JP2021042519A - Relieving method of influence by underwater noise to aquatic organism - Google Patents

Relieving method of influence by underwater noise to aquatic organism Download PDF

Info

Publication number
JP2021042519A
JP2021042519A JP2019162595A JP2019162595A JP2021042519A JP 2021042519 A JP2021042519 A JP 2021042519A JP 2019162595 A JP2019162595 A JP 2019162595A JP 2019162595 A JP2019162595 A JP 2019162595A JP 2021042519 A JP2021042519 A JP 2021042519A
Authority
JP
Japan
Prior art keywords
underwater
noise
underwater noise
behavior
influence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019162595A
Other languages
Japanese (ja)
Other versions
JP7273664B2 (en
Inventor
裕一 田中
Yuichi Tanaka
裕一 田中
勇一朗 田村
Yuichiro Tamura
勇一朗 田村
侑理恵 板垣
Yurie Itagaki
侑理恵 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2019162595A priority Critical patent/JP7273664B2/en
Publication of JP2021042519A publication Critical patent/JP2021042519A/en
Application granted granted Critical
Publication of JP7273664B2 publication Critical patent/JP7273664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

To provide a relieving method of influence to aquatic organisms caused by underwater noise during construction work, capable of effectively suppressing and relieving the influence to aquatic organisms.SOLUTION: In a relieving method of influence to aquatic organisms by underwater noise, when performing the construction work generating underwater noise, the underwater noise caused by the construction work is measured, actions of the objective aquatic organisms are confirmed, and the construction work is performed on the basis of the measuring results and action confirmation results of the aquatic organisms.SELECTED DRAWING: Figure 1

Description

本発明は、工事により発生する水中騒音による水中生物影響の緩和方法に関する。 The present invention relates to a method for alleviating the influence of aquatic organisms due to underwater noise generated by construction work.

水中での杭打設や発破等の水中工事の騒音による水中生物に対する影響が懸念されている。これまでに、生物に対して影響のある周波数や杭打音の影響がある距離(たとえば、低周波で20kmまで)等が報告されている(非特許文献1)。また、魚類については損傷を受けるレベル(220dB以上)、忌避(回避)行動を示す威嚇レベル(140〜160dB)等があることや、水中騒音が距離とともに減衰すること等が明らかとなっている(非特許文献2)。 There is concern about the impact on aquatic organisms due to the noise of underwater works such as pile driving and blasting in water. So far, frequencies that affect living organisms and distances that are affected by stakeout sounds (for example, up to 20 km at low frequencies) have been reported (Non-Patent Document 1). In addition, it has been clarified that fish have a level of damage (220 dB or more), a threatening level indicating repellent (avoidance) behavior (140 to 160 dB), and that underwater noise is attenuated with distance (). Non-Patent Document 2).

魚類をはじめ海生哺乳類等に対する水中騒音の影響を緩和する方法として、水中ノイズ低減装置および展開システム(特許文献1)、バブル・カーテン(特許文献2)、パイル・スリーブ(非特許文献3)等が提案されている。 As a method for mitigating the influence of underwater noise on fish and marine mammals, an underwater noise reduction device and deployment system (Patent Document 1), a bubble curtain (Patent Document 2), a pile sleeve (Non-Patent Document 3), etc. Has been proposed.

特表2017−504844号公報Special Table 2017-504844 実開平01−119431号公報Jikkenhei 01-19431

赤松友成・木村里子・市川光太郎「水中生物音響学―声で探る行動と生態−」コロナ社(2019年1月)Tomonari Akamatsu, Riko Kimura, Kotaro Ichikawa "Underwater Bioacoustics-Voice-Exploring Behavior and Ecology-" Corona Publishing Co., Ltd. (January 2019) 日本埋立浚渫協会「港湾工事環境保全技術マニュアル Doctor of the Sea(改訂第3版)」(2015年)Japan Dredging and Reclamation Association "Port Construction Environmental Conservation Technology Manual Doctor of the Sea (Revised 3rd Edition)" (2015) 国立研究開発法人新エネルギー・産業技術総合開発機構「着床式洋上風力発電導入ガイドブック(最終版)」(2018年3月)https://www.nedo.go.jp/news/press/AA5_101085.htmlNational Research and Development Corporation New Energy and Industrial Technology Development Organization "Implantation type offshore wind power generation introduction guidebook (final version)" (March 2018) https://www.nedo.go.jp/news/press/AA5_101085 .html

杭打設等による水中音が威嚇レベルに達すると、魚類等の水中生物は周辺海域から逃げ出し、騒音が収まった後に戻ってくると言われているが、実際の水中騒音を測定して魚群や個体の行動を追跡した例は無く、水中騒音による行動への影響は明らかとなっていない。また、このため、効果的な対策が取られていない。 It is said that when the underwater noise caused by stakeout reaches a threatening level, underwater creatures such as fish escape from the surrounding sea area and return after the noise has subsided. There is no case of tracking the behavior of an individual, and the effect of underwater noise on the behavior has not been clarified. For this reason, no effective measures have been taken.

魚類については、一般的な聴覚の魚と、音に対して鈍感な魚(浮袋の無いヒラメ・カレイ等)がいることが知られており、種によって威嚇レベル等は異なると考えられるが、対象とする種の音に対する感受性が明らかにならないと、効果的な対策を講じることが難しい。 Regarding fish, it is known that there are general hearing fish and fish that are insensitive to sound (flatfish, flatfish, etc. without a swim bladder), and the threat level etc. may differ depending on the species, but the target It is difficult to take effective measures unless the sensitivity to the sound of the species is clarified.

本発明は、上述のような従来技術の問題に鑑み、工事施工における水中騒音による水中生物への影響を調査し効果的に抑制し緩和できる水中騒音による水中生物影響の緩和方法を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention provides a method for mitigating the influence of underwater noise caused by underwater noise, which can be effectively suppressed and mitigated by investigating the influence of underwater noise on underwater organisms in construction work. The purpose.

上記目的を達成するための水中騒音による水中生物影響の緩和方法は、水中騒音が発生する工事を実施する際に、前記工事による水中騒音を測定し、対象とする水中生物の行動を確認し、前記測定結果および前記水中生物の行動確認結果に基づいて前記工事を行うものである。 The method of mitigating the influence of underwater organisms due to underwater noise to achieve the above objectives is to measure the underwater noise caused by the construction work and confirm the behavior of the target aquatic organisms when carrying out the construction work that generates underwater noise. The construction is carried out based on the measurement result and the behavior confirmation result of the aquatic organism.

