JP2021042188A - Dinucleating ligand or dinuclear metal complex - Google Patents

Dinucleating ligand or dinuclear metal complex Download PDF

Info

Publication number
JP2021042188A
JP2021042188A JP2019167720A JP2019167720A JP2021042188A JP 2021042188 A JP2021042188 A JP 2021042188A JP 2019167720 A JP2019167720 A JP 2019167720A JP 2019167720 A JP2019167720 A JP 2019167720A JP 2021042188 A JP2021042188 A JP 2021042188A
Authority
JP
Japan
Prior art keywords
group
metal complex
mmol
added
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019167720A
Other languages
Japanese (ja)
Inventor
政人 小寺
Masato Kodera
政人 小寺
優樹 角谷
Yuki Kadoya
優樹 角谷
田中 芳樹
Yoshiki Tanaka
芳樹 田中
真知 畑
Machi Hata
真知 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2019167720A priority Critical patent/JP2021042188A/en
Publication of JP2021042188A publication Critical patent/JP2021042188A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide a dinuclear metal complex that can be synthesized simply and easily and has a proper anticancer action.SOLUTION: The present disclosure provides a dinucleating ligand represented by the following formula (I) and a dinuclear metal complex thereof (where each X may be the same or different to represent H, Cl, OMe, or, Me, Y is H, a phenyl group, a substituted carbamoyl group or the like).SELECTED DRAWING: None

Description

本発明は、二核化配位子又はその二核化配位子を有する二核金属錯体に関する。 The present invention relates to a dinuclearization ligand or a dinuclear metal complex having the dinuclearization ligand thereof.

がんに対する化学療法剤として臨床に用いられている金属錯体にシスプラチンがある。シスプラチンは、直接がん細胞のDNAに結合してDNAの立体構造をゆがませることにより抗がん作用を示す。しかし、シスプラチンは、嘔吐や腎毒性といった副作用を示す場合があり、また近年ではシスプラチン耐性がんも報告されている。そこでシスプラチンに代わる化学療法薬が求められる。 Cisplatin is a metal complex that is clinically used as a chemotherapeutic agent for cancer. Cisplatin exhibits anticancer activity by directly binding to the DNA of cancer cells and distorting the three-dimensional structure of the DNA. However, cisplatin may show side effects such as vomiting and nephrotoxicity, and cisplatin-resistant cancer has also been reported in recent years. Therefore, a chemotherapeutic drug to replace cisplatin is required.

例えばブレオマイシンは、がん細胞の中で鉄と結びついて酸素を活性化させ、それによってDNA鎖を切断してがん細胞の増殖を抑制する(非特許文献1)。ブレオマイシンは、人の皮膚、頭頸部、子宮頸部等の扁平上皮がんや悪性リンパ腫に対する優れた化学療法剤として臨床医学で広く使用されている。しかしながら、ブレオマイシンは、放線菌Streptomyces Verticillusから得られる水溶性の糖ペプチド抗生物質であり、微生物に依存しない簡易な合成法により得られる化学療法薬が求められる。 For example, bleomycin binds to iron in cancer cells to activate oxygen, thereby cleaving DNA strands and suppressing the growth of cancer cells (Non-Patent Document 1). Bleomycin is widely used in clinical medicine as an excellent chemotherapeutic agent for squamous cell carcinoma and malignant lymphoma of human skin, head and neck, cervix and the like. However, bleomycin is a water-soluble glycopeptide antibiotic obtained from the actinomycete Streptomyces Verticillus, and a chemotherapeutic agent obtained by a simple synthesis method independent of microorganisms is required.

また、例えばブレオマイシンの活性中心を模倣したN4Py配位子の鉄錯体は、過酸化水素と反応して活性種を形成し、それがDNAを酸化的に切断して抗がん活性を示すことが報告されている(非特許文献2)。しかし、この鉄錯体は過酸化水素が存在しない条件下においても高いDNA切断活性を有するため、正常細胞とがん細胞の選択性を有さない可能性がある。そこで、正常細胞とがん細胞の選択性を有する金属錯体の開発が求められている。 Also, for example, an iron complex of an N4Py ligand that mimics the active center of bleomycin can react with hydrogen peroxide to form an active species, which oxidatively cleaves DNA to exhibit anticancer activity. It has been reported (Non-Patent Document 2). However, since this iron complex has high DNA cleavage activity even in the absence of hydrogen peroxide, it may not have selectivity between normal cells and cancer cells. Therefore, the development of a metal complex having selectivity between normal cells and cancer cells is required.

がん細胞は正常細胞に比べて過酸化水素(H2O2)等のROS濃度が高い。そこで、正常細胞に作用せず、がん細胞を選択的に死滅させる副作用のない抗がん剤の開発に向けてH2O2によるDNA酸化切断を促進する金属錯体が注目される。発明者らはp-cresolの2,6-位にアミド結合でcyclenを導入した新規二核化配位子の二核銅錯体[Cu2(μ-OH)(bcamide)](ClO4)2 を開発し、H2O2によるDNAの酸化切断に成功した(特許文献1)。しかし、この錯体はがん細胞であるHeLa細胞に対する細胞毒性が低く、改善が必要であった。 Cancer cells have a higher ROS concentration such as hydrogen peroxide (H 2 O 2) than normal cells. Therefore, attention is focused on metal complexes that promote DNA oxidative cleavage by H 2 O 2 toward the development of anticancer agents that do not act on normal cells and have no side effects that selectively kill cancer cells. The inventors of the novel dinuclear copper complex [Cu 2 (μ-OH) (bcamide)] (ClO 4 ) 2 in which cyclen was introduced at the 2,6-position of p-cresol by an amide bond. Was successfully developed and oxidatively cleaved DNA by H 2 O 2 (Patent Document 1). However, this complex has low cytotoxicity to HeLa cells, which are cancer cells, and needs improvement.

特開2018-135304号公報Japanese Unexamined Patent Publication No. 2018-135304

H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, J. Antibiot., 19 A, 200 (1966).H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, J. Antibiot., 19 A, 200 (1966). Q. Li, M. G. P. Wijst, H. G. Kazemier, M. G. Rots, G. Roelfes, ACS Chem. Biol., 9, 1044-1051 (2014).Q. Li, M. G. P. Wijst, H. G. Kazemier, M. G. Rots, G. Roelfes, ACS Chem. Biol., 9, 1044-1051 (2014).

本発明はかかる問題点に鑑みてなされたものであって、簡易に合成でき的確な抗がん作用を有する、二核化配位子又はその二核化配位子を有する二核金属錯体を提供することを目的とする。 The present invention has been made in view of the above problems, and is a dinuclear metal complex having a dinuclearization ligand or a dinuclearization ligand thereof, which can be easily synthesized and has an accurate anticancer effect. The purpose is to provide.

本発明にかかる二核化配位子は下記化学式(I)又は(II)で示される。 The dinuclearized ligand according to the present invention is represented by the following chemical formula (I) or (II).

Figure 2021042188
Figure 2021042188

Figure 2021042188
Figure 2021042188

ここで(i)Xは同一又は異なってH、Cl、OMe、又は、Meであり、(ii)化学式(I)においてYは、水素原子、炭素数1〜8の直鎖若しくは枝鎖のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、エステルアルキル基、又は、フェニル基、ピリジル基、アミノ基、水酸基、チオール基、フッ素原子、塩素原子であり、前記アミノ基はNR1R1’基と記載でき、R1及びR1’はそれぞれ独立に、水素原子、置換若しくは未置換のアルキル基、置換若しくは未置換のアルケニル基、又は、置換若しくは未置換のアリール基であり、(iii)化学式(II)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物であり、nは1〜8の整数である。 Here, (i) X is the same or different H, Cl, OMe, or Me, and (ii) in the chemical formula (I), Y is a hydrogen atom, a linear or branched alkyl having 1 to 8 carbon atoms. group, alkoxy group, alkoxyalkyl group, an ester group, an ester group, or a phenyl group, a pyridyl group, an amino group, a hydroxyl group, a thiol group, a fluorine atom, a chlorine atom, the amino group NR 1 R 1 'group can described as, R 1 and R 1 'are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted aryl group, (iii) formula In (II), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound, and n is an integer of 1 to 8.

本発明にかかる二核金属錯体は下記化学式(IV)又は(V)で示される。 The dinuclear metal complex according to the present invention is represented by the following chemical formula (IV) or (V).

Figure 2021042188
Figure 2021042188

Figure 2021042188
Figure 2021042188

ここで(i)Mは、Cu、Fe、Zn、Co、Mn、Re、Ru、Rh、Pd、Pt又はCeであり、(ii)化学式(V)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物であり、nは1〜8の整数である。 Here, (i) M is Cu, Fe, Zn, Co, Mn, Re, Ru, Rh, Pd, Pt or Ce, and (ii) in chemical formula (V), R is a polycyclic aromatic heterocycle. It is a compound or a polycyclic aromatic hydrocarbon compound, and n is an integer of 1 to 8.

本発明によれば、正常細胞に影響が少なく、がん細胞の核酸切断作用を的確に有する二核化配位子又は二核金属錯体を簡易に得ることができる。 According to the present invention, a dinuclearized ligand or a dinuclear metal complex having little effect on normal cells and having an accurate nucleic acid cleaving action of cancer cells can be easily obtained.

2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-4-methylphenol (Hbdpamide)の1H NMRスペクトルを示す図である。It is a figure which shows the 1 H NMR spectrum of 2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) -4-methylphenol (Hbdpamide). (2-9) Hbpcp4-Cl1H NMRスペクトルを示す図である。(2-9) It is a figure which shows the 1 H NMR spectrum of Hbpcp 4-Cl. Hbpcp4-OMe1H NMRスペクトルを示す図である。It is a figure which shows the 1 H NMR spectrum of Hbpcp 4-OMe. 4-(8-N-(9-phenanthrenecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-1,3-bis(N,N-bis(2-pyridylmeth-yl)carbamoyl)hydroxybenzeneの1H NMRスペクトルを示す図である。 1 H NMR of 4- (8-N- (9-phenanthrene carbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -1,3-bis (N, N-bis (2-pyridylmeth-yl) carbamoyl) hydroxybenzene It is a figure which shows the spectrum. 4-(8-N-(9-phenanthrenecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-1,3-bis(N,N-bis(2-pyridylmeth-yl)carbamoyl)hydroxybenzeneのESI-MSスペクトルを示す図である。ESI-MS of 4- (8-N- (9-phenanthrenecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -1,3-bis (N, N-bis (2-pyridylmeth-yl) carbamoyl) hydroxybenzene It is a figure which shows the spectrum. 4-(8-N-(9-acridinecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)hydroxybenzeneの1H NMRスペクトルを示す図である。 1 H NMR spectrum of 4- (8-N- (9-acridinecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) hydroxybenzene It is a figure which shows. 4-(8-N-(9-acridinecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)hydroxybenzeneのESI-MSスペクトルを示す図である。ESI-MS spectrum of 4- (8-N- (9-acridinecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) hydroxybenzene It is a figure which shows. 4-(8-N-(9-pyrenecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)hydroxybenzeneの1H NMRスペクトルを示す図である。 1 H NMR spectrum of 4- (8-N- (9-pyrenecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) hydroxybenzene It is a figure which shows. 4-(8-N-(9-pyrenecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)hydroxybenzeneのESI-MSスペクトルを示す図である。ESI-MS spectrum of 4- (8-N- (9-pyrenecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) hydroxybenzene It is a figure which shows. 二核金属錯体[Cu2(μ-OAc)-2(bdpamide)](OAc) (1)のESI-MSスペクトルを示す図である。Binuclear metal complex - a diagram showing the ESI-MS spectrum of [Cu 2 (μ-OAc) 2 (bdpamide)] (OAc) (1). 二核金属錯体[Cu2(μ-OAc)2(bdpamide)](ClO4) (2)のX線単結晶構造を示す図である。It is a figure which shows the X-ray single crystal structure of a dinuclear metal complex [Cu 2 (μ-OAc) 2 (bdpamide)] (ClO 4) (2). 二核金属錯体 [Cu2(μ-OAc)(μ-H2O)(bdpamide)](ClO4)2(3)のX線単結晶構造を示す図である。It is a figure which shows the X-ray single crystal structure of a dinuclear metal complex [Cu 2 (μ-OAc) (μ-H 2 O) (bdpamide)] (ClO 4 ) 2 (3). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide4-Cl)](OAc) (4)のESI-MSスペクトルを示す図である。Binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide 4-Cl)] is a diagram showing an ESI-MS spectrum of (OAc) (4). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide4-OMe)](OAc) (5)のESI-MSスペクトルを示す図である。Binuclear metal complex - a diagram showing the ESI-MS spectrum of [Cu 2 (μ-OAc) 2 (bdpamide 4-OMe)] (OAc) (5). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-phen)](OAc) (6)のESI-MSスペクトルを示す図である。Binuclear metal complex - a diagram showing the ESI-MS spectrum of [Cu 2 (μ-OAc) 2 (bdpamide-PEG3-phen)] (OAc) (6). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-acr)](OAc) (7)のESI-MSスペクトルを示す図である。Binuclear metal complex - a diagram showing the ESI-MS spectrum of [Cu 2 (μ-OAc) 2 (bdpamide-PEG3-acr)] (OAc) (7). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-pyr)](OAc) (8)のESI-MSスペクトルを示す図である。Binuclear metal complex - a diagram showing the ESI-MS spectrum of [Cu 2 (μ-OAc) 2 (bdpamide-PEG3-pyr)] (OAc) (8). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide)](OAc) (1)が触媒するDNA酸化切断活性を示す図である。Binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide)] (OAc) (1) is a diagram showing the DNA oxidation cleavage activity to catalyze. 二核金属錯体[Cu2(μ-OAc)2(bdpamide)](ClO4) (2)が触媒するDNA酸化切断活性を示す図である。It is a figure which shows the DNA oxidative cleavage activity catalyzed by a dinuclear metal complex [Cu 2 (μ-OAc) 2 (bdpamide)] (ClO 4) (2). 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-phen)](OAc)(6)が触媒するDNA酸化切断活性を示す図である。Binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide-PEG3-phen)] (OAc) (6) is a diagram showing the DNA oxidation cleavage activity to catalyze. 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-acr)](OAc) (7)が触媒するDNA酸化切断活性を示す図である。Binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide-PEG3-acr)] (OAc) (7) is a diagram showing the DNA oxidation cleavage activity to catalyze. 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-pyr)](OAc) (8)が触媒するDNA酸化切断活性を示す図である。Binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide-PEG3-pyr)] (OAc) (8) is a diagram showing the DNA oxidation cleavage activity to catalyze.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the embodiments are for facilitating understanding of the principles of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiment, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.

