JP2021044870A - Underwater photovoltaic power generation system - Google Patents

Underwater photovoltaic power generation system Download PDF

Info

Publication number
JP2021044870A
JP2021044870A JP2019163124A JP2019163124A JP2021044870A JP 2021044870 A JP2021044870 A JP 2021044870A JP 2019163124 A JP2019163124 A JP 2019163124A JP 2019163124 A JP2019163124 A JP 2019163124A JP 2021044870 A JP2021044870 A JP 2021044870A
Authority
JP
Japan
Prior art keywords
power generation
photovoltaic power
panel
underwater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019163124A
Other languages
Japanese (ja)
Other versions
JP6872812B2 (en
Inventor
由井 明紀
Akinori Yui
明紀 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2019163124A priority Critical patent/JP6872812B2/en
Publication of JP2021044870A publication Critical patent/JP2021044870A/en
Application granted granted Critical
Publication of JP6872812B2 publication Critical patent/JP6872812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

To provide an underwater photovoltaic power generation system in which degradation in power generation efficiency due to foreign matter such as dirt and dust adhering to a panel surface or due to deposits of salt particles which are dried sea water on a panel surface, can be suppressed, while such degradation occurs in a conventional photovoltaic power generation system using a water surface as an installation space for a photovoltaic power generation panel because the photovoltaic power generation panel is arranged on a water surface.SOLUTION: In an underwater photovoltaic power generation system 10, a photovoltaic power generation panel 1 is installed below a water surface. In the underwater photovoltaic power generation system, degradation in power generation efficiency due to deposits or foreign matter such as dirt and dust adhering to the photovoltaic power generation panel is suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光発電システムに関するものである。 The present invention relates to a photovoltaic power generation system.

従来、大規模な大きな太陽光発電システムを構築するためには、太陽光発電パネルを設置するための広大な土地を確保することが課題となっていた。この課題に対応するため、近年、海、湖、沼、池、川、貯水池などの水面を太陽光発電パネルの設置スペースとして活用する水上太陽光発電システムが提案されている。例えば、特許文献1や特許文献2には、水面に浮かぶ太陽電池パネル(太陽光発電パネル)を備えた浮遊式水上太陽光発電システムが開示されている。 Conventionally, in order to construct a large-scale large-scale photovoltaic power generation system, it has been an issue to secure a vast land for installing a photovoltaic power generation panel. In order to deal with this problem, in recent years, a floating photovoltaic power generation system has been proposed in which the water surface of the sea, lake, swamp, pond, river, reservoir, etc. is utilized as an installation space for a photovoltaic power generation panel. For example, Patent Document 1 and Patent Document 2 disclose a floating floating solar power generation system including a solar cell panel (solar power generation panel) floating on a water surface.

特開2016−7874号公報Japanese Unexamined Patent Publication No. 2016-7874 特開2011−238890号公報Japanese Unexamined Patent Publication No. 2011-238890

ところが、水面を太陽光発電パネルの設置スペースとして活用する従来の水上太陽光発電システムは、太陽光発電パネルを水面上に配置するものである。そのため、パネル表面上に塵や埃等の異物が付着したり、海水が乾燥してパネル表面上に塩分が堆積したりすることによる発電効率の低下が問題となり得る。 However, in the conventional floating solar power generation system that utilizes the water surface as an installation space for the solar power generation panel, the solar power generation panel is arranged on the water surface. Therefore, a decrease in power generation efficiency may occur due to foreign matter such as dust or dirt adhering to the panel surface or the seawater drying and salt depositing on the panel surface.

上述した課題を解決するために、本発明は、太陽光発電パネルを水面下に設置したことを特徴とする水中太陽光発電システムを提供するものである。
本発明によれば、太陽光発電パネルが水面下(海、湖、沼、池、川などの水中)に設置されるため、パネル表面が常に水に覆われた状態となる。そのため、太陽光発電パネルが水面上に設置される場合に生じていた塵や埃などの異物の付着や海水の塩分堆積が抑制される。特に、パネル表面に接する水に流れが生じる場合には、パネル表面の洗浄効果が得られ、異物付着や塩分堆積の抑制効果が高い。
ここで、本発明は、太陽光発電パネルが水面下に設置されるため、水面での太陽光の反射、水中での太陽光の減衰などにより、太陽光発電パネルを水面上に設置する場合よりも、太陽光の届く光量が少ない。しかしながら、水面上に設置される太陽光発電パネルは、上述のとおり、パネル表面への異物の付着や塩分堆積により発電効率が低下するのに対し、本発明では、このような発電効率の低下が抑制される。したがって、長期的使用の観点で見れば、本発明に係る水中太陽光発電システムは、水面上に太陽光発電パネルを設置するシステムと比べて、発電効率が劣るようなことはない。
特に、水面下であっても、水面に近い水中に太陽光発電パネルを設置する場合には、本発明者らの実験により、水中での太陽光の減衰はほとんど影響がないことに加え、水中における太陽光発電パネルの冷却効果は水面上の太陽光発電パネルに比べて高い。そのため、長期的使用の観点で見たとき、本発明に係る水中太陽光発電システムは、水面上に太陽光発電パネルを設置するシステムと比べて、むしろ発電効率において有利となり得る。特に、赤道付近の海上(洋上)などの場所であれば、水面での太陽光の反射率を抑えることができるので、高い発電効率を実現できる。
In order to solve the above-mentioned problems, the present invention provides an underwater photovoltaic power generation system characterized in that a photovoltaic power generation panel is installed under the water surface.
According to the present invention, since the photovoltaic power generation panel is installed under the water surface (underwater such as the sea, lake, swamp, pond, river, etc.), the panel surface is always covered with water. Therefore, the adhesion of foreign substances such as dust and dust and the accumulation of salt in seawater, which occur when the photovoltaic power generation panel is installed on the water surface, are suppressed. In particular, when the water in contact with the panel surface flows, the effect of cleaning the panel surface can be obtained, and the effect of suppressing foreign matter adhesion and salt accumulation is high.
Here, in the present invention, since the photovoltaic power generation panel is installed below the water surface, the photovoltaic power generation panel is installed above the water surface due to the reflection of sunlight on the water surface, the attenuation of sunlight in water, and the like. However, the amount of sunlight that reaches is small. However, as described above, the photovoltaic power generation panel installed on the water surface has a decrease in power generation efficiency due to the adhesion of foreign matter to the panel surface and the accumulation of salt, whereas in the present invention, such a decrease in power generation efficiency is achieved. It is suppressed. Therefore, from the viewpoint of long-term use, the underwater photovoltaic power generation system according to the present invention is not inferior in power generation efficiency to the system in which the photovoltaic power generation panel is installed on the water surface.
In particular, when the photovoltaic power generation panel is installed in water close to the water surface even under the water surface, in addition to having almost no effect on the attenuation of sunlight in the water according to the experiments by the present inventors, underwater The cooling effect of the photovoltaic power generation panel in the above is higher than that of the photovoltaic power generation panel on the water surface. Therefore, from the viewpoint of long-term use, the underwater photovoltaic power generation system according to the present invention may be more advantageous in power generation efficiency than a system in which a photovoltaic power generation panel is installed on the water surface. In particular, in places such as the sea (offshore) near the equator, the reflectance of sunlight on the water surface can be suppressed, so that high power generation efficiency can be realized.