この水中騒音による水中生物影響の緩和方法によれば、工事施工により水中騒音が発生しても、工事による水中騒音を測定し、対象とする水中生物の行動を確認し、水中騒音の測定結果および水中生物の行動確認結果に基づいて工事を行い、音源音圧が想定よりも大きい場合や対象水中生物の行動に異常等が確認された場合には騒音低減対策を施すことができるので、水中騒音による水中生物への影響を効果的に抑制し緩和できる。また、対象とする水中生物の行動をその都度確認し、水中生物に応じて影響を適切に評価できるので、水中生物への影響を効果的に抑制できる。 According to this method of mitigating the effects of underwater organisms due to underwater noise, even if underwater noise is generated due to construction work, underwater noise due to construction work is measured, the behavior of target underwater organisms is confirmed, and the measurement results of underwater noise and underwater noise are measured. Underwater noise can be taken because noise reduction measures can be taken when the sound pressure of the sound source is higher than expected or when abnormalities are confirmed in the behavior of the target aquatic organisms. Can effectively suppress and mitigate the effects of this on aquatic organisms. In addition, since the behavior of the target aquatic organism can be confirmed each time and the effect can be appropriately evaluated according to the aquatic organism, the effect on the aquatic organism can be effectively suppressed.

上記水中騒音による水中生物影響の緩和方法において、前記水中騒音による水中生物への影響を事前に調査し予測し、悪影響が予測される場合、予め騒音低減等の対策を施すことが好ましい。 In the method for mitigating the influence of aquatic organisms due to underwater noise, it is preferable to investigate and predict the influence of the underwater noise on aquatic organisms in advance, and if an adverse effect is predicted, take measures such as noise reduction in advance.

また、前記予測において騒音発生位置から離れた位置での影響を水中における音圧の距離減衰に基づいて判断することが好ましい。 Further, in the above prediction, it is preferable to judge the influence at a position away from the noise generation position based on the distance attenuation of the sound pressure in water.

また、前記対象とする水中生物の行動を確認するため魚群探知機(漁業用ソナー等を含む)とバイオロギング・バイオテレメトリーとの少なくともいずれかを用いることが好ましい。 In addition, it is preferable to use at least one of a fish finder (including fishery sonar) and biologging / biotelemetry in order to confirm the behavior of the target aquatic organism.

また、前記行動確認結果から得た前記水中生物の水中騒音時の回避行動に基づいて前記水中騒音による前記水中生物に対する影響の有無を判断することが好ましい。たとえば、水中騒音発生時に対象水中生物が水中騒音を回避して離れた場所に移動したことが確認された場合は水中騒音による影響がないと判断できる。 In addition, it is preferable to determine whether or not the underwater noise has an effect on the aquatic organism based on the avoidance behavior of the aquatic organism at the time of underwater noise obtained from the behavior confirmation result. For example, when it is confirmed that the target underwater organism has moved to a distant place while avoiding the underwater noise when the underwater noise is generated, it can be judged that there is no influence of the underwater noise.

また、前記行動確認結果から前記水中生物の死亡・損壊・異常行動のいずれかが確認されたときには前記工事を中断し騒音低減等の対策を施すことが好ましい。 Further, when any one of the death, damage, or abnormal behavior of the aquatic organism is confirmed from the behavior confirmation result, it is preferable to suspend the construction and take measures such as noise reduction.

本発明によれば、工事施工における水中騒音による水中生物への影響を効果的に抑制し緩和できる水中騒音による水中生物影響の緩和方法を提供することができる。 According to the present invention, it is possible to provide a method for mitigating the influence of underwater organisms due to underwater noise, which can effectively suppress and mitigate the influence of underwater noise on underwater organisms in construction work.

本実施形態による水中騒音による海洋生物影響の緩和方法の各ステップを説明するためのフローチャートである。It is a flowchart for demonstrating each step of the method of mitigating the influence of marine organisms by underwater noise by this embodiment. 本実施形態において工事施工により発生する水中騒音の測定および対象海洋生物の行動確認を行う測定システムを概略的に示す図である。It is a figure which shows schematicly the measurement system which measures the underwater noise generated by the construction work and confirms the behavior of the target marine organism in this embodiment. 各種の水中騒音源の周波数および水中生物の可聴域を示すグラフである(非特許文献1の図6.1参照)。It is a graph which shows the frequency of various underwater noise sources and the audible range of aquatic organisms (see FIG. 6.1 of Non-Patent Document 1). 水中音の音圧レベル(a)と魚類の反応(b)を示す図である(非特許文献2参照)。It is a figure which shows the sound pressure level (a) of the underwater sound and the reaction (b) of a fish (see Non-Patent Document 2). 魚類の種類別の音圧レベルと反応レベルを示す図である(非特許文献2参照)。It is a figure which shows the sound pressure level and reaction level for each type of fish (see Non-Patent Document 2). 水中における音圧の距離減衰モデルを示すグラフである。It is a graph which shows the distance attenuation model of the sound pressure in water.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による水中騒音による海洋生物影響の緩和方法の各ステップを説明するためのフローチャートである。図2は、本実施形態において工事施工により発生する水中騒音の測定および対象海洋生物の行動確認を行う測定システムを概略的に示す図である。図3は、各種の水中騒音源の周波数および水中生物の可聴域を示すグラフである(非特許文献1の図6.1参照)。図4は、水中音の音圧レベル(a)と魚類の反応(b)を示す図である(非特許文献2参照)。図5は、魚類の種類別の音圧レベルと反応レベルを示す図である(非特許文献2参照)。図6は、水中における音圧の距離減衰モデルを示すグラフである。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining each step of the method for mitigating the influence of marine organisms due to underwater noise according to the present embodiment. FIG. 2 is a diagram schematically showing a measurement system for measuring underwater noise generated by construction work and confirming the behavior of a target marine organism in the present embodiment. FIG. 3 is a graph showing the frequencies of various underwater noise sources and the audible range of aquatic organisms (see FIG. 6.1 of Non-Patent Document 1). FIG. 4 is a diagram showing the sound pressure level (a) of underwater sound and the reaction (b) of fish (see Non-Patent Document 2). FIG. 5 is a diagram showing a sound pressure level and a reaction level for each type of fish (see Non-Patent Document 2). FIG. 6 is a graph showing a distance attenuation model of sound pressure in water.

最初に、本実施形態における測定システムについて図2を参照して説明する。図2のように、杭打船SPによりハンマーHで杭Pを海底に打設する工事を行うと水中騒音が発生するが、この打設の際に水中騒音計M1により打設地点における水中騒音の測定を行う。また、杭打船SPまたは測定船MSに搭載した魚群探知機S1またはS2により打設位置における魚群の行動状況を確認する。 First, the measurement system according to the present embodiment will be described with reference to FIG. As shown in FIG. 2, when the pile driving ship SP is used to drive the pile P onto the seabed with the hammer H, underwater noise is generated. At the time of this driving, the underwater sound level meter M1 is used to drive the underwater noise at the driving point. To measure. In addition, the behavior status of the school of fish at the driving position is confirmed by the fish finder S1 or S2 mounted on the pile driving ship SP or the measuring ship MS.

