portion of the output member and the drive transmission portion of the input member are engaged with the relay drive transmission portion formed on the inner peripheral surface of the intermediate member. The intermediate member is held so as to be tiltable with respect to the output member, and when there is an axial eccentricity between the output shaft and the input shaft, the intermediate member tilts to absorb the axial eccentricity and the axial reaction force. Can be suppressed.

特許文献1には、上記駆動伝達装置として、中間部材に、出力部材から抜け出すのを防止する抜け止め部を設けたものが記載されている。この抜け止め部は、中間部材の入力部材側と反対側の端部から回転中心に向けて突出し、軸方向において、入力部材側と反対側から、出力部材の駆動伝達部と対向している。これにより、抜け止め部が、出力部材の駆動伝達部に突き当たって中間部材の入力部材側への移動を規制する。その結果、中間部材が出力部材の入力部材側から抜け出すのを防止することができる。 Patent Document 1 describes, as the drive transmission device, an intermediate member provided with a retaining portion for preventing the output member from coming out. This retaining portion projects from the end of the intermediate member on the side opposite to the input member side toward the center of rotation, and faces the drive transmission portion of the output member from the side opposite to the input member side in the axial direction. As a result, the retaining portion abuts on the drive transmission portion of the output member and restricts the movement of the intermediate member toward the input member. As a result, it is possible to prevent the intermediate member from coming out from the input member side of the output member.

近年、画像形成装置の小型化などの影響により、駆動伝達装置の周囲に十分なスペースを確保することが困難となってきている。このため、駆動伝達装置の小径化が求められてきている。 In recent years, due to the influence of miniaturization of the image forming apparatus and the like, it has become difficult to secure a sufficient space around the drive transmission apparatus. Therefore, there is a demand for reducing the diameter of the drive transmission device.

上記特許文献1においては、上記抜け止め部を、上記中継駆動伝達部よりも回転中心に向けて突出させていたため、中間部材の小径化を十分に図ることができず、駆動伝達装置の小径化を十分に行えないという課題があった。 In Patent Document 1, since the retaining portion is projected toward the center of rotation from the relay drive transmission portion, it is not possible to sufficiently reduce the diameter of the intermediate member, and the diameter of the drive transmission device is reduced. There was a problem that it could not be done sufficiently.

上記課題を解決するために、本発明は、駆動源側に設けられた出力部材と、回転体側に設けられた入力部材と、筒状であり、前記出力部材の駆動伝達部から駆動力を受け、前記入力部材の駆動伝達部に駆動力を伝達する中継駆動伝達部を内周面に有し、前記入力部材または前記出力部材に保持される中間部材とを備え、前記中間部材には、前記出力部材および前記入力部材のうち前記中間部材を保持している保持側部材の駆動伝達部と軸方向で対向して、前記中間部材が前記保持側部材から抜けるのを防止する抜け止め部が設けられている駆動伝達装置において、前記中間部材の回転中心から前記抜け止め部の先端までの距離と、前記回転中心から前記中継駆動伝達部の先端までの距離とを同一にしたことを特徴とするものである。 In order to solve the above problems, the present invention has an output member provided on the drive source side, an input member provided on the rotating body side, and a tubular shape, and receives a driving force from a drive transmission unit of the output member. A relay drive transmission unit that transmits a driving force to the drive transmission unit of the input member is provided on an inner peripheral surface, and the input member or an intermediate member held by the output member is provided. The intermediate member includes the intermediate member. Of the output member and the input member, a retaining portion is provided so as to face the drive transmission portion of the holding side member holding the intermediate member in the axial direction and prevent the intermediate member from coming off the holding side member. The drive transmission device is characterized in that the distance from the rotation center of the intermediate member to the tip of the retaining portion and the distance from the rotation center to the tip of the relay drive transmission portion are the same. It is a thing.

本発明によれば、駆動伝達装置の小型化を図ることができる。 According to the present invention, the drive transmission device can be miniaturized.

実施形態に係る複写機を示す概略構成図。The schematic block diagram which shows the copying machine which concerns on embodiment. 同複写機のプロセスカートリッジを示す拡大構成図。An enlarged configuration diagram showing a process cartridge of the copier. プロセスカートリッジの奥側斜視図。Back perspective view of the process cartridge. プロセスカートリッジの奥側と、装置本体に設けられた廃トナー経路とを示す斜視図。The perspective view which shows the back side of the process cartridge and the waste toner path provided in the apparatus main body. プロセスカートリッジの奥側と廃トナー経路と示す概略図。Schematic diagram showing the back side of the process cartridge and the waste toner path. スクリュウ駆動伝達装置の概略構成図。Schematic diagram of the screw drive transmission device. スクリュウ駆動伝達装置の装置本体側の構成を示す斜視図。The perspective view which shows the structure of the screw drive transmission device on the apparatus main body side. 駆動出力軸の手前側端部を示す拡大図。An enlarged view showing the front end of the drive output shaft. スクリュウ出力ジョイントの斜視図。Perspective view of the screw output joint. スクリュウ駆動伝達装置の装置本体側を、手前側から見た正面図。Front view of the main body side of the screw drive transmission device as viewed from the front side. 中間部材の斜視図。Perspective view of the intermediate member. スクリュウ入力ジョイントの斜視図。Perspective view of the screw input joint. (a)は、中間部材とスクリュウ入力ジョイントとが駆動連結した状態を示す概略図であり、(b)は、中間部材とスクリュウ入力ジョイントとが非駆動連結状態でプロセスカートリッジを装置本体に装着したときの状態を示す概略図。(A) is a schematic view showing a state in which the intermediate member and the screw input joint are drive-connected, and (b) is a process cartridge mounted on the apparatus main body in a non-drive connection state between the intermediate member and the screw input joint. The schematic diagram which shows the state at the time. 出力外歯ギヤの外歯をクラウニング形状にした実施例を示す斜視図。The perspective view which shows the Example which made the outer tooth of the output outer tooth gear into a crowning shape. 比較例の中間部材を示す斜視図。The perspective view which shows the intermediate member of the comparative example. 比較例の中間部材の課題について説明する図。The figure explaining the problem of the intermediate member of the comparative example. 変形例1のスクリュウジョイントの概略構成図。The schematic block diagram of the screw joint of the modification 1. (a)は変形例1のスクリュウジョイントの装置本体側の構成を示す斜視図であり、(b)は、変形例1のスクリュウジョイントのプロセスカートリッジ側の構成を示す斜視図。(A) is a perspective view showing the configuration of the screw joint of the modified example 1 on the device main body side, and (b) is a perspective view showing the configuration of the screw joint of the modified example 1 on the process cartridge side. 変形例2のスクリュウジョイントを示す概略図。The schematic diagram which shows the screw joint of the modification 2. (a)は、変形例2のスクリュウジョイントの装置本体側の構成を示す斜視図であり、(b)は、変形例2のスクリュウジョイントのプロセスカートリッジ側の構成を示す斜視図。(A) is a perspective view showing the configuration of the screw joint of the modified example 2 on the device main body side, and (b) is a perspective view showing the configuration of the screw joint of the modified example 2 on the process cartridge side. 変形例3のスクリュウジョイントを示す概略図。The schematic diagram which shows the screw joint of the modification 3. (a)は、変形例3のスクリュウジョイントの装置本体側の構成を示す斜視図であり、(b)は、変形例3のスクリュウジョイントのプロセスカートリッジ側の構成を示す斜視図。(A) is a perspective view showing the configuration of the screw joint of the modified example 3 on the device main body side, and (b) is a perspective view showing the configuration of the screw joint of the modified example 3 on the process cartridge side. 変形例3のスクリュウ入力ジョイントを奥側から見た図。The figure which looked at the screw input joint of the modification 3 from the back side. 変形例4のスクリュウジョイントを示す概略図。The schematic diagram which shows the screw joint of the modification 4. (a)は、変形例4のスクリュウジョイントの装置本体側の構成を示す斜視図であり、(b)は、変形例4のスクリュウジョイントのプロセスカートリッジ側の構成を示す斜視図。(A) is a perspective view showing the configuration of the screw joint of the modified example 4 on the device main body side, and (b) is a perspective view showing the configuration of the screw joint of the modified example 4 on the process cartridge side. (a)は、変形例4のスクリュウ入力ジョイントを、奥側から見た正面図であり、(b)は、変形例4のスクリュウ入力ジョイントの側面図。(A) is a front view of the screw input joint of the modified example 4 as viewed from the back side, and (b) is a side view of the screw input joint of the modified example 4. 各入力突起部の奥側先端の軸方向位置を同じ位置とした場合の不具合について説明する図。The figure explaining the trouble when the axial position of the back end of each input protrusion is the same position. 複数の入力突起部のうちひとつを、他の入力突起部よりも長くした変形例4のスクリュウ入力ジョイントを示す図。The figure which shows the screw input joint of the modification 4 which made one of a plurality of input protrusions longer than the other input protrusions. 駆動出力軸が、他の入力突起部よりも突出した入力突起部から離れる方向に軸心ずれが生じているときのスクリュウジョイントについて説明する図。The figure explaining the screw joint when the drive output shaft is misaligned in the direction away from the input protrusion protruding more than other input protrusions. 変形例5のスクリュウジョイントを示す概略図。The schematic diagram which shows the screw joint of the modification 5. (a)は、変形例5のスクリュウジョイントの装置本体側の構成を示す斜視図であり、(b)は、変形例5のスクリュウジョイントのプロセスカートリッジ側の構成を示す斜視図。(A) is a perspective view showing the configuration of the screw joint of the modified example 5 on the device main body side, and (b) is a perspective view showing the configuration of the screw joint of the modified example 5 on the process cartridge side. スクリュウ入力ジョイントを用いて、変形例5のスクリュウジョイントの特徴点を説明する図。The figure explaining the feature point of the screw joint of the modification 5 using a screw input joint. 変形例6のスクリュウジョイントの装置本体側の構成を示す斜視図。The perspective view which shows the structure of the screw joint of the modification 6 on the apparatus main body side. 変形例6のスクリュウジョイントの特徴部を示す概略図。The schematic diagram which shows the characteristic part of the screw joint of the modification 6. スクリュウ出力ジョイントを、スプリングピン151Fとした変形例6のスクリュウジョイントを示す図。The figure which shows the screw joint of the modification 6 which made the screw output joint a spring pin 151F. 平行ピンが入り込む中間部材奥側の中継突起部と、手前側の中継突起部とをテーパ形状で連結した変形例5の装置本体側の構成を示す概略図。The schematic diagram which shows the structure of the apparatus main body side of the modification 5 which connected the relay protrusion part on the back side of an intermediate member into which a parallel pin enters and the relay protrusion part on the front side in a tapered shape. 変形例7のスクリュウジョイント50Gの要部拡大図。Enlarged view of the main part of the screw joint 50G of the modified example 7. 抜け止め部の出力突起部と対向する面と、出力突起部の抜け止め部と対向する面とが平面の場合について説明する図。The figure explaining the case where the surface which faces the output protrusion of the output protrusion and the surface which faces the output protrusion of the output protrusion are flat. 変形例8のスクリュウジョイントの要部拡大図。Enlarged view of the main part of the screw joint of the modified example 8. 中間部材が傾きながら駆動連結位置へ移動する様子を説明する図。The figure explaining how the intermediate member moves to a drive connection position while tilting. 抜け止め部の出力突起部と対向する先端部の手前側(図中左側)を傾斜面とした変形例8のスクリュウジョイントの要部拡大図。An enlarged view of a main part of the screw joint of the modified example 8 in which the front side (left side in the figure) of the tip portion facing the output protrusion portion of the retaining portion is an inclined surface.

以下、本発明を画像形成装置としての複写機に適用した実施形態について説明する。まず、図1を用いて、この複写機の概略について説明する。この複写機は、原稿を走査して読み取って得た画像情報をデジタル化して画像形成に用いるいわゆるデジタルカラー複写機としての機能を有している。また、この複写機は、原稿の画像情報を遠隔地と授受するファクシミリの機能や、コンピュータが扱う画像情報を用紙上に印刷するいわゆるプリンタの機能も有している。 Hereinafter, embodiments in which the present invention is applied to a copying machine as an image forming apparatus will be described. First, the outline of this copying machine will be described with reference to FIG. This copier has a function as a so-called digital color copier that digitizes image information obtained by scanning and reading a document and uses it for image formation. In addition, this copier also has a facsimile function for exchanging image information of a manuscript with a remote location and a so-called printer function for printing image information handled by a computer on paper.

図1において、複写機は、中間転写ベルト11を用いた中間転写方式で記録シートに画像を形成するものであって、且つ、各色のトナー像をそれぞれ専用のプロセスカートリッジで作像するタンデム方式の電子写真装置である。複写機の鉛直方向における最下部には、多段状の給紙部2が設けられている。また、その上方に画像形成部1、さらにその情報にスキャナ部3がそれぞれ設けられている。給紙部2の各段には、記録部材である普通紙や、OHPシート、第二原図などの記録シートからなるシート束を収容する給紙トレイ21が配設されている。 In FIG. 1, the copying machine is a tandem system in which an image is formed on a recording sheet by an intermediate transfer method using an intermediate transfer belt 11, and a toner image of each color is imaged by a dedicated process cartridge. It is an electrophotographic device. A multi-stage paper feeding unit 2 is provided at the lowermost part of the copying machine in the vertical direction. Further, an image forming unit 1 is provided above the image forming unit 1, and a scanner unit 3 is provided for the information. Each stage of the paper feed unit 2 is provided with a paper feed tray 21 for accommodating a bundle of plain paper as a recording member, an OHP sheet, a recording sheet such as a second original drawing, and the like.

画像形成部1のほぼ中央には、ベルトループ内側に配設された複数のローラによって無端状の中間転写ベルト11を張架している転写装置10が配設されている。中間転写ベルト11は、図中時計回り方向に回転(表面移動)する。中間転写ベルト11の上方には、中間転写ベルト11の表面移動方向に沿って、イエロー,マゼンタ,シアン,ブラックのトナー像を作像するための4つのプロセスカートリッジ40Y,40M,40C,40Kが配設されている。以下、色分け符号であるY,M,C,Kについては、適宜省略する。また、4つのプロセスカートリッジ40の上方には2つの潜像書込手段としての光書込ユニット20a,20bが設けられている。 A transfer device 10 is provided at substantially the center of the image forming unit 1 in which an endless intermediate transfer belt 11 is stretched by a plurality of rollers arranged inside the belt loop. The intermediate transfer belt 11 rotates (moves on the surface) in the clockwise direction in the drawing. Above the intermediate transfer belt 11, four process cartridges 40Y, 40M, 40C, and 40K for forming yellow, magenta, cyan, and black toner images are arranged along the surface movement direction of the intermediate transfer belt 11. It is installed. Hereinafter, the color-coded codes Y, M, C, and K will be omitted as appropriate. Further, above the four process cartridges 40, two optical writing units 20a and 20b as latent image writing means are provided.

図2は、4つプロセスカートリッジ40Y,40M,40C,40Kのうちの1つを示す概略構成図である。
各プロセスカートリッジ40には、潜像担持体としてのドラム状の感光体41が設けられている。各感光体41は、それぞれ、図中反時計回り方向に回転可能に設けられており、その周囲には、公知の帯電装置42、現像装置43、感光体クリーニング装置44が設けられている。
FIG. 2 is a schematic configuration diagram showing one of the four process cartridges 40Y, 40M, 40C, and 40K.
Each process cartridge 40 is provided with a drum-shaped photoconductor 41 as a latent image carrier. Each photoconductor 41 is provided so as to be rotatable counterclockwise in the drawing, and a known charging device 42, a developing device 43, and a photoconductor cleaning device 44 are provided around the photoconductor 41.

帯電装置42は、感光体41に当接するように配置された帯電ローラ42aと、この帯電ローラ42aに当接して回転する帯電ローラクリーナ42bとから主として構成されている。帯電ローラ42aは、帯電バイアスを印加され、感光体41表面に電荷を与えて感光体41を一様帯電する。帯電ローラクリーナ42bは、帯電ローラ42aの表面に付着したトナーなどの付着物を除去する。 The charging device 42 is mainly composed of a charging roller 42a arranged so as to come into contact with the photoconductor 41 and a charging roller cleaner 42b that rotates in contact with the charging roller 42a. A charging bias is applied to the charging roller 42a to apply an electric charge to the surface of the photoconductor 41 to uniformly charge the photoconductor 41. The charging roller cleaner 42b removes deposits such as toner adhering to the surface of the charging roller 42a.

現像装置43は、図中矢印I方向に表面移動しながら感光体41の表面の潜像にトナーを供給して潜像を現像する現像剤担持体としての現像ローラ43aを有している。また、現像ローラ43aに現像剤を供給しながら図紙面に直交する方向の奥側から手前側に向けて現像剤を搬送する供給搬送部材としての供給スクリュウ43bを有している。供給スクリュウ43bは、回転軸とこの回転軸に設けられた羽部とを備え、回転することにより軸方向に現像剤を搬送するものである。 The developing apparatus 43 has a developing roller 43a as a developing agent carrier that supplies toner to a latent image on the surface of the photoconductor 41 while moving the surface in the direction of arrow I in the drawing to develop the latent image. Further, it has a supply screw 43b as a supply and transport member for transporting the developer from the back side to the front side in the direction orthogonal to the drawing surface while supplying the developer to the developing roller 43a. The supply screw 43b includes a rotating shaft and blades provided on the rotating shaft, and conveys the developer in the axial direction by rotating.

現像ローラ43aと供給スクリュウ43bとの対向部よりも現像ローラ表面移動方向下流側には、現像ローラ43a上の現像剤を現像に適した厚さに規制する現像剤規制部材としての現像ドクタ43cが設けられている。また、現像ローラ43aと感光体41との対向領域である現像領域よりも現像ローラ表面移動方向下流側には、現像領域を通過した現像済みの現像剤を回収する回収スクリュウ43dが設けられている。この回収スクリュウ43dは、現像ローラ43aから回収した回収現像剤を供給スクリュウ43bと同方向に搬送するものである。供給スクリュウ43bを収容する供給搬送路43eは、現像ローラ43aの側方に配設されている。また、回収スクリュウ43dを収容する現像剤回収搬送路としての回収搬送路43fは現像ローラ43aの下方に並設されている。 A developing doctor 43c as a developing agent regulating member that regulates the thickness of the developing agent on the developing roller 43a to a thickness suitable for development is located downstream of the facing portion between the developing roller 43a and the supply screw 43b in the direction of surface movement of the developing roller. It is provided. Further, a recovery screw 43d for collecting the developed developer that has passed through the developing region is provided on the downstream side in the surface moving direction of the developing roller from the developing region which is the region where the developing roller 43a and the photoconductor 41 face each other. .. The recovery screw 43d transports the recovery developer recovered from the developing roller 43a in the same direction as the supply screw 43b. The supply transport path 43e for accommodating the supply screw 43b is arranged on the side of the developing roller 43a. Further, the recovery transport path 43f as the developer recovery transport path for accommodating the recovery screw 43d is juxtaposed below the developing roller 43a.

現像装置43は、供給搬送路43eの下方で現像剤を回収搬送路43fと平行な方向に撹拌搬送する攪拌搬送路43gを有している。攪拌搬送路43gは、現像剤を攪拌しながら供給スクリュウ43bとは逆方向である図中奥方向に向けて搬送する攪拌スクリュウ43hを有している。 The developing apparatus 43 has a stirring transport path 43g for stirring and transporting the developer in a direction parallel to the recovery transport path 43f below the supply transport path 43e. The stirring transfer path 43g has a stirring screw 43h that conveys the developer toward the inner part of the drawing in the direction opposite to that of the supply screw 43b while stirring.

供給搬送路43eと攪拌搬送路43gとは第一仕切り壁によって仕切られている。第一仕切り壁の供給搬送路43eと攪拌搬送路43gとを仕切る箇所は図中手前側と奥側との両端は開口部となっており、供給搬送路43eと攪拌搬送路43gとが連通している。なお、供給搬送路43eと回収搬送路43fとも第一仕切り壁によって仕切られているが、第一仕切り壁の供給搬送路43eと回収搬送路43fとを仕切る箇所には開口部が設けられていない。また、攪拌搬送路43gと回収搬送路43fとの2つの搬送路は第二仕切り壁によって仕切られている。第二仕切り壁は、図中手前側が開口部となっており、攪拌搬送路43gと回収搬送路43fとが連通している。 The supply transport path 43e and the agitation transport path 43g are separated by a first partition wall. The part that separates the supply transport path 43e and the stirring transport path 43g of the first partition wall is an opening at both ends of the front side and the back side in the figure, and the supply transport path 43e and the stirring transport path 43g communicate with each other. ing. The supply transport path 43e and the recovery transport path 43f are both partitioned by the first partition wall, but no opening is provided at the portion of the first partition wall that separates the supply transport path 43e and the recovery transport path 43f. .. Further, the two transport paths of the stirring transport path 43 g and the recovery transport path 43f are partitioned by a second partition wall. The second partition wall has an opening on the front side in the drawing, and the stirring transport path 43 g and the recovery transport path 43f communicate with each other.

現像ローラ43a上の現像剤は、現像ドクタ43cによって薄層化された後、感光体41との現像ローラ43aとの対向領域である現像領域に搬送されて現像に寄与する。現像後の現像剤は回収搬送路43fに回収された後、図紙面に直交する方向の奥側から手前側に向けて搬送され、第二仕切り壁に設けられた開口部を通って攪拌搬送路43gに進入する。なお、攪拌搬送路43gにおける現像剤搬送方向上流側端部の第二仕切り壁の開口部の付近で攪拌搬送路43gの上側に設けられた現像剤補給口から攪拌搬送路43g内にトナーが補給される。 The developer on the developing roller 43a is thinned by the developing doctor 43c and then transported to a developing region which is a region facing the photoconductor 41 and the developing roller 43a to contribute to development. After the developer after development is collected in the collection transport path 43f, it is transported from the back side to the front side in the direction orthogonal to the drawing surface, and is conveyed through the opening provided in the second partition wall in the stirring transfer path. Enter 43g. In addition, toner is replenished into the agitation transfer path 43g from the developer supply port provided on the upper side of the agitation transfer path 43g near the opening of the second partition wall at the upstream end in the developer transfer direction in the agitation transfer path 43g. Will be done.

攪拌搬送路43gから現像剤の供給を受けた供給搬送路43eでは、現像ローラ43aに現像剤を供給しながら、供給スクリュウ43bで供給搬送路43eの現像剤搬送方向最下流側近傍に現像剤を搬送する。そして、現像ローラ43aに供給され現像に用いられず供給搬送路43eの現像剤搬送方向最下流近傍まで搬送された余剰現像剤は、第一仕切りの余剰開口部を通じて攪拌搬送路43gに供給される。 In the supply transport path 43e in which the developer is supplied from the stirring transport path 43 g, the developer is supplied to the developing roller 43a and the developer is supplied to the vicinity of the most downstream side in the developer transport direction of the supply transport path 43e by the supply screw 43b. Transport. Then, the surplus developer supplied to the developing roller 43a and not used for development and transported to the vicinity of the most downstream in the developer transport direction of the supply transport path 43e is supplied to the stirring transport path 43 g through the surplus opening of the first partition. ..

現像ローラ43aから回収搬送路43fに送られ、回収スクリュウ43dによって回収搬送路43fの現像剤搬送方向最下流近傍まで搬送された回収現像剤は第二仕切り壁の回収開口部を通じて攪拌搬送路43gに供給される。そして、攪拌搬送路43gは、供給された余剰現像剤と回収現像剤とを攪拌しながら、攪拌スクリュウ43hで攪拌搬送路43gの現像剤搬送方向最下流側近傍であり、且つ供給搬送路43eの現像剤搬送方向最上流側近傍の位置まで搬送する。かかる位置まで搬送された現像剤は、第一仕切り壁の供給開口部を通じて供給搬送路43eに進入する。 The recovered developer sent from the developing roller 43a to the recovery transport path 43f and transported by the recovery screw 43d to the vicinity of the most downstream in the developer transport direction of the recovery transport path 43f is transferred to the stirring transport path 43g through the recovery opening of the second partition wall. Be supplied. Then, the stirring transport path 43g is near the most downstream side of the stirring transport path 43g in the developer transport direction with the stirring screw 43h while stirring the supplied surplus developer and the recovery developer, and the supply transport path 43e. The developer is transported to a position near the most upstream side in the transport direction. The developer transported to such a position enters the supply transport path 43e through the supply opening of the first partition wall.

攪拌搬送路43gでは、攪拌スクリュウ43hによって、回収現像剤、余剰現像剤及び現像剤補給口から必要に応じて補給されるトナーを、回収搬送路43f及び供給搬送路43eの現像剤と逆方向に攪拌搬送する。そして、現像剤搬送方向最下流側近傍で連通している供給搬送路43eの現像剤搬送方向最上流側近傍に攪拌された現像剤を移送する。 In the stirring transfer path 43g, the recovery developer, the surplus developer, and the toner replenished as needed from the developer supply port by the stirring screw 43h are supplied in the opposite directions to the developer in the recovery transfer path 43f and the supply transfer path 43e. Stir and transport. Then, the agitated developer is transferred to the vicinity of the most upstream side in the developer transport direction of the supply transport path 43e communicating in the vicinity of the most downstream side in the developer transport direction.

攪拌搬送路43gの現像剤搬送方向最下流側近傍の供給開口部の真下付近には、トナー濃度センサーが設けられている。トナー濃度センサーからの出力に応じて、トナー補給制御装置が駆動されて、攪拌搬送路43g内にトナーが補給される。 A toner concentration sensor is provided in the vicinity of directly below the supply opening near the most downstream side in the developer transport direction of the stirring transport path 43 g. The toner replenishment control device is driven according to the output from the toner concentration sensor, and the toner is replenished in the stirring transfer path 43 g.