本発明者は、鋭意研究の結果、下記式にかかる二核化配位子が高い核酸切断作用を有することを新知見として見出し、かかる事実に基づいて本発明を完成させた。 As a result of diligent research, the present inventor has found as a new finding that the dinuclearization ligand according to the following formula has a high nucleic acid cleaving action, and completed the present invention based on such fact.

Figure 2021042188
Figure 2021042188

Figure 2021042188
Figure 2021042188

ここで(i)Xは同一又は異なってH、Cl、OMe、又は、Meであり、(ii)化学式(I)においてYは、水素原子、炭素数1〜8の直鎖若しくは枝鎖のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、エステルアルキル基、又は、フェニル基、ピリジル基、アミノ基、水酸基、チオール基、フッ素原子、塩素原子であり、前記アミノ基はNR1R1’基と記載でき、R1及びR1’はそれぞれ独立に、水素原子、置換若しくは未置換のアルキル基、置換若しくは未置換のアルケニル基、又は、置換若しくは未置換のアリール基であり、(iii)化学式(II)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物である。多環式芳香族複素環化合物は、三環式以上でかつ複素環を一つ以上含む化合物であり、π共役系の平面性の高い構造を有する化合物である。多環式芳香族炭化水素化合物は、ヘテロ原子を含まない芳香環が縮合した炭化水素化合物であり、好ましくは三環式以上の化合物である。nは1〜8の整数であるが、好ましくは1〜3であり、更に好ましくは2である。 Here, (i) X is the same or different H, Cl, OMe, or Me, and (ii) in the chemical formula (I), Y is a hydrogen atom, a linear or branched alkyl having 1 to 8 carbon atoms. group, alkoxy group, alkoxyalkyl group, an ester group, an ester group, or a phenyl group, a pyridyl group, an amino group, a hydroxyl group, a thiol group, a fluorine atom, a chlorine atom, the amino group NR 1 R 1 'group can described as, R 1 and R 1 'are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted aryl group, (iii) formula In (II), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound. The polycyclic aromatic heterocyclic compound is a compound having a tricyclic type or more and containing one or more heterocycles, and has a highly planar structure of a π-conjugated system. The polycyclic aromatic hydrocarbon compound is a hydrocarbon compound in which an aromatic ring containing no heteroatom is condensed, and is preferably a tricyclic or higher compound. n is an integer of 1 to 8, preferably 1 to 3, and more preferably 2.

化学式(II)においてRは、錯体の細胞導入を促進し、錯体によるH2O2のDNA酸化切断を促進させるために設定される。多環式芳香族複素環化合物は、特に限定されるものではないが、例えば、アクリジン、キサンテン又はカルバゾールであり、好ましくは下記に示されるアクリジンである。多環式芳香族複素環化合物の結合部位は特に限定されるものではなく、例えば下記に示すようにアクリジンでは1位〜9位までの置換基導入可能な炭素原子があるが何れの炭素原子も結合部位とすることができ、好ましくは9位、1位又は8位の炭素原子である。 In formula (II), R is set to promote cell introduction of the complex and promote DNA oxidative cleavage of H 2 O 2 by the complex. The polycyclic aromatic heterocyclic compound is not particularly limited, but is, for example, acridine, xanthene or carbazole, preferably the acridine shown below. The bonding site of the polycyclic aromatic heterocyclic compound is not particularly limited. For example, as shown below, there are carbon atoms in which substituents can be introduced from the 1st to 9th positions in acridine, but any carbon atom can be used. It can be a bond site, preferably a carbon atom at the 9, 1 or 8 position.

Figure 2021042188
Figure 2021042188

多環式芳香族炭化水素化合物は、特に限定されるものではないが、例えば、フェナントレン、ピレン、アントラセン、テトラセン、ペンタセン、ベンゾピレン、クリセン、トリフェニレン、コランニュレン、コロネン又はオバレンであり、好ましくは下記に示されるフェナントレンである。多環式芳香族炭化水素化合物の結合部位は特に限定されるものではなく、例えば下記に示すようにフェナントレンでは1位〜10位までの置換基導入可能な炭素原子があるが何れの炭素原子も結合部位とすることができ、好ましくは後述の実施例に示されるように9位又は10位の炭素原子である。 The polycyclic aromatic hydrocarbon compound is not particularly limited, but is, for example, phenanthrene, pyrene, anthracene, tetracene, pentacene, benzopyrene, chrysene, triphenylene, corannulene, coronene or ovalene, and is preferably shown below. It is a phenanthrene. The bonding site of the polycyclic aromatic hydrocarbon compound is not particularly limited. For example, as shown below, phenanthrene has carbon atoms into which substituents can be introduced from the 1st to 10th positions, but any carbon atom can be used. It can be a bond site, preferably a carbon atom at the 9- or 10-position as shown in Examples below.

Figure 2021042188
Figure 2021042188

なお、Rは、錯体の細胞導入を促進し、錯体によるH2O2のDNA酸化切断を促進させるために設定されるが、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物以外に、マイナーグルーブバインダー(minor groove binder)とすることも可能であり、具体的にはdistamycin Aやnetropsin等が挙げられる。DNA二重らせんのminor grooveにおいて結合する分子は、配列選択性を持つ。そのため異常を起こした遺伝子に選択的に作用させることが可能であり、抗がん剤による副作用の軽減につながる。 R is set to promote cell introduction of the complex and promote DNA oxidative cleavage of H 2 O 2 by the complex, and is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound. In addition, it is also possible to use a minor groove binder, and specific examples thereof include distamycin A and netropsin. Molecules that bind in the minor groove of the DNA double helix have sequence selectivity. Therefore, it is possible to selectively act on the gene that caused the abnormality, which leads to the reduction of side effects caused by the anticancer drug.

上記式に示される二核化配位子は新規構造の化合物である。後述するように、本発明にかかる二核化配位子及び二核金属錯体は、化合物とH2O2との反応だけで核酸の切断が可能である。 The dinuclear ligand represented by the above formula is a compound having a novel structure. As will be described later, the dinuclear ligand and the dinuclear metal complex according to the present invention can cleave nucleic acids only by the reaction between the compound and H 2 O 2.

本発明においては、下記化学式(III)で示される二核化配位子が好ましい。 In the present invention, the dinuclearization ligand represented by the following chemical formula (III) is preferable.

Figure 2021042188
Figure 2021042188

また、本発明者は、下記化学式(IV)又は(V)で示される二核金属錯体が高い核酸切断作用を有することを新知見として見出した。ここでMは、Cu、Fe、Zn、Co、Mn、Re、Ru、Rh、Pd、Pt又はCeであり、好ましくはCuである。 In addition, the present inventor has found as a new finding that the dinuclear metal complex represented by the following chemical formula (IV) or (V) has a high nucleic acid cleavage action. Here, M is Cu, Fe, Zn, Co, Mn, Re, Ru, Rh, Pd, Pt or Ce, preferably Cu.

Figure 2021042188
Figure 2021042188

Figure 2021042188
Figure 2021042188

化学式(V)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物である。nは1〜8の整数であるが、好ましくは1〜3であり、更に好ましくは2である。 In the chemical formula (V), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound. n is an integer of 1 to 8, preferably 1 to 3, and more preferably 2.

本発明においては、下記化学式(VI)又は(VII)で示される二核金属錯体が好ましい。 In the present invention, a dinuclear metal complex represented by the following chemical formula (VI) or (VII) is preferable.

Figure 2021042188
Figure 2021042188

Figure 2021042188
Figure 2021042188

化学式(VII)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物である。nは1〜8の整数であるが、好ましくは1〜3であり、更に好ましくは2である。 In the chemical formula (VII), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound. n is an integer of 1 to 8, preferably 1 to 3, and more preferably 2.

上述において、切断される核酸は、DNA又はRNAである。 In the above, the nucleic acid to be cleaved is DNA or RNA.

また、本発明にかかる二核化配位子及び二核金属錯体は高い核酸切断作用を有するため、例えば遺伝子構造の解析ツールとして使用できる。 Further, since the dinuclear ligand and the dinuclear metal complex according to the present invention have a high nucleic acid cleavage action, they can be used, for example, as a tool for analyzing gene structure.

また、本発明にかかる二核化配位子及び二核金属錯体は、がん細胞の核酸を切断できるため、抗がん剤として使用できる。がん細胞はミトコンドリアの機能不全や異常代謝のために正常細部に比べてH2O2濃度が高い。また正常細胞ではH2O2の分解酵素であるカタラーゼがH2O2濃度を低下させている。しかし、がん細胞ではカタラーゼが少なく、正常細胞のようにH2O2を分解できない。またスーパーオキシドイオンを不均化してH2O2を産生するスーパーオキシドディスムターゼ(superoxide dismutase、 SOD)の活性化が高く、がん細胞は正常細胞と比較してH2O2濃度が高い。本発明にかかる二核化配位子及び二核金属錯体は、化合物とH2O2との反応だけで核酸の切断が可能で有り、がん細胞の核酸を特異的に切断可能である。そのため、本発明によれば、正常細胞に対する影響が少ない。また本発明にかかる二核化配位子及び二核金属錯体は、2つの金属イオン(例えば2つの銅イオン)でH2O2を結合するので、H2O2親和性が高い。そのため生体内で用いられた場合でも微量のH2O2と反応して高い核酸切断活性を示す。 In addition, the dinuclear ligand and the dinuclear metal complex according to the present invention can be used as an anticancer agent because they can cleave the nucleic acid of cancer cells. Cancer cells have higher H 2 O 2 levels than normal details due to mitochondrial dysfunction and abnormal metabolism. Further and catalase is an exploded enzyme H 2 O 2 lowers the concentration of H 2 O 2 in normal cells. However, cancer cells are low in catalase and cannot degrade H 2 O 2 like normal cells. In addition, superoxide dismutase (SOD), which dismutates superoxide ions to produce H 2 O 2 , is highly activated, and cancer cells have a higher H 2 O 2 concentration than normal cells. The dinuclear ligand and the dinuclear metal complex according to the present invention can cleave nucleic acids only by the reaction between the compound and H 2 O 2, and can specifically cleave the nucleic acids of cancer cells. Therefore, according to the present invention, the effect on normal cells is small. Further, the dinuclear ligand and the dinuclear metal complex according to the present invention have high H 2 O 2 affinity because they bind H 2 O 2 with two metal ions (for example, two copper ions). Therefore, even when used in vivo, it reacts with a small amount of H 2 O 2 and exhibits high nucleic acid cleavage activity.

上述の化学式(I)で示される二核化配位子において、Yはがん細胞表面に誘引される官能基であることが好ましい。がん細胞表面は正常細胞と比べてシアル酸やヘパラン硫酸等のアニオン性化合物が多く存在し負電荷を帯びている。そのため、例えば、Yはがん細胞表面の負電荷に誘引される官能基であることが可能である。 In the dinuclearization ligand represented by the above chemical formula (I), Y is preferably a functional group attracted to the surface of cancer cells. Compared to normal cells, the surface of cancer cells contains more anionic compounds such as sialic acid and heparan sulfate and is negatively charged. So, for example, Y can be a functional group that is attracted to the negative charge on the surface of cancer cells.

本発明にかかる二核化配位子及び二核金属錯体は、種々のがんに対して使用可能で有り、特に限定されるものではないが、例えば、大腸がん、胃がん、食道がん、結腸がん、肝臓がん、膵臓がん、乳がん、肺がん、胆嚢がん、胆管がん、胆道がん、直腸がん、卵巣がん、子宮がん、腎がん、膀胱がん、前立腺がん、骨肉腫、脳腫瘍、白血病、筋肉腫、皮膚がん、悪性黒色腫、悪性リンパ腫、舌がん、骨髄腫、甲状腺がん、皮膚転移がん、皮膚黒色腫等の治療に用いることができる。 The dinuclearized ligand and the dinuclear metal complex according to the present invention can be used for various cancers and are not particularly limited, but for example, colon cancer, gastric cancer, esophageal cancer, and the like. Colon cancer, liver cancer, pancreatic cancer, breast cancer, lung cancer, bile sac cancer, bile duct cancer, biliary tract cancer, rectal cancer, ovarian cancer, uterine cancer, renal cancer, bladder cancer, prostate It can be used for the treatment of cancer, osteosarcoma, brain tumor, leukemia, myoma, skin cancer, malignant melanoma, malignant lymphoma, tongue cancer, myeloma, thyroid cancer, skin metastatic cancer, skin melanoma, etc. ..

本発明にかかる二核化配位子及び二核金属錯体を有する抗がん剤の投与形態は、特に限定されるものではなく、経口又は非経口のいずれの投与形態でもよい。また、投与形態に応じて適当な剤形とすることができ、例えば注射剤、カプセル剤、錠剤、顆粒剤、散剤、丸剤、細粒剤等の経口剤、直腸投与剤、油脂性坐剤、水性坐剤等の各種製剤に調製することができる。 The administration form of the anticancer agent having the dinuclearization ligand and the dinuclear metal complex according to the present invention is not particularly limited, and either oral or parenteral administration form may be used. In addition, it can be made into an appropriate dosage form according to the administration form, for example, oral preparations such as injections, capsules, tablets, granules, powders, pills, fine granules, rectal administrations, oily suppositories. , Aqueous suppositories and the like.