なお、本明細書において、「水面」あるいは「水中」という用語における「水」とは、淡水に限らず海水も含み、主として水を主成分とする液体を意味するが、特定の液体に制限されるものではなく、あらゆる液体を含む「液体」と同義である。すなわち、本発明は、あらゆる液体の液面下に太陽光発電パネルを設置するものを含む。 In the present specification, the term "water" in the term "water surface" or "underwater" means a liquid containing not only fresh water but also seawater and mainly containing water, but is limited to a specific liquid. It is synonymous with "liquid", which includes all liquids. That is, the present invention includes the installation of a photovoltaic panel under the surface of any liquid.

また、本発明は、前記水中太陽光発電システムにおいて、前記水面は、海水面であることを特徴とする。
本発明によれば、広大な土地を確保できない場合でも、広大な海水面を活用して、大規模な大きな太陽光発電システムを構築することができる。
Further, the present invention is characterized in that, in the underwater photovoltaic power generation system, the water surface is the sea level.
According to the present invention, even when a vast land cannot be secured, a large-scale large-scale photovoltaic power generation system can be constructed by utilizing the vast sea surface.

また、本発明は、前記水中太陽光発電システムにおいて、前記太陽光発電パネルは、前記水面から1m以内の水中に設置されることを特徴とする。
高い発電効率を実現するうえでは、水中での太陽光の減衰を抑制するために、なるべく水面に近い水中に太陽光発電パネルを設置するのが望ましい。そして、水面から1m以内であれば、比較的透明度の高い水中において、十分な発電効率を実現することが可能である。
Further, the present invention is characterized in that, in the underwater photovoltaic power generation system, the photovoltaic power generation panel is installed in water within 1 m from the water surface.
In order to achieve high power generation efficiency, it is desirable to install the photovoltaic power generation panel in water as close to the water surface as possible in order to suppress the attenuation of sunlight in water. If it is within 1 m from the water surface, it is possible to realize sufficient power generation efficiency in water having relatively high transparency.

また、本発明は、前記水中太陽光発電システムにおいて、前記太陽光発電パネルは、前記水面から30cm以内の水中に設置されることを特徴とする。
水面から30cm以内(より好ましくは20cm以内)であれば、幅広い水中環境下において、十分な発電効率を実現することが可能である。
Further, the present invention is characterized in that, in the underwater photovoltaic power generation system, the photovoltaic power generation panel is installed in water within 30 cm from the water surface.
If it is within 30 cm (more preferably within 20 cm) from the water surface, it is possible to realize sufficient power generation efficiency in a wide range of underwater environments.

また、本発明は、前記水中太陽光発電システムにおいて、水面の高さが変動しても水面下に前記太陽光発電パネルを維持する水面下維持手段を有することを特徴とする。
上述したとおり、高い発電効率を実現するうえでは、水中での太陽光の減衰を抑制するために、なるべく水面に近い水中に太陽光発電パネルを設置するのが望ましい。しかしながら、海、湖、貯水池などの水面の高さは大きく変動しやすいため、太陽光発電パネルの位置(高さ)が水面の高さ変動によらずに一定である構成では、太陽光発電パネルが水面上に長期間露出してしまうおそれがある。このような長期間の露出が起きると、その露出中に付着する異物や堆積物がパネル表面上に強固に付着してしまい、その後に太陽光発電パネルが水中に戻っても、その異物や堆積物を水によって除去できず、発電効率を回復させることが困難となるという問題が生じる。
本発明によれば、水面下維持手段により、水面の高さ変動が生じても太陽光発電パネルを水面下に維持できるので、太陽光発電パネルが水面上に長期間露出してしまうのを避けることができ、上述の問題を回避できる。
Further, the present invention is characterized in that the underwater photovoltaic power generation system includes an underwater maintenance means for maintaining the photovoltaic power generation panel under the water surface even if the height of the water surface fluctuates.
As described above, in order to realize high power generation efficiency, it is desirable to install the photovoltaic power generation panel in the water as close to the water surface as possible in order to suppress the attenuation of sunlight in the water. However, since the height of the water surface of the sea, lake, reservoir, etc. is likely to fluctuate greatly, in a configuration where the position (height) of the photovoltaic power generation panel is constant regardless of the fluctuation of the water surface height, the photovoltaic power generation panel May be exposed on the surface of the water for a long period of time. When such a long-term exposure occurs, foreign matter and deposits adhering during the exposure firmly adhere to the panel surface, and even if the photovoltaic power generation panel is subsequently returned to water, the foreign matter and deposits are deposited. There is a problem that things cannot be removed by water and it becomes difficult to restore power generation efficiency.
According to the present invention, the photovoltaic power generation panel can be maintained below the water surface even if the height of the water surface fluctuates by the underwater maintenance means, so that the photovoltaic power generation panel is prevented from being exposed on the water surface for a long period of time. And the above problem can be avoided.

また、本発明は、前記水中太陽光発電システムにおいて、前記水面下維持手段は、水面に浮かぶ浮体と、前記浮体に前記太陽光発電パネルを連結する連結部材とから構成されることを特徴とする。
本発明によれば、浮体の浮力と太陽光発電パネルの重量とのバランス及び連結部材の長さ等を適切に調整することで、簡易な構成で、太陽光発電パネルを水面近くの水中に安定して維持することができる。なお、太陽光発電パネルの重量が不足するような場合には、太陽光発電パネルに錘部材を連結してもよい。このような錘部材を利用すれば、太陽光発電パネルの種類等に関わりなく、太陽光発電パネルを水面近くの水中に安定して維持することができる。
Further, the present invention is characterized in that, in the underwater photovoltaic power generation system, the underwater maintenance means is composed of a floating body floating on the water surface and a connecting member for connecting the solar power generation panel to the floating body. ..
According to the present invention, by appropriately adjusting the balance between the buoyancy of the floating body and the weight of the photovoltaic power generation panel, the length of the connecting member, etc., the photovoltaic power generation panel can be stabilized in water near the water surface with a simple configuration. Can be maintained. If the weight of the photovoltaic power generation panel is insufficient, a weight member may be connected to the photovoltaic power generation panel. By using such a weight member, the photovoltaic power generation panel can be stably maintained in water near the water surface regardless of the type of the photovoltaic power generation panel or the like.