また、供給搬送路43eの搬送方向上流側端部(軸方向奥側端部)近傍には、現像剤排出口が形成されており、供給搬送路43eと排出搬送路43iとを連通する。供給搬送路43eの上流側端部に到達した現像剤の量が所定量よりも多くなると、現像剤排出口の高さまで現像剤が到達し、現像剤排出口を通過して排出搬送路43iへと現像剤が受け渡される。排出搬送路43iに受け渡された現像剤は、排出スクリュウ43jによって現像装置43の外部に設けられた排出現像剤回収部143c(図3参照)に回収される。このように現像剤を排出する構成を備えることにより、現像装置43内の現像剤の量を一定に保つことができる。また、現像装置43に補給するトナーとして、キャリアを含有するプレミックストナーを補給する場合は、劣化したキャリアがトナーとともに排出搬送路43iに排出され、キャリアが入れ替わることで、現像装置43内の現像剤の劣化を抑制することができる。 Further, a developer discharge port is formed in the vicinity of the upstream side end portion (axial direction back side end portion) of the supply transport path 43e in the transport direction, and communicates the supply transport path 43e and the discharge transport path 43i. When the amount of the developer that has reached the upstream end of the supply transport path 43e exceeds a predetermined amount, the developer reaches the height of the developer discharge port, passes through the developer discharge port, and reaches the discharge transport path 43i. And the developer is handed over. The developer delivered to the discharge transport path 43i is collected by the discharge screw 43j in the discharge developer recovery unit 143c (see FIG. 3) provided outside the developing apparatus 43. By providing the structure for discharging the developer in this way, the amount of the developer in the developing apparatus 43 can be kept constant. When premixed toner containing carriers is replenished as the toner to be replenished to the developing device 43, the deteriorated carriers are discharged to the discharge transport path 43i together with the toner, and the carriers are replaced to develop the developing in the developing device 43. Deterioration of the agent can be suppressed.

感光体クリーニング装置44は、感光体41の回転軸方向に長尺な弾性部材であるクリーニングブレード44a、廃トナー排出スクリュウ44b、潤滑剤塗布装置45などを備えている。クリーニングブレード44aにおけるその長尺方向に延びる一辺(当接辺)をエッジ部として感光体41の表面に押しつけて、感光体41表面上の転写残トナー等の不要な付着物を引き離し除去する。除去されたトナーは、廃トナー排出スクリュウ44bによって感光体クリーニング装置44の外に排出される。 The photoconductor cleaning device 44 includes a cleaning blade 44a, which is an elastic member long in the rotation axis direction of the photoconductor 41, a waste toner discharge screw 44b, a lubricant coating device 45, and the like. One side (contact side) of the cleaning blade 44a extending in the long direction is pressed against the surface of the photoconductor 41 as an edge portion to separate and remove unnecessary deposits such as transfer residual toner on the surface of the photoconductor 41. The removed toner is discharged to the outside of the photoconductor cleaning device 44 by the waste toner discharge screw 44b.

潤滑剤塗布装置45は、塗布ブラシとして潤滑剤塗布ブラシローラ45aと、固形潤滑剤45bと、均しブレード45cとから主に構成されている。固形潤滑剤45bは、ブラケット45dに保持され、加圧手段により潤滑剤塗布ブラシ側に加圧されている。潤滑剤塗布ブラシは、感光体41の回転方向に対して連れまわり方向に回転し、固形潤滑剤45bを削りとって感光体41上に潤滑剤を塗布する。均しブレード45cにおけるその長尺方向に延びる一辺(当接辺)をエッジ部として感光体41の表面に押しつけて、感光体41表面上の潤滑剤を均す。 The lubricant coating device 45 is mainly composed of a lubricant coating brush roller 45a, a solid lubricant 45b, and a leveling blade 45c as a coating brush. The solid lubricant 45b is held by the bracket 45d and is pressurized to the lubricant application brush side by the pressurizing means. The lubricant application brush rotates in the circumferential direction with respect to the rotation direction of the photoconductor 41, scrapes off the solid lubricant 45b, and applies the lubricant on the photoconductor 41. One side (contact side) of the leveling blade 45c extending in the long direction is pressed against the surface of the photoconductor 41 as an edge portion to level the lubricant on the surface of the photoconductor 41.

図1において、転写装置10は、中間転写ベルト11やベルトクリーニング装置17、4つの一次転写ローラ46などを有している。中間転写ベルト11は、張架ローラ14、駆動ローラ15、二次転写対向ローラ16を含む複数のローラによってテンション張架されている。そして、ベルト駆動モータによって駆動される駆動ローラ15の回転によって図中時計回りに無端移動せしめられる。 In FIG. 1, the transfer device 10 includes an intermediate transfer belt 11, a belt cleaning device 17, four primary transfer rollers 46, and the like. The intermediate transfer belt 11 is tension-tensioned by a plurality of rollers including a tension roller 14, a drive roller 15, and a secondary transfer opposed roller 16. Then, the rotation of the drive roller 15 driven by the belt drive motor causes the endless movement in the clockwise direction in the figure.

4つの一次転写ローラ46は、それぞれ中間転写ベルト11の内周面側に接触するように配設され、電源から一次転写バイアスの印加を受ける。また、中間転写ベルト11をその内周面側から感光体41に向けて押圧してそれぞれ一次転写ニップを形成する。各一次転写ニップには、一次転写バイアスの影響により、感光体と一次転写ローラとの間に一次転写電界が形成される。感光体41上のトナー像は、この一次転写電界やニップ圧の影響によって中間転写ベルト11上に一次転写される。 Each of the four primary transfer rollers 46 is arranged so as to come into contact with the inner peripheral surface side of the intermediate transfer belt 11, and receives the application of the primary transfer bias from the power source. Further, the intermediate transfer belt 11 is pressed from the inner peripheral surface side thereof toward the photoconductor 41 to form a primary transfer nip. In each primary transfer nip, a primary transfer electric field is formed between the photoconductor and the primary transfer roller due to the influence of the primary transfer bias. The toner image on the photoconductor 41 is primarily transferred onto the intermediate transfer belt 11 by the influence of the primary transfer electric field and the nip pressure.

また、転写装置10は、二次転写手段を構成する二次転写ローラ22を中間転写ベルト11の下方に有している。この二次転写ローラ22が中間転写ベルト11を介して二次転写対向ローラ16に圧接するようになっている。そして、この二次転写ローラ22が、自らと中間転写ベルト11との間に送り込まれる記録シートに対し、中間転写ベルト11上のトナー画像を一括二次転写する。二次転写対向ローラ16よりも中間転写ベルト11表面移動方向下流側には、ベルトクリーニング装置17が設けられている。ベルトクリーニング装置17は、回転駆動するベルトクリーニングブラシローラ17aが設けられており、このベルトクリーニングブラシローラ17aによって画像転写後に中間転写ベルト11の表面に残留する残留トナーが除去される。また、ベルトクリーニング装置17には、潤滑剤塗布機構を備えており、潤滑剤塗布機構のブラシローラ17bを介して、中間転写ベルト11の表面に潤滑剤を塗布している。 Further, the transfer device 10 has a secondary transfer roller 22 constituting the secondary transfer means below the intermediate transfer belt 11. The secondary transfer roller 22 is brought into pressure contact with the secondary transfer opposed roller 16 via the intermediate transfer belt 11. Then, the secondary transfer roller 22 collectively transfers the toner image on the intermediate transfer belt 11 to the recording sheet sent between itself and the intermediate transfer belt 11. A belt cleaning device 17 is provided on the downstream side of the intermediate transfer belt 11 in the surface moving direction with respect to the secondary transfer opposed roller 16. The belt cleaning device 17 is provided with a belt cleaning brush roller 17a that is driven to rotate, and the belt cleaning brush roller 17a removes residual toner remaining on the surface of the intermediate transfer belt 11 after image transfer. Further, the belt cleaning device 17 is provided with a lubricant application mechanism, and the lubricant is applied to the surface of the intermediate transfer belt 11 via the brush roller 17b of the lubricant application mechanism.

二次転写ローラ22の紙搬送方向下流側には、記録シート上に形成されたトナー画像をシート表面に定着せしめる定着装置25が設けられている。無端状の定着ベルト26には定着加圧ローラ27が圧接されている。画像転写後の記録シートは、一対のローラ23間に架け渡された無端状の搬送ベルト24によって定着装置25へ搬送される。また、二次転写ローラ22の下方には、シート表裏両面に画像を形成する際にシートを反転させるシート反転装置28が設けられている。 A fixing device 25 for fixing the toner image formed on the recording sheet to the sheet surface is provided on the downstream side of the secondary transfer roller 22 in the paper transport direction. A fixing pressure roller 27 is pressure-welded to the endless fixing belt 26. The recording sheet after image transfer is conveyed to the fixing device 25 by the endless transfer belt 24 spanned between the pair of rollers 23. Further, below the secondary transfer roller 22, a sheet reversing device 28 for reversing the sheet when forming an image on both the front and back surfaces of the sheet is provided.

以上の構成を具備する複写機でカラー原稿のコピーをとるときには、コンタクトガラス上にセットされた原稿の画像をスキャナ部3によって読み取る。また、中間転写ベルト11を回転させて、公知の画像形成プロセスによって各感光体41上にそれぞれトナー像を形成する。次に各感光体上に形成したトナー像を順次重ね合わせて中間転写ベルト11に一次転写して、中間転写ベルト11上に4色重ね合わせトナー像を形成する。 When a color original is copied by a copying machine having the above configuration, the image of the original set on the contact glass is read by the scanner unit 3. Further, the intermediate transfer belt 11 is rotated to form a toner image on each photoconductor 41 by a known image forming process. Next, the toner images formed on each photoconductor are sequentially superposed and primaryly transferred to the intermediate transfer belt 11 to form a four-color superposed toner image on the intermediate transfer belt 11.

一方、中間転写ベルト11に対する4色重ね合わせトナー像の画像形成動作と並行して、給紙部2の選択された給紙トレイ21から記録シートを1枚ずつ分離給紙して、レジストローラ29に向けて搬送する。分離搬送された記録シートは、レジストローラ29のニップに突き当たることによって搬送が一時止められて待機される。レジストローラ29は、中間転写ベルト11上に形成された4色重ね合わせトナー像と、記録シートの先端との位置関係を所定の位置にするように、タイミングをとって回転駆動が開始される。このレジストローラ29の回転により、待機されている記録シートが再び給紙される。これにより、この記録シートの所定位置に対し、二次転写ローラ22によって中間転写ベルト11上の4色重ね合わせトナー像が二次転写されて、記録シート上にフルカラートナー像が形成される。 On the other hand, in parallel with the image forming operation of the four-color superimposed toner image on the intermediate transfer belt 11, the recording sheets are separately fed one by one from the selected paper feed tray 21 of the paper feed unit 2, and the resist roller 29 is fed. Transport towards. The separately transported recording sheet abuts on the nip of the resist roller 29 to temporarily stop the transfer and stand by. The resist roller 29 is started to be rotationally driven at a timing so that the positional relationship between the four-color superimposed toner image formed on the intermediate transfer belt 11 and the tip of the recording sheet is set to a predetermined position. The rotation of the resist roller 29 causes the waiting recording sheet to be fed again. As a result, the four-color superimposed toner image on the intermediate transfer belt 11 is secondarily transferred to the predetermined position of the recording sheet by the secondary transfer roller 22, and a full-color toner image is formed on the recording sheet.

このようにしてフルカラートナー像が形成された記録シートは、二次転写ローラ22よりも搬送経路の下流側にある定着装置25に送り込まれる。この定着装置25は、二次転写ローラ22によって二次転写されたフルカラートナー像を記録シート上に定着せしめるものである。フルカラートナー像が定着された記録シートは、排紙ローラ30によって装置外部へ排紙される。記録シートの両面に画像を形成する両面プリントモードにおいて、第一面だけにフルカラートナー像を定着させた記録シートが定着装置25から排出された場合には、その記録シートは排紙ローラ30ではなく、シート反転装置28に送られる。そして、シート反転装置28によって表裏面を反転せしめられた後、レジストローラ29に再搬送される。その後、二次転写ローラ22と定着装置25とを経由することで、第二面にも、フルカラー画像が形成される。 The recording sheet on which the full-color toner image is formed in this way is sent to the fixing device 25 located on the downstream side of the transport path from the secondary transfer roller 22. The fixing device 25 fixes the full-color toner image secondarily transferred by the secondary transfer roller 22 on the recording sheet. The recording sheet on which the full-color toner image is fixed is ejected to the outside of the apparatus by the paper ejection roller 30. In the double-sided print mode in which an image is formed on both sides of the recording sheet, when the recording sheet in which the full-color toner image is fixed only on the first surface is ejected from the fixing device 25, the recording sheet is not the paper ejection roller 30. , Is sent to the sheet reversing device 28. Then, after the front and back surfaces are inverted by the sheet inversion device 28, the sheets are re-conveyed to the resist roller 29. After that, a full-color image is also formed on the second surface by passing through the secondary transfer roller 22 and the fixing device 25.

図3は、プロセスカートリッジ40の奥側斜視図である。
プロセスカートリッジ40の奥側には、感光体41に設けられた感光体入力ジョイント141が配置されている。感光体入力ジョイント141は、装置本体に設けられた感光体出力ジョイントに連結され、感光体出力ジョイントを介してドラムモータの駆動力が伝達されて、感光体41が回転駆動する。
FIG. 3 is a rear perspective view of the process cartridge 40.
A photoconductor input joint 141 provided on the photoconductor 41 is arranged on the back side of the process cartridge 40. The photoconductor input joint 141 is connected to a photoconductor output joint provided in the main body of the apparatus, and the driving force of the drum motor is transmitted via the photoconductor output joint to rotationally drive the photoconductor 41.

また、現像ローラの軸の奥側端部には、現像ジョイントを構成する現像入力ジョイント143aが取り付けられている。現像入力ジョイント143aは、装置本体に設けられた現像モータの駆動力が伝達され回転駆動する現像出力軸の手前側端部に設けられた現像ジョイントの現像出力ジョイントに駆動連結される。 Further, a development input joint 143a constituting a development joint is attached to the rear end of the shaft of the development roller. The development input joint 143a is driven and connected to the development output joint of the development joint provided at the front end of the development output shaft which is rotationally driven by transmitting the driving force of the development motor provided in the main body of the apparatus.

供給スクリュウ43bの軸には、後述するスクリュウジョイント50を構成するスクリュウ入力ジョイント53が取り付けられている。スクリュウ入力ジョイント53は、スクリュウジョイントを構成する装置本体側の部材(スクリュウ出力ジョイント51,中間部材52)を介して現像モータの駆動力が伝達されて、供給スクリュウ43bが回転駆動する。供給スクリュウ43bの軸には、回収スクリュウ43dの軸に取り付けられた回収ギヤ143eと噛み合うギヤ143dが取り付けられている。供給スクリュウ43bに伝達された駆動力は、このギヤ143dと回収ギヤ143eとを介して回収スクリュウ43dに伝達され回収スクリュウが回転駆動する。また、供給スクリュウの軸の手前側端部には、攪拌スクリュウ43hの軸に取り付けられた攪拌ギヤと、排出スクリュウ43jの軸に取り付けられた排出ギヤとが噛み合うギヤが取り付けられている。供給スクリュウ43bに伝達された駆動力が、これらギヤを介して攪拌スクリュウ43hに伝達され、攪拌スクリュウ43hおよび排出スクリュウ43jが回転駆動する。 A screw input joint 53 constituting a screw joint 50, which will be described later, is attached to the shaft of the supply screw 43b. In the screw input joint 53, the driving force of the developing motor is transmitted via the members (screw output joint 51, intermediate member 52) on the device main body side constituting the screw joint, and the supply screw 43b is rotationally driven. A gear 143d that meshes with a recovery gear 143e attached to the shaft of the recovery screw 43d is attached to the shaft of the supply screw 43b. The driving force transmitted to the supply screw 43b is transmitted to the recovery screw 43d via the gear 143d and the recovery gear 143e, and the recovery screw is rotationally driven. Further, at the front end of the shaft of the supply screw, a gear that meshes with the stirring gear attached to the shaft of the stirring screw 43h and the discharge gear attached to the shaft of the discharge screw 43j is attached. The driving force transmitted to the supply screw 43b is transmitted to the stirring screw 43h via these gears, and the stirring screw 43h and the discharging screw 43j are rotationally driven.

潤滑剤塗布ブラシローラ45aの軸の奥側端部には、ブラシジョイントのブラシ入力ジョイント142が取り付けられている。ブラシジョイントは、後述するように、スクリュウジョイント50と同様のジョイントが用いられている。クリーニングモータの駆動力がブラシジョイントを構成する装置本体側の部材(出力ジョイント,中間部材)を介して伝達され、潤滑剤塗布ブラシローラ45aが回転駆動する。また、潤滑剤塗布ブラシローラ45aの手前側には、廃トナー排出スクリュウ44bに駆動力を伝達するためのギヤを有している。潤滑剤塗布ブラシローラ45aに伝達された駆動力が、上記ギヤを介して廃トナー排出スクリュウ44bに伝達され、廃トナー排出スクリュウ44bが回転駆動する。 A brush input joint 142 of a brush joint is attached to the inner end of the shaft of the lubricant application brush roller 45a. As the brush joint, the same joint as the screw joint 50 is used as described later. The driving force of the cleaning motor is transmitted via the members (output joint, intermediate member) on the device main body side constituting the brush joint, and the lubricant-applied brush roller 45a is rotationally driven. Further, a gear for transmitting a driving force to the waste toner discharge screw 44b is provided on the front side of the lubricant application brush roller 45a. The driving force transmitted to the lubricant application brush roller 45a is transmitted to the waste toner discharge screw 44b via the gear, and the waste toner discharge screw 44b is rotationally driven.

また、プロセスカートリッジ40の奥側には、感光体41と現像ローラ43aとの間の現像ギャップが、規定のギャップとなるように、感光体41と現像ローラ43aとを位置決めする位置決め面板148が取り付けられている。 Further, a positioning face plate 148 for positioning the photoconductor 41 and the developing roller 43a is attached to the back side of the process cartridge 40 so that the developing gap between the photoconductor 41 and the developing roller 43a becomes a specified gap. Has been done.

また、プロセスカートリッジ40の奥側のブラシ入力ジョイント142の上方には、装置本体の電源部と電気的に接続するためのコネクタ147が設けられている。プロセスカートリッジ40を装置本体に取り付けると、このコネクタ147が、装置本体に設けられた本体コネクタに接続され、装置本体の電源部に接続される。これにより、帯電装置42や現像装置43に電力が供給され、帯電バイアスや現像バイアスが印加される。
また、プロセスカートリッジ40の奥側には、排出スクリュウ43jによって搬送された排出現像剤が回収される排出現像剤回収部143cや、廃トナー排出スクリュウ44bによって搬送された廃トナーが回収される廃トナー回収部146が設けられている。
Further, above the brush input joint 142 on the back side of the process cartridge 40, a connector 147 for electrically connecting to the power supply unit of the apparatus main body is provided. When the process cartridge 40 is attached to the main body of the device, the connector 147 is connected to the main body connector provided in the main body of the device and is connected to the power supply unit of the main body of the device. As a result, electric power is supplied to the charging device 42 and the developing device 43, and a charging bias and a developing bias are applied.
Further, on the back side of the process cartridge 40, there is a discharge developer recovery unit 143c in which the discharge developer transported by the discharge screw 43j is collected, and a waste toner in which the waste toner transported by the waste toner discharge screw 44b is collected. A recovery unit 146 is provided.

図4は、プロセスカートリッジの奥側と、装置本体に設けられた廃トナー経路とを示す斜視図であり、図5は、プロセスカートリッジ40の奥側と廃トナー経路と示す概略図である。
装置本体には、内部に搬送スクリュウが配置された廃トナー経路145および他端が廃トナー経路145に接続された排出ダクト144が設けられている。排出現像剤回収部143c下面には、排出口が設けられており、プロセスカートリッジ40が装置本体に装着されると、排出口が排出ダクト144に接続される。これにより、排出現像剤回収部143cに回収された排出現像剤は、排出口から排出された後、排出ダクト144を通って廃トナー経路145へ落下する。そして、廃トナー経路145の内部に配置された搬送スクリュウによって、廃トナー収容部へ搬送される。
FIG. 4 is a perspective view showing the back side of the process cartridge and the waste toner path provided in the main body of the apparatus, and FIG. 5 is a schematic view showing the back side of the process cartridge 40 and the waste toner path.
The main body of the apparatus is provided with a waste toner path 145 in which a transport screw is arranged and a discharge duct 144 in which the other end is connected to the waste toner path 145. A discharge port is provided on the lower surface of the discharge developer recovery unit 143c, and when the process cartridge 40 is attached to the main body of the apparatus, the discharge port is connected to the discharge duct 144. As a result, the discharge developer recovered by the discharge developer recovery unit 143c is discharged from the discharge port and then falls into the waste toner path 145 through the discharge duct 144. Then, it is conveyed to the waste toner accommodating portion by the transfer screw arranged inside the waste toner path 145.

また、廃トナー回収部146の下面にも排出口が設けられており、プロセスカートリッジ40が装置本体に装着されると、この排出口が廃トナー経路145に接続される。これにより、廃トナー回収部146に回収された廃トナーは、排出口から廃トナー経路145へ落下する。そして、廃トナー経路145の内部に配置された搬送スクリュウによって、廃トナー収容部へ搬送される。 Further, a discharge port is also provided on the lower surface of the waste toner collection unit 146, and when the process cartridge 40 is mounted on the main body of the apparatus, this discharge port is connected to the waste toner path 145. As a result, the waste toner collected by the waste toner collection unit 146 falls from the discharge port into the waste toner path 145. Then, it is conveyed to the waste toner accommodating portion by the transfer screw arranged inside the waste toner path 145.

図4、図5に示すように、スクリュウ入力ジョイント53の周囲には、位置決め面板148、排出現像剤回収部143c、排出ダクト144が配置されており、スクリュウ入力ジョイント53の周囲には、十分なスペースがない。また、ブラシ入力ジョイント142の周囲には、コネクタ147や廃トナー回収部146が配置されており、ブラシ入力ジョイント142の周囲も十分なスペースがない。そのため、装置本体と供給スクリュウとを駆動連結するためのスクリュウジョイントや、装置本体と潤滑剤塗布ブラシローラ45aとを駆動連結するためのブラシジョイントとして、外径が小さいジョイントを用いる必要がある。 As shown in FIGS. 4 and 5, a positioning face plate 148, a discharge developer recovery unit 143c, and a discharge duct 144 are arranged around the screw input joint 53, and sufficient around the screw input joint 53. There is no space. Further, a connector 147 and a waste toner collecting unit 146 are arranged around the brush input joint 142, and there is not enough space around the brush input joint 142. Therefore, it is necessary to use a joint having a small outer diameter as a screw joint for driving and connecting the apparatus main body and the supply screw, and as a brush joint for driving and connecting the apparatus main body and the lubricant application brush roller 45a.

また、製造誤差や組み付け誤差などにより供給スクリュウ43bの軸中心が、スクリュウ出力ジョイントの軸中心に対してずれる所謂軸心ずれや、一方の軸心が他方の軸心に対して傾く所謂偏角が生じる場合がある。 Further, there is a so-called axial misalignment in which the axial center of the supply screw 43b is deviated from the axial center of the screw output joint due to manufacturing error or assembly error, and a so-called declination in which one axial center is tilted with respect to the other axial center. May occur.

例えば、ジョイントとして、一方を外歯ギヤ、他方を内歯ギヤとした場合、軸心ずれが生じたとき、歯の位置が、軸心ずれがないときよりも、軸心ずれ方向にずれる。その結果、軸心ずれ方向に対して回転方向に90°回転した位置においては、歯同士の接触圧が高くなり、逆に軸心ずれ方向に対して回転方向と逆方向に90°回転した位置においては、歯同士の接触圧が低くなる。このような力のアンバランスが生じることにより、軸心ずれがあると、ジョイント内での駆動伝達時において、スクリュウジョイントに軸反力が発生する。 For example, when one of the joints is an external gear and the other is an internal gear, when the axial misalignment occurs, the position of the teeth shifts in the axial misalignment direction as compared with the case where there is no axial misalignment. As a result, at the position rotated 90 ° in the rotational direction with respect to the axial misalignment direction, the contact pressure between the teeth becomes high, and conversely, the position rotated 90 ° in the direction opposite to the rotational direction with respect to the axial misalignment direction. In, the contact pressure between the teeth becomes low. If there is an axial misalignment due to such an imbalance of force, an axial reaction force is generated in the screw joint at the time of drive transmission in the joint.

このジョイント部で発生した軸反力が供給スクリュウや現像ローラを回転自在に支持する現像ケーシングを介して、現像ローラの軸に加わる。その結果、現像ローラ43aが、スクリュウジョイントで発生した軸反力により感光体41に対して近づいたり離れたりして、感光体41と現像ローラ43aとの間の現像ギャップが変動してしまう。これにより、スクリュウジョイントの回転周期で画像濃度にムラが生じてしまうおそれがある。
また、偏角があると、供給スクリュウの回転速度が周期変動し、現像ローラへの現像剤の供給量が変動する。その結果、現像ムラが発生するおそれがある。
The axial reaction force generated at this joint portion is applied to the shaft of the developing roller via the supply screw and the developing casing that rotatably supports the developing roller. As a result, the developing roller 43a moves closer to or further from the photoconductor 41 due to the axial reaction force generated at the screw joint, and the developing gap between the photoconductor 41 and the developing roller 43a fluctuates. As a result, the image density may become uneven in the rotation cycle of the screw joint.
Further, if there is an argument, the rotation speed of the supply screw fluctuates periodically, and the amount of the developer supplied to the developing roller fluctuates. As a result, uneven development may occur.