また、周辺海域において測定船MSが打設地点から離れた位置で水中騒音計M2により水中騒音を測定し、また、魚群探知機S2により魚群の行動状況を確認する。また、魚FIにセンサーSEを取り付けて放流した後、水中に配置した受信器R1,R2がセンサーSEからの信号を受信し、魚FIの位置等を解析する。 In addition, the measuring vessel MS measures the underwater noise with the underwater sound level meter M2 at a position away from the casting point in the surrounding sea area, and confirms the behavior status of the school of fish with the fish finder S2. Further, after the sensor SE is attached to the fish FI and released, the receivers R1 and R2 placed in the water receive the signal from the sensor SE and analyze the position of the fish FI and the like.

魚群探知機S1,S2を用いて打設地点およびその周辺海域において騒音発生前、発生中、発生後に魚類の行動を確認し、水中騒音の発生時に打設地点・周辺海域において対象海洋生物とした魚群が水中騒音を避けて移動した状況を確認する。なお、魚群探知機S1,S2には、海底面に向けて水平方向360°探査可能な漁業用ソナー、マルチビームソナーやグラフ魚探(体長や個体量が計測可能)を含む。また、バイオロギング・バイオテレメトリーにより魚等の水中生物にセンサーSE(ピンガー、加速度、水圧、水温、データロガー等)を取り付けて打設地点の海域に放流し個体の移動状況を確認できる。 Fishfinders S1 and S2 were used to confirm the behavior of fish before, during, and after noise generation at the casting point and the surrounding sea area, and when underwater noise was generated, the target marine organisms were selected at the casting point and the surrounding sea area. Check the situation where the school of fish moved while avoiding underwater noise. The fish finder S1 and S2 include a fishery sonar capable of exploring 360 ° in the horizontal direction toward the seabed, a multi-beam sonar, and a graph fish finder (body length and individual abundance can be measured). In addition, by biologging and biotelemetry, sensors SE (Pinger, acceleration, water pressure, water temperature, data logger, etc.) can be attached to aquatic organisms such as fish and released into the sea area at the casting point to check the movement status of individuals.

なお、バイオロギング・バイオテレメトリーとは、生物に小型の発信機・ビデオカメラ・センサー等を取り付けて行動データを取得し、行動や生態を調査する研究手法であり、アザラシ、ウミガメ、ペンギン、クジラ等の大型の生物にセンサーを取り付けることが多いが、装置の小型化が進み、鳥や魚を対象とした研究も進められている。こうした技術を利用することにより、杭打設時等における騒音による魚類等への影響を確認できる。このようなバイオロギング・バイオテレメトリーによる行動確認のために、対象海洋生物にセンサーを取り付け、放流し、センサーから受信した信号を表示する受波器により、またはセンサー回収後の解析により、行動確認を行う。 Biologging / biotelemetry is a research method for investigating behavior and ecology by attaching small transmitters, video cameras, sensors, etc. to living things to acquire behavior data, such as lizards, sea turtles, penguins, and whales. Sensors are often attached to large creatures in Japan, but the miniaturization of the devices is progressing, and research on birds and fish is also underway. By using such technology, it is possible to confirm the influence of noise on fish, etc. during pile driving. In order to confirm the behavior by such biologging and biotelemetry, the behavior is confirmed by attaching a sensor to the target marine organism, releasing it, and using a receiver that displays the signal received from the sensor, or by analysis after the sensor is collected. Do.

図2の測定システムにより、打設地点および打設地点から離れた位置で水中音圧測定を行い、水中騒音の発生源と周辺海域の複数地点において、騒音発生前、発生中、発生後に水中騒音の測定を行うとともに、対象海洋生物の行動確認を行うことができる。 Underwater sound pressure is measured at the driving point and at a position away from the driving point by the measurement system shown in FIG. 2, and underwater noise is measured at multiple points in the source of underwater noise and the surrounding sea area before, during, and after noise generation. Can be measured and the behavior of the target marine organism can be confirmed.

図1〜図6を参照し、本実施形態による水中騒音による海洋生物影響の緩和方法を説明する。まず、事前検討により、対象地およびその周辺海域の状況、対象地の特性(海底地形、漁場、捕獲対象種、保護対象種等)、工事に使用する工法、存在する対象海洋生物等を確認する(S01)。 A method for mitigating the influence of marine organisms due to underwater noise according to the present embodiment will be described with reference to FIGS. 1 to 6. First, by preliminary examination, the conditions of the target area and the surrounding sea area, the characteristics of the target area (seabed topography, fishing grounds, species to be captured, species to be protected, etc.), construction methods used for construction, existing target marine organisms, etc. are confirmed. (S01).

次に、事前検討により得た資料やデータにより工事施工に伴い発生する水中騒音による影響を予測する(S02)。たとえば、図3のように、杭打設の場合には、魚の可聴域の周波数の騒音が発生すること、図4(a)(b)のように、その騒音の音圧レベルによって魚類の反応が異なること、図5のように、魚類別に音圧レベルにより反応が異なること、図6のように、水中において音源からの距離に応じて音圧レベルが減衰すること等から対象海洋生物への影響を予測する。 Next, the effects of underwater noise generated during construction work are predicted based on the materials and data obtained in the preliminary study (S02). For example, as shown in FIG. 3, in the case of pile driving, noise with a frequency in the audible range of the fish is generated, and as shown in FIGS. 4 (a) and 4 (b), the reaction of the fish depending on the sound pressure level of the noise. As shown in Fig. 5, the reaction differs depending on the sound pressure level for each fish, and as shown in Fig. 6, the sound pressure level decreases according to the distance from the sound source in water. Predict the impact.

次に、上記影響予測ステップS02の予測結果に基づいて対象海洋生物への影響の有無を判定する(S03)。ここで、後述のステップS05での対策選定を実施した場合を含めて水中騒音発生時に対象海洋生物への影響が無い状況としては、以下の内容がある。 Next, it is determined whether or not there is an impact on the target marine organism based on the prediction result of the impact prediction step S02 (S03). Here, there are the following contents as a situation where there is no influence on the target marine organisms when underwater noise is generated, including the case where the countermeasure selection in step S05 described later is carried out.