また、本発明は、前記水中太陽光発電システムにおいて、前記太陽光発電パネルは、水中生物又は水中植物の付着を抑制する付着抑制処理が施されていることを特徴とする。
本発明によれば、水中に設置される太陽光発電パネルに水中生物又は水中植物が付着することが抑制されるので、水中生物又は水中植物の付着による発電効率の低下を抑制することができる。
Further, the present invention is characterized in that, in the underwater photovoltaic power generation system, the photovoltaic power generation panel is subjected to an adhesion suppressing treatment for suppressing the adhesion of aquatic organisms or aquatic plants.
According to the present invention, since the adhesion of aquatic organisms or aquatic plants to the photovoltaic power generation panel installed in water is suppressed, it is possible to suppress a decrease in power generation efficiency due to the adhesion of aquatic organisms or aquatic plants.

本発明によれば、太陽光発電パネルに付着する塵や埃等の異物や堆積物による発電効率の低下が抑制された太陽光発電システムを提供できる。 According to the present invention, it is possible to provide a photovoltaic power generation system in which a decrease in power generation efficiency due to foreign matter such as dust and dirt adhering to a photovoltaic power generation panel and deposits is suppressed.

実施形態における水中太陽光発電システムの概略構成を示す説明図。Explanatory drawing which shows the schematic structure of the underwater photovoltaic power generation system in embodiment. 同水中太陽光発電システムの太陽光発電パネル及び浮体を模式的に示す斜視図。The perspective view which shows typically the photovoltaic power generation panel and the floating body of the underwater photovoltaic power generation system. 太陽光発電パネルを設置する水深と太陽光発電パネルの発電量(出力電圧)との関係を確認する実験の結果を示すグラフ。A graph showing the results of an experiment to confirm the relationship between the water depth at which the photovoltaic power generation panel is installed and the amount of power generated (output voltage) of the photovoltaic power generation panel. 太陽光発電パネルを設置する水温と太陽光発電パネルの発電量(出力電圧)との関係を確認する実験の結果を示すグラフ。A graph showing the results of an experiment to confirm the relationship between the water temperature at which the photovoltaic power generation panel is installed and the amount of power generated (output voltage) of the photovoltaic power generation panel. 太陽光発電パネルを設置する海中の塩分濃度と太陽光発電パネルの発電量(出力電圧)との関係を確認する実験の結果を示すグラフ。A graph showing the results of an experiment to confirm the relationship between the salinity in the sea where the photovoltaic power generation panel is installed and the power generation amount (output voltage) of the photovoltaic power generation panel.

以下、本発明を、広大な海面を活用した水中太陽光発電システムに適用した一実施形態について説明する。
図1は、本実施形態における水中太陽光発電システム10の概略構成を示す説明図である。
図2は、本実施形態における水中太陽光発電システム10の太陽光発電パネル1及び浮体2を模式的に示す斜視図である。
Hereinafter, an embodiment in which the present invention is applied to an underwater photovoltaic power generation system utilizing a vast sea surface will be described.
FIG. 1 is an explanatory diagram showing a schematic configuration of an underwater photovoltaic power generation system 10 according to the present embodiment.
FIG. 2 is a perspective view schematically showing a photovoltaic power generation panel 1 and a floating body 2 of the underwater photovoltaic power generation system 10 according to the present embodiment.

本実施形態の水中太陽光発電システム10は、主に、太陽光発電パネル1と、水面である海面100Aに浮かぶ浮体2と、浮体2に太陽光発電パネル1を連結する連結部材としての連結ワイヤー3と、太陽光発電パネル1に連結される錘部材4とから構成される。また、本実施形態の水中太陽光発電システム10は、浮体2を水面上の所定位置に係留させる係留部材5が浮体2に連結されており、潮の流れなどによって浮体2が所定位置から離れて流されないようにしている。 The underwater photovoltaic power generation system 10 of the present embodiment mainly includes a photovoltaic power generation panel 1, a floating body 2 floating on the sea surface 100A which is the water surface, and a connecting wire as a connecting member for connecting the solar power generation panel 1 to the floating body 2. 3 and a weight member 4 connected to the photovoltaic power generation panel 1. Further, in the underwater photovoltaic power generation system 10 of the present embodiment, a mooring member 5 for mooring the floating body 2 at a predetermined position on the water surface is connected to the floating body 2, and the floating body 2 is separated from the predetermined position due to a tide or the like. I try not to be washed away.

また、本実施形態の水中太陽光発電システム10は、地上に設置された送電設備20と送電ケーブル21によって接続されている。送電ケーブル21は、海底に敷設または埋設された電力伝送路を形成する少なくとも1以上のケーブルで構成される。水中太陽光発電システム10で発電した電力は、送電ケーブル21を通じて送電設備20へ送電され、送電設備20から送電される。 Further, the underwater photovoltaic power generation system 10 of the present embodiment is connected to the power transmission facility 20 installed on the ground by a power transmission cable 21. The power transmission cable 21 is composed of at least one or more cables forming a power transmission line laid or buried on the seabed. The electric power generated by the underwater photovoltaic power generation system 10 is transmitted to the power transmission equipment 20 through the power transmission cable 21, and is transmitted from the power transmission equipment 20.

なお、水中太陽光発電システム10で発電した電力を送電する送電設備20は、地上(陸地)だけでなく、海上あるいは海中に配置してもよく、送電方法も有線によるものに限らず、マイクロ波などの無線によるものであってもよい。また、水中太陽光発電システム10で発電した電力を使用して稼働する電力機器が水中太陽光発電システム10の近くの海上あるいは海中に存在する場合には、送電設備20や送電ケーブル21は不要となる。 The power transmission facility 20 for transmitting the electric power generated by the underwater photovoltaic power generation system 10 may be arranged not only on the ground (land) but also on the sea or in the sea, and the power transmission method is not limited to the wired one and is microwaved. It may be by radio such as. Further, when the electric power device operating by using the electric power generated by the underwater photovoltaic power generation system 10 exists on the sea or in the sea near the underwater photovoltaic power generation system 10, the power transmission facility 20 and the power transmission cable 21 are not required. Become.

太陽光発電パネル1は、太陽光エネルギーを直流の電気エネルギーに変換する複数のPVパネルと、各PVパネルで発電された電力を集電して送電ケーブル21から送電設備20へ送電する方式に対応した状態に変換し、送電ケーブル21から送り出す電力変換器とから構成される。 The solar power generation panel 1 corresponds to a plurality of PV panels that convert solar energy into DC electric energy, and a method of collecting the power generated by each PV panel and transmitting it from the power transmission cable 21 to the power transmission facility 20. It is composed of a power converter that converts the power into the state in which the power is generated and sends it out from the power transmission cable 21.