また、軸心ずれによりブラシジョイントにブラシジョイントの一回転を1周期する軸反力が発生すると、潤滑剤塗布ブラシローラ45aの感光体41との当接圧が変動し、感光体41の負荷トルクが周期変動する。その結果、感光体41の回転速度が、ブラシジョイントの回転周期で変動し、ブラシジョイントの回転周期で画像濃度にムラが生じてしまうおそれがある。また、偏角があると、ブラシローラの回転速度が周期変動し、その速度変動によって、感光体41の負荷トルクが周期変動し、感光体41の回転速度が周期変動するおそれもある。 Further, when an axial reaction force is generated in the brush joint by one rotation of the brush joint due to the misalignment of the axis, the contact pressure of the lubricant-applied brush roller 45a with the photoconductor 41 fluctuates, and the load torque of the photoconductor 41 is changed. Fluctuates periodically. As a result, the rotation speed of the photoconductor 41 fluctuates in the rotation cycle of the brush joint, and there is a possibility that the image density becomes uneven in the rotation cycle of the brush joint. Further, if there is an argument, the rotation speed of the brush roller fluctuates periodically, and the speed fluctuation may cause the load torque of the photoconductor 41 to fluctuate periodically, and the rotation speed of the photoconductor 41 may fluctuate periodically.

そのため、スクリュウジョイントやブラシジョイントとして、軸心ずれや偏角を吸収して、軸反力の発生を抑制できるジョイントを用いる必要がある。 Therefore, it is necessary to use a screw joint or a brush joint that can absorb the axial deviation and the declination and suppress the generation of the axial reaction force.

このように、本実施形態においては、スクリュウジョイントやブラシジョイントとして、小型で軸反力の発生を抑制できるジョイントを用いる必要がある。そこで、本実施形態においては、スクリュウジョイントやブラシジョイントとして、以下に説明するジョイントを用いた。以下の説明では、代表してスクリュウジョイントについて説明するが、ブラシジョイントも同様な構成である。 As described above, in the present embodiment, it is necessary to use a small joint capable of suppressing the generation of axial reaction force as the screw joint or brush joint. Therefore, in the present embodiment, the joints described below are used as screw joints and brush joints. In the following description, the screw joint will be described as a representative, but the brush joint has the same configuration.

図6は、供給スクリュウ43bに現像モータの駆動力を伝達するスクリュウ駆動伝達装置60の概略構成図である。図6の左側は、装置の手前側であり、右側が、駆動装置などが配置された装置の奥側である。また、図7は、スクリュウ駆動伝達装置の装置本体側の構成を示す斜視図である。
スクリュウ駆動伝達装置60は、現像モータの駆動力により回転駆動するφ6[mm]の駆動出力軸61を有している。駆動出力軸61は、第一軸受63、第二軸受64を介して装置本体の第一側板71aと、第二側板71bとに回転自在に支持されている。駆動出力軸61の第一側板71aと第二側板71bとの間に、ギヤを介して現像モータの駆動力が伝達される駆動ギヤ62が駆動出力軸61と一体で回転するように設けられている。具体的には、駆動出力軸61に設けられた平行ピン62aに嵌合することで、駆動ギヤ62が駆動出力軸61と一体で回転するように設けられている。
FIG. 6 is a schematic configuration diagram of a screw drive transmission device 60 that transmits the driving force of the developing motor to the supply screw 43b. The left side of FIG. 6 is the front side of the device, and the right side is the back side of the device in which the drive device and the like are arranged. Further, FIG. 7 is a perspective view showing the configuration of the screw drive transmission device on the device main body side.
The screw drive transmission device 60 has a drive output shaft 61 of φ6 [mm] that is rotationally driven by the driving force of the developing motor. The drive output shaft 61 is rotatably supported by the first side plate 71a and the second side plate 71b of the apparatus main body via the first bearing 63 and the second bearing 64. A drive gear 62, in which the driving force of the developing motor is transmitted via a gear, is provided between the first side plate 71a and the second side plate 71b of the drive output shaft 61 so as to rotate integrally with the drive output shaft 61. There is. Specifically, the drive gear 62 is provided so as to rotate integrally with the drive output shaft 61 by fitting into the parallel pin 62a provided on the drive output shaft 61.

スクリュウジョイント50は、駆動出力軸61の手前側端部に取り付けられた出力部材たるスクリュウ出力ジョイント51と、回転体である供給スクリュウの軸の奥側端部に取り付けられた入力部材たるスクリュウ入力ジョイント53と、スクリュウ出力ジョイントに保持された中間部材52とを有している。スクリュウ出力ジョイント51、中間部材52及びスクリュウ入力ジョイント53は、樹脂からなっている。スクリュウ出力ジョイント51およびスクリュウ入力ジョイント53は、PPS(ポリフェニレンスルファイド)からなり、中間部材52は、POM(ポリアセタール)からなっている。 The screw joint 50 includes a screw output joint 51 which is an output member attached to the front end of the drive output shaft 61 and a screw input joint which is an input member attached to the back end of the shaft of the supply screw which is a rotating body. It has 53 and an intermediate member 52 held by the screw output joint. The screw output joint 51, the intermediate member 52, and the screw input joint 53 are made of resin. The screw output joint 51 and the screw input joint 53 are made of PPS (polyphenylene sulfide), and the intermediate member 52 is made of POM (polyacetal).

スクリュウ出力ジョイント51と、第二軸受64との間には、スプリング66と、駆動出力軸61に対して軸方向にスライド移動可能なリング状のスライド部材67とが配置されている。スプリング66の奥側端部は、第二軸受64の手前側に配置されたバネ受け65に当接している。スプリング66の手前側端部は、スライド部材67に当接しており、スライド部材67を、手前側に付勢している。スライド部材67は、スクリュウ出力ジョイント51の奥側端部に突き当たっており、手前側への移動が規制されている。 A spring 66 and a ring-shaped slide member 67 that can slide in the axial direction with respect to the drive output shaft 61 are arranged between the screw output joint 51 and the second bearing 64. The rear end of the spring 66 is in contact with the spring receiver 65 arranged on the front side of the second bearing 64. The front end of the spring 66 is in contact with the slide member 67, and the slide member 67 is urged toward the front. The slide member 67 abuts on the back end of the screw output joint 51, and its movement to the front side is restricted.

図8は、駆動出力軸61の手前側端部を示す拡大図である。
駆動出力軸61の手前側(プロセスカートリッジ40側、図中左側)には、駆動出力軸61の直径よりも短い直径のジョイント取り付け部61aが形成されている。ジョイント取り付け部61aの手前側は、軸方向に垂直な断面が角丸長方形状(一対の円弧形状部(円周面部)と、互いに平行な一対の直線形状部(平面部)とからなる)となっている。
FIG. 8 is an enlarged view showing a front end portion of the drive output shaft 61.
A joint mounting portion 61a having a diameter shorter than the diameter of the drive output shaft 61 is formed on the front side (process cartridge 40 side, left side in the drawing) of the drive output shaft 61. The front side of the joint mounting portion 61a has a rectangular cross section with rounded corners perpendicular to the axial direction (composed of a pair of arc-shaped portions (circumferential surface portions) and a pair of linear-shaped portions (planar portions) parallel to each other). It has become.

図9は、スクリュウ出力ジョイント51の斜視図である。
スクリュウ出力ジョイント51は、駆動伝達部たる出力外歯ギヤ51cと、筒状部51aと、孔の形状が角丸長方形状の駆動受け部51bとを有している。スクリュウ出力ジョイント51を手前側から駆動出力軸61に挿入し、筒状部51aをジョイント取り付け部61aの円形の部分に嵌め合わせ、駆動受け部51bをジョイント取り付け部61aの断面角丸長方形状部分161に嵌めわせる。これにより、図8に示すように、スクリュウ出力ジョイント51が、駆動出力軸61と一体的に回転するように、駆動出力軸61に取り付けられる。
FIG. 9 is a perspective view of the screw output joint 51.
The screw output joint 51 has an output external tooth gear 51c which is a drive transmission unit, a tubular portion 51a, and a drive receiving portion 51b having a rectangular hole shape. The screw output joint 51 is inserted into the drive output shaft 61 from the front side, the tubular portion 51a is fitted into the circular portion of the joint mounting portion 61a, and the drive receiving portion 51b is fitted into the rectangular portion 161 having a rounded cross section of the joint mounting portion 61a. Fit in. As a result, as shown in FIG. 8, the screw output joint 51 is attached to the drive output shaft 61 so as to rotate integrally with the drive output shaft 61.

図10は、スクリュウ駆動伝達装置60の装置本体側を、手前側から見た正面図である。
図10に示すように、駆動出力軸61の手前側先端161aは、ジョイント取り付け部61aの断面角丸長方形状部分161の短手方向長さを直径とする円柱形状であり、その外周面に溝が形成されている。そして、この溝部にEリング68を嵌め込むことで、このEリング68によりスクリュウ出力ジョイント51を、駆動出力軸61の手前側端部から抜け出るのを防止する。すなわち、このEリング68が、スクリュウ出力ジョイント51の抜け止め手段として機能している。
FIG. 10 is a front view of the device main body side of the screw drive transmission device 60 as viewed from the front side.
As shown in FIG. 10, the front end 161a of the drive output shaft 61 has a cylindrical shape having a diameter in the lateral direction of a rectangular portion 161 having a rounded cross section of the joint mounting portion 61a, and has a groove on the outer peripheral surface thereof. Is formed. Then, by fitting the E-ring 68 into the groove portion, the screw output joint 51 is prevented from coming out from the front end portion of the drive output shaft 61 by the E-ring 68. That is, the E-ring 68 functions as a means for preventing the screw output joint 51 from coming off.

図11は、中間部材52の斜視図である。
中間部材52は、内周面に中継駆動伝達部たる内歯ギヤ52aを有し、外径が駆動出力軸61の直径の2倍のφ12[mm]の筒状であり、奥側端部にスクリュウ出力ジョイント51から抜けるのを防止する抜け止め部52cが形成されている。
FIG. 11 is a perspective view of the intermediate member 52.
The intermediate member 52 has an internal tooth gear 52a which is a relay drive transmission unit on the inner peripheral surface, and has a tubular shape having an outer diameter of φ12 [mm] which is twice the diameter of the drive output shaft 61, and is at the back end portion. A retaining portion 52c is formed to prevent the screw output joint 51 from coming off.

中間部材52は、装置本体の第一側板71aと、第二側板71bに取り付ける前の駆動出力軸61の奥側端部からはめ込み、内歯ギヤ52aを駆動出力軸61の手前側端部に取り付けられたスクリュウ出力ジョイント51の出力外歯ギヤ51cに噛み合せる。内歯ギヤ52aを出力外歯ギヤ51cに噛み合せることで、図8に示すように、抜け止め部52cが、出力外歯ギヤ51cと対向する。これにより、中間部材52が、スクリュウ出力ジョイントから抜け出すのを防止することができ、中間部材52がスクリュウ出力ジョイント51に保持される。 The intermediate member 52 is fitted from the first side plate 71a of the apparatus main body and the back end of the drive output shaft 61 before being attached to the second side plate 71b, and the internal tooth gear 52a is attached to the front end of the drive output shaft 61. It meshes with the output external tooth gear 51c of the screw output joint 51. By engaging the internal tooth gear 52a with the output external tooth gear 51c, the retaining portion 52c faces the output external tooth gear 51c as shown in FIG. As a result, the intermediate member 52 can be prevented from coming out of the screw output joint, and the intermediate member 52 is held by the screw output joint 51.

内歯ギヤ52aを出力外歯ギヤ51cに噛み合せたら、駆動出力軸61の奥側端部からスライド部材67、スプリング66、バネ受け65、第二軸受64、第一軸受63の順にはめ込んでいく。そして、第二軸受64を第二側板71bに嵌合させ、第一軸受63を第一側板71aに嵌合させて、駆動出力軸61を装置本体に取り付ける。 When the internal gear 52a is engaged with the output external gear 51c, the slide member 67, the spring 66, the spring receiver 65, the second bearing 64, and the first bearing 63 are fitted in this order from the rear end of the drive output shaft 61. Then, the second bearing 64 is fitted to the second side plate 71b, the first bearing 63 is fitted to the first side plate 71a, and the drive output shaft 61 is attached to the apparatus main body.

また、図11に示すように、内歯ギヤ52aの各内歯の手前側端部には、テーパ部52bが形成されている。このテーパ部52bは、手前側から奥側へ径方向および回転方向に傾斜する形状となっている。具体的には、図8の丸で囲んだAからわかるように歯厚が奥側に向けて徐々に厚くなり、かつ、図8の丸で囲んだBからわかるように、歯たけが、奥側に向けて徐々に長くなる形状となっている。 Further, as shown in FIG. 11, a tapered portion 52b is formed at the front end portion of each internal tooth of the internal tooth gear 52a. The tapered portion 52b has a shape that is inclined in the radial direction and the rotational direction from the front side to the back side. Specifically, as can be seen from the circled A in FIG. 8, the tooth thickness gradually increases toward the back side, and as can be seen from the circled B in FIG. It has a shape that gradually becomes longer toward the side.

本実施形態においては、中間部材52が、軸方向に対して傾き可能、且つ、軸方向にスライド可能にスクリュウ出力ジョイント51に保持されるように構成されている。具体的には、図8に示すように、抜け止め部52cの内径Dを、抜け止め部52cが対向するスクリュウ出力ジョイント51の筒状部51aの外径Eよりも長くし、スクリュウ出力ジョイント51の筒状部51aと所定の隙間を有して対向するように構成している。また、内歯ギヤ52aを、軸方向に真直ぐ延設させている。また、内歯ギヤ52aの歯底と、出力外歯ギヤ51cの歯先との間の隙間(内歯ギヤ52aの歯底円直径F−出力外歯ギヤ51cの歯先円直径G)である頂げきや、図10のCで囲む部分に示すように、内歯ギヤ52aの内歯と出力外歯ギヤ51cの外歯との間の回転方向の遊び(バックラッシ)を、中間部材52が所定角度傾くことができるように設定している。これにより、中間部材52が、所定角度、傾き可能、かつ、軸方向に移動可能にスクリュウ出力ジョイントに保持される。 In the present embodiment, the intermediate member 52 is configured to be held by the screw output joint 51 so as to be tiltable with respect to the axial direction and slidable in the axial direction. Specifically, as shown in FIG. 8, the inner diameter D of the retaining portion 52c is made longer than the outer diameter E of the tubular portion 51a of the screw output joint 51 with which the retaining portion 52c faces, so that the screw output joint 51 It is configured to face the tubular portion 51a of the above with a predetermined gap. Further, the internal tooth gear 52a is extended straight in the axial direction. Further, it is a gap between the tooth bottom of the internal tooth gear 52a and the tooth tip of the output external tooth gear 51c (the tooth bottom circle diameter F of the internal tooth gear 52a-the tooth tip circle diameter G of the output external tooth gear 51c). As shown in the top and the portion surrounded by C in FIG. 10, the intermediate member 52 determines the play (backlash) in the rotational direction between the internal teeth of the internal gear 52a and the external teeth of the output external gear 51c. It is set so that it can be tilted. As a result, the intermediate member 52 is held by the screw output joint so as to be tiltable at a predetermined angle and movable in the axial direction.

図12は、スクリュウ入力ジョイント53の斜視図である。
スクリュウ入力ジョイント53は、供給スクリュウの軸143bに取り付けられる取り付け部53bと、入力外歯ギヤ53aとを備えている。取り付け部53bは、角丸長方形状の孔部を有している。供給スクリュウの軸143bの奥側先端は、軸方向に垂直な断面が角丸長方形状をしている。この角丸長方形状の供給スクリュウの軸143bの奥側先端を、取り付け部53bの孔部に挿入することで、スクリュウ入力ジョイント53が供給スクリュウの軸143bと一体的に回転するように取り付けられる。
FIG. 12 is a perspective view of the screw input joint 53.
The screw input joint 53 includes a mounting portion 53b that is attached to the shaft 143b of the supply screw, and an input external tooth gear 53a. The mounting portion 53b has a rectangular hole with rounded corners. The inner tip of the shaft 143b of the supply screw has a rectangular cross section perpendicular to the axial direction. By inserting the inner end of the shaft 143b of the supply screw having a rounded corner shape into the hole of the mounting portion 53b, the screw input joint 53 is mounted so as to rotate integrally with the shaft 143b of the supply screw.

入力外歯ギヤ53aの各外歯の奥側端部には、中間部材52の内歯と同様のテーパ部53cが形成されている。すなわち、歯厚が手前側に向けて徐々に厚くなり、歯たけが、手前側に向けて徐々に長くなる形状のテーパ部53cである。 A tapered portion 53c similar to the internal teeth of the intermediate member 52 is formed at the inner end of each external tooth of the input external tooth gear 53a. That is, the tapered portion 53c has a shape in which the tooth thickness gradually increases toward the front side and the tooth injuries gradually increase toward the front side.

図13(a)は、中間部材52とスクリュウ入力ジョイント53とが駆動連結した状態を示す概略図であり、図13(b)は、中間部材52とスクリュウ入力ジョイント53とが非駆動連結状態でプロセスカートリッジを装置本体に装着したときの状態を示す概略図である。
プロセスカートリッジ40の装着時にスクリュウ入力ジョイント53の外歯が中間部材52の内歯に軸方向から当接するなどして、スクリュウ入力ジョイント53の入力外歯ギヤ53aが、中間部材52内に入り込まず、駆動連結しない場合がある。この場合は、図13(b)に示すように、中間部材52がスライド部材67を奥側へ押し込み、スプリング66を圧縮しながら、スライド部材67とともに奥側(図中右側)へ移動する。これにより、中間部材52とスクリュウ入力ジョイント53との駆動連結が行われなくても、プロセスカートリッジ40を装置本体に装着することができる。
FIG. 13A is a schematic view showing a state in which the intermediate member 52 and the screw input joint 53 are driven and connected, and FIG. 13B is a state in which the intermediate member 52 and the screw input joint 53 are not driven and connected. It is the schematic which shows the state when the process cartridge is attached to the apparatus main body.
When the process cartridge 40 is mounted, the external teeth of the screw input joint 53 abut on the internal teeth of the intermediate member 52 from the axial direction, so that the input external tooth gear 53a of the screw input joint 53 does not enter the intermediate member 52. It may not be driven and connected. In this case, as shown in FIG. 13B, the intermediate member 52 pushes the slide member 67 to the back side, compresses the spring 66, and moves to the back side (right side in the figure) together with the slide member 67. As a result, the process cartridge 40 can be mounted on the apparatus main body without the drive connection between the intermediate member 52 and the screw input joint 53.

現像モータを駆動して中間部材52が、スクリュウ出力ジョイント51とともに回転駆動すると、中間部材52の内歯が入力外歯ギヤ53aの外歯の間に位置する。すると、内歯ギヤ52aと入力外歯ギヤ53aとの突き当たりが外れ、中間部材52がスプリング66の付勢力により手前側(図中左側)へ移動する。これにより、図13(a)に示すように、入力外歯ギヤ53aが中間部材52に挿入され、入力外歯ギヤ53aと内歯ギヤ52aとが噛み合う。その結果、中間部材52とスクリュウ入力ジョイント53とが駆動連結され、中間部材52からスクリュウ入力ジョイント53に駆動伝達が行われる。 When the developing motor is driven and the intermediate member 52 is rotationally driven together with the screw output joint 51, the internal teeth of the intermediate member 52 are located between the external teeth of the input external tooth gear 53a. Then, the abutment between the internal tooth gear 52a and the input external tooth gear 53a is disengaged, and the intermediate member 52 moves to the front side (left side in the drawing) by the urging force of the spring 66. As a result, as shown in FIG. 13A, the input external tooth gear 53a is inserted into the intermediate member 52, and the input external tooth gear 53a and the internal tooth gear 52a mesh with each other. As a result, the intermediate member 52 and the screw input joint 53 are drive-connected, and drive transmission is performed from the intermediate member 52 to the screw input joint 53.

また、本実施形態では、中間部材52の内歯ギヤ52aの手前側端部と、スクリュウ入力ジョイントの入力外歯ギヤの奥側端部とにテーパ部52b,53cを設けている。中間部材52の内歯ギヤ52aの内歯と、スクリュウ入力ジョイントの入力外歯ギヤ53aの外歯との回転位相がほぼ合っている場合、上記内歯のテーパ部52bに入力外歯ギヤ53aの外歯のテーパ部53cが突き当たる。上述したように、各テーパ部52b,53cは、回転方向に対して傾斜している。よって、各テーパ部52b,53cにより案内され、スムーズに入力外歯ギヤ53aを、内歯ギヤ52aに噛み合せることができる。 Further, in the present embodiment, tapered portions 52b and 53c are provided at the front end portion of the internal tooth gear 52a of the intermediate member 52 and the rear end portion of the input external tooth gear of the screw input joint. When the internal teeth of the internal tooth gear 52a of the intermediate member 52 and the external teeth of the input external tooth gear 53a of the screw input joint are substantially matched in rotation phase, the input external tooth gear 53a is applied to the tapered portion 52b of the internal tooth. The tapered portion 53c of the external tooth abuts. As described above, the tapered portions 52b and 53c are inclined with respect to the rotation direction. Therefore, the input external tooth gear 53a can be smoothly meshed with the internal tooth gear 52a by being guided by the tapered portions 52b and 53c.

また、例えば、軸心ずれや偏角が生じていたり、中間部材52が自重により軸方向に対して傾いていたりなどして、中間部材52の手前側端部の中心と、スクリュウ入力ジョイント53の奥側端部の中心とがずれていることがある。各テーパ部52b,53cは、軸方向に対しても傾斜しているため、各テーパ部52b,53cにより、スクリュウ入力ジョイント53の入力外歯ギヤ53aを中間部材52に挿入されるように、中間部材52の軸方向に対する傾斜角度が変更される。その結果、軸心ずれや偏角が生じていたり、中間部材52が自重により軸方向に対して傾いていたりなどしても、スクリュウ入力ジョイント53の入力外歯ギヤ53aを中間部材内に挿入することができる。これにより、軸心ずれや偏角が生じていたり、中間部材52が自重により軸方向に対して傾いていたりなどしても、中間部材52とスクリュウ入力ジョイント53との駆動連結を行うことができる。 Further, for example, the center of the intermediate member 52 and the center of the front end portion of the intermediate member 52 and the screw input joint 53 may be caused by an axial misalignment or declination, or the intermediate member 52 being tilted with respect to the axial direction due to its own weight. It may be off center of the back edge. Since the tapered portions 52b and 53c are also inclined with respect to the axial direction, the tapered portions 52b and 53c are intermediate so that the input external tooth gear 53a of the screw input joint 53 is inserted into the intermediate member 52. The inclination angle of the member 52 with respect to the axial direction is changed. As a result, the input external tooth gear 53a of the screw input joint 53 is inserted into the intermediate member even if the axial center deviation or declination occurs or the intermediate member 52 is tilted with respect to the axial direction due to its own weight. be able to. As a result, the intermediate member 52 and the screw input joint 53 can be driven and connected even if the intermediate member 52 is displaced or declined or the intermediate member 52 is tilted with respect to the axial direction due to its own weight. ..

本実施形態においては、内歯ギヤ52aと出力外歯ギヤ51cとの隙間(バックラッシ、頂げき)、内歯ギヤ52aと入力外歯ギヤ53aとの隙間(バックラッシ、頂げき)、抜け止め部52cとスクリュウ出力ジョイント51の筒状部51aとの隙間を適宜設定して、中間部材52が軸方向に対して所定角度傾き可能となっている。よって、駆動出力軸61と供給スクリュウの軸143bとの間に軸心ずれがあった場合は、中間部材52が傾くことで、回転方向で歯同士の接触圧が高くなる箇所や歯同士の接触圧が低くなる箇所が生じるのを抑制することができる。これにより、力のアンバランスを抑制することができ、軸反力の発生を抑制できる。 In the present embodiment, the gap between the internal tooth gear 52a and the output external tooth gear 51c (backlash, crest), the gap between the internal tooth gear 52a and the input external tooth gear 53a (backlash, crest), and the retaining portion 52c. The intermediate member 52 can be tilted at a predetermined angle with respect to the axial direction by appropriately setting a gap between the screw output joint 51 and the tubular portion 51a of the screw output joint 51. Therefore, if there is an axial misalignment between the drive output shaft 61 and the shaft 143b of the supply screw, the intermediate member 52 is tilted so that the contact pressure between the teeth increases in the rotational direction or the contact between the teeth. It is possible to suppress the occurrence of a portion where the pressure becomes low. As a result, the imbalance of force can be suppressed, and the generation of axial reaction force can be suppressed.

また、中間部材52を設けることで、偏角があった場合は、中間部材52が、スクリュウ出力ジョイントに対して所定角度傾き、スクリュウ入力ジョイント53に対して、スクリュウ出力ジョイント51に対する傾斜角度と同角度傾く。これにより、スクリュウ出力ジョイント51から中間部材52への駆動伝達時に発生した速度変動が、中間部材52からスクリュウ入力ジョイント53への駆動伝達時に発生する速度変動で相殺される。これにより、偏角があっても、供給スクリュウの回転速度変動を抑制することができる。 Further, by providing the intermediate member 52, when there is an argument, the intermediate member 52 is tilted by a predetermined angle with respect to the screw output joint, and is the same as the tilt angle with respect to the screw output joint 51 with respect to the screw input joint 53. Tilt the angle. As a result, the speed fluctuation generated when the drive is transmitted from the screw output joint 51 to the intermediate member 52 is offset by the speed fluctuation generated when the drive is transmitted from the intermediate member 52 to the screw input joint 53. As a result, fluctuations in the rotational speed of the supply screw can be suppressed even if there is an argument.