ステップS03で影響なし(NO)と判定する場合
(1)騒音発生源の周辺海域に対象とする海洋生物がいない。この場合は、対象海洋生物が存在しないとして(S04)、以降のステップには進まず、フロー終了(end)とする。
(2)音源音圧が威嚇レベル未満。あるいは、対象海洋生物の生息の存在範囲では威嚇レベル未満。
(3)騒音発生源の周辺海域に存在した対象海洋生物が、威嚇レベルの範囲から影響の無い海域に移動すると想定される。
(4)周辺海域に対象海洋生物の生息場所(岩礁等)や漁場が存在する場合等、騒音発生源から生息場所や漁場までの騒音の距離減衰により対象海洋生物に影響が無い音圧まで騒音が低下する。
When determining no effect (NO) in step S03
(1) There are no target marine organisms in the sea area around the noise source. In this case, assuming that the target marine organism does not exist (S04), the flow ends (end) without proceeding to the subsequent steps.
(2) Sound source sound pressure is less than the threatening level. Alternatively, the range of habitat of the target marine organism is less than the threatening level.
(3) It is assumed that the target marine organisms that existed in the sea area around the noise source move from the threatening level range to the unaffected sea area.
(4) When there are habitats (rock reefs, etc.) or fishing grounds of the target marine organisms in the surrounding sea area, noise is generated up to the sound pressure that does not affect the target marine organisms due to the attenuation of the noise distance from the noise source to the habitat or fishing grounds. Decreases.

ステップS03で影響あり(YES)と判定され、ステップS05で選定した対策を実施する場合
(5)騒音発生源の水中騒音低減対策を実施し、対象海洋生物に影響の無い威嚇レベル未満まで騒音が低下すると想定される。
(6)騒音発生源の水中騒音低減対策を実施し、威嚇レベル以下(より望ましくは誘致レベル以下)まで騒音が低下し、威嚇レベルの場合には影響の無い海域に移動すると想定される。
(7)周辺海域に対象海洋生物の生息場所(岩礁等)や漁場が存在する場合、発生源の水中騒音低減対策を実施し、対象海洋生物に影響が無い音圧まで騒音が低下すると想定される。
ただし、杭打設以外による周辺海域で発生する暗騒音が高く、威嚇レベル以上で海洋生物が生息している場合や、周辺に誘致レベルの海域が無いときには、別途対策を検討することが好ましい。
なお、ここでの影響が無い音圧・海域とは、海洋生物に対する図4(b)の威嚇レベル以下(より望ましくは誘致レベル以下)を指す。
When it is determined in step S03 that there is an effect (YES) and the countermeasure selected in step S05 is implemented.
(5) It is assumed that underwater noise reduction measures for noise sources will be implemented and the noise will be reduced to less than the threatening level that does not affect the target marine organisms.
(6) It is assumed that measures will be taken to reduce underwater noise at the noise source, and the noise will be reduced to below the threatening level (more preferably below the attraction level), and if it is at the threatening level, it will move to an unaffected sea area.
(7) If there are habitats (rock reefs, etc.) or fishing grounds for the target marine organisms in the surrounding sea area, it is assumed that the noise will be reduced to a sound pressure that does not affect the target marine organisms by implementing measures to reduce the underwater noise of the source. To.
However, if the background noise generated in the surrounding sea area other than pile driving is high and marine life is inhabiting at a threatening level or higher, or if there is no sea area at the attraction level in the vicinity, it is preferable to consider separate measures.
The sound pressure / sea area that is not affected here refers to the threat level or less (more preferably, the attraction level or less) of FIG. 4 (b) against marine organisms.

たとえば、図6の実線A〜Cの距離減衰モデルにより対象地点の予想音圧レベルを予測し、たとえば、音源音圧が200dBのとき距離減衰モデルAでは音源から1000mの対象地点で140dBに減衰するが、この1000m地点に図4(b)のように回避行動を取る威嚇レベルの下限が140dBの対象海洋生物である魚の生息域がある場合、この対象海洋生物が音源から1000mよりも遠方に移動することから影響なし(NO)と判定する。なお、対象海洋生物によって音圧レベルが異なるが、対象海洋生物の生息域で威嚇レベル以下(より望ましくは誘致レベル以下)の音圧となることが望ましい。 For example, the expected sound pressure level of the target point is predicted by the distance attenuation model of the solid lines A to C in FIG. 6. For example, when the sound source sound pressure is 200 dB, the distance attenuation model A attenuates to 140 dB at the target point 1000 m from the sound source. However, if there is a fish habitat at this 1000m point, which is a target marine organism with a lower limit of 140 dB of threatening level to take evasive action as shown in Fig. 4 (b), this target marine organism moves farther than 1000 m from the sound source. Therefore, it is judged that there is no effect (NO). Although the sound pressure level differs depending on the target marine organism, it is desirable that the sound pressure be below the threatening level (more preferably below the attraction level) in the habitat of the target marine organism.

また、たとえば、ヒラメやカレイ等の浮袋の無い、音に対して鈍感な魚が対象海洋生物の場合、仮に威嚇レベルの下限を180dBとすると、音源音圧が200dBのとき図6の距離減衰モデルAから影響範囲は10mとなり、工事での発生源近傍に限定されることから影響なし(NO)と判定する。以上の場合は、次のステップS06に進む。 For example, in the case of a fish that is insensitive to sound and has no swim bladder such as flatfish or flatfish, assuming that the lower limit of the threatening level is 180 dB, the distance attenuation model shown in FIG. 6 when the sound source sound pressure is 200 dB. Since the range of influence is 10 m from A and it is limited to the vicinity of the source in the construction, it is judged that there is no influence (NO). In the above case, the process proceeds to the next step S06.

また、次のような場合は影響あり(YES)と判定する。たとえば、音源音圧が240dBのとき図6の距離減衰モデルCから音圧が140dBとなるのは音源から100km地点となり、広域に水中騒音の影響が及び、そこまでの移動能力が無い魚もいる。また、音源から10mまでの範囲は損傷レベルである220dBとなり、その範囲内に魚がいると損傷が生じるので、影響あり(YES)と判定する。なお、図6の距離減衰モデルCは、音源音圧240dBの球面拡散モデルによる推定値である。 Further, in the following cases, it is determined that there is an influence (YES). For example, when the sound source sound pressure is 240 dB, the sound pressure becomes 140 dB from the distance attenuation model C in Fig. 6 at a point 100 km from the sound source, and there are some fish that are affected by underwater noise over a wide area and do not have the ability to move to that extent. .. In addition, the range from the sound source to 10 m is the damage level of 220 dB, and if there is a fish in that range, damage will occur, so it is judged to be affected (YES). The distance attenuation model C in FIG. 6 is an estimated value based on a spherical diffusion model having a sound source sound pressure of 240 dB.