太陽光発電パネル1のPVパネルは、一般に流通しているものを利用できるが、本実施形態ではPVパネルが海面下(海中100)に設置されるため、相応の防水処理を施すことが望まれる。また、海水に常時接するので、塩分に対する耐性処理を施すことも望まれる。 As the PV panel of the photovoltaic power generation panel 1, one that is generally distributed can be used, but in the present embodiment, since the PV panel is installed under the sea surface (underwater 100), it is desirable to apply appropriate waterproof treatment. .. In addition, since it is always in contact with seawater, it is also desirable to carry out salt resistance treatment.

また、太陽光発電パネル1は、海面下(海中100)に設置されるため、水中生物又は水中植物の付着を抑制する付着抑制処理を施すのが好ましい。付着抑制処理としては、公知の薬剤などをコーティングする処理や、ロータス効果(ハス効果)を発揮するような微細加工をパネル表面に施す処理などが挙げられる。 Further, since the photovoltaic power generation panel 1 is installed below the sea surface (under the sea 100), it is preferable to perform an adhesion suppressing treatment for suppressing the adhesion of aquatic organisms or aquatic plants. Examples of the adhesion suppressing treatment include a treatment of coating a known chemical or the like, and a treatment of applying fine processing to the panel surface so as to exert a lotus effect (lotus effect).

浮体2は、錘部材4に連結された太陽光発電パネル1が連結されていても浮力により水面に浮かぶことができる。本実施形態の浮体2は、太陽光発電パネル1の周囲を取り囲むように矩形状に配置されており、その四隅それぞれに、太陽光発電パネル1の四隅それぞれに連結された連結ワイヤー3が接続されている。なお、太陽光発電パネル1の外形(複数のPVパネルの配列)や浮体2の形状などに特に制限はない。 The floating body 2 can float on the water surface by buoyancy even if the photovoltaic power generation panel 1 connected to the weight member 4 is connected. The floating body 2 of the present embodiment is arranged in a rectangular shape so as to surround the periphery of the photovoltaic power generation panel 1, and connecting wires 3 connected to each of the four corners of the photovoltaic power generation panel 1 are connected to each of the four corners thereof. ing. The outer shape of the photovoltaic power generation panel 1 (arrangement of a plurality of PV panels), the shape of the floating body 2, and the like are not particularly limited.

連結ワイヤー3は、海面100Aから所定距離以内(所定の水深範囲内)に太陽光発電パネル1を維持できる長さに設定されている。本実施形態においては、太陽光発電パネル1が錘部材4の重さで下方へ引っ張られるため、浮体2に連結された連結ワイヤー3は、太陽光発電パネル1によって下方へ引っ張られ、常に張った状態になる。このように連結ワイヤー3が常に張った状態が維持されるため、潮の満ち引きや波などによって海面100Aの高さが変動しても、その海面100Aの高さ変動に応じて浮体2が上下動し、これに連動して太陽光発電パネル1も上下動する結果、太陽光発電パネル1が常に海面100Aから所定距離以内(所定の水深範囲内)に維持される。 The connecting wire 3 is set to a length capable of maintaining the photovoltaic power generation panel 1 within a predetermined distance (within a predetermined water depth range) from the sea surface 100A. In the present embodiment, since the photovoltaic power generation panel 1 is pulled downward by the weight of the weight member 4, the connecting wire 3 connected to the floating body 2 is pulled downward by the photovoltaic power generation panel 1 and is always stretched. Become in a state. Since the connecting wire 3 is always maintained in a stretched state in this way, even if the height of the sea level 100A fluctuates due to the ebb and flow of the tide or waves, the floating body 2 moves up and down according to the height fluctuation of the sea level 100A. As a result of moving and moving the photovoltaic power generation panel 1 up and down in conjunction with this, the photovoltaic power generation panel 1 is always maintained within a predetermined distance (within a predetermined water depth range) from the sea level 100A.

特に、太陽光発電パネル1の高い発電効率を実現するうえでは、海中100での太陽光の減衰を抑制するために、なるべく海面100Aに近い海中100に太陽光発電パネル1を設置するのが望ましい。具体的には、比較的透明度の高い場合には、おおよそ海面100Aから1m以内で、十分な発電効率を実現することが可能である。好ましくは 海面100Aから30cm以内、より好ましくは20cm以内であれば、より幅広い水中環境下において、十分な発電効率を実現することが可能である。特に、比較的透明度の高い場合には、後述する実験で示すように、海上や地上(陸地)に太陽光発電パネル1が設置される場合と同等以上の発電効率を実現することができる。 In particular, in order to realize the high power generation efficiency of the photovoltaic power generation panel 1, it is desirable to install the photovoltaic power generation panel 1 in the sea 100 as close to the sea surface 100A as possible in order to suppress the attenuation of sunlight in the sea 100. .. Specifically, when the transparency is relatively high, it is possible to realize sufficient power generation efficiency within about 1 m from the sea level of 100 A. Sufficient power generation efficiency can be realized in a wider underwater environment, preferably within 30 cm, more preferably within 20 cm from the sea level 100 A. In particular, when the transparency is relatively high, as will be shown in an experiment described later, it is possible to realize power generation efficiency equal to or higher than that when the photovoltaic power generation panel 1 is installed on the sea or on the ground (land).

なお、太陽光発電パネル1の位置(高さ)が海面100Aの高さ変動によらずに一定であるような構成を採用してもよい。例えば、海底に敷設した土台から延びる支柱上に太陽光発電パネル1を設置するような構成を採用してもよい。ただし、このような構成だと、海面100Aの高さ変動によって、海面100Aから太陽光発電パネル1までの距離が変動することになる。そのため、例えば、太陽光発電パネル1の位置(高さ)を海面近くの海中100に設定すると、海面100Aの高さ変動によって太陽光発電パネル1が海面上に長期間露出してしまうおそれがある。このような長期間の露出が起きると、その露出中に付着する異物や堆積物がパネル表面上に強固に付着してしまい、その後に太陽光発電パネルが海中100に戻っても、その異物や堆積物を水によって除去できず、発電効率を回復させることが困難となるという問題が生じる。逆に、太陽光発電パネル1の位置(高さ)を海面100Aから離れた海中100に設定すると、海面100Aから太陽光発電パネル1までの距離が長すぎて、海中100での太陽光の減衰が大きく、十分な太陽光が太陽光発電パネル1に届かないため、十分な発電効率を得ることができない。 A configuration may be adopted in which the position (height) of the photovoltaic power generation panel 1 is constant regardless of the height fluctuation of the sea level 100A. For example, a configuration may be adopted in which the photovoltaic power generation panel 1 is installed on a support column extending from a base laid on the seabed. However, with such a configuration, the distance from the sea level 100A to the photovoltaic power generation panel 1 fluctuates due to the height fluctuation of the sea level 100A. Therefore, for example, if the position (height) of the photovoltaic power generation panel 1 is set to 100 under the sea near the sea surface, the photovoltaic power generation panel 1 may be exposed on the sea surface for a long period of time due to the height fluctuation of the sea surface 100A. .. When such a long-term exposure occurs, foreign matter and deposits adhering during the exposure firmly adhere to the panel surface, and even if the photovoltaic power generation panel returns to 100 underwater after that, the foreign matter and deposits There is a problem that the sediment cannot be removed by water and it becomes difficult to restore the power generation efficiency. On the contrary, when the position (height) of the photovoltaic power generation panel 1 is set to 100 in the sea away from the sea surface 100A, the distance from the sea surface 100A to the photovoltaic power generation panel 1 is too long, and the sunlight is attenuated in the sea surface 100. Is large, and sufficient sunlight does not reach the photovoltaic power generation panel 1, so that sufficient power generation efficiency cannot be obtained.