また、中間部材52とスクリュウ入力ジョイント53とが駆動連結する駆動連結位置まで中間部材52が移動すると、スライド部材67が、スクリュウ出力ジョイント51の筒状部51aの端部に突き当たる。これにより、中間部材52が駆動連結位置に位置するときは、スプリング66の付勢力が中間部材52に作用することがない。その結果、中間部材52をスムーズに傾かせることができ、良好に軸心ずれや偏角を吸収することができる。 Further, when the intermediate member 52 moves to the drive connection position where the intermediate member 52 and the screw input joint 53 are drive-connected, the slide member 67 abuts on the end of the tubular portion 51a of the screw output joint 51. As a result, when the intermediate member 52 is located at the drive connection position, the urging force of the spring 66 does not act on the intermediate member 52. As a result, the intermediate member 52 can be smoothly tilted, and the misalignment and declination can be satisfactorily absorbed.

また、スライド部材67を無くして、スプリング66の手前側端部を、筒状部51aに直接当接させて、中間部材52が駆動連結位置に位置するとき、スプリング66の付勢力を中間部材52に作用させないようにしてもよい。これにより、部品点数を削減することができ、装置を安価にすることができるという利点がある。 Further, when the slide member 67 is eliminated and the front end portion of the spring 66 is directly brought into contact with the tubular portion 51a and the intermediate member 52 is located at the drive connecting position, the urging force of the spring 66 is applied to the intermediate member 52. It may not act on. This has the advantage that the number of parts can be reduced and the device can be inexpensive.

一方で、狭い空間にスクリュウジョイント50を配置できるようにするため、本実施形態では、中間部材52の外径を、駆動出力軸61の直径φ6[mm]の2倍以下にして、スクリュウジョイント50の小型化を図っている。このようにスクリュウジョイント50の小型化を図る結果、筒状部51aを、スプリング66の手前側端部が確実に当接できような厚みにすることが困難となる。そのため、スプリング66が、筒状部51aを乗り越えて、駆動連結位置に位置する中間部材52の抜け止め部52cに当接し、駆動連結位置に位置する中間部材52にスプリング66の付勢力が作用し続けるおそれがある。 On the other hand, in order to allow the screw joint 50 to be arranged in a narrow space, in the present embodiment, the outer diameter of the intermediate member 52 is set to be twice or less the diameter φ6 [mm] of the drive output shaft 61, and the screw joint 50 is used. We are trying to reduce the size of. As a result of reducing the size of the screw joint 50 in this way, it becomes difficult to make the tubular portion 51a thick so that the front end portion of the spring 66 can be reliably contacted. Therefore, the spring 66 gets over the tubular portion 51a and comes into contact with the retaining portion 52c of the intermediate member 52 located at the drive connection position, and the urging force of the spring 66 acts on the intermediate member 52 located at the drive connection position. There is a risk of continuing.

これに対し、本実施形態では、筒状部51aとスプリング66との間にスライド部材67を設けている。これにより、小型化を図ったジョイントでも、中間部材52が駆動連結位置に位置するとき、スプリング66の付勢力を確実に中間部材52に作用させないようにできるという利点がある。 On the other hand, in the present embodiment, the slide member 67 is provided between the tubular portion 51a and the spring 66. As a result, even in a miniaturized joint, there is an advantage that the urging force of the spring 66 can be surely prevented from acting on the intermediate member 52 when the intermediate member 52 is located at the drive connecting position.

また、中間部材52が駆動連結位置に位置するとき、スプリング66が自由長となるように構成することで、スライド部材67を無くして、中間部材52が駆動連結位置に位置するとき、スプリング66の付勢力を中間部材52に作用させないようにすることも考えられる。しかし、この場合は、スプリング66の付勢力で、中間部材52を駆動連結位置まで移動させることができなくなるおそれがあり、好ましくない。 Further, when the intermediate member 52 is located at the drive connecting position, the spring 66 is configured to have a free length so that the slide member 67 is eliminated, and when the intermediate member 52 is located at the drive connecting position, the spring 66 It is also conceivable to prevent the urging force from acting on the intermediate member 52. However, in this case, the urging force of the spring 66 may make it impossible to move the intermediate member 52 to the drive connecting position, which is not preferable.

また、出力外歯ギヤ51cや入力外歯ギヤ53aの外歯を、クラウニング形状にするのが好ましい。
図14は、出力外歯ギヤ51cの外歯をクラウニング形状にした実施例を示す斜視図である。
クラウニング形状とは、歯厚方向にクラウニング形状をもっているという意味である。具体的には、図14に示すように、出力外歯ギヤ51cにおける歯幅中央部の歯厚が最大であり、歯幅方向両端側の歯厚が最小となるような形状である。入力外歯ギヤ53aの歯も図14と同様なクラウニング形状である。
Further, it is preferable that the external teeth of the output external tooth gear 51c and the input external tooth gear 53a have a crowning shape.
FIG. 14 is a perspective view showing an embodiment in which the external teeth of the output external tooth gear 51c have a crowning shape.
The crowning shape means that the tooth has a crowning shape in the tooth thickness direction. Specifically, as shown in FIG. 14, the shape is such that the tooth thickness at the center of the tooth width in the output external tooth gear 51c is the maximum, and the tooth thickness on both ends in the tooth width direction is the minimum. The teeth of the input external tooth gear 53a also have a crowning shape similar to that in FIG.

出力外歯ギヤ51cや入力外歯ギヤ53aの歯を、それぞれ、ピッチ円方向の厚みが軸方向に変化するクラウニング形状とし、規定の有効歯面(歯幅中央部)で中間部材52の内歯ギヤ52aと噛み合うように設計されている。出力外歯ギヤ51cや入力外歯ギヤ53aの外歯を、クラウニング形状とすることで、内歯に曲面で接触することになり、中間部材52をスムーズ傾かせせることができ、良好に軸心ずれや偏角を吸収することができ、軸反力を低減することができる。 The teeth of the output external tooth gear 51c and the input external tooth gear 53a each have a crowning shape in which the thickness in the pitch circular direction changes in the axial direction, and the internal teeth of the intermediate member 52 have a specified effective tooth surface (center portion of the tooth width). It is designed to mesh with the gear 52a. By forming the external teeth of the output external tooth gear 51c and the input external tooth gear 53a into a crowning shape, they come into contact with the internal teeth on a curved surface, and the intermediate member 52 can be smoothly tilted. The deviation and declination can be absorbed, and the axial reaction force can be reduced.

中間部材52が軸方向に対して傾いてスクリュウ入力ジョイント53と駆動連結している場合、回転駆動時において、出力外歯ギヤ51cや入力外歯ギヤ53aの外歯が、内歯と摺動するため、外歯や内歯が摩耗する。出力外歯ギヤ51cや入力外歯ギヤ53aの外歯をクラウニング形状とした場合、外歯が摩耗すると、内歯に対して曲面で接触していたものが、平面で接触することになる。その結果、中間部材52が傾きづらくなり、軸反力の抑制効果が低減するおそれがある。 When the intermediate member 52 is tilted with respect to the axial direction and is driven and connected to the screw input joint 53, the external teeth of the output external tooth gear 51c and the input external tooth gear 53a slide with the internal teeth during rotational drive. Therefore, the external teeth and internal teeth are worn. When the external teeth of the output external tooth gear 51c and the input external tooth gear 53a have a crowning shape, when the external teeth are worn, those that were in contact with the internal teeth on a curved surface come into contact with each other on a flat surface. As a result, the intermediate member 52 becomes difficult to tilt, and the effect of suppressing the axial reaction force may be reduced.

一般的に、ヤング率が大きい方が硬く、摩耗し難いため、スクリュウ出力ジョイント51やスクリュウ入力ジョイント53のヤング率を、中間部材52のヤング率よりも大きくするのが好ましい。スクリュウ出力ジョイント51やスクリュウ入力ジョイント53のヤング率を、中間部材52のヤング率よりも大きくすることで、中間部材52よりも摩耗し難くすることができる。これにより、経時に亘り出力外歯ギヤ51cや入力外歯ギヤ53aの外歯のクラウニング形状を維持することができ、経時に亘り中間部材52をスムーズに傾かせることができる。よって、軸反力の抑制効果を経時に亘り維持することができる。 In general, the larger the Young's modulus, the harder it is and the less likely it is to wear. Therefore, it is preferable that the Young's modulus of the screw output joint 51 and the screw input joint 53 is larger than the Young's modulus of the intermediate member 52. By making the Young's modulus of the screw output joint 51 and the screw input joint 53 larger than the Young's modulus of the intermediate member 52, it is possible to make it less likely to wear than the intermediate member 52. As a result, the crowning shape of the external teeth of the output external tooth gear 51c and the input external tooth gear 53a can be maintained over time, and the intermediate member 52 can be smoothly tilted over time. Therefore, the effect of suppressing the axial reaction force can be maintained over time.

また、中間部材52を、プロセスカートリッジ側のスクリュウ入力ジョイント53に保持するようにしてもよい。しかし、本実施形態のように、装置本体側のスクリュウ出力ジョイント51に保持するのが好ましい。これは、中間部材52を、プロセスカートリッジ側のスクリュウ入力ジョイント53に保持した場合、プロセスカートリッジの部品点数が増え、プロセスカートリッジのコストアップに繋がる。プロセスカートリッジ40は、消耗品であり、定期的な交換が必要なものであるため、プロセスカートリッジのコストアップが、装置のメンテナンス費の増大と繋がるおそれがある。本実施形態のように、装置本体側のスクリュウ出力ジョイント51に中間部材52を保持することにより、プロセスカートリッジのコストアップを抑えることができ、装置のメンテナンス費を抑えることができる。 Further, the intermediate member 52 may be held by the screw input joint 53 on the process cartridge side. However, as in the present embodiment, it is preferable to hold the screw output joint 51 on the device main body side. This means that when the intermediate member 52 is held by the screw input joint 53 on the process cartridge side, the number of parts of the process cartridge increases, which leads to an increase in the cost of the process cartridge. Since the process cartridge 40 is a consumable item and needs to be replaced regularly, an increase in the cost of the process cartridge may lead to an increase in maintenance cost of the apparatus. By holding the intermediate member 52 in the screw output joint 51 on the device main body side as in the present embodiment, the cost increase of the process cartridge can be suppressed, and the maintenance cost of the device can be suppressed.

図15は、比較例の中間部材552を示す斜視図であり、図16は、比較例の中間部材552の課題について説明する図である。
図15に示すように、この比較例の中間部材552は、抜け止め部552cの内径E1を、内歯ギヤ552aの歯先円直径Hよりも短くして、抜け止め部552cが内歯ギヤ552aの歯先よりも回転中心に向かって突出するような形状となっている。
FIG. 15 is a perspective view showing the intermediate member 552 of the comparative example, and FIG. 16 is a diagram illustrating a problem of the intermediate member 552 of the comparative example.
As shown in FIG. 15, in the intermediate member 552 of this comparative example, the inner diameter E1 of the retaining portion 552c is made shorter than the tooth tip circle diameter H of the internal tooth gear 552a, and the retaining portion 552c is the internal tooth gear 552a. It is shaped so that it protrudes toward the center of rotation from the tip of the tooth.

中間部材552における筒状部51aと抜け止め部552cの間の径方向の隙間が狭いと、中間部材552を十分に傾けさせることができず、軸心ずれや偏角の許容できる範囲が狭くなってしまうという問題がある。この比較例の中間部材において、中間部材552の外径を、駆動出力軸61の直径φ6[mm]の2倍以下にする場合、中間部材552における筒状部51aと抜け止め部552cの間の径方向の隙間が、狭くなり、中間部材552を十分に傾けさせることができず、軸心ずれや偏角の許容できる範囲が狭くなってしまう。 If the radial gap between the tubular portion 51a and the retaining portion 552c of the intermediate member 552 is narrow, the intermediate member 552 cannot be sufficiently tilted, and the allowable range of axial misalignment and declination becomes narrow. There is a problem that it ends up. In the intermediate member of this comparative example, when the outer diameter of the intermediate member 552 is made to be twice or less the diameter φ6 [mm] of the drive output shaft 61, between the tubular portion 51a and the retaining portion 552c of the intermediate member 552. The radial gap becomes narrow, the intermediate member 552 cannot be sufficiently tilted, and the allowable range of axial misalignment and declination becomes narrow.

また、供給スクリュウの軸143bと駆動出力軸61との間に軸心ずれがある場合、図13(b)に示す状態から中間部材がスクリュウ入力ジョイント53と駆動連結する際は、中間部材は、傾いた状態で、スプリング66の付勢力で手前側へスライド移動する。このとき、比較例の中間部材552においては、図16に示すように、抜け止め部552cが、筒状部51aの奥側端部に突き当たってしまうおそれがある。その結果、中間部材552が駆動連結位置まで移動できず、抜け止め部552cの一部が、スライド部材67と筒状部51aの奥側端部とで挟まれた状態となる。よって、中間部材552が、一定の角度で固定されてしまい、軸心ずれを十分に吸収できず、軸反力の発生を十分に抑制できないという問題もある。 Further, when there is an axial misalignment between the supply screw shaft 143b and the drive output shaft 61, when the intermediate member is drive-connected to the screw input joint 53 from the state shown in FIG. 13 (b), the intermediate member is used. In the tilted state, it slides to the front side by the urging force of the spring 66. At this time, in the intermediate member 552 of the comparative example, as shown in FIG. 16, the retaining portion 552c may come into contact with the inner end portion of the tubular portion 51a. As a result, the intermediate member 552 cannot move to the drive connecting position, and a part of the retaining portion 552c is sandwiched between the slide member 67 and the rear end portion of the tubular portion 51a. Therefore, there is also a problem that the intermediate member 552 is fixed at a constant angle, the axial misalignment cannot be sufficiently absorbed, and the generation of the axial reaction force cannot be sufficiently suppressed.

これに対し、本実施形態においては、抜け止め部52cの内径Dを、内歯ギヤ52aの歯先円直径と同径としている。これにより、中間部材52の外径を、駆動出力軸61の直径(φ6mm)の2倍以下であっても抜け止め部52cと筒状部51aとの隙間を十分確保できる。また、中間部材52が傾いた状態で、スプリング66の付勢力で手前側へスライド移動しても、抜け止め部52cが、筒状部51aの奥側端部に突き当たるのを抑制でき、中間部材52を駆動連結位置へスライド移動させることができる。これにより、中間部材52をスムーズに傾かせることができ、軸心すれや偏角を良好に吸収でき、良好に軸反力の発生を抑制することができる。また、中間部材の傾く角度を大きくでき、軸心ずれや偏角の許容できる範囲も広くできる。 On the other hand, in the present embodiment, the inner diameter D of the retaining portion 52c is the same as the diameter of the tip circle of the internal gear 52a. As a result, even if the outer diameter of the intermediate member 52 is twice or less the diameter (φ6 mm) of the drive output shaft 61, a sufficient gap between the retaining portion 52c and the tubular portion 51a can be secured. Further, even if the intermediate member 52 is slid to the front side by the urging force of the spring 66 while the intermediate member 52 is tilted, it is possible to prevent the retaining portion 52c from hitting the back end portion of the tubular portion 51a, and the intermediate member The 52 can be slid to the drive connection position. As a result, the intermediate member 52 can be smoothly tilted, the axial deviation and the declination can be satisfactorily absorbed, and the generation of the axial reaction force can be satisfactorily suppressed. In addition, the tilt angle of the intermediate member can be increased, and the allowable range of axial deviation and declination can be widened.

抜け止め部52cは、出力外歯ギヤ51cの外歯と対向していれば、抜け止め部52cが外歯に突き当たり、中間部材52の抜けを防止することができる。従って、抜け止め部52cの内径Dは、内歯ギヤ52aの歯先円直径以上、出力外歯ギヤ51cの歯先円直径以下でよい。これにより、抜け止めの機能を確保しつつ、抜け止め部52cと筒状部51aとの隙間を十分確保できる。しかし、成型のし易さや、内歯の回転方向の剛性を高めることができるという利点から、抜け止め部52cの内径Dは、内歯ギヤ52aの歯先円直径と同径とするのが好ましい。 If the retaining portion 52c faces the external teeth of the output external tooth gear 51c, the retaining portion 52c abuts on the external teeth and the intermediate member 52 can be prevented from coming off. Therefore, the inner diameter D of the retaining portion 52c may be equal to or larger than the diameter of the tip circle of the internal gear 52a and equal to or less than the diameter of the tip circle of the output external gear 51c. As a result, a sufficient gap between the retaining portion 52c and the tubular portion 51a can be secured while ensuring the retaining function. However, it is preferable that the inner diameter D of the retaining portion 52c is the same as the diameter of the tip circle of the internal tooth gear 52a from the viewpoint of ease of molding and the advantage that the rigidity in the rotation direction of the internal teeth can be increased. ..

また、本実施形態においては、先の図8に示したたように、スクリュウ出力ジョイント51が取り付けられる駆動出力軸61のジョイント取り付け部61aの直径を、駆動出力軸61の直径よりも小さくしている。これにより、スクリュウ出力ジョイントの外径を小さくすることができる。その結果、中間部材52の外径を駆動出力軸61の直径の2倍以下としても、抜け止め部52cと筒状部51aとの間の隙間を確保できる。これにより、中間部材52の傾く角度を大きくでき、軸心ずれや偏角の許容できる範囲も広くできる。また、抜け止め部が筒状部に突き当たらないようにできる。 Further, in the present embodiment, as shown in FIG. 8, the diameter of the joint mounting portion 61a of the drive output shaft 61 to which the screw output joint 51 is mounted is made smaller than the diameter of the drive output shaft 61. There is. As a result, the outer diameter of the screw output joint can be reduced. As a result, even if the outer diameter of the intermediate member 52 is set to twice or less the diameter of the drive output shaft 61, a gap between the retaining portion 52c and the tubular portion 51a can be secured. As a result, the tilt angle of the intermediate member 52 can be increased, and the allowable range of axial deviation and declination can be widened. Further, the retaining portion can be prevented from hitting the tubular portion.

次に、スクリュウジョイントの変形例について説明する。 Next, a modified example of the screw joint will be described.

[変形例1]
図17は、変形例1のスクリュウジョイント50Aの概略構成図であり、図18(a)は変形例1のスクリュウジョイント50Aの装置本体側の構成を示す斜視図である。また、図18(b)は、変形例1のスクリュウジョイント50Aのプロセスカートリッジ側の構成を示す斜視図である。なお、図17においては、スクリュウ出力ジョイント51Aの構成が分かるように、中間部材52Aは、断面で示している。
この変形例1では、スクリュウ出力ジョイント51Aの中間部材52Aへ駆動伝達を行う駆動伝達部を、外周面から突出する円柱形状の出力突起部151cとしている。出力突起部151cは、スクリュウ出力ジョイント51Aの外周面に90°の間隔を開けて4つ設けられている。
[Modification 1]
FIG. 17 is a schematic configuration diagram of the screw joint 50A of the modified example 1, and FIG. 18 (a) is a perspective view showing the configuration of the screw joint 50A of the modified example 1 on the device main body side. Further, FIG. 18B is a perspective view showing the configuration of the screw joint 50A of the modified example 1 on the process cartridge side. In FIG. 17, the intermediate member 52A is shown in cross section so that the configuration of the screw output joint 51A can be seen.
In this modification 1, the drive transmission portion that transmits the drive to the intermediate member 52A of the screw output joint 51A is a cylindrical output protrusion 151c that protrudes from the outer peripheral surface. Four output protrusions 151c are provided on the outer peripheral surface of the screw output joint 51A at intervals of 90 °.

中間部材52Aの内周面には、上記出力突起部151cが回転方向から当接し、上記出力突起部151cから駆動力を受けるとともに、スクリュウ入力ジョイント53Aへ駆動力伝達するための中継突起部152aが設けられている。この中継突起部152aは、中間部材52Aの内周面に回転方向に90°の間隔を開けて4つ設けられており、軸方向に延びている。各出力突起部151cは、中継突起部152aの間の溝の部分に係合している。中継突起部152aの手前側端部には、手前側から奥側へ行くにつれて、高さが高くなり、且つ、回転方向長さが長くなるようなテーパ部52bが形成されている。 The output protrusion 151c abuts on the inner peripheral surface of the intermediate member 52A from the direction of rotation, and a relay protrusion 152a for receiving a driving force from the output protrusion 151c and transmitting the driving force to the screw input joint 53A is provided. It is provided. Four relay protrusions 152a are provided on the inner peripheral surface of the intermediate member 52A at intervals of 90 ° in the rotational direction, and extend in the axial direction. Each output protrusion 151c is engaged with a groove portion between the relay protrusions 152a. At the front end of the relay protrusion 152a, a tapered portion 52b is formed so that the height increases and the length in the rotation direction increases from the front side to the back side.

また、スクリュウ入力ジョイント53Aの外周には、中継突起部152aが回転方向から当接し、中継突起部152aから駆動力を受ける円柱形状の入力突起部153aが、回転方向90°の間隔を開けて4つ設けられている。この入力突起部153aの奥側先端には、奥側から手前側へ行くにつれて、高さが高くなり、且つ、回転方向長さが長くなるようなテーパ部53cが形成されている。 Further, a cylindrical input protrusion 153a in which the relay protrusion 152a abuts on the outer circumference of the screw input joint 53A from the rotation direction and receives a driving force from the relay protrusion 152a is spaced by 90 ° in the rotation direction 4 There are two. A tapered portion 53c is formed at the back end of the input protrusion 153a so that the height increases and the length in the rotation direction increases from the back side to the front side.

中継突起部152aの内径を、スクリュウ出力ジョイント51Aおよびスクリュウ入力ジョイント53Aの外径より長くしている。これにより、中継突起部152aと、スクリュウ出力ジョイント51Aおよびスクリュウ入力ジョイント53Aとの間に径方向に所定の隙間が形成される。また、中間部材52の内径を、出力突起部151cおよび入力突起部153aの外径よりも長くしている。これにより、中間部材52と出力突起部151cおよび入力突起部153aとの間に所定の隙間が形成される。さらに、中継突起部152aと、出力突起部151cとの間、中継突起部152aと、入力突起部153aとの間に回転方向に所定の隙間が形成されるように、中継突起部152a、出力突起部151cおよび入力突起部153aの回転方向長さが設定されている。また、抜け止め部52cは、中継突起部152aの内径以上、出力突起部151cの外径以下とし、スクリュウ出力ジョイント51Aの外径と抜け止め部52cの間に規定の隙間を形成し、かつ、出力突起部151cと対向させている。かかる構成とすることにより、この変形例1においても、中間部材52Aを軸方向にスライド移動可能かつ、所定角度軸方向に傾き可能にできる。 The inner diameter of the relay protrusion 152a is made longer than the outer diameter of the screw output joint 51A and the screw input joint 53A. As a result, a predetermined gap is formed in the radial direction between the relay protrusion 152a and the screw output joint 51A and the screw input joint 53A. Further, the inner diameter of the intermediate member 52 is made longer than the outer diameter of the output protrusion 151c and the input protrusion 153a. As a result, a predetermined gap is formed between the intermediate member 52, the output protrusion 151c, and the input protrusion 153a. Further, the relay protrusion 152a and the output protrusion 152a and the output protrusion so as to form a predetermined gap in the rotation direction between the relay protrusion 152a and the output protrusion 151c and between the relay protrusion 152a and the input protrusion 153a. The lengths of the portion 151c and the input protrusion 153a in the rotation direction are set. Further, the retaining portion 52c is set to be equal to or larger than the inner diameter of the relay protrusion portion 152a and equal to or smaller than the outer diameter of the output protruding portion 151c, and a specified gap is formed between the outer diameter of the screw output joint 51A and the retaining portion 52c. It faces the output protrusion 151c. With such a configuration, even in this modification 1, the intermediate member 52A can be slidably moved in the axial direction and tilted in the predetermined angle axial direction.

また、この変形例1においては、出力突起部151cと入力突起部153aとを円柱形状とすることにより、回転駆動時に中継突起部に当接する当接面を、軸方向に沿って円弧状の曲面にできる。これにより、中間部材をスムーズに傾かせることができ、軸心ずれや偏角を良好に吸収することができる。 Further, in this modification 1, the output protrusion 151c and the input protrusion 153a are formed into a cylindrical shape so that the contact surface that comes into contact with the relay protrusion during rotational drive is an arcuate curved surface along the axial direction. Can be done. As a result, the intermediate member can be tilted smoothly, and the misalignment and declination can be satisfactorily absorbed.

また、この変形例1においても、スクリュウ出力ジョイント51Aやスクリュウ入力ジョイント53Aのヤング率を、中間部材52Aのヤング率よりも大きくするのが好ましい。これにより、出力突起部151cや入力突起部153aの中継突起部に当接する当接面の摩耗を抑制することができ、円弧状の曲面を維持することができる。 Further, also in this modification 1, it is preferable that the Young's modulus of the screw output joint 51A and the screw input joint 53A is larger than the Young's modulus of the intermediate member 52A. As a result, it is possible to suppress wear of the contact surface that comes into contact with the output protrusion 151c and the relay protrusion of the input protrusion 153a, and it is possible to maintain an arcuate curved surface.