また、たとえば、音源音圧が200dBのとき図6の距離減衰モデルAでは音源から500mの対象地点で146dBとなるが、仮に500m地点に対象海洋生物としての魚類がいて、当該魚類の移動性が小さく影響が懸念される場合や当該500m地点に漁場等があり対策が求められる場合は、影響あり(YES)と判定する。 Further, for example, when the sound pressure of the sound source is 200 dB, the distance attenuation model A in FIG. 6 shows 146 dB at the target point 500 m from the sound source, but if there is a fish as a target marine organism at the target point 500 m, the mobility of the fish is high. If there is a small concern about the impact, or if there is a fishing ground at the 500m point and countermeasures are required, it is judged as having an impact (YES).

上記影響判定ステップS03で影響あり(YES)と判定された場合、影響軽減のための対策を選定する(S05)。たとえば、音源音圧が240dBの場合、音源音圧の低減対策が必要となる。 If it is determined in the impact determination step S03 that there is an impact (YES), a measure for mitigating the impact is selected (S05). For example, when the sound source sound pressure is 240 dB, it is necessary to take measures to reduce the sound source sound pressure.

また、音源音圧が200dBのとき音源から500mの対象地点で対象海洋生物としての魚類への影響が懸念される場合や音源から500m地点に漁場等がある場合、音源音圧を190dBにすれば、図6の距離減衰モデルBから音源から500mの対象地点で音圧は魚類の回避行動をする威嚇レベルの下限の140dB未満となるので、音源音圧を少なくとも10dB下げるような低減対策を講じる。 Also, when the sound source sound pressure is 200 dB, if there is a concern about the influence on fish as a target marine organism at the target point 500 m from the sound source, or if there is a fishing spot etc. at the point 500 m from the sound source, if the sound source sound pressure is set to 190 dB Since the sound pressure is less than 140 dB, which is the lower limit of the threatening level for avoiding fish, at the target point 500 m from the sound source from the distance attenuation model B in FIG. 6, take reduction measures such as lowering the sound source sound pressure by at least 10 dB.

次に、上記対策選定ステップS05における対策の準備や事前状況の確認を行う(S06)。たとえば、音源音圧の低減対策の準備、図2の測定システムにより、水中騒音の測定(工事施工前)、対象海洋生物の行動の確認等を行う。 Next, preparations for countermeasures and confirmation of the prior situation in the countermeasure selection step S05 are performed (S06). For example, preparations for measures to reduce sound source sound pressure, measurement of underwater noise (before construction work), confirmation of the behavior of target marine organisms, etc. are performed by the measurement system shown in FIG.

また、必要に応じて、杭打設等の施工前に防音対策を行い騒音発生源の音圧レベルを低減することにより、影響の対象範囲を狭くすることが可能である。また、打設前に人工的に水中で音を発生させ、打設地点付近に生息する対象海洋生物を周辺海域へ回避させる等の対策がある。 In addition, if necessary, soundproofing measures can be taken before construction such as pile driving to reduce the sound pressure level of the noise source, so that the range of influence can be narrowed. In addition, there are measures such as artificially generating a sound in water before casting to avoid the target marine organisms living near the casting site to the surrounding sea area.

次に、工事の施工が始まると水中騒音が発生する(S07)。施工の開始とともに、水中騒音の測定および対象海洋生物の行動確認を行う(S08)。すなわち、図2の測定システムにより、杭打設で発生する水中騒音の測定を水中騒音の発生源(打設位置)と周辺海域の複数地点において行う。 Next, when the construction work starts, underwater noise is generated (S07). At the start of construction, underwater noise will be measured and the behavior of target marine organisms will be confirmed (S08). That is, the measurement system of FIG. 2 is used to measure the underwater noise generated by pile driving at a source of underwater noise (placement position) and at a plurality of points in the surrounding sea area.

また、ステップS08では、図2の測定システムにより、魚群探知機による対象海洋生物群の回避等の行動確認、バイオロギングやバイオテレメトリーでの対象海洋生物(個体)の追跡による回避等の行動確認を行う。かかる行動確認には、対象海洋生物の死亡・損壊状況や異常行動等の発生状況の確認も含まれる。 Further, in step S08, the measurement system of FIG. 2 is used to confirm the behavior such as avoidance of the target marine organism group by the fish finder, and the behavior confirmation such as avoidance by tracking the target marine organism (individual) by biologging or biotelemetry. Do. Such behavioral confirmation includes confirmation of the death / damage status of the target marine organism and the occurrence status of abnormal behavior.

たとえば、音源音圧が200dBのとき図6の距離減衰モデルAでは音源から500mの対象地点で146dBとなるが、500m地点に対象海洋生物としての魚類がいた場合、図2の魚群探知機等によってその魚類の移動状況を確認する。 For example, when the sound pressure of the sound source is 200 dB, in the distance attenuation model A of FIG. 6, it becomes 146 dB at the target point 500 m from the sound source. Check the movement status of the fish.

上記測定・行動確認ステップS08における測定確認結果に基づいて水中騒音による影響の有無を判定する(S09)。たとえば、対象海洋生物の死亡・損壊・異常行動が発生した場合、想定よりも音源音圧が大きい場合、実施した対策の効果が小さく対象海洋生物への影響が予測される場合等は、影響あり(YES)と判定する。また、たとえば、対象海洋生物の死亡・損壊・異常行動が発生しなかった場合や、対象海洋生物が水中騒音を回避して離れた場所に移動したような場合は、影響なし(NO)と判定する。 Based on the measurement confirmation result in the measurement / action confirmation step S08, the presence or absence of the influence of underwater noise is determined (S09). For example, if the target marine organism dies, is damaged, or has abnormal behavior, if the sound source sound pressure is higher than expected, or if the effect of the implemented measures is small and the impact on the target marine organism is predicted, there will be an impact. (YES) is determined. In addition, for example, if the target marine organism does not die, be damaged, or have abnormal behavior, or if the target marine organism moves to a distant place while avoiding underwater noise, it is judged as no effect (NO). To do.

上記水中騒音による影響判定ステップS09で影響あり(YES)と判定された場合は、施工をいったん中断し、対策を選定する(S10)。かかる騒音対策として、前述のバブル・カーテンやパイル・スリーブの他に、影響が少ない音圧となるよう打設をコントロールする方法、ソフトスタート(最初は弱い力で打設し、徐々に強くしていく)などがある。 If it is determined that there is an influence (YES) in the influence determination step S09 due to the underwater noise, the construction is temporarily interrupted and a countermeasure is selected (S10). As a measure against such noise, in addition to the bubble curtain and pile sleeve mentioned above, a method of controlling the driving so that the sound pressure has less influence, soft start (first driving with a weak force, gradually strengthening I will go) and so on.