各種製剤は、薬理的に許容される添加剤、例えば賦形剤、結合剤、滑沢剤、崩壊剤、界面活性剤、流動性促進剤等を適宜添加して調製できる。賦形剤として、乳糖、果糖、ブドウ糖、コーンスターチ、ソルビット等、結合剤として、メチルセルロース、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロース、ポリビニルピロリドン等、滑沢剤として、タルク、ステアリン酸マグネシウム、ポリエチレングリコール等、崩壊剤として、澱粉、アルギン酸ナトリウム、ゼラチン、炭酸カルシウム、クエン酸カルシウム、デキストリン、炭酸マグネシウム、合成ケイ酸マグネシウム等、界面活性剤として、ラウリル硫酸ナトリウム、大豆レシチン、ショ糖脂肪酸エステル、ポリソルベート80等、流動性促進剤として、軽質無水ケイ酸、乾燥水酸化アルミニウムゲル、合成ケイ酸アルミニウム、ケイ酸マグネシウム等を使用可能である。 Various preparations can be prepared by appropriately adding pharmacologically acceptable additives such as excipients, binders, lubricants, disintegrants, surfactants, and fluidity promoters. Excipients include lactose, fructose, glucose, corn starch, sorbitol, etc., binders include methyl cellulose, ethyl cellulose, gum arabic, gelatin, hydroxypropyl cellulose, polyvinyl pyrrolidone, etc., and lubricants include talc, magnesium stearate, polyethylene glycol, etc. Etc., as a disintegrant, starch, sodium alginate, gelatin, calcium carbonate, calcium citrate, dextrin, magnesium carbonate, synthetic magnesium silicate, etc., and as a surfactant, sodium lauryl sulfate, soybean lecithin, sucrose fatty acid ester, polysorbate 80. As the fluidity accelerator, light anhydrous silicic acid, dry aluminum hydroxide gel, synthetic aluminum silicate, magnesium silicate and the like can be used.

本発明にかかる二核化配位子及び二核金属錯体を有する抗がん剤の投与量は、用法、患者の年齢、性別、症状の程度等を考慮して適宜決定されるが、例えば、成人1日当り10〜800mg好ましくは100〜200mgで、これを1日1回又は数回に分けて投与できる。 The dose of the anticancer agent having the dinuclear ligand and the dinuclear metal complex according to the present invention is appropriately determined in consideration of the usage, the age, sex, degree of symptoms, etc. of the patient, and is, for example, Adults 10 to 800 mg per day, preferably 100 to 200 mg, which can be administered once or in several divided doses per day.

(1)二核化配位子(Hbdpamide)の合成
(1-1) 2,6-bis(hydroxymethyl)-4-methylphenolの合成
300 mLナスフラスコに回転子を入れ、真空乾燥した。反応容器にp-cresol (15.0 g, 0.139 mol),5% NaOH水溶液(120 mL)を加え、発熱が収まるまで室温で攪拌した。ここに37% formaldehyde水溶液(23 mL)を加え、6日間室温で攪拌した。12 M HCl (10 mL)を加えた後、析出した沈殿物をヌッチェで濾過した。これをEtOAcから再結晶して黄色の固体を得た(11.9 g, Yield 51%)。
1H NMR (500 MHz, CDCl3); δ/ppm: 7.85 (s, 1H, OH), 6.88 (s, 2H, Ph), 4.78 (s, 4H, CH2), 2.46 (s, 2H, OH), 2.25 (s, 3H, CH3).
(1) Synthesis of dinuclearized ligand (Hbdpamide)
(1-1) Synthesis of 2,6-bis (hydroxymethyl) -4-methylphenol
The rotor was placed in a 300 mL eggplant flask and dried under vacuum. P-cresol (15.0 g, 0.139 mol) and 5% aqueous NaOH solution (120 mL) were added to the reaction vessel, and the mixture was stirred at room temperature until the exotherm subsided. A 37% aqueous formaldehyde solution (23 mL) was added thereto, and the mixture was stirred at room temperature for 6 days. After adding 12 M HCl (10 mL), the precipitated precipitate was filtered through Nutche. This was recrystallized from EtOAc to give a yellow solid (11.9 g, Yield 51%).
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 7.85 (s, 1H, OH), 6.88 (s, 2H, Ph), 4.78 (s, 4H, CH 2 ), 2.46 (s, 2H, OH) ), 2.25 (s, 3H, CH 3 ).

Figure 2021042188
Figure 2021042188

(1-2) 1-methoxy-2,6-bis(hydroxymethyl)-5-methylbenzeneの合成
200 mLナスフラスコに回転子を入れ、2,6-bis(hydroxymethyl)-4-methylphenol (10.3 g, 61.3 mmol),NaOH (3.57 g, 89.3 mmol)を蒸留水33 mLで溶かした水溶液を加えた。dimethyl sulfate (6.0 mL, 63.3 mmol)を加え、30分間撹拌した。30分後、桐山漏斗で吸引濾過し、濾液を撹拌させながらdimethyl sulfate (3.0 mL, 31.6 mmol)をゆっくりと加えた。90分後、桐山漏斗で吸引濾過して固体を得た。これを真空乾燥し、目的物を白色固体として得た(4.33 g, Yield 39%)。
1H NMR (500 MHz, acetone-d6); δ/ppm: 7.18 (s, 2H, Ph), 4.64 (s, 4H, CH2), 3.74 (s, 3H, OCH3), 2.28 (s, 3H, CH3).
(1-2) Synthesis of 1-methoxy-2,6-bis (hydroxymethyl) -5-methylbenzene
The rotor was placed in a 200 mL eggplant flask, and an aqueous solution prepared by dissolving 2,6-bis (hydroxymethyl) -4-methylphenol (10.3 g, 61.3 mmol) and NaOH (3.57 g, 89.3 mmol) in 33 mL of distilled water was added. .. Dimethyl sulfate (6.0 mL, 63.3 mmol) was added and the mixture was stirred for 30 minutes. After 30 minutes, suction filtration was performed with a Kiriyama funnel, and dimethyl sulfate (3.0 mL, 31.6 mmol) was slowly added while stirring the filtrate. After 90 minutes, suction filtration was performed with a Kiriyama funnel to obtain a solid. This was vacuum dried to give the desired product as a white solid (4.33 g, Yield 39%).
1 H NMR (500 MHz, acetone-d 6 ); δ / ppm: 7.18 (s, 2H, Ph), 4.64 (s, 4H, CH 2 ), 3.74 (s, 3H, OCH 3 ), 2.28 (s, 3H, CH 3 ).

Figure 2021042188
Figure 2021042188

(1-3) 2-methoxy-5-methylisophthalic acidの合成
200 mLナスフラスコに回転子を入れ、1-methoxy-2,6-bis(hydroxymethyl)-5-methylbenzene (3.72 g, 20.4 mmol),KOH (0.420 g, 7.48 mmol)を蒸留水95 mLで溶かした水溶液を加えた。ナスフラスコを氷浴につけ、撹拌させた。数分おきにKMnO4(8.86 g, 56.1 mmol)を少しずつ加えた。30分後、常温で1時間撹拌させた。HCHO (68 μL, 0.91 mmol)を加え、30分後に撹拌を止め、ヌッチェを用いてセライト濾過した。濾液を濃縮した。HClを加えpHを1にすると、白色固体が析出した。これを桐山漏斗で吸引濾過、真空乾燥し、目的物を白色固体として得た(2.24 g, Yield 52%)。
1H NMR (500 MHz, DMSO-d6); δ/ppm: 7.62 (s, 2H, Ph), 3.76 (s, 3H, OCH3), 2.31 (s, 3H, CH3).
(1-3) Synthesis of 2-methoxy-5-methylisophthalic acid
The rotor was placed in a 200 mL eggplant flask, and 1-methoxy-2,6-bis (hydroxymethyl) -5-methylbenzene (3.72 g, 20.4 mmol) and KOH (0.420 g, 7.48 mmol) were dissolved in 95 mL of distilled water. An aqueous solution was added. The eggplant flask was placed in an ice bath and stirred. KMnO 4 (8.86 g, 56.1 mmol) was added in small portions every few minutes. After 30 minutes, the mixture was stirred at room temperature for 1 hour. HCHO (68 μL, 0.91 mmol) was added, stirring was stopped after 30 minutes, and the mixture was filtered through formaldehyde using Nutche. The filtrate was concentrated. When HCl was added and the pH was set to 1, a white solid was precipitated. This was suction filtered with a Kiriyama funnel and vacuum dried to obtain the desired product as a white solid (2.24 g, Yield 52%).
1 1 H NMR (500 MHz, DMSO-d 6 ); δ / ppm: 7.62 (s, 2H, Ph), 3.76 (s, 3H, OCH 3 ), 2.31 (s, 3H, CH 3 ).

Figure 2021042188
Figure 2021042188

(1-4) 2-hydroxy-5-methylisophthalic acidの合成
200 mLナスフラスコに回転子を入れ、2-methoxy-5-methylisophthalic acid (2.57 g, 12.2 mmol),30% HBr/AcOH (12 mL, 61.2 mmol)を加えた。玉栓を付けずに還流管をナスフラスコにつなぎ、油浴につけて撹拌し、気体が出なくなるまで50℃から120℃まで1時間45分かけて少しずつ温度を上げた。その後、油浴を外し室温になるまで撹拌を続けた。室温まで下がると撹拌を止め、蒸留水を加えると青紫色の固体が析出した。これを桐山漏斗を用いて吸引濾過して蒸留水で洗浄し、得られた固体を真空乾燥した。目的物を薄い紫色固体として得た(1.93 g, Yield 80%)。
1H NMR (500 MHz, DMSO-d6); δ/ppm: 7.77 (s, 2H, Ph), 2.25 (s, 3H, CH3).
(1-4) Synthesis of 2-hydroxy-5-methylisophthalic acid
The rotor was placed in a 200 mL eggplant flask, and 2-methoxy-5-methylisophthalic acid (2.57 g, 12.2 mmol) and 30% HBr / AcOH (12 mL, 61.2 mmol) were added. The reflux tube was connected to an eggplant flask without a ball stopper, soaked in an oil bath and stirred, and the temperature was gradually raised from 50 ° C. to 120 ° C. over 1 hour and 45 minutes until no gas was emitted. Then, the oil bath was removed and stirring was continued until room temperature was reached. When the temperature dropped to room temperature, stirring was stopped, and when distilled water was added, a bluish-purple solid was precipitated. This was suction-filtered using a Kiriyama funnel, washed with distilled water, and the obtained solid was vacuum-dried. The desired product was obtained as a pale purple solid (1.93 g, Yield 80%).
1 1 H NMR (500 MHz, DMSO-d 6 ); δ / ppm: 7.77 (s, 2H, Ph), 2.25 (s, 3H, CH 3 ).

Figure 2021042188
Figure 2021042188

(1-5) 2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-4-methylphenol (Hbdpamide)
回転子を入れた300 mLのナスフラスコに2-hydroxy-5-methylisophthalic acid(1.00 g, 5.10 mmol), SOCl2 (50 mL)を加えた後、還流器具を取り付け、60℃で4時間攪拌した。その後、40℃でSOCl2を留去し、真空乾燥すると黄色の油状物質が得られた。続いて300 mL三口反応容器に回転子を入れ、K2CO3 (4.50 g, 32.6 mmol), di(2-pyridylmethyl)amine (2.10 g, 10.5 mmol), dry CH2Cl2 (50 mL)を加えた。この溶液に、先程得られた黄色の油状物質をdry CH2Cl2 (50 mL)に溶解させた溶液を窒素雰囲気下で加え、脱気及び窒素置換した後、一晩攪拌した。ESI-MSで原料が残っていないことを確認した後、ヌッチェで濾過すると淡い黄緑色の濾液が得られた、この濾液を300 mL分液漏斗に移し、蒸留水 (3 × 10 mL)で分液した。有機層にNa2SO4を加えて脱水した後、濾過し、濾液をロータリーエバポレーターで濃縮、真空乾燥すると茶褐色の固体が得られた。この固体を最小量のCHCl3 (2 mL)に溶解させ、アルミナカラムクロマトグラフィー(gradient CHCl3/MeOH from 100/0 to 50/1)で精製した。目的物の入っているフラクションを集め、ロータリーエバポレーターで濃縮、真空乾燥すると薄い黄色の固体を得た(2.64 g, Yield 93%)。この固体の1H NMRスペクトルを図1に示す。
1H NMR (500 MHz, CDCl3); δ/ppm: 11.6 (s, H, OH), 8.49 (d, J = 5.2 Hz, 4H, CH), 7.73 (t, J = 5.7, 7.5 Hz, 2H, CH), 7.64 (t, J = 7.5 Hz, 2H, CH), 3.52 (d, J = 7.5 Hz, 2H, CH), 7.24-7.26 (m, 2H, CH), 7.18 (s, 2H, CH), 7.15-7.19 (m, 4H, CH), 4.95 (s, 4H, CH2), 4.66 (s, 4H, CH2), 2.21 (s, 3H, CH3).
(1-5) 2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) -4-methylphenol (Hbdpamide)
2-hydroxy-5-methylisophthalic acid (1.00 g, 5.10 mmol) and SOCl 2 (50 mL) were added to a 300 mL eggplant flask containing a rotor, a reflux device was attached, and the mixture was stirred at 60 ° C. for 4 hours. .. Then, SOCL 2 was distilled off at 40 ° C. and vacuum dried to obtain a yellow oily substance. Subsequently, the rotor was placed in a 300 mL three-mouth reaction vessel, and K 2 CO 3 (4.50 g, 32.6 mmol), di (2-pyridylmethyl) amine (2.10 g, 10.5 mmol), and dry CH 2 Cl 2 (50 mL) were added. added. A solution prepared by dissolving the yellow oily substance obtained earlier in dry CH 2 Cl 2 (50 mL) was added to this solution under a nitrogen atmosphere, and the mixture was degassed and replaced with nitrogen, and then stirred overnight. After confirming that no raw material remained by ESI-MS, filtration through Nutche gave a pale yellow-green filtrate. Transfer this filtrate to a 300 mL separatory funnel and divide with distilled water (3 x 10 mL). Distilled. Na 2 SO 4 was added to the organic layer for dehydration, filtration was performed, the filtrate was concentrated with a rotary evaporator, and vacuum dried to obtain a brown solid. The solid was dissolved in a minimum amount of CHCl 3 (2 mL) and purified by alumina column chromatography (gradient CHCl 3 / MeOH from 100/0 to 50/1). Fractions containing the desired material were collected, concentrated on a rotary evaporator and vacuum dried to give a pale yellow solid (2.64 g, Yield 93%). The 1 H NMR spectrum of this solid is shown in FIG.
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 11.6 (s, H, OH), 8.49 (d, J = 5.2 Hz, 4H, CH), 7.73 (t, J = 5.7, 7.5 Hz, 2H) , CH), 7.64 (t, J = 7.5 Hz, 2H, CH), 3.52 (d, J = 7.5 Hz, 2H, CH), 7.24-7.26 (m, 2H, CH), 7.18 (s, 2H, CH) ), 7.15-7.19 (m, 4H, CH), 4.95 (s, 4H, CH 2 ), 4.66 (s, 4H, CH 2 ), 2.21 (s, 3H, CH 3 ).