[変形例2]
図19は、変形例2のスクリュウジョイント50Bを示す概略図である。また、図20(a)は、変形例2のスクリュウジョイント50Bの装置本体側の構成を示す斜視図であり、図20(b)は、変形例2のスクリュウジョイント50Bのプロセスカートリッジ側の構成を示す斜視図である。なお、図19においても、スクリュウ出力ジョイント51Bの構成が分かるように、中間部材52Bは、断面で示している。
[Modification 2]
FIG. 19 is a schematic view showing the screw joint 50B of the second modification. 20 (a) is a perspective view showing the configuration of the screw joint 50B of the modified example 2 on the device main body side, and FIG. 20 (b) shows the configuration of the screw joint 50B of the modified example 2 on the process cartridge side. It is a perspective view which shows. Also in FIG. 19, the intermediate member 52B is shown in cross section so that the configuration of the screw output joint 51B can be seen.

この変形例2においては、出力突起部151cを断面楕円形状とし、入力突起部153aを断面涙滴形状として、回転方向長さよりも軸方向長さが長い形状としたものである。回転方向長さよりも軸方向長さを長くすることで、出力突起部151cおよび入力突起部153aを回転方向長さと軸方向長さとが同一の断面円形状の円柱形状とした変形例1に比べて、出力突起部151cおよび入力突起部153aの強度を高めることができる。 In this modification 2, the output protrusion 151c has an elliptical cross section, the input protrusion 153a has a teardrop shape in cross section, and the axial length is longer than the rotational length. By making the axial length longer than the rotational length, the output protrusion 151c and the input protrusion 153a are made into a cylindrical shape having the same rotational length and axial length as compared with the modified example 1. , The strength of the output protrusion 151c and the input protrusion 153a can be increased.

また、出力突起部151cを断面楕円形状とし、入力突起部153aを断面涙滴形状として、回転方向と直交する面を軸方向に沿って円弧状に湾曲する曲面にしている。これにより、出力突起部151cおよび入力突起部153aの回転駆動時に中継突起部152aとの当接面を、軸方向に沿って円弧状の湾曲した曲面にでき、中間部材52Bをスムーズに傾かせることができ、軸心ずれや偏角を良好に吸収することができる。 Further, the output protrusion 151c has an elliptical cross section, the input protrusion 153a has a teardrop shape in cross section, and the surface orthogonal to the rotation direction has a curved surface curved in an arc shape along the axial direction. As a result, when the output protrusion 151c and the input protrusion 153a are rotationally driven, the contact surface with the relay protrusion 152a can be formed into an arc-shaped curved curved surface along the axial direction, and the intermediate member 52B can be smoothly tilted. It is possible to absorb the misalignment and declination satisfactorily.

[変形例3]
図21は、変形例3のスクリュウジョイント50Cを示す概略図である。また、図22(a)は、変形例3のスクリュウジョイント50Cの装置本体側の構成を示す斜視図であり、図22(b)は、変形例3のスクリュウジョイント50Cのプロセスカートリッジ側の構成を示す斜視図である。なお、図21においても、スクリュウ出力ジョイント51Cの構成が分かるように、中間部材52Cは、断面で示している。
[Modification 3]
FIG. 21 is a schematic view showing the screw joint 50C of the modified example 3. 22 (a) is a perspective view showing the configuration of the screw joint 50C of the modified example 3 on the device main body side, and FIG. 22 (b) shows the configuration of the screw joint 50C of the modified example 3 on the process cartridge side. It is a perspective view which shows. Also in FIG. 21, the intermediate member 52C is shown in cross section so that the configuration of the screw output joint 51C can be seen.

この変形例3は、出力突起部151cおよび入力突起部153aの断面形状を、長方形状としたものである。かかる構成とすることでも、回転方向長さよりも軸方向長さを長くでき、出力突起部151cおよび、入力突起部153aの強度を高めることができる。 In this modification 3, the cross-sectional shapes of the output protrusion 151c and the input protrusion 153a are rectangular. With such a configuration, the axial length can be made longer than the rotational length, and the strength of the output protrusion 151c and the input protrusion 153a can be increased.

図23は、変形例3のスクリュウ入力ジョイントを奥側から見た図である。
図23に示すように、変形例3においては、入力突起部153aの軸方向と平行な面を、図中一点鎖線で示す円Xの円弧とし、径方向に沿って円弧状の曲面としている。また、出力突起部151cの軸方向と平行な面も、入力突起部153aと同様、径方向に沿って円弧状の曲面としている。
FIG. 23 is a view of the screw input joint of the modified example 3 as viewed from the back side.
As shown in FIG. 23, in the modified example 3, the surface parallel to the axial direction of the input protrusion 153a is formed as an arc of a circle X indicated by a chain line in the figure, and is formed as an arc-shaped curved surface along the radial direction. Further, the surface of the output protrusion 151c parallel to the axial direction is also formed into an arcuate curved surface along the radial direction as in the input protrusion 153a.

かかる構成とすることで、回転駆動時の中間部材52Cの中継突起部152aとの当接を、線接触にすることができ、中間部材52Cをスムーズに傾かせることができる。また、上述では、回転方向上流側、下流側両方の軸方向と平行な面を、径方向に沿って円弧状の曲面としているが、2面のうち、回転駆動時の中間部材52Cの中継突起部152aと当接する側の面のみ、径方向に沿って円弧状の曲面としてもよい。 With such a configuration, the contact of the intermediate member 52C with the relay protrusion 152a during rotational drive can be made into line contact, and the intermediate member 52C can be smoothly tilted. Further, in the above description, the surfaces parallel to the axial directions on both the upstream side and the downstream side in the rotation direction are formed into an arcuate curved surface along the radial direction. Only the surface on the side that comes into contact with the portion 152a may have an arcuate curved surface along the radial direction.

また、この変形例3では、入力突起部153aおよび出力突起部151cの回転方向に直交する面を、軸方向に沿っては円弧とせず、直線状としているので、以下の利点を得ることができる。すなわち、スクリュウ出力ジョイント51Cおよびスクリュウ入力ジョイント53Cは、樹脂からなり、金型を用いて成型される。例えば、略円筒形状のスクリュウ出力ジョイントは、型開き方向が互いに異なる軸方向に移動する2つの金型で成型可能である。変形例1や変形例2のように、出力突起部の回転方向に直交する面が軸方向に沿って円弧状に湾曲する曲面の場合は、最も回転方向の厚みが厚い出力突起部の軸方向中央部をパーティングラインに設定する必要がある。なぜなら、出力突起部の軸方向中央部をパーティングラインに設定しないと、金型を軸方向に移動させることができず、型開きを行えないからである。その結果、出力突起部の回転駆動時に中間部材の中継突起部に当接する面に、バリなどが発生するおそれがあり、中間部材52のスムーズな傾きを阻害するおそれがある。また、中間部材52が傾いた状態で、回転駆動するときは、出力突起部が、中継突起部に対して相対移動するが、上記バリが存在すると、摩耗の進行が早まり、中間部材が早期に摩耗してしまうおそれもある。 Further, in this modification 3, the surfaces of the input protrusion 153a and the output protrusion 151c that are orthogonal to the rotation direction are not arcuate along the axial direction but are straight, so that the following advantages can be obtained. .. That is, the screw output joint 51C and the screw input joint 53C are made of resin and are molded using a mold. For example, a screw output joint having a substantially cylindrical shape can be molded with two molds in which the mold opening directions move in different axial directions. In the case of a curved surface in which the surface orthogonal to the rotation direction of the output protrusion is curved in an arc shape along the axial direction as in the first modification and the second modification, the axial direction of the output protrusion having the thickest rotation direction. It is necessary to set the central part as a parting line. This is because the mold cannot be moved in the axial direction and the mold cannot be opened unless the central portion of the output protrusion in the axial direction is set as the parting line. As a result, burrs and the like may occur on the surface of the intermediate member that comes into contact with the relay protrusion when the output protrusion is rotationally driven, which may hinder the smooth inclination of the intermediate member 52. Further, when the intermediate member 52 is rotationally driven in a tilted state, the output protrusion portion moves relative to the relay protrusion portion, but if the burr is present, the progress of wear is accelerated and the intermediate member is accelerated. There is also a risk of wear.

また、取り付け部53bの外径が、入力突起部153aが形成された箇所の外径よりも大きいスクリュウ入力ジョイント53においては、入力突起部の回転方向に直交する面を軸方向に沿って円弧状の曲面とした場合、少なくとも金型が4つ必要となる。すなわち、法線方向に移動する一対の金型と、軸方向に移動する一対の金型とである。これにより、金型費が増加し、製造コストのアップに繋がる。 Further, in the screw input joint 53 in which the outer diameter of the mounting portion 53b is larger than the outer diameter of the portion where the input protrusion 153a is formed, the surface orthogonal to the rotation direction of the input protrusion is arcuate along the axial direction. In the case of a curved surface of, at least four molds are required. That is, a pair of molds that move in the normal direction and a pair of molds that move in the axial direction. As a result, the mold cost increases, which leads to an increase in the manufacturing cost.

これに対し、変形例3では、出力突起部151cの回転方向と直交する面を、軸方向に沿っては直線状としている。よって、出力突起部の回転駆動時に中間部材の中継突起部に当接する面を、一つの金型で成型することができ、この面にバリが発生するのを防止できる。これにより、中間部材52のスムーズに傾かせることができ、中間部材が早期に摩耗するのを防止することができるという利点である。 On the other hand, in the modified example 3, the surface orthogonal to the rotation direction of the output protrusion 151c is made linear along the axial direction. Therefore, the surface that comes into contact with the relay protrusion of the intermediate member when the output protrusion is rotationally driven can be molded with a single mold, and burrs can be prevented from occurring on this surface. This has the advantage that the intermediate member 52 can be smoothly tilted and the intermediate member can be prevented from being worn at an early stage.

また、入力突起部153aの回転方向と直交する面を、軸方向に沿って直線状とすることで、軸方向に移動する一対の金型で、スクリュウ入力ジョイント53を成型することができる。これにより、金型の数を減らすことができ、製造コストの低減を図ることができる。 Further, by making the surface orthogonal to the rotation direction of the input protrusion 153a linear along the axial direction, the screw input joint 53 can be molded with a pair of molds that move in the axial direction. As a result, the number of molds can be reduced, and the manufacturing cost can be reduced.

[変形例4]
図24は、変形例4のスクリュウジョイント50Dを示す概略図であり、図25(a)は、変形例4のスクリュウジョイント50Dの装置本体側の構成を示す斜視図であり、図25(b)は、変形例4のスクリュウジョイント50Dのプロセスカートリッジ側の構成を示す斜視図である。なお、図24においても、スクリュウ出力ジョイント51Dの構成が分かるように、中間部材52dは、断面で示している。
また、図26(a)は、変形例4のスクリュウ入力ジョイントを、奥側から見た正面図であり、図26(b)は、変形例4のスクリュウ入力ジョイントの側面図である。
[Modification example 4]
FIG. 24 is a schematic view showing the screw joint 50D of the modified example 4, and FIG. 25 (a) is a perspective view showing the configuration of the screw joint 50D of the modified example 4 on the device main body side, and FIG. 25 (b) is shown. Is a perspective view showing the configuration of the screw joint 50D of the modified example 4 on the process cartridge side. Also in FIG. 24, the intermediate member 52d is shown in cross section so that the configuration of the screw output joint 51D can be seen.
Further, FIG. 26 (a) is a front view of the screw input joint of the modified example 4 as viewed from the back side, and FIG. 26 (b) is a side view of the screw input joint of the modified example 4.

この変形例4においては、出力突起部151cおよび入力突起部153aの回転方向と直交する面を、楕円球面としたものである。具体的に説明すると、図26(a)に示すように、軸方向と平行な面を、径方向に沿って円弧状の曲面(図中点線の円X1の円弧面)とするとともに、図26(b)に示すように、軸方向に沿って円弧状の曲面(図中点線楕円X2の円弧面)としたのである。
かかる構成とすることで、中間部材52dの中継突起部152aとの当接を点接触にすることができ、変形例1〜3に比べて、よりスムーズに中間部材52を、傾かせることができる。また、この変形例4においても、回転駆動時に中継突起部152aに当接する面のみを、楕円球面としてもよい。
In this modification 4, the plane orthogonal to the rotation direction of the output protrusion 151c and the input protrusion 153a is an elliptical spherical surface. Specifically, as shown in FIG. 26 (a), the surface parallel to the axial direction is an arc-shaped curved surface (the arc surface of the circle X1 of the dotted line in the figure) along the radial direction, and FIG. 26 As shown in (b), an arc-shaped curved surface (arc surface of the dotted ellipse X2 in the figure) is formed along the axial direction.
With such a configuration, the contact of the intermediate member 52d with the relay protrusion 152a can be made into point contact, and the intermediate member 52 can be tilted more smoothly as compared with the modified examples 1 to 3. .. Further, also in this modification 4, only the surface that comes into contact with the relay protrusion 152a during rotational drive may be an elliptical spherical surface.

図27は、各入力突起部153aの奥側先端の軸方向位置を同じ位置とした場合の不具合について説明する図である。
駆動出力軸と供給スクリュウの軸との間の軸心ずれ量が多くなると、図27に示すように、隣合う2つの入力突起部153aが、互いに異なる中継突起部のテーパ部52bによって同じ溝(中継突起部の間の隙間)に入り込もうとする場合がある。この場合、回転駆動すると、中間部材52dがスプリングの付勢力に抗して軸方向奥側に逃げることで、一方の入力突起部が、テーパ部を乗り越えて、本来入り込むべき溝へ相対移動し、最終的には駆動連結される。しかし、入力突起部がテーパ部を乗り越える際に入力突起部にかかる負荷が大きく、入力突起部が破損するおそれがある。
FIG. 27 is a diagram illustrating a defect when the axial position of the inner end of each input protrusion 153a is set to the same position.
When the amount of misalignment between the drive output shaft and the shaft of the supply screw increases, as shown in FIG. 27, the two adjacent input protrusions 153a have the same groove due to the tapered portion 52b of the relay protrusions that are different from each other. It may try to enter the gap between the relay protrusions). In this case, when the intermediate member 52d is driven to rotate, the intermediate member 52d escapes to the back side in the axial direction against the urging force of the spring, so that one of the input protrusions overcomes the taper portion and moves relative to the groove to be originally inserted. Finally, it is driven and connected. However, when the input protrusion gets over the tapered portion, the load applied to the input protrusion is large, and the input protrusion may be damaged.

そこで、図28に示すように、複数の入力突起部のうちひとつを、他の入力突起部よりも長くし、奥側へ突出した形状とするのが好ましい。これにより、複数の入力突起部のうち、奥側へ突出した入力突起部のテーパ部のみ、中間部材の中継突起部のテーパ部に当接する。そして、このテーパ部が中間部材を軸方向奥側へ押し込む。中間部材52が奥側へ押し込まれると、スプリングが圧縮され、スプリングの付勢力が増加する。そして、ある程度、中間部材52が押し込まれると、スプリング66の付勢力で、供給スクリュウが回転し、奥側へ突出した入力突起部が、中継突起部の間に案内される。これにより、軸心ずれ量が多く隣合う2つの入力突起部が、互いに異なる中継突起部のテーパ部によって同じ溝(中継突起部の間の隙間)に入り込もうとするような状態であったとしても、その状態が解除される。よって、回転駆動時に入力突起部がテーパ部を乗り越えて、駆動連結するような事態が生じることがなくなり、入力突起部に大きな負荷が加わるのを抑制することができ、入力突起部の破損を抑制することができる。 Therefore, as shown in FIG. 28, it is preferable that one of the plurality of input protrusions is longer than the other input protrusions and has a shape protruding toward the back. As a result, of the plurality of input protrusions, only the tapered portion of the input protrusion protruding to the back side comes into contact with the tapered portion of the relay protrusion of the intermediate member. Then, this tapered portion pushes the intermediate member toward the back side in the axial direction. When the intermediate member 52 is pushed inward, the spring is compressed and the urging force of the spring is increased. Then, when the intermediate member 52 is pushed in to some extent, the supply screw is rotated by the urging force of the spring 66, and the input protrusion protruding to the back side is guided between the relay protrusions. As a result, even if two input protrusions that are adjacent to each other due to a large amount of misalignment try to enter the same groove (gap between the relay protrusions) due to the tapered portions of the relay protrusions that are different from each other. , The state is released. Therefore, it is possible to prevent the input protrusion from overcoming the taper portion during rotational drive and driving and connecting the input protrusion, and it is possible to suppress a large load from being applied to the input protrusion, thereby suppressing damage to the input protrusion. can do.

また、上記では、入力突起部の一つを、奥側に突出させているが、中間部材の複数のテーパ部52bのひとつを、手前側へ突出させても、同様の効果を得ることができる。 Further, in the above, one of the input protrusions is projected toward the back side, but the same effect can be obtained by projecting one of the plurality of tapered portions 52b of the intermediate member toward the front side. ..

また、図28に示すように、他の入力突起部から突出する入力突起部の他の入力突起部から突出した部分の径方向の長さを、奥側(先端)に向かうにつれて短くなるようにするのが好ましい。
図29は、駆動出力軸が、他の入力突起部よりも突出した入力突起部から離れる方向に軸心ずれが生じているときのスクリュウジョイントについて説明する図である。
図29に示すように、他の入力突起部よりも奥側へ突出した入力突起部から離れる方向に駆動出力軸が、供給スクリュウの軸に対して軸心ずれが生じているとき、中間部材は、図中反時計回りに傾く。このように中間部材が傾いたときは、奥側ほど、中間部材の内周面が、突出した入力突起部に近づく。
Further, as shown in FIG. 28, the radial length of the portion of the input protrusion protruding from the other input protrusion is shortened toward the back side (tip). It is preferable to do so.
FIG. 29 is a diagram illustrating a screw joint when the drive output shaft is displaced in the direction away from the input protrusions protruding from the other input protrusions.
As shown in FIG. 29, when the drive output shaft is misaligned with respect to the axis of the supply screw in the direction away from the input protrusion protruding to the back side of the other input protrusions, the intermediate member is , Tilt counterclockwise in the figure. When the intermediate member is tilted in this way, the inner peripheral surface of the intermediate member approaches the protruding input protrusion toward the back side.

他の入力突起部よりも突出する入力突起部の他の入力突起部から突出している部分の径方向の長さを、奥側(先端)に向かうにつれて短くなるようにすることで、奥側に行くにつれて、入力突起部と、中間部材内周面との隙間が大きくなる。その結果、図29に示すように中間部材が傾いたときに、この突出する入力突起部の他の入力突起部から突出している部分が、中間部材の内周面に当接するのを抑制することができる。これにより、中間部材の傾きが妨げられるのを抑制することができ、軸心ずれの許容量(軸反力の発生が抑制可能な軸心ずれ量)を増加することができる。 By shortening the radial length of the part of the input protrusion that protrudes from the other input protrusions that protrudes from the other input protrusions toward the back side (tip), the length of the part protrudes toward the back side. As it goes, the gap between the input protrusion and the inner peripheral surface of the intermediate member increases. As a result, when the intermediate member is tilted as shown in FIG. 29, it is possible to prevent the protruding portion of the input protrusion from the other input protrusion from coming into contact with the inner peripheral surface of the intermediate member. Can be done. As a result, it is possible to suppress the inclination of the intermediate member from being hindered, and it is possible to increase the allowable amount of axial deviation (the amount of axial deviation that can suppress the generation of axial reaction force).

[変形例5]
図30は、変形例5のスクリュウジョイント50Eを示す概略図である。また、図31(a)は、変形例5のスクリュウジョイント50Eの装置本体側の構成を示す斜視図であり、図31(b)は、変形例5のスクリュウジョイント50Eのプロセスカートリッジ側の構成を示す斜視図である。また、図32は、スクリュウ入力ジョイントを用いて、変形例5のスクリュウジョイントの特徴点を説明する図である。なお、図30においても、スクリュウ出力ジョイント51Bの構成が分かるように、中間部材52Bは、断面で示している。
[Modification 5]
FIG. 30 is a schematic view showing the screw joint 50E of the modified example 5. Further, FIG. 31 (a) is a perspective view showing the configuration of the screw joint 50E of the modified example 5 on the device main body side, and FIG. 31 (b) shows the configuration of the screw joint 50E of the modified example 5 on the process cartridge side. It is a perspective view which shows. Further, FIG. 32 is a diagram for explaining the feature points of the screw joint of the modified example 5 by using the screw input joint. Also in FIG. 30, the intermediate member 52B is shown in cross section so that the configuration of the screw output joint 51B can be seen.

図32に示すようにこの変形例5においては、出力突起部151cおよび、入力突起部153aの回転方向と直交する面を、球面としたものである。具体的に説明すると、出力突起部151cおよび入力突起部153aの回転方向側面が、図32(a)に示すように径方向に沿って円弧状の曲面(図中点線の円G1の円弧面)である。また、図32(b)に示すように、軸方向に沿って円弧状の曲面(図中点線の円G2の円弧面)である。これにより、変形例4と同様、中継突起部との当接を点接触にでき、変形例1〜3の中継突起部との当接が線接触の場合に比べて、中間部材をスムーズに傾かせることができる。 As shown in FIG. 32, in this modification 5, the plane orthogonal to the rotation direction of the output protrusion 151c and the input protrusion 153a is a spherical surface. Specifically, the side surfaces of the output protrusion 151c and the input protrusion 153a in the rotational direction are curved surfaces in the radial direction along the radial direction (the arc surface of the circle G1 dotted in the figure). Is. Further, as shown in FIG. 32 (b), it is an arcuate curved surface (the arcuate surface of the circle G2 dotted in the figure) along the axial direction. As a result, as in the case of the modified example 4, the contact with the relay protrusion can be made into a point contact, and the intermediate member can be tilted smoothly as compared with the case where the contact with the relay protrusion of the modified examples 1 to 3 is a line contact. Can be squeezed.

本実施形態においては、出力突起部および、入力突起部の回転方向両側の側面を球面としているが、駆動伝達時に中継突起部と当接する側の側面のみ球面とすればよい。具体的には、出力突起部においては、回転方向下流側の側面を球面とし、入力突起部においては、回転方向上流側の側面を球面とする。 In the present embodiment, the side surfaces of the output protrusion and the input protrusion on both sides in the rotation direction are spherical, but only the side surface that comes into contact with the relay protrusion during drive transmission may be spherical. Specifically, in the output protrusion, the side surface on the downstream side in the rotation direction is a spherical surface, and in the input protrusion, the side surface on the upstream side in the rotation direction is a spherical surface.

また、この変形例5においても、出力突起部は、法線方向から見たとき、円ではなく、角丸長方形状としている。これにより、出力突起部の軸方向長さを、法線方向から見たとき円にした場合に比べて短くすることができ、スクリュウジョイントを軸方向に小型化することができる。また、同様に、入力突起部も、法線方向から見たとき、円ではなく、角丸長方形状とし、入力突起部の軸方向長さを短くでき、スクリュウジョイントを軸方向にさらに小型化することができる。 Further, also in this modification 5, the output protrusion is not a circle but a rectangle with rounded corners when viewed from the normal direction. As a result, the axial length of the output protrusion can be shortened as compared with the case where the output protrusion is circular when viewed from the normal direction, and the screw joint can be miniaturized in the axial direction. Similarly, when viewed from the normal direction, the input protrusion is not a circle but a rectangular shape with rounded corners, the axial length of the input protrusion can be shortened, and the screw joint is further miniaturized in the axial direction. be able to.

また、この変形例5においても、複数の入力突起部153aのうちのひとつを、奥側へ突出させている。これにより、この変形例5においても、変形例4と同様に、回転駆動時に入力突起部がテーパ部を乗り越えて、駆動連結するような事態が生じることがなくなり、入力突起部に大きな負荷が加わるのを抑制することができ、入力突起部の破損を抑制することができる。 Further, also in this modification 5, one of the plurality of input protrusions 153a is projected toward the back side. As a result, in this modified example 5, as in the modified example 4, the input protrusion does not get over the tapered portion during rotational drive and the drive connection does not occur, and a large load is applied to the input protrusion. It is possible to suppress the damage of the input protrusion.

[変形例6]
図33は、変形例6のスクリュウジョイント50Fの装置本体側の構成を示す斜視図であり、図34は、変形例6のスクリュウジョイント50Fの特徴部を示す概略図である。
この変形例6においては、スクリュウ出力ジョイントを平行ピン51Fとしたものである。
この変形例6においては、図34に示すように、スライド部材67の手前側への移動を規制する筒状の規制部材69が、駆動出力軸61の手前側端部に取り付けられている。規制部材69と駆動出力軸61の手前側端部とには、平行ピン51Fが貫通する貫通孔が設けられている。これら貫通孔に平行ピン51Fを貫通させることにより、平行ピン51Fが駆動出力軸に取り付けられるとともに、規制部材69が、駆動出力軸61に取り付けられる。
[Modification 6]
FIG. 33 is a perspective view showing the configuration of the screw joint 50F of the modified example 6 on the device main body side, and FIG. 34 is a schematic view showing a characteristic portion of the screw joint 50F of the modified example 6.
In this modification 6, the screw output joint is a parallel pin 51F.
In this modification 6, as shown in FIG. 34, a tubular regulating member 69 that regulates the movement of the slide member 67 toward the front side is attached to the front end portion of the drive output shaft 61. A through hole through which the parallel pin 51F penetrates is provided between the regulating member 69 and the front end portion of the drive output shaft 61. By passing the parallel pin 51F through these through holes, the parallel pin 51F is attached to the drive output shaft, and the regulation member 69 is attached to the drive output shaft 61.