したがって、本実施形態のように、太陽光発電パネル1が海面100Aから所定距離以内(所定の水深範囲内)に維持される構成とすれば、太陽光発電パネル1が安定して海中100に維持される結果、太陽光発電パネル1が海上に露出して異物や堆積物がパネル表面上に強固に付着するような事態を回避でき、異物や堆積物による発電効率の低下を抑制することができる。しかも、太陽光発電パネル1を安定して海中100の所定水深範囲に維持できる結果、太陽光発電パネル1を常に海面付近の浅い水深範囲(水深30cm以内)に設置することができ、海中100での太陽光の減衰の影響をほとんど受けずに、高い発電効率を実現することができる。 Therefore, if the photovoltaic power generation panel 1 is maintained within a predetermined distance (within a predetermined water depth range) from the sea surface 100A as in the present embodiment, the photovoltaic power generation panel 1 is stably maintained at 100 underwater. As a result, it is possible to avoid a situation in which the photovoltaic power generation panel 1 is exposed to the sea and foreign matter or deposits firmly adhere to the panel surface, and it is possible to suppress a decrease in power generation efficiency due to foreign matter or deposits. .. Moreover, as a result of being able to stably maintain the photovoltaic power generation panel 1 within a predetermined water depth range of 100 underwater, the photovoltaic power generation panel 1 can always be installed in a shallow water depth range (within a water depth of 30 cm) near the sea surface, and at 100 underwater. It is possible to realize high power generation efficiency with almost no influence of the attenuation of solar power.

錘部材4は、浮体2の浮力との関係で、海面100Aの高さ変動が生じても安定して連結ワイヤー3を張った状態できる程度の重さに適宜設定される。もし、太陽光発電パネル1の重さが十分に重く、太陽光発電パネル1だけで安定して連結ワイヤー3を張った状態できるようであれば、錘部材4は必ずしも必要ない。 The weight member 4 is appropriately set to such a weight that the connecting wire 3 can be stably stretched even if the height of the sea surface 100A fluctuates in relation to the buoyancy of the floating body 2. If the weight of the photovoltaic power generation panel 1 is sufficiently heavy and the connecting wire 3 can be stably stretched only by the photovoltaic power generation panel 1, the weight member 4 is not always necessary.

本実施形態では、説明の簡略化のため、浮体2に取り囲まれた太陽光発電パネル1を1つだけ備えた水中太陽光発電システム10を例に挙げて説明するが、浮体2に取り囲まれた太陽光発電パネル1を2つ以上備えた例であってもよい。このとき、各太陽光発電パネル1については、互いの浮体2間を連結するようにして各位置がバラバラにならないようにするのが好ましい。 In the present embodiment, for the sake of simplification of the description, an underwater photovoltaic power generation system 10 including only one photovoltaic power generation panel 1 surrounded by the floating body 2 will be described as an example, but the solar power generation system 10 is surrounded by the floating body 2. It may be an example in which two or more photovoltaic power generation panels 1 are provided. At this time, it is preferable that the positions of the photovoltaic power generation panels 1 are not separated from each other by connecting the floating bodies 2 to each other.

また、太陽光発電パネル1を構成するPVパネルの数、あるいは、太陽光発電パネル1の数は、水中太陽光発電システム10の設備容量や設置可能面積などに応じて増減することができる。また、水中太陽光発電システム10の設置場所の形状などに応じて、太陽光発電パネル1を構成するPVパネルの配置、あるいは、複数の太陽光発電パネル1の配置を適宜調整することが可能である。 Further, the number of PV panels constituting the photovoltaic power generation panel 1 or the number of photovoltaic power generation panels 1 can be increased or decreased according to the installed capacity and the installable area of the underwater photovoltaic power generation system 10. Further, it is possible to appropriately adjust the arrangement of the PV panels constituting the photovoltaic power generation panel 1 or the arrangement of the plurality of photovoltaic power generation panels 1 according to the shape of the installation location of the underwater photovoltaic power generation system 10. is there.

また、本実施形態における太陽光発電パネル1は、そのパネル面が水面に対して略平行となるように配置されているが、パネル面の仰角は水中太陽光発電システム10が設置される緯度に応じて適宜選択されることが望ましい。また、太陽光発電パネル1のパネル面の仰角を変更する手段を設けて、緯度や太陽高度などに応じてパネル面の仰角を調整できるようにしてもよい。 Further, the photovoltaic power generation panel 1 in the present embodiment is arranged so that its panel surface is substantially parallel to the water surface, but the elevation angle of the panel surface is at the latitude where the underwater photovoltaic power generation system 10 is installed. It is desirable to select appropriately according to the situation. Further, a means for changing the elevation angle of the panel surface of the photovoltaic power generation panel 1 may be provided so that the elevation angle of the panel surface can be adjusted according to the latitude, the solar altitude, and the like.

本実施形態のように、太陽光発電パネル1が海面下(水面下)に設置する構成においては、海面100Aでの太陽光の反射、水中での太陽光の散乱、減衰などにより、太陽光発電パネル1を海面上又は地上に設置する場合よりも、太陽光の届く光量が少ない。しかしながら、海面上あるいは地上に設置される太陽光発電パネルは、パネル表面への異物(黄砂、鳥の糞など)の付着や塩分等の堆積物により発電効率が低下するのに対し、本実施形態では、パネル表面が海中100にあるので、このような異物や堆積物の付着が抑制され、異物や堆積物による発電効率の低下が抑制される。したがって、長期的使用の観点で見れば、本実施形態に係る水中太陽光発電システム10は、海面上あるいは地上に太陽光発電パネルを設置するシステムと比べて、発電効率が劣るようなことはない。 In the configuration in which the photovoltaic power generation panel 1 is installed below the sea surface (below the water surface) as in the present embodiment, photovoltaic power generation is performed by reflecting sunlight at the sea surface 100A, scattering and attenuating sunlight in water, and the like. The amount of sunlight reaching is smaller than when the panel 1 is installed on the sea surface or on the ground. However, in the photovoltaic power generation panel installed on the sea surface or on the ground, the power generation efficiency is lowered due to the adhesion of foreign substances (yellow sand, bird manure, etc.) and deposits such as salt on the panel surface, whereas the present embodiment Since the panel surface is located in the sea 100, the adhesion of such foreign matter and deposits is suppressed, and the decrease in power generation efficiency due to the foreign matter and deposits is suppressed. Therefore, from the viewpoint of long-term use, the underwater photovoltaic power generation system 10 according to the present embodiment is not inferior in power generation efficiency to the system in which the photovoltaic power generation panel is installed on the sea surface or on the ground. ..