Figure 2021042188
Figure 2021042188

(2) 二核化配位子の合成(Hbdpamide4-Cl)
(2-1) 2-methoxycarbonyl-4-chloropyridineの合成
200 mLナスフラスコに回転,picolinic acid (10.0 g, 81.2 mmol),SOCl2 (50 mL),dry DMF (4 mL)を加え、約80℃の油浴で2日間還流した。還流をとめた後、SOCl2をアスピレーターを用いて約40℃の油浴で減圧留去した。減圧留去後、氷浴下でdry toluene (20 mL), dry MeOH (10 mL)を加え、脱気窒素置換した後、室温で約3時間撹拌した。撹拌を止めた後、反応溶液をヌッチェで濾過し、析出固体を濾集した。この固体を飽和Na2CO3水溶液で中和し、これをCHCl3(3 × 100 mL)で分液した。有機層を集め、Na2SO4で脱水し、これをろ去した後、濾液をロータリーエバポレーターで濃縮、真空乾燥した。目的物を薄黄色の固体として得た(6.50 g, Yield 47%)。
(2) Synthesis of dinuclear ligand (Hbdpamide 4-Cl )
(2-1) Synthesis of 2-methoxycarbonyl-4-chloropyridine
In a 200 mL eggplant flask, picolinic acid (10.0 g, 81.2 mmol), SOCl 2 (50 mL) and dry DMF (4 mL) were added, and the mixture was refluxed in an oil bath at about 80 ° C. for 2 days. After stopping the reflux, SOCL 2 was distilled off under reduced pressure in an oil bath at about 40 ° C. using an aspirator. After distillation under reduced pressure, dry toluene (20 mL) and dry MeOH (10 mL) were added under an ice bath, and the mixture was replaced with degassed nitrogen, and the mixture was stirred at room temperature for about 3 hours. After stopping the stirring, the reaction solution was filtered through Nutche, and the precipitated solid was collected by filtration. The solid was neutralized with saturated aqueous Na 2 CO 3 solution and separated with CHCl 3 (3 x 100 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , filtered off, and the filtrate was concentrated on a rotary evaporator and vacuum dried. The desired product was obtained as a pale yellow solid (6.50 g, Yield 47%).

Figure 2021042188
Figure 2021042188

(2-2) 2-hydroxymethyl-4-chloropyridineの合成
100 mLナスフラスコに回転子,2- methoxycarbonyl -4-chloropyridine (20.0 g, 0.117 mol),CaCl2(52.0 g, 0.469 mol), dry MeOH-THF (120 : 70 mL)を入れ、氷浴下でNaBH4(8.8 g, 0.233 mol)をゆっくり加え、脱気窒素置換した後、室温で一晩撹拌した。撹拌を停止した後、氷浴下でH2Oを加え、室温で2時間撹拌して過剰のNaBH4を分解した。反応溶液をロータリーエバポレーターで濃縮し、H2O (200 mL)を加え、EtOAc (3 × 200 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮した。残物を真空乾燥し、白色の固体が得られた(16.3 g, Yield 97%)。
(2-2) Synthesis of 2-hydroxymethyl-4-chloropyridine
Place the rotor, 2-methoxycarbonyl -4-chloropyridine (20.0 g, 0.117 mol), CaCl 2 (52.0 g, 0.469 mol), and dry MeOH-THF (120: 70 mL) in a 100 mL eggplant flask and place in an ice bath. NaBH 4 (8.8 g, 0.233 mol) was added slowly, replaced with degassed nitrogen, and then stirred at room temperature overnight. After stopping the stirring, H 2 O was added under an ice bath, and the mixture was stirred at room temperature for 2 hours to decompose excess Na BH 4. The reaction solution was concentrated on a rotary evaporator, H 2 O (200 mL) was added, and the mixture was separated with EtOAc (3 x 200 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, and the filtrate was concentrated on a rotary evaporator. The residue was vacuum dried to give a white solid (16.3 g, Yield 97%).

Figure 2021042188
Figure 2021042188

(2-3) 2-formyl-4-chloropyridineの合成
100 mLナスフラスコに回転子、ヒートガンを用いて加熱して真空乾燥したMnO2(90 g),2-hydroxymethyl-4-chloropyridine (8.00 g, 55.7 mmol), dry CHCl3 (96 mL)を加え、脱気窒素置換した後、約80℃の油浴で約36時間還流した。還流を止めた後、反応溶液をセライト濾過し、CHCl3を用いてよく洗浄した。濾液をロータリーエバポレーターで濃縮、真空乾燥したところ、黄色の固体を得た(6.55 g, Yield 83%)。
(2-3) Synthesis of 2-formyl-4-chloropyridine
Add MnO 2 (90 g), 2-hydroxymethyl-4-chloropyridine (8.00 g, 55.7 mmol), and dry CHCl 3 (96 mL), which have been vacuum-dried by heating with a rotor and a heat gun, to a 100 mL eggplant flask. After degassing and nitrogen replacement, the mixture was refluxed in an oil bath at about 80 ° C. for about 36 hours. After stopping reflux, the reaction solution was filtered through Celite and washed well with CHCl 3. The filtrate was concentrated on a rotary evaporator and dried in vacuo to give a yellow solid (6.55 g, Yield 83%).

Figure 2021042188
Figure 2021042188

(2-4) 2-chloromethyl-4-chloropyridineの合成
50 mLナスフラスコに回転子、2-hydroxymethyl-4-chloropyridine (8.00 g, 55.7 mmol),dry CH2Cl2 (40 mL)を入れた。これに氷浴下でSOCl2 (30 mL)をゆっくり加え、50℃の油浴で3時間還流した。還流を止めた後、SOCl2をアスピレーターを用いて減圧留去で除去した。減圧留去で析出した固体を飽和NaHCO3水溶液(100 mL)で希釈し、CHCl3(3 × 300 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮し真空乾燥した。目的物を濃い黄色の液体として得た(9.17 g, Yield 98%)。
(2-4) Synthesis of 2-chloromethyl-4-chloropyridine
A rotator, 2-hydroxymethyl-4-chloropyridine (8.00 g, 55.7 mmol) and dry CH 2 Cl 2 (40 mL) were placed in a 50 mL eggplant flask. SOCL 2 (30 mL) was slowly added to this in an ice bath, and the mixture was refluxed in an oil bath at 50 ° C. for 3 hours. After stopping the reflux, SOCL 2 was removed by vacuum distillation using an ejector. The solid precipitated by distillation under reduced pressure was diluted with saturated acrylamide 3 aqueous solution (100 mL) and separated with CHCl 3 (3 x 300 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, and the filtrate was concentrated on a rotary evaporator and vacuum dried. The desired product was obtained as a dark yellow liquid (9.17 g, Yield 98%).

Figure 2021042188
Figure 2021042188

(2-5) 2-azidomethyl-4-chloropyridineの合成
50 mLナスフラスコに回転子,2-chloromethyl-4-chloropyridine (9.17 g, 56.6 mmol),dry DMF (180 mL),NaN3(10.0 g, 0.154 mol)を加え、脱気窒素置換した後、60℃の油浴で一晩撹拌させた。撹拌を止め、反応溶液に飽和NaHCO水溶液(300 mL)を加え、AcOEt-hexane (1:1) (3 × 300 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮し真空乾燥した。目的物を濃い茶色の液体として得た(8.54 g, Yield 89%)。
(2-5) Synthesis of 2-azidomethyl-4-chloropyridine
Rotor, 2-chloromethyl-4-chloropyridine (9.17 g, 56.6 mmol), dry DMF (180 mL), NaN 3 (10.0 g, 0.154 mol) were added to a 50 mL eggplant flask, replaced with degassed nitrogen, and then 60. The mixture was stirred overnight in an oil bath at ° C. Stirring was stopped, saturated aqueous acrylamide solution (300 mL) was added to the reaction solution, and the solution was separated with AcOEt-hexane (1: 1) (3 x 300 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, and the filtrate was concentrated on a rotary evaporator and vacuum dried. The desired product was obtained as a dark brown liquid (8.54 g, Yield 89%).

Figure 2021042188
Figure 2021042188

(2-6) 2-aminomethyl-4-chloropyridineの合成
100 mLの二口反応容器に回転子を入れ,2-azidomethyl-4-chloropyridine (8.54 g, 50.6 mmol),dry THF (72.7 mL)を入れ、氷浴下でPPh3(20.0 g, 76.3 mmol)をゆっくりと加え脱気窒素置換した後、室温で約3時間撹拌し、DARTで原料が残っていないことを確認した後、H2O (4 mL, 0.222 mol)を加えて脱気窒素置換した後、室温で一晩撹拌させた。DARTで中間体が残っていないことを確認した後、反応溶液をエバポレーターで濃縮し、CHCl3(100 mL)と1 M HCl水溶液(3 × 100 mL)で分液した。水層を集め、これに2 M NaOH水溶液を加えて中和し、これをCHCl3(3 × 300 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をエバポレーターで濃縮し真空乾燥したところ茶色の液体を得た(6.50 g, Yield 90%)。
(2-6) Synthesis of 2-aminomethyl-4-chloropyridine
Place the rotor in a 100 mL two-mouth reaction vessel, add 2-azidomethyl-4-chloropyridine (8.54 g, 50.6 mmol), dry THF (72.7 mL), and PPh 3 (20.0 g, 76.3 mmol) under an ice bath. Was slowly added and replaced with degassed nitrogen, and the mixture was stirred at room temperature for about 3 hours. After confirming that no raw material remained by DART, H 2 O (4 mL, 0.222 mol) was added and replaced with degassed nitrogen. Then, it was stirred at room temperature overnight. After confirming that no intermediate remained by DART, the reaction solution was concentrated with an evaporator and separated with CHCl 3 (100 mL) and 1 M HCl aqueous solution (3 × 100 mL). An aqueous layer was collected, neutralized with 2 M aqueous NaOH solution, and separated with CHCl 3 (3 x 300 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, the filtrate was concentrated on an evaporator and vacuum dried to give a brown liquid (6.50 g, Yield 90%).

Figure 2021042188
Figure 2021042188

(2-7) 1-tert-butoxycarbonyl-bis(4-chloropyrid-2-ylmethyl)amineの合成
100 mLの2口ナスフラスコに回転子を入れ、窒素flowしながら2-aminomethyl-4-chloropyridine (6.28 g, 44.2 mmol)と2-formyl-4-chloropyridine (6.55 g, 46.5 mmol)をdry MeOH (50 mL)に氷浴下で加え、脱気窒素置換した後、生じた溶液を氷浴下で約1時間攪拌した。これにNaBH4(4.18 g, 0.110 mol)を氷浴下で加え脱気窒素置換し、氷浴下で約3時間攪拌した。この反応溶液に氷浴下で6 M HCl水溶液を徐々に加えて過剰のNaBH4を分解した後、エバポレーターで濃縮した。濃縮後CH2Cl2と飽和Na2CO3水溶液を用いて分液し、有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をエバポレーターで濃縮し真空乾燥したところ茶色の液体を得た。これをCH2Cl2(90 mL)に溶かして300 mLナスフラスコ中に入れ、これに回転子を入れた。この溶液を氷浴に浸し撹拌しながら、Boc2O (16.4 g, 75.1 mmol)とEt3N (10.5 mL, 75.1 mmol)をCH2Cl2(90 mL)に溶かした溶液をゆっくりと加え、脱気窒素置換した後、室温で一晩撹拌した。反応溶液をエバポレーターで濃縮し、飽和NaHCO3水溶液とCH2Cl2で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をエバポレーターで濃縮し真空乾燥したところ赤褐色の液体が得られた。これをSiO2のカラムクロマトグラフィー (CHCl3: MeOH = 50 :1)で精製し、茶色の液体が得られた(9.76 g, Yield 60%)。
(2-7) Synthesis of 1-tert-butoxycarbonyl-bis (4-chloropyrid-2-ylmethyl) amine
Place the rotor in a 100 mL 2-necked eggplant flask and dry MeOH (6.28 g, 44.2 mmol) and 2-formyl-4-chloropyridine (6.55 g, 46.5 mmol) while flowing nitrogen. It was added to 50 mL) under an ice bath, replaced with degassed nitrogen, and the resulting solution was stirred under an ice bath for about 1 hour. To this, NaBH 4 (4.18 g, 0.110 mol) was added under an ice bath to replace with degassed nitrogen, and the mixture was stirred under an ice bath for about 3 hours. A 6 M HCl aqueous solution was gradually added to this reaction solution in an ice bath to decompose excess NaBH 4 , and then concentrated with an evaporator. After concentration, the mixture was separated using CH 2 Cl 2 and a saturated aqueous solution of Na 2 CO 3 , the organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, and the filtrate was concentrated with an evaporator and dried in vacuum. Obtained the liquid. This was dissolved in CH 2 Cl 2 (90 mL) and placed in a 300 mL eggplant flask, which contained the rotor. While immersing this solution in an ice bath and stirring, slowly add a solution of Boc 2 O (16.4 g, 75.1 mmol) and Et 3 N (10.5 mL, 75.1 mmol) in CH 2 Cl 2 (90 mL). After degassing and nitrogen substitution, the mixture was stirred overnight at room temperature. The reaction solution was concentrated with an evaporator and separated into a saturated aqueous solution of LVDS 3 and CH 2 Cl 2 . The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, the filtrate was concentrated with an evaporator and vacuum dried to obtain a reddish brown liquid. This was purified by SiO 2 column chromatography (CHCl 3 : MeOH = 50: 1) to give a brown liquid (9.76 g, Yield 60%).