このように、規制部材69によりスライド部材67の移動を規制することにより、中間部材52Fが、駆動連結位置にあるとき、スライド部材67と中間部材とが非接触となり、中間部材52Fにスプリング66の付勢力が作用しないようにすることができる。また、図33に示すように、平行ピン51Fが、中間部材52Fの中継突起部152aの間(中間部材の溝)に入り込んでいる。これにより、平行ピンを介して回転駆動力が中間部材に伝達される。なお、スクリュウ入力ジョイントについては、先の変形例1〜5に示したスクリュウ入力ジョイントのいずれかを用いればよい。 By restricting the movement of the slide member 67 by the regulating member 69 in this way, when the intermediate member 52F is in the drive connection position, the slide member 67 and the intermediate member are not in contact with each other, and the spring 66 is attached to the intermediate member 52F. It is possible to prevent the urging force from acting. Further, as shown in FIG. 33, the parallel pin 51F is inserted between the relay protrusions 152a of the intermediate member 52F (groove of the intermediate member). As a result, the rotational driving force is transmitted to the intermediate member via the parallel pins. As the screw input joint, any of the screw input joints shown in the above modified examples 1 to 5 may be used.

平行ピン51Fは、金属から構成されており、スクリュウ出力ジョイントを樹脂で形成する変形例1〜変形例5に比べて、スクリュウ出力ジョイントの強度を高めることができるという利点がある。 The parallel pin 51F is made of metal, and has an advantage that the strength of the screw output joint can be increased as compared with the modified examples 1 to 5 in which the screw output joint is formed of resin.

図35は、スクリュウ出力ジョイントを、スプリングピン151Fとした変形例6のスクリュウジョイントを示す図である。
スプリングピン151Fとすることで平行ピンに比べて強度の面では低下するが、駆動出力軸61への取り付けを容易にできるというメリットがある。また、スプリングピン151Fも金属からなるので、スクリュウ出力ジョイントを、樹脂とした場合に比べて強度を高めることができる。また、図35に示すように、スプリングピン151Fの切り口が、手前側となるように、スプリングピン151Fを取り付けるのが好ましい。これは、スプリングピン151Fの切り口が奥側の場合、中間部材の抜け止め部がスプリングピンの切り口と対向することになる。その結果、抜け止め部が、スプリングピンの切り口の縁に引っ掛り、中間部材がスムーズに傾かないおそれがあり、軸反力が発生するおそれがある。一方、スプリングピン151Fの切り口を手前側に設けることで、抜け止め部は、スプリングピンの円弧面と対向することになり、抜け止め部がスプリングピンに引っ掛る事態が生じず、中間部材をスムーズに傾かせることができ、軸反力が発生するのを抑制することができる。また、図35に示す例では、スライド部材67の手前側への移動を規制する規制部材として、Eリング169を用いた。
FIG. 35 is a diagram showing a screw joint of the modified example 6 in which the screw output joint is a spring pin 151F.
By using the spring pin 151F, the strength is lower than that of the parallel pin, but there is an advantage that the spring pin 151F can be easily attached to the drive output shaft 61. Further, since the spring pin 151F is also made of metal, the strength can be increased as compared with the case where the screw output joint is made of resin. Further, as shown in FIG. 35, it is preferable to attach the spring pin 151F so that the cut end of the spring pin 151F is on the front side. This is because when the cut end of the spring pin 151F is on the back side, the retaining portion of the intermediate member faces the cut end of the spring pin. As a result, the retaining portion may be caught on the edge of the cut end of the spring pin, the intermediate member may not tilt smoothly, and a shaft reaction force may be generated. On the other hand, by providing the cut end of the spring pin 151F on the front side, the retaining portion faces the arc surface of the spring pin, the retaining portion does not get caught on the spring pin, and the intermediate member is smooth. It can be tilted to, and it is possible to suppress the generation of axial reaction force. Further, in the example shown in FIG. 35, the E-ring 169 was used as a restricting member for restricting the movement of the slide member 67 toward the front side.

現像ケースに嵌合された軸受に供給スクリュウの軸を挿入することで、供給スクリュウの軸が現像ケースに回転自在に支持される。このように、現像ケースに支持された供給スクリュウの軸に平行ピンやスプリングピンを差し込むことは困難である。そのため、スクリュウ入力ジョイントとしては、先の変形例1〜変形例5に示したスクリュウ入力ジョイントを用い、供給スクリュウの軸をスクリュウ入力ジョイントに挿入することで、スクリュウ入力ジョイントを供給スクリュウに組み付ける構成をとらざるを得ない。その結果、スクリュウ入力ジョイントは、樹脂で形成することになり、入力突起部の強度を得るためには、平行ピンよりも大きな形状にせざるを得なくなる。その結果、平行ピンが入り込む中間部材奥側の中継突起部の間隔より、手前側の中継突起部の間隔の方を広げる必要がある。これにより、奥側の中継突起部の回転方向長さが、手前側の中継突起部の回転方向の長さよりも長くなる。その結果、奥側の中継突起部と手前側突起部との間に回転方向に段差ができてしまう。このように段差が生じると、以下の不具合が生じる。すなわち、中間部材を組み付けのために、駆動出力軸の奥側端部から中間部材を嵌め込み、軸方向手前側へ移動させて、平行ピンを、奥側の中継突起の間に入れ込むときに、上記段差に平行ピンが突き当たり、中間部材を、スムーズに組み付けることができないという不具合である。また、中間部材が、スクリュウ入力ジョイントにより押し込まれて、奥側へ移動したとき、平行ピンが手前側の中継突起の間に位置する。従って、回転駆動して、入力突起部が手前側の中継突起の間に位置し、押し込みが解除され、中間部材が、スプリング66の付勢力により手前側へ移動するときに、平行ピンが、前記段差に突き当たるおそれがある。平行ピンが、前記段差に突き当たると、中間部材52が駆動連結位置まで移動せず、スクリュウ入力ジョイントとの駆動連結が正常に行われず、軸反力などが大きくなるおそれがある。 By inserting the shaft of the supply screw into the bearing fitted in the developing case, the shaft of the supply screw is rotatably supported by the developing case. As described above, it is difficult to insert a parallel pin or a spring pin into the shaft of the supply screw supported by the developing case. Therefore, as the screw input joint, the screw input joint shown in the above modification 1 to 5 is used, and the screw input joint is assembled to the supply screw by inserting the shaft of the supply screw into the screw input joint. I have no choice but to take it. As a result, the screw input joint is made of resin, and in order to obtain the strength of the input protrusion, the shape must be larger than that of the parallel pin. As a result, it is necessary to widen the distance between the relay protrusions on the front side rather than the distance between the relay protrusions on the back side of the intermediate member into which the parallel pins enter. As a result, the length of the relay protrusion on the back side in the rotation direction becomes longer than the length of the relay protrusion on the front side in the rotation direction. As a result, a step is formed in the rotation direction between the relay protrusion on the back side and the protrusion on the front side. When such a step is generated, the following problems occur. That is, when the intermediate member is fitted from the rear end of the drive output shaft, moved to the front side in the axial direction, and the parallel pin is inserted between the relay protrusions on the back side for assembling the intermediate member. There is a problem that the parallel pin hits the step and the intermediate member cannot be assembled smoothly. Further, when the intermediate member is pushed by the screw input joint and moved to the back side, the parallel pin is located between the relay protrusions on the front side. Therefore, when the input protrusion is rotationally driven, the input protrusion is located between the relay protrusions on the front side, the pushing is released, and the intermediate member moves to the front side by the urging force of the spring 66, the parallel pin is moved to the front side. There is a risk of hitting a step. When the parallel pin hits the step, the intermediate member 52 does not move to the drive connection position, the drive connection with the screw input joint is not performed normally, and the shaft reaction force or the like may increase.

図36は、平行ピン51Fが入り込む中間部材奥側の中継突起部と、手前側の中継突起部とをテーパ形状で連結した変形例5の装置本体側の構成を示す概略図である。
図36の円で囲んだ箇所で示すように、奥側の中継突起部252aと、手前側の中継突起部252cとの連結部252bを、軸方向に対して傾斜するテーパ形状とすることで、以下の利点を得ることができる。すなわち、上述したように、中間部材52の組み付け時に、手前側の中継突起部の間の隙間に位置する平行ピンが、奥側の中継突起の間の隙間に対して回転方向の位相がずれていた場合、上記平行ピンは連結部252bに当接する。しかし、連結部252bはテーパ形状であるので、平行ピンは、テーパ形状の連結部252bにより案内され、奥側の中継突起の間に入れ込むことができる。これにより、中間部材を、スムーズに組み付けることができる。
FIG. 36 is a schematic view showing the configuration of the apparatus main body side of the modified example 5 in which the relay protrusion portion on the back side of the intermediate member into which the parallel pin 51F enters and the relay protrusion portion on the front side are connected in a tapered shape.
As shown by the circled portion in FIG. 36, the connecting portion 252b between the relay protrusion 252a on the back side and the relay protrusion 252c on the front side has a tapered shape that is inclined with respect to the axial direction. The following advantages can be obtained. That is, as described above, when the intermediate member 52 is assembled, the parallel pins located in the gaps between the relay protrusions on the front side are out of phase in the rotational direction with respect to the gaps between the relay protrusions on the back side. If so, the parallel pin comes into contact with the connecting portion 252b. However, since the connecting portion 252b has a tapered shape, the parallel pin can be guided by the tapered connecting portion 252b and inserted between the relay protrusions on the back side. As a result, the intermediate member can be assembled smoothly.

また、中間部材が駆動連結解除位置から駆動連結位置へ移動するときに、平行ピンが、奥側の中継突起部252aの間の隙間に対して回転方向の位相がずれていても、上記平行ピン51Fは、テーパ形状の連結部552b案内されて、奥側の中継突起の間に入り込む。これにより、中間部材が駆動連結位置まで移動して、中間部材とスクリュウ入力ジョイントとを正常に駆動連結することができる。 Further, when the intermediate member moves from the drive connection release position to the drive connection position, even if the parallel pin is out of phase in the rotation direction with respect to the gap between the relay protrusions 252a on the back side, the parallel pin The 51F is guided by the tapered connecting portion 552b and enters between the relay protrusions on the back side. As a result, the intermediate member moves to the drive connection position, and the intermediate member and the screw input joint can be normally driven and connected.

[変形例7]
図37は、変形例7のスクリュウジョイント50Gの要部拡大図である。
この変形例7においては、抜け止め部52cの出力突起部151cと対向する箇所に突起部52dを設けたものである。突起部52dの頂部は、球面状となっている。その他の構成は、変形例4と同一の構成である。
[Modification 7]
FIG. 37 is an enlarged view of a main part of the screw joint 50G of the modified example 7.
In this modification 7, the protrusion 52d is provided at a position facing the output protrusion 151c of the retaining portion 52c. The top of the protrusion 52d has a spherical shape. Other configurations are the same as those of the modified example 4.

図38は、抜け止め部52cの出力突起部151cと対向する面と、出力突起部151cの抜け止め部と対向する面とが平面の場合について、説明する図である。
先の変形例4等で説明したように、出力突起部の断面形状を楕円形状とせず、角丸長方形状として、スクリュウジョイント50の軸方向の小型化を図った場合、出力突起部の抜け止め部と対向する面が平面となる。中間部材52が、軸方向に対して傾いたとき、抜け止め部52cが出力突起部に当接する場合がある。図38に示すように、抜け止め部52cの出力突起部151cと対向する面と、出力突起部151cの抜け止め部52cと対向する面とが平面の場合、抜け止め部52cが出力突起部151cの抜け止め部52cと対向する面に線接触する。このように、線接触となることで、中間部材52の傾いた方向と直交する方向(図38の紙面と直交する方向)に中間部材52が傾き難くなり、軸心ずれを良好に吸収できないおそれがある。その結果、軸反力が大きくなったり、回転ムラが大きくなったりするおそれがある。
FIG. 38 is a diagram illustrating a case where the surface of the output protrusion 52c facing the output protrusion 151c and the surface of the output protrusion 151c facing the output protrusion 151c are flat.
As described in the above modification example 4, when the cross-sectional shape of the output protrusion is not an elliptical shape but a rectangular shape with rounded corners and the screw joint 50 is miniaturized in the axial direction, the output protrusion is prevented from coming off. The surface facing the portion is a flat surface. When the intermediate member 52 is tilted with respect to the axial direction, the retaining portion 52c may come into contact with the output protrusion portion. As shown in FIG. 38, when the surface of the output protrusion 52c facing the output protrusion 151c and the surface of the output protrusion 151c facing the output protrusion 52c are flat, the retaining portion 52c is the output protrusion 151c. Line contact with the surface facing the retaining portion 52c. In this way, the line contact makes it difficult for the intermediate member 52 to tilt in the direction orthogonal to the tilted direction of the intermediate member 52 (the direction orthogonal to the paper surface in FIG. 38), and there is a risk that the axial misalignment cannot be absorbed satisfactorily. There is. As a result, the axial reaction force may increase or the rotation unevenness may increase.

一方、図37に示す変形例7においては、抜け止め部52cの出力突起部151cと対向する箇所に突起部52dを設けている。よって、中間部材52が軸方向に対して傾いたとき、抜け止め部52cの突起部52dが、出力突起部151cの抜け止め部52cと対向する面に接触する。これにより、出力突起部151cの抜け止め部52cと対向する面に略点接触し、中間部材52Gの傾いた方向と直交する方向にも中間部材52Gをスムーズに傾けることができる。その結果、軸心ずれを良好に吸収でき、軸反力の増大や、回転ムラの増大を抑制するおそれがある。 On the other hand, in the modified example 7 shown in FIG. 37, the protrusion 52d is provided at a position facing the output protrusion 151c of the retaining portion 52c. Therefore, when the intermediate member 52 is tilted with respect to the axial direction, the protrusion 52d of the retaining portion 52c comes into contact with the surface of the output protrusion 151c facing the retaining portion 52c. As a result, the intermediate member 52G can be smoothly tilted in a direction orthogonal to the tilted direction of the intermediate member 52G by substantially making point contact with the surface of the output protrusion 151c facing the retaining portion 52c. As a result, the misalignment of the shaft center can be satisfactorily absorbed, and there is a risk of suppressing an increase in the shaft reaction force and an increase in rotation unevenness.

また、抜け止め部52cの出力突起部151cと対向する箇所を球面として、出力突起部側へ突出させてもよい。かかる構成とすることでも、出力突起部151cの抜け止め部52cと対向する面に点接触し、中間部材52Gの傾いた方向と直交する方向にも中間部材52Gをスムーズに傾けることができる。また、出力突起部151cの抜け止め部52cと対向する面を球面としたり、出力突起部151cの抜け止め部52cと対向する面に突起部を設けたりしてもよい。 Further, the portion of the retaining portion 52c facing the output protrusion 151c may be formed as a spherical surface so as to protrude toward the output protrusion. With such a configuration, the intermediate member 52G can be smoothly tilted in a direction orthogonal to the tilted direction of the intermediate member 52G by making point contact with the surface of the output protrusion 151c facing the retaining portion 52c. Further, the surface of the output protrusion 151c facing the retaining portion 52c may be a spherical surface, or the surface of the output protrusion 151c facing the retaining portion 52c may be provided with a protrusion.

[変形例8]
図39は、変形例8のスクリュウジョイント50Hの要部拡大図である。
この変形例8は、抜け止め部52cの出力突起部151cと対向する先端部の手前側(図中左側)に、奥側から手前側へ向けて徐々に内径が広がる曲面状の面取り部52eを設けたものである。
[Modification 8]
FIG. 39 is an enlarged view of a main part of the screw joint 50H of the modified example 8.
In this modification 8, a curved chamfered portion 52e whose inner diameter gradually increases from the back side to the front side is provided on the front side (left side in the drawing) of the tip portion of the retaining portion 52c facing the output protrusion 151c. It is provided.

図40は、中間部材が傾きながら駆動連結位置へ移動する様子を説明する図であり、図40(a)は、変形例8の場合について示しており、図40(b)は、抜け止め部に面取り部を設けない場合について示している。
製造誤差などにより、抜け止め部とスクリュウ出力ジョイントの筒状部との間の隙間が、規定の隙間よりも狭くなる場合がある。このような場合、駆動出力軸61と供給スクリュウの軸143bとの間に軸心ずれがあるなどして、中間部材が傾きながらスプリングの付勢力により駆動連結位置へ移動する場合に、図40に示すように、筒状部の端部に抜け止め部の先端が当たる場合がある。
FIG. 40 is a diagram for explaining how the intermediate member moves to the drive connection position while tilting, FIG. 40 (a) shows the case of the modified example 8, and FIG. 40 (b) shows the retaining portion. The case where the chamfered portion is not provided is shown.
Due to a manufacturing error or the like, the gap between the retaining portion and the tubular portion of the screw output joint may be narrower than the specified gap. In such a case, when the intermediate member is tilted and moved to the drive connection position by the urging force of the spring due to a misalignment between the drive output shaft 61 and the shaft 143b of the supply screw, FIG. 40 shows. As shown, the tip of the retaining portion may hit the end of the tubular portion.

図40(b)に示すように、抜け止め部52cの出力突起部と対向する先端部の手前側に面取り部を設けていない場合、筒状部51aの端部に抜け止め部52cの先端が当たると、抜け止め部52cが、この筒状部51aを乗り越えることができない。その結果、中間部材52が、駆動連結位置まで移動せず、中間部材52とスクリュウ入力ジョイント53とが駆動連結しないなどの不具合が発生するおそれがある。 As shown in FIG. 40 (b), when the chamfered portion is not provided on the front side of the tip portion of the retaining portion 52c facing the output protrusion portion, the tip of the retaining portion 52c is located at the end of the tubular portion 51a. When hit, the retaining portion 52c cannot get over the tubular portion 51a. As a result, the intermediate member 52 does not move to the drive connection position, and there is a possibility that a problem such as the intermediate member 52 and the screw input joint 53 not being drive-connected may occur.

一方、変形例8においては、図40(a)に示すように、抜け止め部52cの面取り部52eが筒状部51aの端部に当たる。このように、面取り部52eが筒状部51aの端部に当たることで、スプリング66の中間部材52Hを手前側へ付勢する付勢力の分力が、抜け止め部52cが筒状部51aを乗り越える方向に働く。その結果、抜け止め部52cが、筒状部51aを乗り越えて、中間部材52Hが、スプリング66の付勢力で駆動連結位置まで移動する。これにより、製造誤差などにより、抜け止め部52cとスクリュウ出力ジョイント51Hの筒状部51aとの間の隙間が、規定の隙間よりも多少狭くなっても、中間部材52Hとスクリュウ入力ジョイント53Hとを確実に駆動連結することができる。 On the other hand, in the modified example 8, as shown in FIG. 40A, the chamfered portion 52e of the retaining portion 52c hits the end portion of the tubular portion 51a. In this way, when the chamfered portion 52e hits the end portion of the tubular portion 51a, the component force of the urging force for urging the intermediate member 52H of the spring 66 toward the front side is overtaken by the retaining portion 52c over the tubular portion 51a. Work in the direction. As a result, the retaining portion 52c gets over the tubular portion 51a, and the intermediate member 52H moves to the drive connecting position by the urging force of the spring 66. As a result, even if the gap between the retaining portion 52c and the tubular portion 51a of the screw output joint 51H is slightly narrower than the specified gap due to manufacturing errors or the like, the intermediate member 52H and the screw input joint 53H can be separated. It can be reliably driven and connected.

また、図41に示すように、抜け止め部52cの面取り部52eを、奥側から手前側へ向けて徐々に内径が広がるような傾斜面としてもよい。かかる構成としても、抜け止め部52cが筒状部51aの端部に当たっても、抜け止め部52cが筒状部51aを乗り越えることができ、中間部材52Hとスクリュウ入力ジョイント53Hとを確実に駆動連結することができる。 Further, as shown in FIG. 41, the chamfered portion 52e of the retaining portion 52c may be an inclined surface whose inner diameter gradually increases from the back side to the front side. Even with such a configuration, even if the retaining portion 52c hits the end of the tubular portion 51a, the retaining portion 52c can get over the tubular portion 51a, and the intermediate member 52H and the screw input joint 53H are reliably driven and connected. be able to.

また、スクリュウ出力ジョイントの筒状部の端部を、手前側が奥側に向けて徐々に外径が短くなるような曲面や傾斜面としてもよい。かかる構成としても、抜け止め部が筒状部の端部に当たっても、抜け止め部が筒状部を乗り越えることができ、中間部材とスクリュウ入力ジョイントとを確実に駆動連結することができる。 Further, the end portion of the tubular portion of the screw output joint may be a curved surface or an inclined surface such that the front side gradually shortens the outer diameter toward the back side. Even with such a configuration, even if the retaining portion hits the end portion of the tubular portion, the retaining portion can get over the tubular portion, and the intermediate member and the screw input joint can be reliably driven and connected.

上述では、スクリュウジョイントを例にして説明したが、ブラシジョイントについても、図6〜図41を用いて説明したジョイントを用いることができる。また、現像ローラ43aと、装置本体側の駆動装置とを駆動連結する現像ジョイントに、図6〜図41を用いて説明したジョイントを用いてもよい。現像ジョイントを、図6〜図41を用いて説明したジョイントにすることで、現像ローラ43aの軸と、装置本体側の駆動出力軸との間に軸心ずれがあっても、現像ジョイントでの軸反力を抑制できる。よって、感光体と現像ローラ43aとの間の現像ギャップの変動や、現像ドクタ43cとのギャップ変動を抑制することができる。また、軸心ずれによる現像ローラ43aの回転ムラも抑制することができる。これにより、現像ギャップ変動、現像ドクタ43cとの間のギャップ変動および現像ローラの回転ムラを起因とする画像濃度ムラの発生を抑制することができる。 In the above description, the screw joint has been described as an example, but as for the brush joint, the joint described with reference to FIGS. 6 to 41 can also be used. Further, the joint described with reference to FIGS. 6 to 41 may be used as the developing joint for driving and connecting the developing roller 43a and the driving device on the device main body side. By making the developing joint the joint described with reference to FIGS. 6 to 41, even if there is an axial misalignment between the axis of the developing roller 43a and the drive output axis on the device main body side, the developing joint can be used. Axial reaction force can be suppressed. Therefore, fluctuations in the development gap between the photoconductor and the developing roller 43a and fluctuations in the gap between the developing doctor 43c and the developing doctor 43c can be suppressed. In addition, uneven rotation of the developing roller 43a due to misalignment of the axis can be suppressed. As a result, it is possible to suppress the occurrence of image density unevenness caused by the development gap fluctuation, the gap fluctuation with the developing doctor 43c, and the rotation unevenness of the developing roller.

また、ベルトクリーニング装置17のベルトクリーニングブラシローラ17aの軸と、装置本体側の駆動装置との駆動連結するジョイントに図6〜図41を用いて説明したジョイントを用いてもよい。図6〜図41を用いて説明したジョイントを用いることで、ベルトクリーニングブラシローラ17aの回転ムラや、ジョイントの軸反力に起因するベルトクリーニングブラシローラ17aの中間転写ベルト11に対する当接圧の変動を抑制することができる。これにより、ベルトクリーニングブラシローラ17aから受ける中間転写ベルト11への負荷変動を低減することができ、中間転写ベルト11の速度変動を低減することができる。 Further, the joint described with reference to FIGS. 6 to 41 may be used as the joint for driving and connecting the shaft of the belt cleaning brush roller 17a of the belt cleaning device 17 and the driving device on the device main body side. By using the joint described with reference to FIGS. 6 to 41, the rotation unevenness of the belt cleaning brush roller 17a and the fluctuation of the contact pressure of the belt cleaning brush roller 17a with respect to the intermediate transfer belt 11 due to the axial reaction force of the joint. Can be suppressed. As a result, the load fluctuation on the intermediate transfer belt 11 received from the belt cleaning brush roller 17a can be reduced, and the speed fluctuation of the intermediate transfer belt 11 can be reduced.