特に、後述の実験のとおり、海面下であっても、海面100Aに近い海中100に太陽光発電パネル1を設置すれば、海中100での太陽光の錯乱や減衰の影響が小さい。しかも、海中100における太陽光発電パネルの冷却効果は海面上や地上の太陽光発電パネルに比べて高い。そのため、長期的使用の観点で見たとき、本実施形態に係る水中太陽光発電システムは、海面上や地上に太陽光発電パネルを設置するシステムと比べて、むしろ発電効率において有利となり得る。 In particular, as shown in the experiment described later, if the photovoltaic power generation panel 1 is installed in the sea 100 near the sea level 100A even under the sea surface, the influence of the confusion and attenuation of sunlight in the sea 100 is small. Moreover, the cooling effect of the photovoltaic power generation panel in the sea 100 is higher than that of the photovoltaic power generation panel on the sea surface or on the ground. Therefore, from the viewpoint of long-term use, the underwater photovoltaic power generation system according to the present embodiment may be more advantageous in terms of power generation efficiency than a system in which a photovoltaic power generation panel is installed on the sea surface or on the ground.

次に、本発明者が行った各種実験について説明する。
まず、太陽光発電パネル1を設置する水深と太陽光発電パネル1の発電量(出力電圧)との関係を確認する実験を行った。
この実験では、太陽光発電パネル1を構成するPVパネルを沈めた水槽に、恒温下で1日間放置した水道水(24.4℃)を徐々に加えてPVパネルの水深を深くしていき、その後、その水槽から徐々に水を抜いて水深を浅くしていき、その間のPVパネルの出力電圧を測定した。なお、本実験は、PVパネルとして、下記の表1に示す仕様の単結晶シリコン製の市販ソーラーパネル(20W,SN Solar Technology社製)を用い、室内の蛍光灯下にて行った。このとき、水槽側面から入射する光の影響を避けるために、水槽側面は全周とも遮光カバーで覆った。なお、海上の太陽光下と室内の蛍光灯下とでは同じ照度であっても発電量に違いは出るが、照度と出力電圧との関係はいずれも同じ比例関係を示す。
Next, various experiments conducted by the present inventor will be described.
First, an experiment was conducted to confirm the relationship between the water depth at which the photovoltaic power generation panel 1 is installed and the amount of power generation (output voltage) of the photovoltaic power generation panel 1.
In this experiment, tap water (24.4 ° C.) left at a constant temperature for one day was gradually added to the water tank in which the PV panel constituting the photovoltaic power generation panel 1 was submerged to deepen the water depth of the PV panel. After that, water was gradually drained from the water tank to make the water depth shallower, and the output voltage of the PV panel during that period was measured. This experiment was carried out under a fluorescent lamp in a room using a commercially available solar panel (20 W, manufactured by SN Solar Technology) made of single crystal silicon having the specifications shown in Table 1 below as the PV panel. At this time, in order to avoid the influence of the light incident from the side surface of the water tank, the side surface of the water tank was covered with a light-shielding cover all around. Although there is a difference in the amount of power generation under the sunlight on the sea and under the fluorescent lamp in the room even if the illuminance is the same, the relationship between the illuminance and the output voltage shows the same proportional relationship.

Figure 2021044870
Figure 2021044870

図3は、この実験結果を示すグラフである。
図3に示すように、水深0〜200mmの範囲では、出力電圧はほぼ一定であり、むしろ水深が深くなるにつれてわずかながら出力電圧が上昇している。なお、室温22.4℃の大気中(水深0mm)でのPVパネルの出力電圧は、13.12Vである。
FIG. 3 is a graph showing the results of this experiment.
As shown in FIG. 3, in the range of water depth 0 to 200 mm, the output voltage is almost constant, and rather, the output voltage slightly increases as the water depth becomes deeper. The output voltage of the PV panel in the atmosphere (water depth 0 mm) at room temperature of 22.4 ° C. is 13.12 V.

この実験結果から、この程度の浅い水深範囲であれば、水中にPVパネルを設置する場合であっても、水面上での反射や水中での散乱、減衰による影響は小さく、大気中のPVパネルと同程度の発電効率が得られることがわかる。むしろ、大気中(水深0mm)でのPVパネルの出力電圧に対し、水深が深くなるにつれてわずかながら出力電圧が上昇しているのは、水深が深くなるにつれてPVパネルから水への伝熱効率が上がり、PVパネルの冷却効率が上がったためだと推察される。 From this experimental result, if the water depth range is as shallow as this, even if the PV panel is installed in water, the influence of reflection on the water surface, scattering in water, and attenuation is small, and the PV panel in the atmosphere. It can be seen that the same level of power generation efficiency can be obtained. Rather, the output voltage rises slightly as the water depth increases with respect to the output voltage of the PV panel in the atmosphere (water depth 0 mm), because the heat transfer efficiency from the PV panel to the water increases as the water depth increases. It is presumed that this is because the cooling efficiency of the PV panel has improved.

次に、太陽光発電パネル1を設置する水温と太陽光発電パネル1の発電量(出力電圧)との関係を確認する実験を行った。
図4は、この実験結果を示すグラフである。
本実験では、上述した実験と同じ設備を用い、同一照度下(蛍光灯下)における水温と出力電圧との関係を求めるために、実験を3回、異なる日に実施した。低温状態は水槽に氷とドライアイスを入れて水温を調整し、高温状態はお湯を入れて水温を調整した。図4に示すように、水温の低下に比例して出力電圧が高くなることが確認された。また、いずれの実験日でも、水温が同じであれば同じ出力電圧が得られ、その再現性は高い。
Next, an experiment was conducted to confirm the relationship between the water temperature at which the photovoltaic power generation panel 1 is installed and the amount of power generation (output voltage) of the photovoltaic power generation panel 1.
FIG. 4 is a graph showing the results of this experiment.
In this experiment, using the same equipment as the above-mentioned experiment, the experiment was carried out three times on different days in order to obtain the relationship between the water temperature and the output voltage under the same illuminance (under fluorescent light). In the low temperature state, ice and dry ice were put in the water tank to adjust the water temperature, and in the high temperature state, hot water was added to adjust the water temperature. As shown in FIG. 4, it was confirmed that the output voltage increased in proportion to the decrease in water temperature. Moreover, on any of the experimental days, if the water temperature is the same, the same output voltage can be obtained, and the reproducibility is high.