Figure 2021042188
Figure 2021042188

(2-8) bis(4-chloropyrid-2-ylmethyl)amineの合成
100 mLナスフラスコに回転子を入れ、1-tert-butoxycarbonyl-bis(4-chloropyrid-2-ylmethyl)amine (1.60 g, 4.36 mmol)をEtOH (90 mL)に溶かして入れ、12 M HCl水溶液 (30 mL)を加え脱気窒素置換した後、室温で一晩攪拌した。この反応溶液をエバポレーターで濃縮し真空乾燥し、赤褐色の固体が得られた。これを飽和K2CO3水溶液で希釈しCH2Cl2を用いて分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をエバポレーターで濃縮した。これを真空乾燥して赤褐色の液体を得た(1.00 g, Yield 86%)。
(2-8) Synthesis of bis (4-chloropyrid-2-ylmethyl) amine
Put the rotor in a 100 mL eggplant flask, dissolve 1-tert-butoxycarbonyl-bis (4-chloropyrid-2-ylmethyl) amine (1.60 g, 4.36 mmol) in EtOH (90 mL), and add 12 M HCl aqueous solution (12 M HCl aqueous solution). 30 mL) was added and replaced with degassed nitrogen, and the mixture was stirred overnight at room temperature. The reaction solution was concentrated with an evaporator and dried under vacuum to obtain a reddish brown solid. This was diluted with a saturated aqueous solution of K 2 CO 3 and separated using CH 2 Cl 2 . The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, and the filtrate was concentrated on an evaporator. This was vacuum dried to give a reddish brown liquid (1.00 g, Yield 86%).

Figure 2021042188
Figure 2021042188

(2-9) Hbpcp4-Clの合成
10 mLナスフラスコに回転子を入れ、2-hydroxy-5-methylisophthalic acid (43.9 mg, 0.224 mmol)とSOCl2(3 mL)を加えて、約60℃の油浴で約4時間還流した。還流を止め、アスピレーターを用いてSOCl2を減圧留去した後、真空乾燥し、黄色の固体が得られた。30 mLの2口ナスフラスコに回転子を入れ、bis(4-chloropyrid-2-ylmethyl)amine (150 mg, 0.560 mmol)とK2CO3(255 mg, 1.85 mmol)を加え、dry CH2Cl2 (5 mL)に溶かした上記の黄色固体を加え、脱気窒素置換した後、約30℃の水浴で一晩撹拌した。撹拌を止め、反応溶液を少量のCH2Cl2に溶かして桐山漏斗で濾過し、残った固体を少量のCH2Cl2で洗浄した。濾液を集め、CH2Cl2を加えて100 mLとし、H2O (30 mL×3)で分液洗浄した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をエバポレーターで濃縮した後、真空乾燥して茶色の固体を得た。これをアルミナを用いたカラムクロマトグラフィー(CHCl3:MeOH = 50:1)で精製した。目的物を茶色の固体として得た(102 mg, Yield 65%)。この固体の1H NMRスペクトルを図2に示す。
(2-9) Synthesis of Hbpcp 4-Cl
The rotor was placed in a 10 mL eggplant flask, 2-hydroxy-5-methylisophthalic acid (43.9 mg, 0.224 mmol) and SOCL 2 (3 mL) were added, and the mixture was refluxed in an oil bath at about 60 ° C. for about 4 hours. Reflux was stopped, SOCl 2 was distilled off under reduced pressure using an aspirator, and then vacuum dried to obtain a yellow solid. Place the rotor in a 30 mL 2-necked eggplant flask, add bis (4-chloropyrid-2-ylmethyl) amine (150 mg, 0.560 mmol) and K 2 CO 3 (255 mg, 1.85 mmol), and dry CH 2 Cl. The above yellow solid dissolved in 2 (5 mL) was added, replaced with degassed nitrogen, and then stirred overnight in a water bath at about 30 ° C. Stirring was stopped, the reaction solution was dissolved in a small amount of CH 2 Cl 2 and filtered through a Kiriyama funnel, and the remaining solid was washed with a small amount of CH 2 Cl 2. The filtrate was collected, CH 2 Cl 2 was added to make 100 mL, and the mixture was separated and washed with H 2 O (30 mL × 3). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, the filtrate was concentrated on an evaporator and then vacuum dried to give a brown solid. This was purified by column chromatography using alumina (CHCl 3 : MeOH = 50: 1). The desired product was obtained as a brown solid (102 mg, Yield 65%). The 1 H NMR spectrum of this solid is shown in FIG.

Figure 2021042188
Figure 2021042188

(3) 二核化配位子の合成(Hbdpamide4-OMe)
(3-1) 2-hydroxymethyl-4-methoxypyridineの合成
100 mL二口反応容器に回転子入れ、ジムロートを取り付けてヒートガンを用いて加熱しながら真空乾燥した。ここに2-hydoroxymethyl-4-chloropyridine (3.00 g, 20.9 mmol)を入れ、dry MeOH (60 mL)をN2雰囲気下で加えた。ここにMeONa (24.0 g, 444 mmol)を加え、脱気及び窒素置換した後、80℃で一晩加熱還流した。1H NMRで原料が残っていないことを確認した後、反応容器を室温に戻し、12 M HCl水溶液を用いて慎重にpH 7-8に調節した。析出物をセライト濾過で除いた後、濾液をロータリーエバポレーターで濃縮した後、真空乾燥して薄黄色の固体を得た(2.24 g, Yield 77%)。
(3) Synthesis of dinuclear ligand (Hbdpamide 4-OMe )
(3-1) Synthesis of 2-hydroxymethyl-4-methoxypyridine
The rotor was placed in a 100 mL two-mouth reaction vessel, a Dimroth condenser was attached, and the mixture was vacuum dried while heating using a heat gun. 2-hydoroxymethyl-4-chloropyridine (3.00 g, 20.9 mmol) was added thereto, and dry MeOH (60 mL) was added under an N 2 atmosphere. MeONa (24.0 g, 444 mmol) was added thereto, and the mixture was degassed and replaced with nitrogen, and then heated under reflux at 80 ° C. overnight. After confirming that no raw material remained by 1 H NMR, the reaction vessel was returned to room temperature and carefully adjusted to pH 7-8 with a 12 M HCl aqueous solution. After removing the precipitate by filtration through Celite, the filtrate was concentrated on a rotary evaporator and then vacuum dried to give a pale yellow solid (2.24 g, Yield 77%).

Figure 2021042188
Figure 2021042188

(3-2) 2-formyl-4-methoxypyridineの合成
100 mL二口反応容器に回転子、MnO2 (23.1 g, 70% assay, 184 mmol)を入れ、ジムロートを取り付け、ヒートガンで加熱しながら真空乾燥した。これに2-hydroxymethyl-4-methoxypyridine (2.14 g, 15.4 mmol), dry CHCl3 (25 mL)を加え、80℃で24時間加熱還流した。1H NMRで原料が残っていないことを確認した後、反応容器を室温に戻した。MnO2をセライト濾過で除いた後、CHCl3でよく洗浄し、濾液を集めてロータリーエバポレーターで濃縮、真空乾燥すると茶色の油状物質が得られた(1.87 g, Yield 89%)。
(3-2) Synthesis of 2-formyl-4-methoxypyridine
A rotor and MnO 2 (23.1 g, 70% assay, 184 mmol) were placed in a 100 mL two-mouth reaction vessel, a Dimroth condenser was attached, and the mixture was vacuum dried while heating with a heat gun. To this, 2-hydroxymethyl-4-methoxypyridine (2.14 g, 15.4 mmol) and dry CHCl 3 (25 mL) were added, and the mixture was heated under reflux at 80 ° C. for 24 hours. After confirming that no raw material remained by 1 H NMR, the reaction vessel was returned to room temperature. After removing MnO 2 by Celite filtration , the filtrate was thoroughly washed with CHCl 3 , concentrated on a rotary evaporator, and vacuum dried to obtain a brown oily substance (1.87 g, Yield 89%).

Figure 2021042188
Figure 2021042188

(3-3) 2-choloromethyl-4-methoxypyridineの合成
100 mL二口反応容器に回転子を入れ、2-hydloxymethyl-4-methoxypyridine (2.19 g, 15.7 mmol), CH2Cl2 (12 mL), SOCl2 (10 mL)の順に加え、還流管を取り付けて50℃で4時間攪拌した。アスピレーターを用いてSOCl2を留去、真空乾燥すると黄色の固体を得た。これを飽和NaHCO3(50 mL)に溶解させ、CHCl3(3 × 150 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮、真空乾燥すると橙色の油状物質が得られた(2.43 g, Yield 98%)。
(3-3) Synthesis of 2-choloromethyl-4-methoxypyridine
Place the rotor in a 100 mL dual reaction vessel, add 2-hydloxymethyl-4-methoxypyridine (2.19 g, 15.7 mmol), CH 2 Cl 2 (12 mL), SOCl 2 (10 mL) in that order, and attach a perfusion tube. The mixture was stirred at 50 ° C. for 4 hours. SOCl 2 was distilled off using an aspirator and vacuum dried to obtain a yellow solid. This was dissolved in saturated LVDS 3 (50 mL) and separated with CHCl 3 (3 x 150 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, concentrated on a rotary evaporator and vacuum dried to give an orange oil (2.43 g, Yield 98%).

Figure 2021042188
Figure 2021042188

(3-4) 2-azidomethyl-4-methoxypyridineの合成
100 mLナスフラスコに回転子を入れ、2-chloromethyl-4-methoxypyridine (2.43 g, 15.4 mmol), NaN3 (3.10 g, 47.7 mmol), dry DMF (50 mL)を加え、脱気及び窒素置換した後、50℃で一晩攪拌した。反応容器を室温に戻した後、飽和NaHCO3水溶液(100 mL)を加え、EtOAc (3 × 300 mL)で分液した。有機層を取り出した後、飽和NaCl水溶液(2 × 300 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮、真空乾燥すると茶色の油状物質が得られた(2.37 g,Yield 94%)。
(3-4) Synthesis of 2-azidomethyl-4-methoxypyridine
Rotor was placed in a 100 mL eggplant flask, 2-chloromethyl-4-methoxypyridine (2.43 g, 15.4 mmol), NaN 3 (3.10 g, 47.7 mmol) and dry DMF (50 mL) were added, and degassed and replaced with nitrogen. After that, it was stirred at 50 ° C. overnight. After returning the reaction vessel to room temperature, a saturated acrylamide 3 aqueous solution (100 mL) was added, and the mixture was separated with EtOAc (3 × 300 mL). After removing the organic layer, the solution was separated with a saturated aqueous NaCl solution (2 x 300 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, concentrated on a rotary evaporator and vacuum dried to give a brown oil (2.37 g, Yield 94%).

Figure 2021042188
Figure 2021042188

(3-5) 2-aminomethyl-4-methoxypyridineの合成
100 mL二口反応容器に回転子を入れ、氷浴に浸した後、2-azidomethyl-4-methoxypyridine (2.37 g, 14.4 mL), dry THF (18 mL), PPh3 (5.89 g, 22.5 mmol)を加え、脱気及び窒素置換した後、0℃で1時間攪拌した。その後、室温で2時間攪拌し、DARTで原料が残っていないことを確認した後、H2O (2 mL)を加え、脱気及び窒素置換した後、30℃で一晩攪拌した。DARTで原料が残っていないことを確認した後、ロータリーエバポレーターでTHFを濃縮し、真空乾燥すると黄色の固体を得た。これをCHCl3(50 mL)に溶解させ、1 M HCl水溶液(3 × 50 mL)で分液した。水層を取り出した後、4M NaOH水溶液でpHを11にした。この水層をCHCl3(3 × 200 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮、真空乾燥すると橙色の油状物質が得られた(1.84 g, Yield 92%)。
(3-5) Synthesis of 2-aminomethyl-4-methoxypyridine
Place the rotor in a 100 mL dual reaction vessel and soak in an ice bath, then 2-azidomethyl-4-methoxypyridine (2.37 g, 14.4 mL), dry THF (18 mL), PPh 3 (5.89 g, 22.5 mmol). Was degassed and replaced with nitrogen, and the mixture was stirred at 0 ° C. for 1 hour. Then, the mixture was stirred at room temperature for 2 hours, and after confirming that no raw material remained by DART, H 2 O (2 mL) was added, degassed and replaced with nitrogen, and then the mixture was stirred at 30 ° C. overnight. After confirming that no raw material remained by DART, THF was concentrated on a rotary evaporator and vacuum dried to obtain a yellow solid. This was dissolved in CHCl 3 (50 mL) and separated by 1 M HCl aqueous solution (3 x 50 mL). After removing the aqueous layer, the pH was adjusted to 11 with a 4M NaOH aqueous solution. The aqueous layer was separated with CHCl 3 (3 x 200 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, concentrated on a rotary evaporator and vacuum dried to give an orange oil (1.84 g, Yield 92%).