以上に説明したものは一例であり、以下の態様毎に特有の効果を奏する。
(態様1)
現像モータ側などの駆動源側に設けられたスクリュウ出力ジョイント51などの出力部材と、供給スクリュウ43b側などの回転体側に設けられたスクリュウ入力ジョイント53などの入力部材と、筒状であり、出力外歯ギヤ51cなどの出力部材の駆動伝達部から駆動力を受け、入力外歯ギヤ53aなどの入力部材の駆動伝達部に駆動力を伝達する内歯ギヤ52aなどの中継駆動伝達部を内周面に有し、前記入力部材または前記出力部材に保持される中間部材52とを備え、前記中間部材52には、前記出力部材および前記入力部材のうち前記中間部材を保持している保持側部材の駆動伝達部と軸方向で対向して、中間部材が前記保持側部材から抜けるのを防止する抜け止め部52cが設けられているスクリュウ駆動伝達装置60などの駆動伝達装置において、前記中間部材52の回転中心から前記抜け止め部52cの先端までの距離を、前記回転中心から前記中継駆動伝達部の先端までの距離以上とした。
中間部材の小径化を図るには、中間部材の肉厚を減らすことが考えられる。しかしながら、中間部材の剛性を確保するためには、中間部材にはある程度の厚みが必要である。また、入力部材と出力部材との軸心ずれを吸収するためには、中間部材が軸方向に対して所定角度、傾き可能にする必要がある。中間部材が軸方向に対して所定角度、傾き可能にするには、上記抜け止め部の先端と、この抜け止め部の先端と径方向で対向する部材の外周面との間に所定の隙間が必要である。
よって、抜け止め部の先端に径方向で対向する部材の抜け止め部と対向する部分の外径をA、抜け止め部の先端と、この抜け止め部の先端と径方向で対向する部材との間の隙間をB、抜け止め部の先端から中間部材の内周面までの長さをC、中間部材の厚みをDとすると、中間部材が所定角度傾き可能で、所定の剛性を得るための中間部材の外径Eは、E=(B+C+D)×2+Aと規定することができる。
なお、上記抜け止め部の先端と径方向で対向する部材との間の隙間Bは、上述では、中間部材が軸方向に対して所定角度傾き可能にするために限らず、例えば、駆動伝達装置の組み付けを容易するためにも、上記抜け止め部の先端と径方向で対向する部材との間に所定の隙間Bが必要である。
態様1においては、前記中間部材の回転中心から前記抜け止め部の先端までの距離を、前記回転中心から前記中継駆動伝達部の先端までの距離以上としているので、抜け止め部が、径方向において、中継駆動伝達部の先端と同位置か、中継駆動伝達部の先端よりも凹んでいる。従って、態様1は、中継駆動伝達部の先端よりも抜け止め部が突出している特許文献1に記載の構成よりも、抜け止め部の先端から中間部材の内周面までの長さCを短くできる。これにより、特許文献1に記載の駆動伝達装置よりも、中間部材の小径化を図ることができ、駆動伝達装置の小径化を図ることができる。
The above description is an example, and the effect peculiar to each of the following aspects is exhibited.
(Aspect 1)
An output member such as a screw output joint 51 provided on the drive source side such as the development motor side and an input member such as the screw input joint 53 provided on the rotating body side such as the supply screw 43b side are tubular and output. The inner circumference of the relay drive transmission unit such as the internal gear 52a that receives the driving force from the drive transmission unit of the output member such as the external tooth gear 51c and transmits the driving force to the drive transmission unit of the input member such as the input external tooth gear 53a. The intermediate member 52 is provided with an intermediate member 52 that is held on the surface and is held by the input member or the output member, and the intermediate member 52 is a holding side member that holds the intermediate member among the output member and the input member. In a drive transmission device such as a screw drive transmission device 60 provided with a retaining portion 52c that is axially opposed to the drive transmission unit of the above and prevents the intermediate member from coming off from the holding side member, the intermediate member 52 The distance from the center of rotation to the tip of the retaining portion 52c was set to be equal to or greater than the distance from the center of rotation to the tip of the relay drive transmission portion.
In order to reduce the diameter of the intermediate member, it is conceivable to reduce the wall thickness of the intermediate member. However, in order to secure the rigidity of the intermediate member, the intermediate member needs to have a certain thickness. Further, in order to absorb the axial deviation between the input member and the output member, it is necessary for the intermediate member to be tiltable at a predetermined angle with respect to the axial direction. In order for the intermediate member to be tiltable at a predetermined angle with respect to the axial direction, a predetermined gap is required between the tip of the retaining portion and the outer peripheral surface of the member facing the tip of the retaining portion in the radial direction. is necessary.
Therefore, the outer diameter of the portion of the member that faces the tip of the retaining portion in the radial direction is A, and the tip of the retaining portion and the member that faces the tip of the retaining portion in the radial direction. Assuming that the gap between them is B, the length from the tip of the retaining portion to the inner peripheral surface of the intermediate member is C, and the thickness of the intermediate member is D, the intermediate member can be tilted at a predetermined angle to obtain a predetermined rigidity. The outer diameter E of the intermediate member can be defined as E = (B + C + D) × 2 + A.
The gap B between the tip of the retaining portion and the member facing in the radial direction is not limited to the above-mentioned so that the intermediate member can be tilted at a predetermined angle with respect to the axial direction, for example, a drive transmission device. A predetermined gap B is required between the tip of the retaining portion and the members facing each other in the radial direction in order to facilitate the assembly of the above.
In the first aspect, since the distance from the rotation center of the intermediate member to the tip of the retaining portion is equal to or greater than the distance from the rotation center to the tip of the relay drive transmission portion, the retaining portion is in the radial direction. , It is placed at the same position as the tip of the relay drive transmission unit, and is recessed from the tip of the relay drive transmission unit. Therefore, in the first aspect, the length C from the tip of the retaining portion to the inner peripheral surface of the intermediate member is shorter than the configuration described in Patent Document 1 in which the retaining portion protrudes from the tip of the relay drive transmission portion. it can. As a result, the diameter of the intermediate member can be reduced as compared with the drive transmission device described in Patent Document 1, and the diameter of the drive transmission device can be reduced.

(態様2)
(態様1)において、前記中間部材52を介してスクリュウ出力ジョイント51などの出力部材とスクリュウ入力ジョイント53などの入力部材との間で駆動伝達が可能な駆動連結位置から、前記出力部材および前記入力部材のうち前記中間部材52を保持しない非保持側部材(本実施形態では、入力部材)から離れる方向に前記中間部材52が軸方向に移動するように、前記中間部材は前記保持側部材(本実施形態では、出力部材)に保持され、前記中間部材を、前記駆動連結位置側へ付勢するスプリング66などの付勢手段を備えた。
これによれば、実施形態で説明したように、非保持側部材(本実施形態では、スクリュウ入力ジョイント53など入力部材)の駆動伝達部(本実施形態では、入力突起部153a)の回転方向の位相が、中間部材の中継突起部152aなどの中継駆動伝達部の回転方向の位相と一致した状態で、供給スクリュウなどの回転体を装置本体に装着するとき、非保持側部材の駆動伝達部が、中継駆動伝達部に当接して、非保持側部材の駆動伝達部が、中間部材内に入り込まない。しかし、態様2では、前記非保持側部材から離れる方向に前記中間部材52が軸方向に移動可能なため、非保持側部材の駆動伝達部が、中継駆動伝達部に当接して、非保持側部材の駆動伝達部が、中間部材内に入り込まずとも、中間部材52が軸方向にスライド移動して、回転体を装置本体に装着することができる。そして、回転駆動して、非保持側部材の駆動伝達部と中継駆動伝達部の回転方向の位相がずれて当接が解除されると、スプリング66などの付勢手段の付勢力により、中間部材52が非保持側部材と駆動連結する駆動連結位置へ移動し、非保持側部材の駆動伝達部が、中間部材内に入り込み、駆動連結することができる。
また、前記中間部材の回転中心から前記抜け止め部の先端までの距離を、前記回転中心から前記中継駆動伝達部の先端までの距離以上としているので、抜け止め部が、中継駆動伝達部よりも突出しているものに比べて、中間部材52が駆動連結位置へ移動するときに、抜け止め部がスクリュウ出力ジョイントなどの出力部材に突き当たるのを抑制することができる。その結果、中間部材の外径を小さくしても、中間部材が駆動連結位置まで移動しないような事態が生じるのを抑制することができる。
(Aspect 2)
In (Aspect 1), the output member and the input from a drive connection position capable of drive transmission between an output member such as a screw output joint 51 and an input member such as a screw input joint 53 via the intermediate member 52. Among the members, the intermediate member is the holding side member (the present embodiment) so that the intermediate member 52 moves in the axial direction in the direction away from the non-holding side member (in the present embodiment, the input member) that does not hold the intermediate member 52. In the embodiment, the intermediate member is held by the output member) and is provided with an urging means such as a spring 66 that urges the intermediate member toward the drive connection position side.
According to this, as described in the embodiment, in the rotation direction of the drive transmission unit (in the present embodiment, the input protrusion 153a) of the non-holding side member (in the present embodiment, an input member such as the screw input joint 53). When a rotating body such as a supply screw is mounted on the main body of the device in a state where the phase matches the phase in the rotation direction of the relay drive transmission unit such as the relay protrusion 152a of the intermediate member, the drive transmission unit of the non-holding side member is , The drive transmission part of the non-holding side member does not enter the intermediate member in contact with the relay drive transmission part. However, in the second aspect, since the intermediate member 52 is movable in the axial direction in the direction away from the non-holding side member, the drive transmission portion of the non-holding side member comes into contact with the relay drive transmission portion and is on the non-holding side. Even if the drive transmission unit of the member does not enter the intermediate member, the intermediate member 52 slides and moves in the axial direction, and the rotating body can be mounted on the apparatus main body. Then, when the drive transmission unit of the non-holding side member and the relay drive transmission unit are displaced from each other in the rotational direction and the contact is released by rotational driving, the intermediate member is generated by the urging force of the urging means such as the spring 66. 52 moves to the drive connection position where the non-holding side member is driven and connected, and the drive transmission portion of the non-holding side member enters the intermediate member and can be driven and connected.
Further, since the distance from the rotation center of the intermediate member to the tip of the retaining portion is equal to or greater than the distance from the rotation center to the tip of the relay drive transmission portion, the retaining portion is larger than the relay drive transmission portion. Compared to the protruding one, when the intermediate member 52 moves to the drive connecting position, it is possible to prevent the retaining portion from hitting the output member such as the screw output joint. As a result, even if the outer diameter of the intermediate member is reduced, it is possible to prevent the intermediate member from moving to the drive connecting position.

(態様3)
(態様2)において、前記中間部材52が、前記駆動連結位置に位置するとき、スプリング66などの付勢手段の付勢力が、前記中間部材52に作用しないように構成した(本実施形態では、スプリングと中間部材との間に軸方向に移動可能で、スクリュウ出力ジョイントなどの保持側部材の端部に突き当たるスライド部材67を設けた構成)。
これによれば、実施形態で説明したように、中間部材を、軸方向に対してスムーズに傾けさせることができ、良好に軸心ずれや偏角を吸収することができる。これにより、軸反力の発生や、回転体の回転ムラを良好に抑制することができる。
(Aspect 3)
In (Aspect 2), when the intermediate member 52 is located at the drive connecting position, the urging force of the urging means such as the spring 66 does not act on the intermediate member 52 (in the present embodiment, the intermediate member 52 is configured so as not to act on the intermediate member 52. A structure in which a slide member 67 that is movable in the axial direction between the spring and the intermediate member and abuts on the end of the holding side member such as a screw output joint is provided).
According to this, as described in the embodiment, the intermediate member can be smoothly tilted with respect to the axial direction, and the misalignment and the declination can be satisfactorily absorbed. As a result, the generation of axial reaction force and the uneven rotation of the rotating body can be satisfactorily suppressed.

(態様4)
(態様2)または(態様3)において、抜け止め部の保持側部材の駆動伝達部側の端部に、保持側部材の駆動伝達部側へ向かうに連れて内径が拡大する傾斜面または曲面とした面取り部52eを設けた。
これによれば、変形例8で説明したように、製造誤差などにより抜け止め部の先端と抜け止め部と対向する部分との隙間が狭くなるなどして、中間部材が駆動連結位置へ移動しているときに、抜け止め部がスクリュウ出力ジョイントなどの出力部材の端部に当たったとしても、抜け止め部が、出力部材を乗り越えることができる。これにより、確実に、中間部材を、スプリングなどの付勢手段の付勢力により、駆動連結位置へ移動させることができ、中間部材と、スクリュウ入力ジョイントなどの非保持側部材とを確実に駆動連結することができる。
(Aspect 4)
In (Aspect 2) or (Aspect 3), an inclined surface or a curved surface whose inner diameter increases toward the drive transmission portion side of the holding side member is formed on the end portion of the holding side member of the retaining portion on the drive transmission portion side. The chamfered portion 52e was provided.
According to this, as described in the modified example 8, the intermediate member moves to the drive connection position because the gap between the tip of the retaining portion and the portion facing the retaining portion is narrowed due to a manufacturing error or the like. Even if the retaining portion hits the end of the output member such as the screw output joint during the operation, the retaining portion can get over the output member. As a result, the intermediate member can be reliably moved to the drive connection position by the urging force of the urging means such as a spring, and the intermediate member and the non-holding side member such as the screw input joint can be reliably driven and connected. can do.

(態様5)
(態様1)乃至(態様4)いずれかにおいて、中間部材52は、スクリュウ入力ジョイント53などの入力部材およびスクリュウ出力ジョイント51などの出力部材に対して、径方向および回転方向に所定のクリアランスを有する。
これによれば、実施形態で説明したように、スムーズに中間部材を軸方向に移動させることができ、かつ、傾かせることができる。これにより、良好に中間部材と非保持側部材との駆動連結を行うことができる。また、軸心ずれや偏角を良好に吸収することができ、軸反力や、回転ムラを抑制することができる。
(Aspect 5)
In any of (Aspect 1) to (Aspect 4), the intermediate member 52 has predetermined clearances in the radial direction and the rotational direction with respect to the input member such as the screw input joint 53 and the output member such as the screw output joint 51. ..
According to this, as described in the embodiment, the intermediate member can be smoothly moved in the axial direction and can be tilted. As a result, the intermediate member and the non-holding side member can be satisfactorily driven and connected. In addition, it is possible to satisfactorily absorb the axial deviation and the declination, and it is possible to suppress the axial reaction force and the rotation unevenness.

(態様6)
(態様5)において、前記抜け止め部52cと前記抜け止め部52cの先端と径方向から対向する部材との間、前記中間部材52の内周面と出力突起部などの出力部材の駆動伝達部との間、前記中間部材52の内周面と入力突起部などの入力部材の駆動伝達部との間、中継突起部などの中継駆動伝達部と前記出力部材の外周面との間および前記中継駆動伝達部と前記入力部材の外周面との間で、径方向に所定の隙間を有し、前記中継駆動伝達部と前記入力部材の駆動伝達部との間および前記中継駆動伝達部と前記出力部材の駆動伝達部との間で回転方向に所定の隙間を有する。
これによれば、実施形態で説明したように、中間部材52が、スクリュウ入力ジョイント53などの入力部材およびスクリュウ出力ジョイント51などの出力部材に対して、径方向および回転方向に所定のクリアランスを有することができる。
(Aspect 6)
In (Aspect 5), a drive transmission portion of an output member such as an inner peripheral surface of the intermediate member 52 and an output protrusion portion between the retaining portion 52c and the tip of the retaining portion 52c and a member facing from the radial direction. Between the inner peripheral surface of the intermediate member 52 and the drive transmission part of the input member such as the input protrusion, between the relay drive transmission part such as the relay protrusion and the outer peripheral surface of the output member, and the relay. There is a predetermined gap in the radial direction between the drive transmission unit and the outer peripheral surface of the input member, and between the relay drive transmission unit and the drive transmission unit of the input member, and between the relay drive transmission unit and the output. It has a predetermined gap in the rotation direction with the drive transmission portion of the member.
According to this, as described in the embodiment, the intermediate member 52 has predetermined clearances in the radial direction and the rotational direction with respect to the input member such as the screw input joint 53 and the output member such as the screw output joint 51. be able to.

(態様7)
(態様1)乃至(態様6)いずれかにおいて、前記抜け止め部52cの前記保持側部材の駆動伝達部(本実施形態では、出力突起部)との対向部、および、前記保持側部材の駆動伝達部の前記抜け止め部との対向部の少なくとも一方に突起部52dなどの突出する部分を設けた。
これによれば、変形例7で説明したように、中間部材52が傾いたとき、前記保持側部材の駆動伝達部および抜け止め部の一方が、上記突起部52dなどの突出する部分と当接する。これにより、前記保持側部材の駆動伝達部と抜け止め部とが当接しても、中間部材の傾きを阻害することがなく、軸心ずれを良好に吸収できる。その結果、軸反力や、回転ムラを良好に抑制できる。
(Aspect 7)
In any one of (Aspect 1) to (Aspect 6), the portion of the retaining portion 52c facing the drive transmission portion (output protrusion portion in the present embodiment) of the holding side member, and the driving of the holding side member. A protruding portion such as a protrusion 52d is provided on at least one of the transmission portions facing the retaining portion.
According to this, as described in the modified example 7, when the intermediate member 52 is tilted, one of the drive transmitting portion and the retaining portion of the holding side member comes into contact with the protruding portion such as the protruding portion 52d. .. As a result, even if the drive transmission portion of the holding side member and the retaining portion come into contact with each other, the inclination of the intermediate member is not hindered, and the misalignment of the axis can be satisfactorily absorbed. As a result, axial reaction force and rotation unevenness can be satisfactorily suppressed.

(態様8)
(態様1)乃至(態様7)いずれかにおいて、出力突起部などの出力部材の駆動伝達部の駆動伝達時に中継突起部などの中継駆動伝達部に当接する当接面および入力突起部などの入力部材の駆動伝達部の駆動伝達時に中継駆動伝達部に当接する当接面の少なくとも一方を、軸方向において円弧状の曲面とした。
これによれば、実施形態や変形例1で説明したように、前記当接面が平面な場合に比べて、中間部材をスムーズに傾かせることができ、軸心ずれや偏角を良好に吸収することができる。
(Aspect 8)
In any of (Aspect 1) to (Aspect 7), the input of the contact surface and the input protrusion that abut the relay drive transmission part such as the relay protrusion when the drive transmission of the drive transmission part of the output member such as the output protrusion is transmitted. At least one of the contact surfaces that abuts on the relay drive transmission unit during drive transmission of the drive transmission unit of the member is an arcuate curved surface in the axial direction.
According to this, as described in the embodiment and the first modification, the intermediate member can be tilted smoothly as compared with the case where the contact surface is flat, and the misalignment and the declination can be absorbed satisfactorily. can do.

(態様9)
(態様1)乃至(態様8)いずれかにおいて、出力突起部などの出力部材の駆動伝達部の駆動伝達時に中継突起部などの中継駆動伝達部に当接する当接面および入力突起部などの入力部材の駆動伝達部の駆動伝達時に前記中継駆動伝達部に当接する当接面の少なくとも一方を、径方向において円弧状の曲面とした。
これによれば、変形例3などで説明したように、前記当接面が平面な場合に比べて、中間部材をスムーズに傾かせることができ、軸心ずれや偏角を良好に吸収することができる。
(Aspect 9)
In any of (Aspect 1) to (Aspect 8), the input of the contact surface and the input protrusion that abut the relay drive transmission part such as the relay protrusion when the drive transmission of the drive transmission part of the output member such as the output protrusion is transmitted. At least one of the contact surfaces that abuts on the relay drive transmission portion during drive transmission of the drive transmission portion of the member is formed into an arcuate curved surface in the radial direction.
According to this, as described in the modified example 3, the intermediate member can be tilted smoothly as compared with the case where the contact surface is flat, and the misalignment and the declination can be absorbed satisfactorily. Can be done.

(態様10)
(態様8)または(態様9)において、前記駆動伝達部の前記当接面を曲面とした前記入力部材および前記出力部材のヤング率を、前記中間部材のヤング率よりも大きくした。
これによれば、変形例1などで説明したように、上記曲面が摩耗するのを抑制することができ、経時に亘り、中間部材をスムーズに傾かせることができる。
(Aspect 10)
In (Aspect 8) or (Aspect 9), the Young's modulus of the input member and the output member having the contact surface of the drive transmission portion as a curved surface is made larger than the Young's modulus of the intermediate member.
According to this, as described in the first modification, it is possible to suppress the wear of the curved surface, and the intermediate member can be smoothly tilted over time.

(態様11)
(態様1)乃至(態様7)いずれかにおいて、出力突起部などの出力部材の駆動伝達部および入力突起部などの入力部材の駆動伝達部の少なくとも一方は、回転方向に直交する面が、軸方向において直線状である。
これによれば、変形例3で説明したように、駆動伝達時に中継突起部などの中継駆動伝達部に当接する当接面の軸方向中央にパーティングラインを設定する必要がなくなり、この当接面にバリなどが発生するのを防止することができる。また、軸方向に移動する一対の金型で、出力部材や入力部材を成型可能となり、金型費を削減することができ、製造のコストダウンを図ることができる。
(Aspect 11)
In any one of (Aspect 1) to (Aspect 7), at least one of the drive transmission part of the output member such as the output protrusion and the drive transmission part of the input member such as the input protrusion has a plane orthogonal to the rotation direction as an axis. It is linear in the direction.
According to this, as described in the modified example 3, it is not necessary to set the parting line at the axial center of the contact surface that contacts the relay drive transmission portion such as the relay protrusion during the drive transmission, and this contact It is possible to prevent burrs and the like from being generated on the surface. Further, the output member and the input member can be molded with a pair of molds that move in the axial direction, the mold cost can be reduced, and the manufacturing cost can be reduced.

(態様12)
(態様1)乃至(態様11)いずれかにおいて、入力部材の駆動伝達部および前記出力部材の駆動伝達部の少なくとも一方が、ギヤ形状である。
これによれば、実施形態で説明したように、ギヤの噛み合いで、駆動伝達を行うことができる。
(Aspect 12)
In any one of (Aspect 1) to (Aspect 11), at least one of the drive transmission portion of the input member and the drive transmission portion of the output member has a gear shape.
According to this, as described in the embodiment, the drive transmission can be performed by the meshing of the gears.

(態様13)
(態様12)において、前記ギヤ形状の歯形は、歯厚が軸方向中央部で最大となり、かつ、軸方向両端部に向けて歯厚が小さくなる形状である。
これによれば、図14を用いて説明したように、歯厚を一定にした場合に比べて、中間部材をスムーズに傾かせることができ、軸心ずれや偏角を良好に吸収することができる。
(Aspect 13)
In (Aspect 12), the gear-shaped tooth profile has a shape in which the tooth thickness is maximum at the central portion in the axial direction and the tooth thickness decreases toward both ends in the axial direction.
According to this, as described with reference to FIG. 14, the intermediate member can be tilted smoothly as compared with the case where the tooth thickness is constant, and the misalignment and the declination can be absorbed satisfactorily. it can.

(態様14)
(態様1)乃至(態様13)において、出力突起部などの出力部材の駆動伝達部と入力突起部などの入力部材の駆動伝達部との形状および数の少なくとも一方を、互い異ならせた。
これによれば、変形例6で説明したように、例えば、交換が容易でない装置本体側に配置される出力ジョイントなどの出力部材は、平行ピンなどの剛性の高いものを用い、交換が容易な回転体側に配置される入力ジョイントなどの入力部材に関しては、樹脂などの剛性が弱いものとした場合に、入力部材の駆動伝達部の数および形状を、出力突起部などの出力部材の駆動伝達部と同じとすると、入力部材の駆動伝達部が破損するおそれがある。しかし、出力部材の駆動伝達部と入力部材の駆動伝達部との形状および数の少なくとも一方を、互い異ならせることで、入力部材として、出力部材よりも剛性の弱いものを用いた場合でも、入力部材の駆動伝達部が破損するなどの不具合が発生するのを抑制することができる。
(Aspect 14)
In (Aspect 1) to (Aspect 13), at least one of the shape and the number of the drive transmission part of the output member such as the output protrusion and the drive transmission part of the input member such as the input protrusion are made different from each other.
According to this, as described in the modified example 6, for example, as the output member such as the output joint arranged on the device main body side which is not easy to replace, a highly rigid one such as a parallel pin is used and the replacement is easy. Regarding the input member such as the input joint arranged on the rotating body side, when the rigidity of the resin or the like is weak, the number and shape of the drive transmission part of the input member can be changed to the drive transmission part of the output member such as the output protrusion. If it is the same as the above, the drive transmission portion of the input member may be damaged. However, by making at least one of the shape and number of the drive transmission part of the output member and the drive transmission part of the input member different from each other, even if an input member having a weaker rigidity than the output member is used, the input is input. It is possible to suppress the occurrence of problems such as damage to the drive transmission portion of the member.

(態様15)
(態様14)において、出力突起部などの出力部材の駆動伝達部と、入力突起部などの入力部材の駆動伝達部との回転方向長さが互いに異なるものにおいて、中継突起部などの中継駆動伝達部の出力部材の駆動伝達部が係合する部分と、中継駆動伝達部の入力部材の駆動伝達部が係合する部分とを、回転方向に傾斜したテーパ面で結んだ。
これによれば、図36を用いて説明したように、中間部材を保持側部材に組み付けるときに、保持側部材の駆動伝達部が、中継突起部などの中継駆動伝達部の出力部材の駆動伝達部が係合する部分と、中継駆動伝達部の入力部材の駆動伝達部が係合する部分との連結部に引っ掛ることない。これにより、スムーズに中間部材を保持側部材に組み付けることができる。
また、中間部材が、駆動連結位置へ移動する際に保持側部材の駆動伝達部が、中継駆動伝達部の出力部材の駆動伝達部が係合する部分と、中継駆動伝達部の入力部材の駆動伝達部が係合する部分との連結部に引っ掛ることもない。これにより、スムーズに中間部材を駆動連結位置へ移動させることができ、中間部材と非保持側部材とを駆動連結することができる。
(Aspect 15)
In (Aspect 14), when the drive transmission portion of the output member such as the output protrusion and the drive transmission portion of the input member such as the input protrusion have different rotational lengths, the relay drive transmission of the relay protrusion or the like is performed. The portion where the drive transmission portion of the output member of the unit engages and the portion where the drive transmission portion of the input member of the relay drive transmission unit engages are connected by a tapered surface inclined in the rotational direction.
According to this, as described with reference to FIG. 36, when the intermediate member is assembled to the holding side member, the drive transmitting portion of the holding side member drives transmission of the output member of the relay drive transmitting portion such as the relay protrusion portion. It does not get caught in the connecting portion between the portion with which the portion engages and the portion with which the drive transmission portion of the input member of the relay drive transmission portion engages. As a result, the intermediate member can be smoothly assembled to the holding side member.
Further, when the intermediate member moves to the drive connection position, the drive transmission unit of the holding side member engages with the drive transmission unit of the output member of the relay drive transmission unit, and drives the input member of the relay drive transmission unit. It does not get caught in the connecting part with the part where the transmitting part engages. As a result, the intermediate member can be smoothly moved to the drive connection position, and the intermediate member and the non-holding side member can be drive-connected.