上記ステップS10で選定した対策を講じてから施工を再開し(S07)、同様のステップS08,S09を繰り返す。 After taking the measures selected in step S10, the construction is restarted (S07), and the same steps S08 and S09 are repeated.

上記水中騒音による影響判定ステップS09で影響なし(NO)と判定された場合、施工前のステップS01〜S06における事前検討・準備・対策が良好であった、または、施工開始後に影響ありと判定された場合でもステップS10での対策が良好であったからと考えられる。次に、工事が終了してから、水中騒音を回避して海洋生物が離れた場所に移動したような場合は事後測定を行う(S11)。かかる事後測定としては、ステップS08と同様の水中騒音の測定、魚群探知機等による対象海洋生物群の行動確認、バイオロギングやバイオテレメトリーでの対象海洋生物(個体)の追跡による行動確認などがある。ここでは、威嚇レベル等の騒音が無くなった段階での周辺海域の影響のない範囲から杭打設周辺への対象海洋生物の移動・回復状況等を確認する。 If it is determined that there is no effect (NO) in the above-mentioned underwater noise effect determination step S09, it is determined that the preliminary examination, preparation, and countermeasures in steps S01 to S06 before the construction were good, or that there is an effect after the start of the construction. Even in this case, it is probable that the measures taken in step S10 were good. Next, after the construction is completed, if the marine organisms move to a distant place while avoiding underwater noise, post-measurement is performed (S11). Such post-measurement includes measurement of underwater noise similar to step S08, behavior confirmation of the target marine organism group by a fish finder or the like, behavior confirmation by tracking the target marine organism (individual) by biologging or biotelemetry, and the like. .. Here, we will confirm the movement and recovery status of the target marine organisms from the range where there is no influence of the surrounding sea area to the area around the pile driving when the noise such as the threatening level disappears.

以上のように、本実施形態による水中騒音による海洋生物影響の緩和方法によれば、杭打設時等の水中騒音が発生する工事を施工する際に、対象地の特性(海底地形、漁場、捕獲対象種、保護対象種等)を考慮した上で事前の確認・検討・準備・対策を行い、工事開始後に水中騒音を測定するとともに、対象とする海洋生物の行動を確認し、水中騒音による海洋生物への影響を抑制し緩和することができる。また、対象とする海洋生物の行動をその都度確認し、海洋生物に応じて影響を適切に評価できるので、海洋生物への影響を効果的に抑制できる。海洋生物を対象としたモニタリングシステムを活用することにより、対象とする海洋生物への影響を抑制した杭打設等の工事施工管理や騒音対策を実施することができる。 As described above, according to the method for mitigating the influence of marine organisms due to underwater noise according to the present embodiment, the characteristics of the target area (seabed topography, fishing grounds, etc.) After considering the species to be captured, the species to be protected, etc.), confirm, examine, prepare, and take measures in advance, measure the underwater noise after the start of construction, confirm the behavior of the target marine organisms, and use the underwater noise. The impact on marine life can be suppressed and mitigated. In addition, since the behavior of the target marine organism can be confirmed each time and the impact can be appropriately evaluated according to the marine organism, the impact on the marine organism can be effectively suppressed. By utilizing a monitoring system for marine organisms, it is possible to implement construction management and noise countermeasures such as pile driving that suppresses the impact on the target marine organisms.

なお、本実施形態では、魚群探知機、バイオロギング・バイオテレメトリーを使用するが、魚類に限定したものでなく、探知器やソナーで検出することができる海洋生物、センサーの取り付けが可能な海洋生物全般が対象となり、甲殻類、軟体動物、イルカ、クジラ、ウミガメ、アザラシ、ジュゴン、ペンギン等であってもよい。 In this embodiment, a fish finder and biologging / biotelemetry are used, but the term is not limited to fish, but marine organisms that can be detected by a detector or sonar, and marine organisms to which a sensor can be attached. The target is general, and may be shellfish, mollusks, dolphins, whales, sea turtles, seals, jugons, penguins, and the like.

また、図1のステップS06,S08,S11では、水中騒音計と、魚群探知機およびバイオロギング・バイオテレメトリーとを使用するが、水中騒音計と、魚群探知機またはバイオロギング・バイオテレメトリーとを使用する運用もある。 Further, in steps S06, S08, and S11 of FIG. 1, an underwater sound level meter, a fish finder, and biologging biotelemetry are used, but an underwater sound level meter and a fish finder or biologging biotelemetry are used. There is also an operation to do.

また、杭打設開始当初は水中騒音計と、魚群探知機およびバイオロギング・バイオテレメトリーとを使用し、その後、水中騒音計と、魚群探知機またはバイオロギング・バイオテレメトリーとを使用する方法、または、水中騒音計や魚群探知機を単独で使用する方法(音源の騒音が低い場合や魚類の回避パターンが確認済みの場合等)もある。 In addition, a method of using an underwater sound level meter and a fish finder and biologging biotelemetry at the beginning of pile driving, and then using an underwater sound level meter and a fish finder or biologging biotelemetry, or , There is also a method of using an underwater sound level meter or a fish finder alone (when the noise of the sound source is low, when the avoidance pattern of fish has been confirmed, etc.).

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図2等では、対象の工事として洋上風力発電の大型の杭打設を想定しているが、本発明は、これに限定されず、水中騒音を発生する工事全般に適用できることはもちろんである。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in Fig. 2 and the like, it is assumed that a large-scale pile driving of offshore wind power generation is performed as the target construction, but the present invention is not limited to this, and of course, it can be applied to all constructions that generate underwater noise. is there.

また、魚類については、図4(b)のような「140〜160dB威嚇レベル」等の一般的な情報から確認を始めるが、事前の水槽等での対象海洋生物の騒音影響確認実験の他に水中騒音計とバイオロギング・バイオテレメトリーとの測定により、施工を進める中で対象海洋生物種に影響する音圧レベルを確定することできる。かかる数値を使用することにより、同一工事では施工の途中からより精度の高い予測が可能となる。別工事でも同一種が対象の場合には、基礎データとして活用することができる。すなわち、図2〜図6のような公知のデータを用いた場合でも、それらに代えて、または、それらとともに、施工前や施工中の調査や測定により新たに取得した独自の各種データを用いてもよい。 Regarding fish, confirmation starts from general information such as "140 to 160 dB threatening level" as shown in Fig. 4 (b), but in addition to the noise effect confirmation experiment of the target marine organisms in the water tank etc. in advance. By measuring with an underwater sound level meter and biologging / biotelemetry, it is possible to determine the sound pressure level that affects the target marine species during the construction process. By using such a numerical value, it is possible to make a more accurate prediction from the middle of the construction in the same construction. If the same type is targeted for different works, it can be used as basic data. That is, even when known data as shown in FIGS. 2 to 6 are used, in place of or together with them, various original data newly acquired by surveys and measurements before and during construction are used. May be good.