次に、太陽光発電パネル1を設置する海中100の塩分濃度と太陽光発電パネル1の発電量(出力電圧)との関係を確認する実験を行った。
図5は、この実験結果を示すグラフである。
海中100の塩分濃度は、その海域によって差があるが、最大でも5wt%である。本実験では、水道水に海水から採取した塩を混合した疑似海水を用い、水深10mm、水温23.1℃の環境下において、塩分濃度が出力電圧に及ぼす影響を調べた。図5に示すように、塩分濃度が0〜5wt%の範囲内では、塩分濃度の差による出力電圧への影響は認められない。
Next, an experiment was conducted to confirm the relationship between the salinity of 100 in the sea where the photovoltaic power generation panel 1 is installed and the amount of power generation (output voltage) of the photovoltaic power generation panel 1.
FIG. 5 is a graph showing the results of this experiment.
The salinity of 100 in the sea varies depending on the sea area, but is 5 wt% at the maximum. In this experiment, pseudo-seawater in which salt collected from seawater was mixed with tap water was used, and the effect of salinity on the output voltage was investigated in an environment with a water depth of 10 mm and a water temperature of 23.1 ° C. As shown in FIG. 5, when the salinity is in the range of 0 to 5 wt%, no influence on the output voltage due to the difference in salinity is observed.

なお、本発明に係る水中太陽光発電システムは、海面を活用するものに限らず、湖、沼、池、川、貯水池(ダムを含む。)などの水面を活用する場合にも同様に適用可能である。
また、このような屋外の水面に限らず、屋内のプールの水面を活用するなど、あらゆる水面に対して活用することが可能である。
更には、水以外の液体の液面に対して活用することも可能である。例えば、熱伝導性の高い液体の液面下(液中)に太陽光発電パネルを設置すれば、太陽光発電パネルの冷却効果の高い水中太陽光発電システムが実現できる。また、例えば、パネル表面の洗浄効果が高い液体の液面下(液中)に太陽光発電パネルを設置すれば、異物や堆積物などの付着による発電効率の低下を抑制する効果の高い水中太陽光発電システムが実現できる。
The underwater photovoltaic power generation system according to the present invention is not limited to one that utilizes the sea surface, but is also applicable to the case of utilizing the water surface of lakes, swamps, ponds, rivers, reservoirs (including dams), etc. Is.
Moreover, it is possible to utilize not only such an outdoor water surface but also any water surface such as utilizing the water surface of an indoor pool.
Furthermore, it can also be used for the liquid level of a liquid other than water. For example, if the photovoltaic power generation panel is installed below the liquid surface (in the liquid) of a liquid having high thermal conductivity, an underwater photovoltaic power generation system having a high cooling effect of the photovoltaic power generation panel can be realized. Further, for example, if the photovoltaic power generation panel is installed under the liquid surface (in the liquid) having a high cleaning effect on the panel surface, the underwater solar with a high effect of suppressing a decrease in power generation efficiency due to adhesion of foreign matter or deposits. A photovoltaic power generation system can be realized.

1 :太陽光発電パネル
2 :浮体
3 :連結ワイヤー
4 :錘部材
5 :係留部材
10 :水中太陽光発電システム
20 :送電設備
21 :送電ケーブル
100A :海面
1: Photovoltaic panel 2: Floating body 3: Connecting wire 4: Weight member 5: Mooring member 10: Underwater photovoltaic power generation system 20: Power transmission equipment 21: Power transmission cable 100A: Sea surface

Claims (7)

太陽光発電パネルを水面下に設置したことを特徴とする水中太陽光発電システム。 An underwater photovoltaic power generation system characterized by installing a photovoltaic power generation panel under the surface of the water. 請求項1に記載の水中太陽光発電システムにおいて、
前記水面は、海水面であることを特徴とする水中太陽光発電システム。
In the underwater photovoltaic power generation system according to claim 1,
An underwater photovoltaic power generation system characterized in that the water surface is a sea surface.
請求項1又は2に記載の水中太陽光発電システムにおいて、
前記太陽光発電パネルは、前記水面から1m以内の水中に設置されることを特徴とする水中太陽光発電システム。
In the underwater photovoltaic power generation system according to claim 1 or 2.
The photovoltaic power generation panel is an underwater photovoltaic power generation system characterized in that it is installed in water within 1 m from the water surface.
請求項3に記載の水中太陽光発電システムにおいて、
前記太陽光発電パネルは、前記水面から30cm以内の水中に設置されることを特徴とする水中太陽光発電システム。
In the underwater photovoltaic power generation system according to claim 3,
The photovoltaic power generation panel is an underwater photovoltaic power generation system characterized in that it is installed in water within 30 cm from the water surface.
請求項1乃至4のいずれか1項に記載の水中太陽光発電システムにおいて、
水面の高さが変動しても水面下に前記太陽光発電パネルを維持する水面下維持手段を有することを特徴とする水中太陽光発電システム。
In the underwater photovoltaic power generation system according to any one of claims 1 to 4.
An underwater photovoltaic power generation system characterized by having an underwater photovoltaic power generation system that maintains the photovoltaic power generation panel below the water surface even if the height of the water surface fluctuates.
請求項5に記載の水中太陽光発電システムにおいて、
前記水面下維持手段は、水面に浮かぶ浮体と、前記浮体に前記太陽光発電パネルを連結する連結部材とから構成されることを特徴とする水中太陽光発電システム。
In the underwater photovoltaic power generation system according to claim 5.
The underwater solar power generation system is characterized in that the underwater maintenance means is composed of a floating body floating on the water surface and a connecting member for connecting the solar power generation panel to the floating body.
請求項1乃至6のいずれか1項に記載の水中太陽光発電システムにおいて、
前記太陽光発電パネルは、水中生物又は水中植物の付着を抑制する付着抑制処理が施されていることを特徴とする水中太陽光発電システム。
In the underwater photovoltaic power generation system according to any one of claims 1 to 6.
The photovoltaic power generation panel is an underwater photovoltaic power generation system characterized in that an adhesion suppression treatment for suppressing the adhesion of aquatic organisms or aquatic plants is applied.
JP2019163124A 2019-09-06 2019-09-06 Underwater photovoltaic system Active JP6872812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019163124A JP6872812B2 (en) 2019-09-06 2019-09-06 Underwater photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163124A JP6872812B2 (en) 2019-09-06 2019-09-06 Underwater photovoltaic system

Publications (2)

Publication Number Publication Date
JP2021044870A true JP2021044870A (en) 2021-03-18
JP6872812B2 JP6872812B2 (en) 2021-05-19