(態様16)
(態様1)乃至(態様15)において、前記入力部材および前記出力部材のうち、前記中間部材を保持していない非保持側部材の駆動伝達部(本実施形態では、入力突起部)のうちのひとつが、他の駆動伝達部よりも前記保持側部材側へ延びた延長駆動伝達部であり、前記延長駆動伝達部の前記保持側部材側端部を、前記保持側部材側ほど、外径が短くなるようなテーパ形状とした。
これによれば、図27〜図29を用いて説明したように、延長駆動伝達部が、他の駆動伝達部よりも先に中間部材内に入り込む。これにより、軸心すれ量が多くても、回転方向で互いに隣合う非保持側部材の駆動伝達部が、中継突起部など中継駆動伝達部の間の同じ隙間に入り込もうとするのを抑制することができる。これにより、非保持側部材の駆動伝達部の破損を抑制することができる。
また、延長駆動伝達部の前記保持側部材側端部を、前記保持側部材側ほど、外径が短くなるようなテーパ形状とすることで、図29を用いて説明したように、延長駆動伝達部の先端が中間部材の傾きを阻害するのを抑制することができる。
(Aspect 16)
In (Aspect 1) to (Aspect 15), among the input member and the output member, among the drive transmission portions (input protrusions in the present embodiment) of the non-holding side member that does not hold the intermediate member. One is an extension drive transmission unit that extends toward the holding side member side from the other drive transmission unit, and the outer diameter of the holding side member side end portion of the extension drive transmission unit is larger toward the holding side member side. It has a tapered shape that shortens it.
According to this, as described with reference to FIGS. 27 to 29, the extension drive transmission unit enters the intermediate member before the other drive transmission units. As a result, even if the amount of axial misalignment is large, it is possible to prevent the drive transmission parts of the non-holding side members that are adjacent to each other in the rotation direction from entering the same gap between the relay drive transmission parts such as the relay protrusions. Can be done. As a result, damage to the drive transmission portion of the non-holding side member can be suppressed.
Further, as described with reference to FIG. 29, the extension drive transmission portion is extended drive transmission by forming the end portion of the holding side member side end portion into a tapered shape so that the outer diameter becomes shorter toward the holding side member side. It is possible to prevent the tip of the portion from obstructing the inclination of the intermediate member.

(態様17)
(態様1)乃至(態様16)において、前記中間部材52の外径を、前記出力部材が設けられた前記駆動出力軸61などの出力軸の外径の2倍以下とした。
これによれば、前記中間部材52の外径を、前記駆動出力軸61などの出力軸の外径の2倍を超えるものとした場合に比べて、狭いスペースにスクリュウジョイントなどの駆動伝達装置を、配置することができる。
(Aspect 17)
In (Aspect 1) to (Aspect 16), the outer diameter of the intermediate member 52 is set to be twice or less the outer diameter of an output shaft such as the drive output shaft 61 provided with the output member.
According to this, a drive transmission device such as a screw joint is installed in a narrow space as compared with the case where the outer diameter of the intermediate member 52 is more than twice the outer diameter of the output shaft such as the drive output shaft 61. , Can be placed.

(態様18)
(態様1)乃至(態様17)において、前記保持側部材は、出力ジョイントなどの出力部材である。
これによれば、実施形態で説明したように、中間部材を入力ジョイントなどの入力部材に保持した場合に比べて、定期的に交換する回転体側の部材を、削減することができる。その結果、回転体の交換コストアップを抑制することができ、装置のメンテナンス費を抑えることができる。
(Aspect 18)
In (Aspect 1) to (Aspect 17), the holding side member is an output member such as an output joint.
According to this, as compared with the case where the intermediate member is held by the input member such as the input joint as described in the embodiment, it is possible to reduce the number of members on the rotating body side to be replaced regularly. As a result, it is possible to suppress an increase in the replacement cost of the rotating body, and it is possible to suppress the maintenance cost of the device.

(態様19)
供給スクリュウ43bなどの回転体と、該回転体に現像モータなどの駆動源からの駆動力を伝達する駆動伝達手段とを備えた画像形成装置において、駆動伝達手段として、態様1乃至18のいずれか一記載の駆動伝達装置を用いた。
これによれば、軸反力や、回転体の回転ムラを抑制することができる。
(Aspect 19)
In an image forming apparatus including a rotating body such as a supply screw 43b and a drive transmitting means for transmitting a driving force from a driving source such as a developing motor to the rotating body, any one of aspects 1 to 18 is used as the drive transmitting means. The drive transmission device described above was used.
According to this, it is possible to suppress the axial reaction force and the rotation unevenness of the rotating body.

(態様20)
(態様19)において、潤滑剤塗布ブラシローラ、現像ローラ、現像剤攪拌スクリュウおよび中間転写クリーニングローラの少なくともひとつが、(態様1)乃至(態様18)のいずれかに記載の駆動伝達装置を用いて駆動伝達される。
これによれば、実施形態で説明したように、画像濃度ムラが抑制された良好な画像を得ることができる。
(Aspect 20)
In (Aspect 19), at least one of a lubricant application brush roller, a developing roller, a developer stirring screw and an intermediate transfer cleaning roller uses the drive transmission device according to any one of (Aspect 1) to (Aspect 18). Drive transmission.
According to this, as described in the embodiment, it is possible to obtain a good image in which the image density unevenness is suppressed.

1:画像形成部
2:給紙部
3:スキャナ部
10:転写装置
11:中間転写ベルト
16:二次転写対向ローラ
17:ベルトクリーニング装置
17a:ベルトクリーニングブラシローラ
17b:ブラシローラ
20a,20b:光書込ユニット
21:給紙トレイ
22:二次転写ローラ
24:搬送ベルト
25:定着装置
26:定着ベルト
27:定着加圧ローラ
28:シート反転装置
29:レジストローラ
30:排紙ローラ
40:プロセスカートリッジ
41:感光体
42:帯電装置
42a:帯電ローラ
42b:帯電ローラクリーナ
43:現像装置
43a:現像ローラ
43b:供給スクリュウ
43c:現像ドクタ
43d:回収スクリュウ
43h:攪拌スクリュウ
43j:排出スクリュウ
44:感光体クリーニング装置
44a:クリーニングブレード
44b:廃トナー排出スクリュウ
45:潤滑剤塗布装置
45a:潤滑剤塗布ブラシローラ
45b:固形潤滑剤
45c:ブレード
45d:ブラケット
46:一次転写ローラ
50:スクリュウジョイント
51:スクリュウ出力ジョイント
51a:筒状部
51b:駆動受け部
51c:出力外歯ギヤ
51F:平行ピン
52:中間部材
52a:内歯ギヤ
52b:テーパ部
52c:抜け止め部
52d:突起部
52e:面取り部
53:スクリュウ入力ジョイント
53a:入力外歯ギヤ
53b:取り付け部
53c:テーパ部
60:スクリュウ駆動伝達装置
61:駆動出力軸
61a:ジョイント取り付け部
62:駆動ギヤ
62a:平行ピン
63:第一軸受
64:第二軸受
66:スプリング
67:スライド部材
68:Eリング
69:規制部材
71a:第一側板
71b:第二側板
141:感光体入力ジョイント
142:ブラシ入力ジョイント
143a:現像入力ジョイント
143b:供給スクリュウの軸
143c:排出現像剤回収部
143d:ギヤ
143e:回収ギヤ
144:排出ダクト
145:廃トナー経路
146:廃トナー回収部
147:コネクタ
148:位置決め面板
151F:スプリングピン
151c:出力突起部
152a:中継突起部
153a:入力突起部
169:Eリング
252a:奥側の中継突起部
252b:連結部
252c:手前側の中継突起部
1: Image forming unit 2: Paper feeding unit 3: Scanner unit 10: Transfer device 11: Intermediate transfer belt 16: Secondary transfer Opposing roller 17: Belt cleaning device 17a: Belt cleaning Brush roller 17b: Brush rollers 20a, 20b: Optical Writing unit 21: Paper feed tray 22: Secondary transfer roller 24: Conveying belt 25: Fixing device 26: Fixing belt 27: Fixing pressurizing roller 28: Sheet reversing device 29: Resist roller 30: Paper ejection roller 40: Process cartridge 41: Photoreceptor 42: Charging device 42a: Charging roller 42b: Charging roller cleaner 43: Developing device 43a: Developing roller 43b: Supply screw 43c: Developing doctor 43d: Recovery screw 43h: Stirring screw 43j: Discharge screw 44: Photoreceptor cleaning Device 44a: Cleaning blade 44b: Waste toner discharge screw 45: Lubricant coating device 45a: Lubricant coating brush roller 45b: Solid lubricant 45c: Blade 45d: Bracket 46: Primary transfer roller 50: Screw joint 51: Screw output joint 51a : Cylindrical portion 51b: Drive receiving portion 51c: Output external tooth gear 51F: Parallel pin 52: Intermediate member 52a: Internal tooth gear 52b: Tapered portion 52c: Retaining portion 52d: Protruding portion 52e: Chamfering portion 53: Screw input joint 53a: Input external tooth gear 53b: Mounting part 53c: Tapered part 60: Screw drive transmission device 61: Drive output shaft 61a: Joint mounting part 62: Drive gear 62a: Parallel pin 63: First bearing 64: Second bearing 66: Spring 67: Slide member 68: E-ring 69: Regulatory member 71a: First side plate 71b: Second side plate 141: Photoconductor input joint 142: Brush input joint 143a: Development input joint 143b: Supply screw shaft 143c: Discharge developer Recovery section 143d: Gear 143e: Recovery gear 144: Discharge duct 145: Waste toner path 146: Waste toner recovery section 147: Connector 148: Positioning face plate 151F: Spring pin 151c: Output protrusion 152a: Relay protrusion 153a: Input protrusion 169: E-ring 252a: Relay protrusion on the back side 252b: Connecting part 252c: Relay protrusion on the front side

特開2014−52618号公報Japanese Unexamined Patent Publication No. 2014-52618

Claims (21)

駆動源側に設けられた出力部材と、
回転体側に設けられた入力部材と、
筒状であり、前記出力部材の駆動伝達部から駆動力を受け、前記入力部材の駆動伝達部に駆動力を伝達する中継駆動伝達部を内周面に有し、前記入力部材または前記出力部材に保持される中間部材とを備え、
前記中間部材には、前記出力部材および前記入力部材のうち前記中間部材を保持している保持側部材の駆動伝達部と軸方向で対向して、中間部材が前記保持側部材から抜けるのを防止する抜け止め部が設けられている駆動伝達装置において、
前記中間部材の回転中心から前記抜け止め部の先端までの距離と、前記回転中心から前記中継駆動伝達部の先端までの距離とを同一にしたことを特徴とする駆動伝達装置。
The output member provided on the drive source side and
The input member provided on the rotating body side and
It has a tubular shape and has a relay drive transmission unit on the inner peripheral surface that receives a driving force from the drive transmission unit of the output member and transmits the driving force to the drive transmission unit of the input member, and the input member or the output member. Equipped with an intermediate member held in
The intermediate member is axially opposed to the drive transmission portion of the holding side member holding the intermediate member among the output member and the input member to prevent the intermediate member from coming off from the holding side member. In a drive transmission device provided with a retaining portion
A drive transmission device characterized in that the distance from the rotation center of the intermediate member to the tip of the retaining portion and the distance from the rotation center to the tip of the relay drive transmission portion are the same.
請求項1に記載の駆動伝達装置において、
前記中継駆動伝達部は、内歯ギヤであり、
前記保持側部材の駆動伝達部は、前記内歯ギヤと噛み合う外歯ギヤであり、
前記保持側部材は、軸が挿入される筒状部を有し、
前記筒状部の外径と、前記外歯ギヤの歯底円直径とを同一としたことを特徴とする駆動伝達装置。
In the drive transmission device according to claim 1,
The relay drive transmission unit is an internal tooth gear.
The drive transmission portion of the holding side member is an external tooth gear that meshes with the internal tooth gear.
The holding side member has a tubular portion into which a shaft is inserted.
A drive transmission device characterized in that the outer diameter of the tubular portion and the diameter of the bottom circle of the external tooth gear are the same.
請求項1または2に記載の駆動伝達装置において、
前記中間部材を介して前記出力部材と前記入力部材との間で駆動伝達が可能な駆動連結位置から、前記出力部材および前記入力部材のうち前記中間部材を保持しない非保持側部材から離れる方向に前記中間部材が軸方向に移動するように、前記中間部材は前記保持側部材に保持されており、
前記中間部材を、前記駆動連結位置側へ付勢する付勢手段を備えたことを特徴とする駆動伝達装置。
In the drive transmission device according to claim 1 or 2.
From the drive connection position where drive transmission is possible between the output member and the input member via the intermediate member, in a direction away from the non-holding side member of the output member and the input member that does not hold the intermediate member. The intermediate member is held by the holding side member so that the intermediate member moves in the axial direction.
A drive transmission device including an urging means for urging the intermediate member toward the drive connecting position side.
請求項3に記載の駆動伝達装置において、
前記中間部材が、前記駆動連結位置に位置するとき、前記付勢手段の付勢力が、前記中間部材に作用しないように構成したことを特徴とする駆動伝達装置。
In the drive transmission device according to claim 3,
A drive transmission device characterized in that when the intermediate member is located at the drive connection position, the urging force of the urging means does not act on the intermediate member.
請求項3または4に記載の駆動伝達装置において、
前記抜け止め部の保持側部材の駆動伝達部側の端部に、保持側部材の駆動伝達部側へ向かうに連れて内径が拡大する傾斜面または曲面とした面取り部を設けたことを特徴とする駆動伝達装置。
In the drive transmission device according to claim 3 or 4.
The feature is that a chamfered portion having an inclined surface or a curved surface whose inner diameter increases toward the drive transmission portion side of the holding side member is provided at the end portion of the holding side member of the retaining portion on the drive transmission portion side. Drive transmission device.
請求項1乃至5いずれかに記載の駆動伝達装置において、
前記中間部材は、前記入力部材および前記出力部材に対して、径方向および回転方向に所定のクリアランスを有することを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 5.
The drive transmission device is characterized in that the intermediate member has predetermined clearances in the radial direction and the rotational direction with respect to the input member and the output member.
請求項6に記載の駆動伝達装置において、
前記抜け止め部と、前記抜け止め部の先端と径方向で対向する部材との間、前記中間部材の内周面と前記出力部材の駆動伝達部との間、前記中間部材の内周面と前記入力部材の駆動伝達部との間、前記中継駆動伝達部と前記出力部材の外周面との間および前記中継駆動伝達部と前記入力部材の外周面との間で、径方向に所定の隙間を有し、
前記中継駆動伝達部と前記入力部材の駆動伝達部との間および前記中継駆動伝達部と前記出力部材の駆動伝達部との間で回転方向に所定の隙間を有することを特徴とする駆動伝達装置。
In the drive transmission device according to claim 6,
Between the retaining portion and a member that faces the tip of the retaining portion in the radial direction, between the inner peripheral surface of the intermediate member and the drive transmission portion of the output member, and the inner peripheral surface of the intermediate member. A predetermined gap in the radial direction between the drive transmission unit of the input member, between the relay drive transmission unit and the outer peripheral surface of the output member, and between the relay drive transmission unit and the outer peripheral surface of the input member. Have,
A drive transmission device having a predetermined gap in the rotational direction between the relay drive transmission unit and the drive transmission unit of the input member and between the relay drive transmission unit and the drive transmission unit of the output member. ..
請求項1乃至7いずれかに記載の駆動伝達装置において、
前記抜け止め部の前記保持側部材の駆動伝達部との対向部、および、前記保持側部材の駆動伝達部の前記抜け止め部との対向部の少なくとも一方に突出する部分を設けたことを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 7.
It is characterized in that a portion of the retaining portion facing the drive transmission portion of the holding side member and a portion of the holding side member facing the drive transmission portion of the holding side member are provided so as to project from at least one of the facing portions. Drive transmission device.
請求項1乃至8いずれかに記載の駆動伝達装置において、
前記出力部材の駆動伝達部の駆動伝達時に前記中継駆動伝達部に当接する当接面および前記入力部材の駆動伝達部の駆動伝達時に前記中継駆動伝達部に当接する当接面の少なくとも一方を、軸方向において円弧状の曲面としたことを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 8.
At least one of the contact surface that comes into contact with the relay drive transmission unit during drive transmission of the drive transmission unit of the output member and the contact surface that comes into contact with the relay drive transmission unit during drive transmission of the drive transmission unit of the input member. A drive transmission device characterized by having an arcuate curved surface in the axial direction.
請求項1乃至9いずれかに記載の駆動伝達装置において、
前記出力部材の駆動伝達部の駆動伝達時に前記中継駆動伝達部に当接する当接面および前記入力部材の駆動伝達部の駆動伝達時に前記中継駆動伝達部に当接する当接面の少なくとも一方を、径方向において円弧状の曲面としたことを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 9.
At least one of the contact surface that comes into contact with the relay drive transmission unit during drive transmission of the drive transmission unit of the output member and the contact surface that comes into contact with the relay drive transmission unit during drive transmission of the drive transmission unit of the input member. A drive transmission device characterized by having an arcuate curved surface in the radial direction.
請求項9または10に記載の駆動伝達装置において、
前記駆動伝達部の前記当接面を曲面とした前記入力部材および前記出力部材のヤング率を、前記中間部材のヤング率よりも大きくしたことを特徴とする駆動伝達装置。
In the drive transmission device according to claim 9 or 10.
A drive transmission device characterized in that the Young's modulus of the input member and the output member having the contact surface of the drive transmission unit as a curved surface is made larger than the Young's modulus of the intermediate member.
請求項1乃至8いずれかに記載の駆動伝達装置において、
前記出力部材の駆動伝達部および前記入力部材の駆動伝達部の少なくとも一方は、回転方向に直交する面が、軸方向において直線状であることを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 8.
A drive transmission device characterized in that at least one of the drive transmission unit of the output member and the drive transmission unit of the input member has a plane orthogonal to the rotation direction linear in the axial direction.
請求項1乃至12いずれかに記載の駆動伝達装置において、
前記入力部材および前記出力部材の駆動伝達部の少なくとも一方が、ギヤ形状であることを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 12,
A drive transmission device characterized in that at least one of the input member and the drive transmission unit of the output member has a gear shape.
請求項13に記載の駆動伝達装置において、
前記ギヤ形状の歯形は、歯厚が軸方向中央部で最大となり、かつ、軸方向両端部に向けて歯厚が小さくなる形状であることを特徴とする駆動伝達装置。
In the drive transmission device according to claim 13,
The gear-shaped tooth profile is a drive transmission device characterized in that the tooth thickness is maximum at the central portion in the axial direction and the tooth thickness decreases toward both ends in the axial direction.
請求項1乃至14いずれかに記載の駆動伝達装置において、
前記出力部材の駆動伝達部と前記入力部材の駆動伝達部との形状および数の少なくとも一方を、互い異ならせたことを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 14.
A drive transmission device characterized in that at least one of the shapes and numbers of the drive transmission unit of the output member and the drive transmission unit of the input member are different from each other.
請求項15に記載の駆動伝達装置において、
前記出力部材の駆動伝達部と、前記入力部材の駆動伝達部との回転方向長さが互いに異なるものにおいて、
前記中継駆動伝達部の前記出力部材の駆動伝達部が係合する部分と、前記中継駆動伝達部の前記入力部材の駆動伝達部が係合する部分とを、回転方向に傾斜したテーパ面で結んだことを特徴とする駆動伝達装置。
In the drive transmission device according to claim 15,
In the case where the drive transmission unit of the output member and the drive transmission unit of the input member have different lengths in the rotational direction from each other.
A portion of the relay drive transmission unit in which the drive transmission unit of the output member engages and a portion of the relay drive transmission unit in which the drive transmission unit of the input member engages are connected by a tapered surface inclined in the rotational direction. A drive transmission device characterized by being.
請求項1乃至16いずれかに記載の駆動伝達装置において、
前記入力部材および前記出力部材のうち、前記中間部材を保持していない非保持側部材の駆動伝達部のうちのひとつが、他の駆動伝達部よりも前記保持側部材側へ延びた延長駆動伝達部であり、
前記延長駆動伝達部の前記保持側部材側端部を、前記保持側部材側ほど、外径が短くなるようなテーパ形状としたことを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 16.
Among the input member and the output member, one of the drive transmission portions of the non-holding side member that does not hold the intermediate member extends the drive transmission portion toward the holding side member side with respect to the other drive transmission portion. It is a department
A drive transmission device characterized in that the end of the extension drive transmission unit on the holding side member side is tapered so that the outer diameter becomes shorter toward the holding side member side.
請求項1乃至17いずれかに記載の駆動伝達装置において、
前記中間部材の外径を、前記出力部材が設けられた出力軸の外径の2倍以下としたことを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 17.
A drive transmission device characterized in that the outer diameter of the intermediate member is twice or less the outer diameter of an output shaft provided with the output member.
請求項1乃至18いずれかに記載の駆動伝達装置において、
前記保持側部材は、前記出力部材であることを特徴とする駆動伝達装置。
In the drive transmission device according to any one of claims 1 to 18.
The drive transmission device, wherein the holding side member is the output member.
回転体と、該回転体に駆動源からの駆動力を伝達する駆動伝達手段とを備えた画像形成装置において、
前記駆動伝達手段として、請求項1乃至19のいずれか一記載の駆動伝達装置を用いたことを特徴とする画像形成装置。
In an image forming apparatus including a rotating body and a driving transmission means for transmitting a driving force from a driving source to the rotating body.
An image forming apparatus according to claim 1, wherein the drive transmission device according to any one of claims 1 to 19 is used as the drive transmission means.
請求項20に記載の画像形成装置であって、
潤滑剤塗布ブラシローラ、現像ローラ、現像剤攪拌スクリュウおよび中間転写クリーニングローラの少なくともひとつが、請求項1乃至19のいずれかに記載の駆動伝達装置を用いて駆動伝達されることを特徴する画像形成装置。
The image forming apparatus according to claim 20.
Image formation characterized in that at least one of a lubricant coating brush roller, a developing roller, a developing agent stirring screw and an intermediate transfer cleaning roller is driven and transmitted using the drive transmission device according to any one of claims 1 to 19. apparatus.
JP2020197929A 2020-11-30 2020-11-30 Drive transmission device and image forming device Active JP7157935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020197929A JP7157935B2 (en) 2020-11-30 2020-11-30 Drive transmission device and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020197929A JP7157935B2 (en) 2020-11-30 2020-11-30 Drive transmission device and image forming device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016181065A Division JP6802998B2 (en) 2016-09-15 2016-09-15 Drive transmission device and image forming device

Publications (2)

Publication Number Publication Date
JP2021046943A true JP2021046943A (en) 2021-03-25
JP7157935B2 JP7157935B2 (en) 2022-10-21

Family

ID=74878147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020197929A Active JP7157935B2 (en) 2020-11-30 2020-11-30 Drive transmission device and image forming device

Country Status (1)

Country Link
JP (1) JP7157935B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338213A (en) * 1998-03-27 1999-12-10 Xerox Corp Driving member, process cartridge and electrophotographic printing device
JP2014052618A (en) * 2012-08-09 2014-03-20 Ricoh Co Ltd Drive transmission device, and image forming apparatus using the same
JP2015179233A (en) * 2013-08-23 2015-10-08 株式会社リコー Drive transmission device and image forming apparatus
JP2015178895A (en) * 2014-02-25 2015-10-08 株式会社リコー Drive transmission device and image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338213A (en) * 1998-03-27 1999-12-10 Xerox Corp Driving member, process cartridge and electrophotographic printing device
JP2014052618A (en) * 2012-08-09 2014-03-20 Ricoh Co Ltd Drive transmission device, and image forming apparatus using the same
JP2015179233A (en) * 2013-08-23 2015-10-08 株式会社リコー Drive transmission device and image forming apparatus
JP2015178895A (en) * 2014-02-25 2015-10-08 株式会社リコー Drive transmission device and image forming device

Also Published As

Publication number Publication date
JP7157935B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP6802998B2 (en) Drive transmission device and image forming device
US10901366B2 (en) Image forming apparatus and cartridge
US7310489B2 (en) Process cartridge including first and second portions to be positioned and first and second portions to be supported and image forming apparatus detachably mounting such process cartridge
JP6504449B2 (en) Drive transmission device and image forming apparatus
JP2017211660A (en) Process cartridge and image forming apparatus
JPH06332285A (en) Rotary developing device
JP5230290B2 (en) Drive transmission device and image forming apparatus using the same
JP2005114159A (en) Image formation device
US7970315B2 (en) Developing cartridge having gear support
JP4776319B2 (en) Powder conveying apparatus, assembling method thereof, and image forming apparatus
JP2021046943A (en) Drive transmission device and image forming device
JP4939865B2 (en) Coupling device and image forming apparatus provided with coupling device
JP6481894B2 (en) Drive transmission device and image forming apparatus
JP2018116305A (en) Cartridge and electrophotographic image forming apparatus
JP2019074607A (en) Image forming apparatus, conveying device, and transmitting member
JP2019066557A (en) Image formation device
JP6684477B2 (en) Drive transmission device and image forming apparatus
US20240045364A1 (en) Drum unit, drive transmission unit, cartridge and electrophotographic image forming apparatus
US10845750B2 (en) Drive transmission device and image formation apparatus
JPH11249378A (en) Image forming device
JP6594106B2 (en) Image forming apparatus
JP4576885B2 (en) Developing device and image forming apparatus
JP2024001502A (en) Drive transmission device, unit, drive device, and image formation apparatus
JP2022097144A (en) Developing device and image forming apparatus
JP2011191793A (en) Latent image carrier unit and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R151 Written notification of patent or utility model registration

Ref document number: 7157935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151