また、図2では、打設地点から離れた位置での水中騒音測定を測定船MSで行うようにしたが、これに限定されず、1または複数の定点に水中騒音計を設置して行うようにしてもよい。また、図2では受信器R1,R2を水中に設置したが、測定船MSに取り付けて使用してもよい。 Further, in FIG. 2, the underwater noise measurement at a position away from the casting point is performed by the measuring vessel MS, but the present invention is not limited to this, and the underwater sound level meter is installed at one or a plurality of fixed points. It may be. Further, although the receivers R1 and R2 are installed underwater in FIG. 2, they may be attached to the measuring ship MS for use.

また、本実施形態のような海洋生物を対象としたモニタリングシステムにより、24時間内、数日内、季節毎、気象条件などで、対象海洋生物の移動行動に変化が見られ、騒音非発生時でも工事施工位置から離れ遠ざかるような行動を示す場合には、そのような時に杭打設等を行うという対策も可能である。 In addition, by the monitoring system for marine organisms as in this embodiment, changes can be seen in the movement behavior of the target marine organisms within 24 hours, within several days, every season, weather conditions, etc., even when no noise is generated. If the behavior is such that the vehicle moves away from the construction site, it is possible to take measures such as placing piles at such times.

また、本実施形態において、対象とする海洋生物は、工事実施の海域に生息する生物であり、魚類、甲殻類、軟体動物、イルカ、クジラ、ウミガメ、ペンギン、ジュゴン、アザラシ等である。 Further, in the present embodiment, the target marine organisms are organisms that inhabit the sea area where the construction is carried out, such as fish, shellfish, mollusks, dolphins, whales, sea turtles, penguins, jugons, and seals.

本発明は、水中騒音による水中生物影響の緩和方法であるが、別の見方をすると、水中騒音が発生する工事の施工管理方法と捉えることもできる。すなわち、この工事施工管理方法は、水中騒音が発生する工事を実施する際に、前記工事による水中騒音を測定し、対象とする水中生物の行動を確認し、前記測定結果および前記水中生物の行動確認結果に基づいて前記工事の管理を行う。水中騒音による対象水中生物への悪影響がないように杭打設等の工事施工管理を確実に行うことができる。 The present invention is a method for alleviating the influence of underwater organisms due to underwater noise, but from another point of view, it can be regarded as a construction management method for construction works in which underwater noise is generated. That is, in this construction construction management method, when carrying out construction that generates underwater noise, the underwater noise due to the construction is measured, the behavior of the target aquatic organism is confirmed, and the measurement result and the behavior of the aquatic organism are confirmed. The construction will be managed based on the confirmation result. It is possible to reliably manage construction work such as pile driving so that underwater noise does not adversely affect the target underwater organisms.

また、本実施形態では海洋における工事を対象としたが、本発明はこれに限定されず、陸上の湖や河川における工事にも適用可能である。本発明で対象とする水中生物は海洋生物を含む。 Further, although the present embodiment targets the construction in the ocean, the present invention is not limited to this, and can be applied to the construction in lakes and rivers on land. The aquatic organisms targeted in the present invention include marine organisms.

本発明によれば、水中騒音が発生する工事を施工する場合、対象とする水中生物に影響がないように効果的な杭打設等の工事施工管理や騒音対策を実施することができる。 According to the present invention, when constructing a construction that generates underwater noise, it is possible to carry out construction construction management such as pile driving and noise countermeasures so as not to affect the target underwater organisms.

M1,M2 水中騒音計
MS 測定船
R1,R2 受信器
S1,S2 魚群探知機
FI 魚
SE センサー
P 杭
H ハンマー
SP 杭打船
M1, M2 Underwater Sound Level Meter MS Measuring Vessel R1, R2 Receiver S1, S2 Fishfinder FI Fish SE Sensor P Pile H Hammer SP Pile Driving Vessel

Claims (6)

水中騒音が発生する工事を実施する際に、前記工事による水中騒音を測定し、対象とする水中生物の行動を確認し、
前記測定結果および前記水中生物の行動確認結果に基づいて前記工事を行う水中騒音による水中生物影響の緩和方法。
When carrying out construction that generates underwater noise, measure the underwater noise caused by the construction, confirm the behavior of the target aquatic organisms, and check.
A method for mitigating the influence of aquatic organisms due to underwater noise, which is carried out based on the measurement result and the behavior confirmation result of the aquatic organism.
前記水中騒音による水中生物への影響を事前に調査し予測し、悪影響が予測される場合、予め対策を施す請求項1に記載の水中騒音による水中生物影響の緩和方法。 The method for mitigating the effects of underwater noise on aquatic organisms according to claim 1, wherein the effect of the underwater noise on aquatic organisms is investigated and predicted in advance, and if an adverse effect is predicted, countermeasures are taken in advance. 前記予測において騒音発生位置から離れた位置での影響を水中における音圧の距離減衰に基づいて判断する請求項2に記載の水中騒音による水中生物影響の緩和方法。 The method for mitigating the influence of aquatic organisms due to underwater noise according to claim 2, wherein in the prediction, the influence at a position away from the noise generation position is determined based on the distance attenuation of the sound pressure in water. 前記対象とする水中生物の行動を確認するため魚群探知機とバイオロギング・バイオテレメトリーとの少なくともいずれかを用いる請求項1〜3のいずれかに記載の水中騒音による水中生物影響の緩和方法。 The method for mitigating the effects of underwater organisms due to underwater noise according to any one of claims 1 to 3, wherein at least one of a fish finder and biologging / biotelemetry is used to confirm the behavior of the target aquatic organism. 前記行動確認結果から得た前記水中生物の水中騒音時の回避行動に基づいて前記水中騒音による前記水中生物に対する影響の有無を判断する請求項1〜4のいずれかに記載の水中騒音による水中生物影響の緩和方法。 The aquatic organism due to the underwater noise according to any one of claims 1 to 4, which determines whether or not the underwater noise has an effect on the aquatic organism based on the avoidance behavior of the aquatic organism during the underwater noise obtained from the behavior confirmation result. How to mitigate the impact. 前記行動確認結果から前記水中生物の死亡・損壊・異常行動のいずれかが確認されたときには前記工事を中断し対策を施す請求項1〜5のいずれかに記載の水中騒音による水中生物影響の緩和方法。 Mitigation of the influence of underwater organisms due to underwater noise according to any one of claims 1 to 5, wherein when any of the death, damage, or abnormal behavior of the aquatic organism is confirmed from the behavior confirmation result, the construction is interrupted and countermeasures are taken. Method.
JP2019162595A 2019-09-06 2019-09-06 Method for mitigating effects of underwater noise on aquatic organisms Active JP7273664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019162595A JP7273664B2 (en) 2019-09-06 2019-09-06 Method for mitigating effects of underwater noise on aquatic organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019162595A JP7273664B2 (en) 2019-09-06 2019-09-06 Method for mitigating effects of underwater noise on aquatic organisms