Figure 2021042188
Figure 2021042188

(3-6) 1-tert-butoxycarbonyl-bis(4-methoxypyrid-2-ylmethyl)amineの合成
100 mL二口反応容器に回転子を入れ、氷浴に浸し、2-aminomethyl-4-methoxypyridine (1.59 g, 11.5 mmol), 2-formyl-4-methoxypyridine (1.72 g, 12.5 mmol), dry MeOH (13.5 mL)を加え、脱気及び窒素置換した後、0℃で1時間攪拌した。1H NMRでイミンの形成及び2-aminomethyl-4-methoxypyridineが残っていないことを確認した後、NaBH4(1.03 g, 27.2 mmol)を加え、脱気及び窒素置換した後、0℃で2時間攪拌した。1H NMRでイミンが残っていないことを確認した後、0℃を維持したまま6 M HCl水溶液でpHを1にした。これをロータリーエバポレーターで濃縮後、ある程度水が残っている状態にした後、飽和Na2CO3水溶液を用いて、CH2Cl2(3 × 200 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮、真空乾燥すると黄色の油状物質を得た(3.00 g)。
(3-6) Synthesis of 1-tert-butoxycarbonyl-bis (4-methoxypyrid-2-ylmethyl) amine
Place the rotor in a 100 mL dual reaction vessel and immerse in an ice bath to 2-aminomethyl-4-methoxypyridine (1.59 g, 11.5 mmol), 2-formyl-4-methoxypyridine (1.72 g, 12.5 mmol), dry MeOH ( 13.5 mL) was added, and the mixture was degassed and replaced with nitrogen, and then stirred at 0 ° C. for 1 hour. After confirming the formation of imine and the absence of 2-aminomethyl-4-methoxypyridine by 1 H NMR, NaBH 4 (1.03 g, 27.2 mmol) was added, degassed and replaced with nitrogen, and then at 0 ° C. for 2 hours. Stirred. After confirming that no imine remained by 1 H NMR, the pH was adjusted to 1 with a 6 M HCl aqueous solution while maintaining 0 ° C. After concentrating this with a rotary evaporator, water remained to some extent, and then the solution was separated with CH 2 Cl 2 (3 x 200 mL) using a saturated aqueous solution of Na 2 CO 3. The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, the filtrate was concentrated on a rotary evaporator and vacuum dried to give a yellow oil (3.00 g).

この油状物質をCH2Cl2 (24 mL)に溶解させ、氷浴に浸した後、Et3N (3.26 mL, 23.4 mmol)を加えた。ここに、CH2Cl2(40 mL)に溶解させたBoc2O (5.09 g, 23.3 mmol)をN2雰囲気下で加え、脱気及び窒素置換した後、0℃で一晩攪拌した。この反応溶液にCH2Cl2(36 mL)を加え、飽和NaHCO3水溶液(3 × 30 mL)で分液した。有機層を集め、Na2SO4で脱水した後これを濾過で除き、濾液をロータリーエバポレーターで濃縮、真空乾燥すると茶色の油状物質を得た。これをアルミナカラムクロマトグラフィー(展開溶媒: EtOAc)で精製し、目的物が含まれているフラクションを集め、ロータリーエバポレーターで濃縮、真空乾燥すると黄色の油状物質が得られた(2.80 g, Yield 68%)。 The oil was dissolved in CH 2 Cl 2 (24 mL), soaked in an ice bath and then Et 3 N (3.26 mL, 23.4 mmol) was added. Boc 2 O (5.09 g, 23.3 mmol) dissolved in CH 2 Cl 2 (40 mL) was added thereto under an N 2 atmosphere, and the mixture was degassed and replaced with nitrogen, and then stirred at 0 ° C. overnight. CH 2 Cl 2 (36 mL) was added to this reaction solution, and the mixture was separated with a saturated aqueous solution of LVDS 3 (3 × 30 mL). The organic layer was collected, dehydrated with Na 2 SO 4 , removed by filtration, the filtrate was concentrated on a rotary evaporator and vacuum dried to give a brown oily substance. This was purified by alumina column chromatography (developing solvent: EtOAc), the fraction containing the desired product was collected, concentrated on a rotary evaporator, and vacuum dried to obtain a yellow oily substance (2.80 g, Yield 68%). ).

Figure 2021042188
Figure 2021042188

(3-7) bis(4-methoxypyrid-2-ylmethyl)amineの合成
100 mLナスフラスコに回転子を入れ、1-tert-butoxycarbonyl-bis(4-chloropyrid-2-ylmethyl)amine (150.0 mg, 0.417 mmol), EtOH (12 mL), 12 M HCl (4 mL)を加え、脱気及び窒素置換した後、一晩攪拌した。反応溶液をロータリーエバポレーターで濃縮、真空乾燥すると茶色の固体を得た。これを飽和K2CO3水溶液(20 mL)に溶解させ、CH2Cl2(3 × 50 mL)で分液した。有機層にNa2SO4を加えて脱水した後、ヌッチェで濾過し、濾液をロータリーエバポレーターで濃縮、真空乾燥すると濃黄色の油状物質が得られた(84.2 mg, Yield 50%)。
(3-7) Synthesis of bis (4-methoxypyrid-2-ylmethyl) amine
Place the rotator in a 100 mL eggplant flask and add 1-tert-butoxycarbonyl-bis (4-chloropyrid-2-ylmethyl) amine (150.0 mg, 0.417 mmol), EtOH (12 mL), 12 M HCl (4 mL). After deaeration and nitrogen substitution, the mixture was stirred overnight. The reaction solution was concentrated on a rotary evaporator and vacuum dried to obtain a brown solid. This was dissolved in a saturated aqueous solution of K 2 CO 3 (20 mL) and separated by CH 2 Cl 2 (3 × 50 mL). After dehydrating by adding Na 2 SO 4 to the organic layer, the mixture was filtered through Nutche, the filtrate was concentrated on a rotary evaporator, and vacuum dried to obtain a dark yellow oily substance (84.2 mg, Yield 50%).

Figure 2021042188
Figure 2021042188

(3-8) Hbpcp4-OMeの合成
30 mLナスフラスコに回転子を入れ、2-hydroxy-5-methylisophthalic acid (25.5 mg, 0.130 mmol), SOCl2 (1.5 mL)を加え、60℃で4時間加熱還流した。アスピレーターを用いてSOCl2を留去した後、真空乾燥して黄色の固体を得た。
(3-8) Synthesis of Hbpcp 4-OMe
The rotor was placed in a 30 mL eggplant flask, 2-hydroxy-5-methylisophthalic acid (25.5 mg, 0.130 mmol) and SOCl 2 (1.5 mL) were added, and the mixture was heated under reflux at 60 ° C. for 4 hours. SOCl 2 was distilled off using an aspirator and then vacuum dried to obtain a yellow solid.

続いて、100 mL二口反応容器に回転子を入れ、bis(4-methoxypyrid-2-ylmethyl)amine (84.2 mg, 0.325 mmol), K2CO3 (158.2 mg, 1.14 mmol), dry CH2Cl2 (2 mL)を加え、そこに、dry CH2Cl2 (2 mL)に溶解させた先程の試料を加え、脱気及び窒素置換した後、一晩室温で攪拌した。残った固体を吸引濾過で除き、濾液をロータリーエバポレーターで濃縮し、真空乾燥すると黄色の固体が得られた。これをアルミナカラムクロマトグラフィー(展開溶媒: gradient from CHCl3:MeOH = 1:0 to 50:1)で精製し、目的物が入っているフラクションを集めてロータリーエバポレーターで濃縮、真空乾燥すると黄色の固体が得られた(46.2 mg, Yield 53%)。この固体の1H NMRスペクトルを図3に示す。 Subsequently, the rotor was placed in a 100 mL two-mouth reaction vessel, and bis (4-methoxypyrid-2-ylmethyl) amine (84.2 mg, 0.325 mmol), K 2 CO 3 (158.2 mg, 1.14 mmol), dry CH 2 Cl. 2 (2 mL) was added, and the above sample dissolved in dry CH 2 Cl 2 (2 mL) was added thereto, and the mixture was degassed and replaced with nitrogen, and then stirred overnight at room temperature. The remaining solid was removed by suction filtration, the filtrate was concentrated on a rotary evaporator and vacuum dried to give a yellow solid. This is purified by alumina column chromatography (developing solvent: gradient from CHCl 3 : MeOH = 1: 0 to 50: 1), the fraction containing the desired product is collected, concentrated on a rotary evaporator, and vacuum dried to form a yellow solid. Was obtained (46.2 mg, Yield 53%). The 1 H NMR spectrum of this solid is shown in FIG.

Figure 2021042188
Figure 2021042188

(4) 二核化配位子(Hbdpamide-PEG3-phen)の合成
(4-1) 1,10-ditosyl-1,4,7,10-tetraoxadecane
回転子を入れた2000 mL三口反応容器にp-toluenesulfonyl chloride (87.0 g, 0.456 mol),triethylene glycol (31.0 mL, 0.233 mol),CH2Cl2 (750 mL)を加えた。これを氷浴に浸しながら攪拌し、そこに粉状にした KOH (110 g, 1.96 mol)を少しずつ加え、N2を封入したバルーンを取り付け、0℃に保ったまま3時間攪拌した。反応容器にH2O (450 mL)を加え、これをCH2Cl2(3 × 225 mL)で分液し、有機層にNa2SO4-を加えて脱水した後、ヌッチェで濾過して少量のCH2Cl2で洗い込み、濾液を集めて、濾液をロータリーエバポレーターで濃縮して白色固体を得た。これをacetoneに80℃の水浴で温めながら溶解して再結晶すると、白色固体が得られた (92.5 g, Yield 88%).1H NMRを図1に示す。
1H NMR (500 MHz, CDCl3); δ/ppm: 7.79 (d, J = 8.0 Hz, 4H, Ph), 7.34 (d, J= 8.0 Hz, 4H, Ph), 4.12-4.16 (m, 4H, CH2), 3.64 - 3.68 (m, 4H, CH2), 3.53 (s, 4H, CH2), 2.45 (s, 6H, CH3).
(4) Synthesis of dinuclear ligand (Hbdpamide-PEG3-phen)
(4-1) 1,10-ditosyl-1,4,7,10-tetraoxadecane
P-toluene sulfonyl chloride (87.0 g, 0.456 mol), triethylene glycol (31.0 mL, 0.233 mol) and CH 2 Cl 2 (750 mL) were added to a 2000 mL three-mouth reaction vessel containing a rotor. This was stirred while being immersed in an ice bath, powdered KOH (110 g, 1.96 mol) was added little by little, a balloon containing N 2 was attached, and the mixture was stirred for 3 hours while being kept at 0 ° C. Add H 2 O (450 mL) to the reaction vessel, separate it with CH 2 Cl 2 (3 x 225 mL), add Na 2 SO 4- to the organic layer, dehydrate, and filter with Nutche. The mixture was washed with a small amount of CH 2 Cl 2 , the filtrate was collected, and the filtrate was concentrated on a rotary evaporator to obtain a white solid. When this was dissolved in acetone while warming in a water bath at 80 ° C and recrystallized, a white solid was obtained (92.5 g, Yield 88%). 1 1 H NMR is shown in Fig. 1.
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 7.79 (d, J = 8.0 Hz, 4H, Ph), 7.34 (d, J = 8.0 Hz, 4H, Ph), 4.12-4.16 (m, 4H) , CH 2 ), 3.64 --3.68 (m, 4H, CH 2 ), 3.53 (s, 4H, CH 2 ), 2.45 (s, 6H, CH 3 ).

Figure 2021042188
Figure 2021042188

(4-2) 1,8-diazido-3,6-dioxaoctane
回転子を入れた300 mLナスフラスコに1,10-ditosyl-1,4,7,10-tetraoxadecane (46.7 g, 0.102 mol),tetrabuthylammonium iodide (1.94 g, 5.26 mmol),sodium azide (27.1g, 0.417 mol)をくわえ、さらにN2雰囲気下でDMF (150 mL)を加え、三方コック、バルーンを取り付けて脱気及び窒素置換をした後、80℃で24時間攪拌した。反応容器を室温に戻した後、DMFを減圧蒸留し乳白色固体を得た。これにEt2O (340 mL)加えて不溶塩をヌッチェで濾過し、濾液をH2O (3 × 135 mL)で分液した。有機層にNa2SO4-を加えて脱水した後、桐山漏斗で濾過して少量のEt2Oで洗い込み、濾液をロータリーエバポレーターで濃縮して黄色の液体を得た (18.5 g, Yield 91%)。
1H NMR (500 MHz, CDCl3); δ/ppm: 3.70 (t, J = 4.9 Hz, 4H, CH2), 3.69 (s, 4H, CH2), 3.40 (t, J = 4.9 Hz, 4H, CH2).
(4-2) 1,8-diazido-3,6-dioxaoctane
1,10-ditosyl-1,4,7,10-tetraoxadecane (46.7 g, 0.102 mol), tetrabuthylammonium iodide (1.94 g, 5.26 mmol), sodium azide (27.1 g, 0.417) in a 300 mL eggplant flask containing a rotor. In addition to mol) , DMF (150 mL) was further added in an N 2 atmosphere, a three-way cock and a balloon were attached, and the mixture was degassed and replaced with nitrogen, and then stirred at 80 ° C. for 24 hours. After returning the reaction vessel to room temperature, DMF was distilled under reduced pressure to obtain a milky white solid. Et 2 O (340 mL) was added thereto, the insoluble salt was filtered through Nutche, and the filtrate was separated by H 2 O (3 × 135 mL). After dehydrating by adding Na 2 SO 4- to the organic layer, the mixture was filtered through a Kiriyama funnel , washed with a small amount of Et 2 O, and the filtrate was concentrated with a rotary evaporator to obtain a yellow liquid (18.5 g, Yield 91). %).
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 3.70 (t, J = 4.9 Hz, 4H, CH 2 ), 3.69 (s, 4H, CH 2 ), 3.40 (t, J = 4.9 Hz, 4H) , CH 2 ).