Family

ID=74864375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163124A Active JP6872812B2 (en) 2019-09-06 2019-09-06 Underwater photovoltaic system

Country Status (1)

Country Link
JP (1) JP6872812B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465421A (en) * 2022-11-15 2022-12-13 青岛大学 Offshore photovoltaic system
JP7273207B1 (en) 2022-01-31 2023-05-12 日立造船株式会社 electronics cooling system
CN117155279A (en) * 2023-09-12 2023-12-01 西南石油大学 Performance test system of solar cell
JP7407264B1 (en) * 2022-12-01 2023-12-28 容平 石川 Offshore energy storage device and offshore energy storage system
CN117792267A (en) * 2024-02-26 2024-03-29 上海海事大学 Dynamic underwater photovoltaic power generation system and method
WO2024117257A1 (en) * 2022-12-01 2024-06-06 容平 石川 Offshore energy storage device, offshore energy storage system, offshore energy collection system, floating offshore microwave power relay device, and offshore microwave power transmission system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267615A (en) * 2000-03-14 2001-09-28 Takara Co Ltd Underwater solar panel
JP2010219495A (en) * 2009-02-18 2010-09-30 Nagaoka Univ Of Technology Transparent member for solar cell, and solar cell
US20110168235A1 (en) * 2008-09-05 2011-07-14 Scienza Industria Tecnologia S.R.L. Apparatus and method for generating electricity using photovoltaic panels
WO2011155499A1 (en) * 2010-06-07 2011-12-15 三菱レイヨン株式会社 Method for producing article having fine recessed and projected structure on surface, mold release treatment method for mold, and active energy ray-curable resin composition for mold surface release treatment
JP2013026243A (en) * 2011-07-14 2013-02-04 Toshiba Corp Solar battery panel with antifouling surface coating
JP2017044099A (en) * 2015-08-25 2017-03-02 株式会社日立製作所 Power generation system
CN109251457A (en) * 2018-08-24 2019-01-22 西南交通大学 Automatically cleaning solar panel film with lotus leaf biomimetic features and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267615A (en) * 2000-03-14 2001-09-28 Takara Co Ltd Underwater solar panel
US20110168235A1 (en) * 2008-09-05 2011-07-14 Scienza Industria Tecnologia S.R.L. Apparatus and method for generating electricity using photovoltaic panels
JP2010219495A (en) * 2009-02-18 2010-09-30 Nagaoka Univ Of Technology Transparent member for solar cell, and solar cell
WO2011155499A1 (en) * 2010-06-07 2011-12-15 三菱レイヨン株式会社 Method for producing article having fine recessed and projected structure on surface, mold release treatment method for mold, and active energy ray-curable resin composition for mold surface release treatment
JP2013026243A (en) * 2011-07-14 2013-02-04 Toshiba Corp Solar battery panel with antifouling surface coating
JP2017044099A (en) * 2015-08-25 2017-03-02 株式会社日立製作所 Power generation system
CN109251457A (en) * 2018-08-24 2019-01-22 西南交通大学 Automatically cleaning solar panel film with lotus leaf biomimetic features and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.M. TINA ET AL.: ""Optical and thermal behavior of submerged photovoltaic solar panel: SP2"", ENERGY, vol. 39, JPN6020044421, 2012, pages 17 - 26, ISSN: 0004390220 *
GREGORY G. HAHN JR. ET AL.: ""Assessing Solar Power for Globally Migrating Marine and Submarine Systems"", IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 44, JPN6020029304, July 2019 (2019-07-01), pages 693 - 706, XP011734585, ISSN: 0004390221, DOI: 10.1109/JOE.2018.2835178 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273207B1 (en) 2022-01-31 2023-05-12 日立造船株式会社 electronics cooling system
WO2023145134A1 (en) * 2022-01-31 2023-08-03 日立造船株式会社 Cooling system for electronic apparatus
JP2023110998A (en) * 2022-01-31 2023-08-10 日立造船株式会社 Electronic device cooling system
CN115465421A (en) * 2022-11-15 2022-12-13 青岛大学 Offshore photovoltaic system
CN115465421B (en) * 2022-11-15 2023-03-10 青岛大学 Offshore photovoltaic system
JP7407264B1 (en) * 2022-12-01 2023-12-28 容平 石川 Offshore energy storage device and offshore energy storage system
WO2024117257A1 (en) * 2022-12-01 2024-06-06 容平 石川 Offshore energy storage device, offshore energy storage system, offshore energy collection system, floating offshore microwave power relay device, and offshore microwave power transmission system
CN117155279A (en) * 2023-09-12 2023-12-01 西南石油大学 Performance test system of solar cell
CN117155279B (en) * 2023-09-12 2024-03-08 西南石油大学 Performance test system of solar cell
CN117792267A (en) * 2024-02-26 2024-03-29 上海海事大学 Dynamic underwater photovoltaic power generation system and method
CN117792267B (en) * 2024-02-26 2024-05-10 上海海事大学 Dynamic underwater photovoltaic power generation system and method

Also Published As

Publication number Publication date
JP6872812B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
JP6872812B2 (en) Underwater photovoltaic system
Gorjian et al. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems
Kumar et al. Challenges and opportunities towards the development of floating photovoltaic systems
JP4647608B2 (en) Solar concentrator
JP7313151B2 (en) solar power plant
KR101042728B1 (en) Water photovoltaic device supported by weight
CN103346697A (en) Overwater solar photovoltaic power generation system
Shi et al. Review on the development of marine floating photovoltaic systems
CN107438562A (en) Stage apparatus
Ravichandran et al. Floating photovoltaic system for Indian artificial reservoirs—an effective approach to reduce evaporation and carbon emission
Trapani Flexible floating thin film photovoltaic (PV) array concept for marine and lacustrine environments
Matheus et al. Design and simulation of a floating solar power plant for Goreagab dam, Namibia
JP2017044099A (en) Power generation system
Mule Stagno Floating photovoltaics–technological issues, cost and practical implications
EP4122096B1 (en) A floating solar power plant
KR20200058669A (en) Floating offshore combind generator
JP2000246287A (en) Method for preventing eutrophication of lakes and marshes having electric power generating function
CN203872107U (en) Solar energy photovoltaic power station constructed on insertion type row pontoon platform with anchoring
KR102068022B1 (en) Solar Power Generation System Using Floating Power Line
KR102061028B1 (en) load dispersion device for prefabricated float module
JP7555451B2 (en) Solar power generation facilities
CN211620084U (en) Artificial floating island capable of purifying river channel
AU2004243336B2 (en) Collector for solar radiation
Düzenli et al. 0122-A REVIEW OF FLOATING SOLAR POWER PLANTS
KR102030064B1 (en) Photovoltaic module apparatus for water surface

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200319

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6872812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250