Publications (2)

Publication Number Publication Date
JP2021042519A true JP2021042519A (en) 2021-03-18
JP7273664B2 JP7273664B2 (en) 2023-05-15

Family

ID=74863755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019162595A Active JP7273664B2 (en) 2019-09-06 2019-09-06 Method for mitigating effects of underwater noise on aquatic organisms

Country Status (1)

Country Link
JP (1) JP7273664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113216845A (en) * 2021-03-30 2021-08-06 长江武汉航道工程局 Prediction method and system for underwater drilling plosive
JP2023010141A (en) * 2021-07-09 2023-01-20 五洋建設株式会社 Underwater sound generating system and mitigation method of influence on fish by underwater work sound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119431U (en) * 1988-02-01 1989-08-14
JPH0865220A (en) * 1994-08-22 1996-03-08 Yuichi Kudo Underwater telemetry device
JP2005207902A (en) * 2004-01-23 2005-08-04 Nec Corp Migration pathway inference method and migration pathway inference system on underwater creature
JP2008158745A (en) * 2006-12-22 2008-07-10 Kyowa Engineering Consultants Co Ltd Automatic abnormal bird behavior analysis system and construction work management method using the same
JP2016151460A (en) * 2015-02-17 2016-08-22 いであ株式会社 Underwater survey/analysis method
JP2017504844A (en) * 2014-01-06 2017-02-09 ウォクナー、マーク、エス. Underwater noise reduction device and deployment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119431U (en) * 1988-02-01 1989-08-14
JPH0865220A (en) * 1994-08-22 1996-03-08 Yuichi Kudo Underwater telemetry device
JP2005207902A (en) * 2004-01-23 2005-08-04 Nec Corp Migration pathway inference method and migration pathway inference system on underwater creature
JP2008158745A (en) * 2006-12-22 2008-07-10 Kyowa Engineering Consultants Co Ltd Automatic abnormal bird behavior analysis system and construction work management method using the same
JP2017504844A (en) * 2014-01-06 2017-02-09 ウォクナー、マーク、エス. Underwater noise reduction device and deployment system
JP2016151460A (en) * 2015-02-17 2016-08-22 いであ株式会社 Underwater survey/analysis method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
塩苅 恵 他3名: "洋上風力発電施設からの水中放射音に関する研究", 海上技術安全研究所報告, vol. 第15巻第1号, JPN6023011346, 30 July 2015 (2015-07-30), JP, pages 101 - 122, ISSN: 0005021560 *
竹山佳奈、磯貝哲也: "海上工事で発生する海底振動が周辺生物へおよぼす影響", 建設の施工企画, vol. 742, JPN6023011345, December 2011 (2011-12-01), JP, pages 44 - 48, ISSN: 0005021559 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113216845A (en) * 2021-03-30 2021-08-06 长江武汉航道工程局 Prediction method and system for underwater drilling plosive
CN113216845B (en) * 2021-03-30 2024-03-29 长江武汉航道工程局 Prediction method and system for underwater drilling plosives
JP2023010141A (en) * 2021-07-09 2023-01-20 五洋建設株式会社 Underwater sound generating system and mitigation method of influence on fish by underwater work sound

Also Published As

Publication number Publication date
JP7273664B2 (en) 2023-05-15

Similar Documents

Publication Publication Date Title
Brandt et al. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea
Mooney et al. Acoustic impacts of offshore wind energy on fishery resources
Carstensen et al. Impacts of offshore wind farm construction on harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T-PODs)
Bailey et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals
Brandt et al. Seal scarers as a tool to deter harbour porpoises from offshore construction sites
Dahl et al. The underwater sound field from impact pile driving and its potential effects on marine life
von Benda-Beckmann et al. Assessing the impact of underwater clearance of unexploded ordnance on harbour porpoises (Phocoena phocoena) in the Southern North Sea
Leunissen et al. Underwater noise levels of pile-driving in a New Zealand harbour, and the potential impacts on endangered Hector's dolphins
Dekeling et al. Monitoring guidance for underwater noise in European Seas, part III: Background information and annexes
Ainslie et al. Assessment of natural and anthropogenic sound sources and acoustic propagation in the North Sea
JP7273664B2 (en) Method for mitigating effects of underwater noise on aquatic organisms
Todd et al. Prediction of marine mammal auditory-impact risk from Acoustic Deterrent Devices used in Scottish aquaculture
Kimura et al. Apparent source level of free-ranging humpback dolphin, Sousa chinensis, in the South China Sea
Davy et al. Side-scan sonar enables rapid detection of aquatic reptiles in turbid lotic systems
Brasseur et al. Seal monitoring and evaluation for the Gemini offshore windfarm: Tconstruction-2015 report
Heinis et al. Monitoring programme for the Maasvlakte 2, Part III–the effects of underwater sound
Diederichs et al. Methodologies for measuring and assessing potential changes in marine mammal behaviour, abundance or distribution arising from the construction, operation and decommissioning of offshore windfarms
Jiang et al. Preliminary analysis of echolocation signals produced by fleeing Irrawaddy dolphins (Orcaella brevirostris)
Cotton Factors affecting reception range of ultrasonic tags in a Georgia estuary
Bardhan et al. Detection of buried objects using active sonar
Houser et al. Signal processing applied to the dolphin-based sonar system
Best et al. Livrable 2.4: Impact of Anthropogenic Sounds on Marine Mammals, Monitoring Techniques and Application to the Abysound Project
Leunissen Underwater noise from pile-driving and its impact on Hector's dolphins in Lyttelton Harbour, New Zealand
Jiang et al. Measurements of underwater conductor hammering noise: compliance with the German UBA limit and relevance to the harbour porpoise (Phocoena phocoena)
Best et al. Impact of Anthropogenic Sounds on Marine Mammals, Monitoring Techniques and Application to the Abysound Project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230428

R150 Certificate of patent or registration of utility model

Ref document number: 7273664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150