Figure 2021042188
Figure 2021042188

(4-3) 1-amino-8-azido-3,6-dioxaoctane
回転子を入れた1000 mLナスフラスコに1,8-diazido-3,6-dioxaoctane (18.5 g, 92.4 mmol),EtOAc (130 mL),1 M HCl (164 mL)を加えた。200 mL等圧滴下漏斗を取り付け、そこにtriphenylphosphine (23.2 g, 88.5 mmol)をEtOAc (130 mL)に溶解させた溶液を入れ、激しく攪拌しながらゆっくり滴下した。12時間後、1000 mL分液漏斗に反応溶液を移し、EtOAc層を取り除き、残った水層をEtOAc (3 × 100 mL)で分液洗浄した。EtOAc層を取り除き、この水層のpHを1 M NaOH水溶液で14にした後、CHCl3(3 × 240 mL)で分液した。有機層にNa2SO4を加えて脱水した後、ヌッチェで濾過して少量のCHCl3で洗い込み、濾液をロータリーエバポレーターで濃縮して黄色の液体を得た (13.6 g, Yield 84%)。
1H NMR (500 MHz, CDCl3); δ/ppm: 3.70 (t, J = 5.2 Hz, 2H, CH2), 3.62-3.68 (m, 4H, CH2), 3.52 (t, J = 5.2 Hz, 2H, CH2), 3.40 (t, J = 5.2 Hz, 2H, CH2), 2.88 (t, J = 5.2 Hz, 2H, CH2), 1.28 (brs, 2H, NH2).
(4-3) 1-amino-8-azido-3,6-dioxaoctane
1,8-diazido-3,6-dioxaoctane (18.5 g, 92.4 mmol), EtOAc (130 mL) and 1 M HCl (164 mL) were added to a 1000 mL eggplant flask containing a rotor. A 200 mL isobaric dropping funnel was attached, and a solution of triphenylphosphine (23.2 g, 88.5 mmol) dissolved in EtOAc (130 mL) was placed therein and slowly added dropwise with vigorous stirring. After 12 hours, the reaction solution was transferred to a 1000 mL separatory funnel, the EtOAc layer was removed, and the remaining aqueous layer was separated and washed with EtOAc (3 x 100 mL). The EtOAc layer was removed, the pH of this aqueous layer was adjusted to 14 with a 1 M NaOH aqueous solution, and then the solution was separated with CHCl 3 (3 x 240 mL). The organic layer was dehydrated by adding Na 2 SO 4 , filtered through Nutche, washed with a small amount of CHCl 3 , and the filtrate was concentrated on a rotary evaporator to give a yellow liquid (13.6 g, Yield 84%).
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 3.70 (t, J = 5.2 Hz, 2H, CH 2 ), 3.62-3.68 (m, 4H, CH 2 ), 3.52 (t, J = 5.2 Hz) , 2H, CH 2 ), 3.40 (t, J = 5.2 Hz, 2H, CH 2 ), 2.88 (t, J = 5.2 Hz, 2H, CH 2 ), 1.28 (brs, 2H, NH 2 ).

Figure 2021042188
Figure 2021042188

(4-4) 3,5-diformyl-4-hydroxybenzoic acid
1L三口反応容器に回転子を入れ、4-hydroxybenzoic acid (10.1 g, 73.1 mol), hexamethylenetramine (84.1 g, 0.600 mol),CF3COOH (180 mL)を加えた。この時、溶液の色は黄色であった。110℃で2日間還流(窒素置換はなし)すると、粘度の高いオレンジ色の溶液に変化した。室温に戻した後、4 M HCl (450 mL)を加えて30℃で一晩攪拌した。固体をヌッチェで吸引濾過して集め、H2Oで洗浄した後、真空乾燥して黄色の固体を得た (9.88 g, Yield 70%)。
1H NMR (500 MHz, DMSO-d6); δ/ppm: 10.3 (s, 2H, CH), 8.54 (s, 2H, CHO).
(4-4) 3,5-diformyl-4-hydroxybenzoic acid
A rotor was placed in a 1 L three-mouth reaction vessel, and 4-hydroxybenzoic acid (10.1 g, 73.1 mol), hexamethylenetramine (84.1 g, 0.600 mol), and CF 3 COOH (180 mL) were added. At this time, the color of the solution was yellow. Reflux at 110 ° C. for 2 days (no nitrogen substitution) turned into a viscous orange solution. After returning to room temperature, 4 M HCl (450 mL) was added and the mixture was stirred at 30 ° C. overnight. The solids were collected by suction filtration with Nutche, washed with H 2 O and then vacuum dried to give a yellow solid (9.88 g, Yield 70%).
1 1 H NMR (500 MHz, DMSO-d 6 ); δ / ppm: 10.3 (s, 2H, CH), 8.54 (s, 2H, CHO).

Figure 2021042188
Figure 2021042188

(4-5) N-(8-azido-3,6-dioxaoctyl)-2,6-diformyl-1-hydroxy-4-benzamide
2L三口反応容器に回転子を入れ、氷浴に浸し、3,5-diformyl-4-hydroxybenzoic acid (4. 57 g, 23.5 mmol), CHCl3 (920 mL), 1-amino-8-azido-3,6-dioxaoctane (13.6 g, 78.1 mmol), EDC・HCl (15.0 g, 78.2 mmol), Et3N (10.7 mL, 76.8 mmol)を加えた。この時、溶液の色はオレンジ色であった。脱気及び窒素置換した後、24時間攪拌すると溶液の色は黄色に変化していた。DARTで原料が残っていないこと及びアミド結合の形成を確認した後、1 M HCl (480 mL)を加えて30℃で反応させ、TLC (シリカゲル、展開溶媒:EtOAc/MeOH 10 : 1)で反応追跡して副生成物がほとんどないことを確認した。反応混合物を2 L分液漏斗に移して有機層を取り、水層をCHCl3で抽出した。有機層にNa2SO4を加えて脱水した後、ヌッチェで濾過して少量のCHCl3で洗い込み、濾液を集めてロータリーエバポレーターで濃縮、真空乾燥した。これをCHCl3 (120 mL)に溶解させ、H2O (3 × 40 mL)で分液した。有機層にNa2SO4を加えて脱水した後、ヌッチェで濾過し、濾液をロータリーエバポレーターで濃縮、真空乾燥すると橙色の固体が得られた(6.52 g, Yield 79%)。
1H NMR (500 MHz, CDCl3); δ/ppm: 11.9 (s, H, OH), 10.3 (s, 2H, CHO), 8.46 (s, 2H, CH), 6.84 (s, H, NH), 3.73 (t, J = 5.2 Hz, 2H, CH2), 3.69 - 3.72 (m, 8H, CH2), 3.41 (t, J = 5.2 Hz, 2H, CH2).
(4-5) N- (8-azido-3,6-dioxaoctyl) -2,6-diformyl-1-hydroxy-4-benzamide
Place the rotor in a 2 L three-mouth reaction vessel and immerse it in an ice bath to obtain 3,5-diformyl-4-hydroxybenzoic acid (4.57 g, 23.5 mmol), CHCl 3 (920 mL), 1-amino-8-azido- 3,6-dioxaoctane (13.6 g, 78.1 mmol), EDC · HCl (15.0 g, 78.2 mmol) and Et 3 N (10.7 mL, 76.8 mmol) were added. At this time, the color of the solution was orange. After degassing and replacing with nitrogen, the color of the solution changed to yellow when stirred for 24 hours. After confirming that no raw material remains and the formation of an amide bond by DART, add 1 M HCl (480 mL), react at 30 ° C, and react with TLC (silica gel, developing solvent: EtOAc / MeOH 10: 1). Tracking confirmed that there were few by-products. The reaction mixture was transferred to a 2 L separatory funnel to remove the organic layer and the aqueous layer was extracted with CHCl 3. After dehydrating by adding Na 2 SO 4 to the organic layer, the mixture was filtered through Nutche , washed with a small amount of CHCl 3 , and the filtrate was collected, concentrated on a rotary evaporator, and vacuum dried. This was dissolved in CHCl 3 (120 mL) and separated by H 2 O (3 x 40 mL). After dehydrating by adding Na 2 SO 4 to the organic layer, the mixture was filtered through Nutche, the filtrate was concentrated on a rotary evaporator, and vacuum dried to obtain an orange solid (6.52 g, Yield 79%).
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 11.9 (s, H, OH), 10.3 (s, 2H, CHO), 8.46 (s, 2H, CH), 6.84 (s, H, NH) , 3.73 (t, J = 5.2 Hz, 2H, CH 2 ), 3.69 --3.72 (m, 8H, CH 2 ), 3.41 (t, J = 5.2 Hz, 2H, CH 2 ).

Figure 2021042188
Figure 2021042188

(4-6) 4-(N-(8-azido-3,6-dioxaoctyl))carbamoyl)-2-hydroxyisophthalic acid
回転子を入れた300 m LナスフラスコにN-(8-azido-3,6-dioxaoctyl)-2,6-diformyl-1-hydroxy-4-benzamide (4.41 g, 12.6 mmol), Ag2O (8.89 g, 38.3 mmol)を入れ、ここにH2O (96 mL)に溶解させたNaOH (4.66 g, 0.116 mol)を加えて60℃で一晩攪拌した。これを最小量のhot H2O (17 mL)で洗浄しながら桐山漏斗で濾過した。この時、濾液はオレンジ色であった。濾液を氷浴に浸しながら12 M HClを用いてpHを1にすると、白色の沈殿が得られた。これを桐山漏斗で濾過で集め、真空乾燥して白色固体を得た(4.72 g, Yield 66%)。
1H NMR (500 MHz, DMSO-d6); δ/ppm: 8.53 (s, H, NH), 8.47 (s, 2H, CH), 3.60 (t, J = 5.2 Hz, 2H, CH2), 3.54-3.58 (m, 4H, CH2), 3.52 (t, J= 6.3 Hz, 2H, CH2) , 3.39 (t, J= 6.3 Hz, 2H, CH2) , 3.37 (t, J = 5.2 Hz, 2H, CH2).
(4-6) 4- (N- (8-azido-3,6-dioxaoctyl)) carbamoyl) -2-hydroxyisophthalic acid
N- (8-azido-3,6-dioxaoctyl) -2,6-diformyl-1-hydroxy-4-benzamide (4.41 g, 12.6 mmol), Ag 2 O (8-azido-3,6-dioxaoctyl) -2,6-diformyl-1-hydroxy-4-benzamide (4.41 g, 12.6 mmol) in a 300 mL eggplant flask containing a rotor. 8.89 g, 38.3 mmol) was added, and NaOH (4.66 g, 0.116 mol) dissolved in H 2 O (96 mL) was added thereto, and the mixture was stirred overnight at 60 ° C. This was filtered through a Kiriyama funnel while washing with the minimum amount of hot H 2 O (17 mL). At this time, the filtrate was orange. When the pH was adjusted to 1 with 12 M HCl while immersing the filtrate in an ice bath, a white precipitate was obtained. This was collected by filtration through a Kiriyama funnel and vacuum dried to give a white solid (4.72 g, Yield 66%).
1 1 H NMR (500 MHz, DMSO-d 6 ); δ / ppm: 8.53 (s, H, NH), 8.47 (s, 2H, CH), 3.60 (t, J = 5.2 Hz, 2H, CH 2 ), 3.54-3.58 (m, 4H, CH 2 ), 3.52 (t, J = 6.3 Hz, 2H, CH 2 ), 3.39 (t, J = 6.3 Hz, 2H, CH 2 ), 3.37 (t, J = 5.2 Hz) , 2H, CH 2 ).

Figure 2021042188
Figure 2021042188

(4-7) N-(8-azido-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benzamide
50 mLナスフラスコに回転子を入れ、4-(N-(8-azido-3,6-dioxaoctyl))carbamoyl)-2-hydroxyisophthalic acid (0.201 g, 0.525 mmol)とSOCl2 (10 mL)を加えた後、還流器具を取り付け、60℃で4時間攪拌した。その後、SOCl2を留去し、真空乾燥し、黄色の油状物質を得た。続いて、50 mLナスフラスコに回転子を入れ、K2CO3 (0.659 g, 4.76 mmol),dipyridylmethylamine (0.284 g, 1.42 mmol),dry CH-2Cl2 (10 mL)を加えた。この溶液に、先程得られた黄色の油状物質をdry CH2Cl2(10 mL)に溶解させた溶液を窒素雰囲気下で加え、脱気及び窒素置換した後、一晩攪拌した。ESI-MSで原料が残っていないことを確認した後、ヌッチェで濾過すると濃い黄色の濾液が得られた。濾液を100 mL分液漏斗に移し、蒸留水(3 × 15 mL)で分液した。有機層にNa2SO4を加えて脱水した後、ヌッチェで濾過し、濾液をロータリーエバポレーターで濃縮、真空乾燥して濃い黄色の油状物質を得た。この油状物質を最小量のCHCl3 (1 mL)に溶解させ、アルミナカラムクロマトグラフィー(gradient CHCl3/MeOH from 100/0 to 30/1)で精製した。目的物の入っているフラクションを集め、ロータリーエバポレーターで濃縮、真空乾燥すると淡黄色の固体が得られた (0.163 g, Yield 41.7%)。
1H NMR (500 MHz, DMSO-d6); δ/ppm: 8.51 (d, J = 3.4 Hz, 2H, CH), 8.44 (d, J = 3.4 Hz, 2H, CH), 7.92 (t, J = 7.5 Hz, 2H, CH), 7.83 (s, 2H, Ph), 7.72 (t, J = 7.5 Hz, 2H, CH), 7.58 (d, J = 7.5 Hz, 2H, CH2), 7.39 (t, J = 3.4, 7.5 Hz, 2H, CH), 7.22-7.25 (m, 4H, CH), 4.81 (s, 4H, CH2), 4.54 (s, 4H, CH2), 3.60-3.47 (m, 10H, CH2).
(4-7) N- (8-azido-3,6-dioxaoctyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamyyl) -1-hydroxy-4-benzamide
Place the rotor in a 50 mL eggplant flask and add 4- (N- (8-azido-3,6-dioxaoctyl)) carbamoyl) -2-hydroxyisophthalic acid (0.201 g, 0.525 mmol) and SOCl 2 (10 mL). After that, a reflux device was attached, and the mixture was stirred at 60 ° C. for 4 hours. Then, SOCl 2 was distilled off and vacuum dried to obtain a yellow oily substance. Subsequently, the rotor was placed in a 50 mL eggplant flask, and K 2 CO 3 (0.659 g, 4.76 mmol), dipyridylmethylamine (0.284 g, 1.42 mmol), and dry CH- 2 Cl 2 (10 mL) were added. A solution prepared by dissolving the yellow oily substance obtained earlier in dry CH 2 Cl 2 (10 mL) was added to this solution under a nitrogen atmosphere, and the mixture was degassed and replaced with nitrogen, and then stirred overnight. After confirming that no raw material remained by ESI-MS, filtration through Nutche gave a dark yellow filtrate. The filtrate was transferred to a 100 mL separatory funnel and separated with distilled water (3 x 15 mL). After dehydrating by adding Na 2 SO 4 to the organic layer, the mixture was filtered through Nutche, the filtrate was concentrated with a rotary evaporator, and dried under vacuum to obtain a dark yellow oily substance. The oil was dissolved in a minimum amount of CHCl 3 (1 mL) and purified by alumina column chromatography (gradient CHCl 3 / MeOH from 100/0 to 30/1). Fractions containing the desired material were collected, concentrated on a rotary evaporator and vacuum dried to give a pale yellow solid (0.163 g, Yield 41.7%).
1 1 H NMR (500 MHz, DMSO-d 6 ); δ / ppm: 8.51 (d, J = 3.4 Hz, 2H, CH), 8.44 (d, J = 3.4 Hz, 2H, CH), 7.92 (t, J) = 7.5 Hz, 2H, CH), 7.83 (s, 2H, Ph), 7.72 (t, J = 7.5 Hz, 2H, CH), 7.58 (d, J = 7.5 Hz, 2H, CH 2 ), 7.39 (t) , J = 3.4, 7.5 Hz, 2H, CH), 7.22-7.25 (m, 4H, CH), 4.81 (s, 4H, CH 2 ), 4.54 (s, 4H, CH 2 ), 3.60-3.47 (m, 10H, CH 2 ).

Figure 2021042188
Figure 2021042188

(4-8) N-(8-amino-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benzamide
100 mLナスフラスコに回転子を入れ、三方コック、バルーンを取り付けて真空乾燥した。反応容器にN-(8-azido-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benzamide (375 mg, 0.503 mmol), 10% Pd/C (418 mg), dry MeOH (5 mL)加えてH2置換し30分激しく攪拌した。ESI-MSで確認後、セライト濾過、ロータリーエバポレーターで濃縮した後、真空乾燥すると黄色固体が得られた(301mg, Yield 83%)。
1H NMR (500 MHz, DMSO-d6); δ/ppm: 8.47 (d, J = 4.6 Hz, 2H, CH), 8.37 (d, J = 4.6 Hz, 2H, CH), 7.95 (d, J = 7.5 Hz, 2H, CH), 7.84 (m, 2H, CH), 7.66 (m, 2H, CH), 7.61 (s, 2H, Ph), 7.25-7.32 (m, 4H, CH), 7.19 (ddd, J = 4.6 Hz, 6.3, 7.5 Hz, 2H, CH), 4.50 - 4.80 (m, 8H, CH2), 3.44-3.56 (m, 8H, CH2), 2.80 (t, 2H, CH2).
(4-8) N- (8-amino-3,6-dioxaoctyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamyyl) -1-hydroxy-4-benzamide
The rotor was placed in a 100 mL eggplant flask, a three-way cock and a balloon were attached, and the mixture was vacuum dried. N- (8-azido-3,6-dioxaoctyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) -1-hydroxy-4-benzamide (375 mg, 0.503 mmol) in the reaction vessel , 10% Pd / C (418 mg), dry MeOH (5 mL) was added, H 2 was substituted, and the mixture was vigorously stirred for 30 minutes. After confirmation by ESI-MS, filtration through Celite, concentration by rotary evaporator, and vacuum drying gave a yellow solid (301 mg, Yield 83%).
1 1 H NMR (500 MHz, DMSO-d 6 ); δ / ppm: 8.47 (d, J = 4.6 Hz, 2H, CH), 8.37 (d, J = 4.6 Hz, 2H, CH), 7.95 (d, J) = 7.5 Hz, 2H, CH), 7.84 (m, 2H, CH), 7.66 (m, 2H, CH), 7.61 (s, 2H, Ph), 7.25-7.32 (m, 4H, CH), 7.19 (ddd) , J = 4.6 Hz, 6.3, 7.5 Hz, 2H, CH), 4.50 - 4.80 (m, 8H, CH 2), 3.44-3.56 (m, 8H, CH 2), 2.80 (t, 2H, CH 2).

Figure 2021042188
Figure 2021042188

(4-9)4-(8-N-(9-phenanthrenecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-1,3-bis(N,N-bis(2-pyridylmeth-yl)carbamoyl)hydroxybenzene (Hbdpamide-PEG3-phen配位子)
100 mL二口ナスフラスコに回転子、N-(8-amino-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benzamide (178 mg, 0.247 mmol)を入れ、 dry THF (17 mL)に溶かした後、 Et3N (158 μL)を加えると溶液が橙色に変化した。それを、氷浴中で、激しく攪拌しながら、phenanthrene-9-carbonyl chloride (54.2 mg, 0.225 mmol)をTHF (15 mL)に溶かしたものをパスツールでゆっくりと加えた。加えた後、窒素置換したバルーン付きの三方コックを取り付け、脱気窒素置換後、氷浴に浸しながら攪拌した。1時間攪拌後、室温に戻し、一晩攪拌した。ロータリーエバポレーターでTHFを留去すると、白色の固体が生成した。その固体をCHCl3 (20 mL)に溶解させ、H2O (3 × 5 mL)で分液し、有機層にNa2SO4を加えて脱水した。ヌッチェを用いて吸引濾過し、真空乾燥すると白色固体が得られた。この固体を最小量のCHCl3 に溶解させ、アルミナカラムクロマトグラフィー(gradient CHCl3/MeOH from 100/0 to 30/1)で精製した。目的物の入っているフラクションを集め、ロータリーエバポレーターで濃縮、真空乾燥すると白色の固体が得られた (128 mg, Yield 62%)。1H NMR及びESI-MSスペクトルをそれぞれ図4,5に示す。
(4-9) 4- (8-N- (9-phenanthrenecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -1,3-bis (N, N-bis (2-pyridylmeth-yl) carbamoyl) hydroxybenzene (Hbdpamide-PEG3-phen ligand)
Rotor, N- (8-amino-3,6-dioxaoctyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) -1-hydroxy-4-benzamide in a 100 mL two-necked eggplant flask After adding (178 mg, 0.247 mmol) and dissolving in dry THF (17 mL), Et 3 N (158 μL) was added and the solution turned orange. It was slowly added in a solution of phenanthrene-9-carbonyl chloride (54.2 mg, 0.225 mmol) in THF (15 mL) with Pasteur in an ice bath with vigorous stirring. After the addition, a three-way cock with a nitrogen-substituted balloon was attached, and after degassing nitrogen replacement, the mixture was stirred while being immersed in an ice bath. After stirring for 1 hour, the temperature was returned to room temperature and the mixture was stirred overnight. When THF was distilled off with a rotary evaporator, a white solid was formed. The solid was dissolved in CHCl 3 (20 mL), separated by H 2 O (3 x 5 mL), and dehydrated by adding Na 2 SO 4 to the organic layer. A white solid was obtained by suction filtration using Nutche and vacuum drying. The solid was dissolved in a minimum amount of CHCl 3 and purified by alumina column chromatography (gradient CHCl 3 / MeOH from 100/0 to 30/1). Fractions containing the desired material were collected, concentrated on a rotary evaporator and vacuum dried to give a white solid (128 mg, Yield 62%). 1 H NMR and ESI-MS spectra are shown in FIGS. 4 and 5, respectively.

Figure 2021042188
Figure 2021042188

(5) 二核化配位子(Hbdpamide-PEG3-acr)の合成
(5-1) 9-acridinecarbonyl chloride
50 mLナスフラスコに9-acridinecarboxylic acid n-hydrate (0.104 g, 0.466 mmol), SOCl2 (2 mL, 28 mmol)を加え、80℃の油浴で2時間攪拌した。SOCl2を減圧留去し、真空乾燥すると黄褐色の固体を得た(0.116 g, Yield quant.)。
1H NMR (500 MHz, CDCl3); δ/ppm: 9.28 (d, J = 8.6 Hz, 2H, CH), 8.19-8.28 (m, 4H, CH), 7.96-8.02 (m, 2H, CH).
(5) Synthesis of dinuclear ligand (Hbdpamide-PEG3-acr)
(5-1) 9-acridine carbonyl chloride
9-acridinecarboxylic acid n-hydrate (0.104 g, 0.466 mmol) and SOCl 2 (2 mL, 28 mmol) were added to a 50 mL eggplant flask, and the mixture was stirred in an oil bath at 80 ° C. for 2 hours. SOCl 2 was distilled off under reduced pressure and dried under vacuum to obtain a yellowish brown solid (0.116 g, Yield quant.).
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 9.28 (d, J = 8.6 Hz, 2H, CH), 8.19-8.28 (m, 4H, CH), 7.96-8.02 (m, 2H, CH) ..

Figure 2021042188
Figure 2021042188

(5-2) 4-(8-N-(9-acridinecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)hydroxybenzene (Hbdpamide-PEG3-acr配位子)
100 mL二口反応容器に回転子を入れ、三方コック、バルーンを取り付けて真空乾燥した。反応容器にN-(8-amino-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benzamide (92.4 mg, 0.129 mmol)をdry THF (10 mL)に溶かした溶液、Et3N (72.4 μL, 0.515 mmol) を加えた。氷浴につけ、N2フローし9-acridinecarbonyl chloride (31.3 mg,0.130 mmol)をdry THFに溶かしゆっくり加え、N2置換し遮光して一晩攪拌した。ロータリーエバポレーターで濃縮し真空乾燥すると薄黄色の固体を得た。この固体をアルミナカラムクロマトグラフィー(CHCl3: MeOH = 100 : 0 →100 : 1 →10 : 1)で精製し、ロータリーエバポレーターで濃縮、真空乾燥すると黄褐色固体が得られた。さらにHPLCにより精製を行い黄色固体を得た(46.9 m g,Yield 39%).1H NMR及びESI-MSスペクトルをそれぞれ図6,7に示す。
1H NMR (500 MHz, CDCl3); δ/ppm: 12.3-12.7 (brs, 1H, OH), 8.39-8.46 (m, 4H, CH), 8.15 (d, J = 8.9 Hz, 2H, CH), 8.11 (d, J = 8.9 Hz, 2H, CH), 7.81 (s, 2H, Ph), 7.72 (ddd, J = 1.2, 6.7, 8.9 Hz, 2H, CH), 7.64-7.70 (m, 3H, NH, CH), 7.55-7.62 (m, 2H, CH), 7.52 (ddd, J = 1.2, 6.7, 8.9 Hz, 2H, CH), 7.32-7.38 (m, 2H, CH), 7.19-7.24 (m, 2H, CH), 7.09-7.13 (m, 2H, CH), 7.03-7.07 (m, 2H, CH), 6.72 (t, J = 5.4 Hz, 1H, NH), 4.71 (s, 4H, CH2), 4.49 (s, 4H, CH2), 3.85 - 3.90 (m, 2H, CH2), 3.82-3.85 (m, 2H, CH2), 3.75-3.79 (m, 2H, CH2), 3.67-3.72 (m, 2H, CH2), 3.54-3.59 (m, 2H, CH2), 3.45-3.51 (m, 2H, CH2).
(5-2) 4- (8-N- (9-acridinecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) hydroxybenzene ( Hbdpamide-PEG3-acr ligand)
The rotor was placed in a 100 mL two-mouth reaction vessel, a three-way cock and a balloon were attached, and the mixture was vacuum dried. N- (8-amino-3,6-dioxaoctyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) -1-hydroxy-4-benzamide (92.4 mg, 0.129 mmol) in the reaction vessel Et 3 N (72.4 μL, 0.515 mmol) was added to the solution of the mixture in dry THF (10 mL). The mixture was placed in an ice bath, N 2 flowed, 9-acridine carbonyl chloride (31.3 mg, 0.130 mmol) was dissolved in dry THF, slowly added, N 2 substituted, shaded, and stirred overnight. Concentrated with a rotary evaporator and vacuum dried to give a pale yellow solid. This solid was purified by alumina column chromatography (CHCl 3 : MeOH = 100: 0 → 100: 1 → 10: 1), concentrated on a rotary evaporator, and vacuum dried to obtain a yellowish brown solid. Further purification was performed by HPLC to obtain a yellow solid (46.9 mg, Yield 39%). 1 H NMR and ESI-MS spectra are shown in FIGS. 6 and 7, respectively.
1 1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 12.3-12.7 (brs, 1H, OH), 8.39-8.46 (m, 4H, CH), 8.15 (d, J = 8.9 Hz, 2H, CH) , 8.11 (d, J = 8.9 Hz, 2H, CH), 7.81 (s, 2H, Ph), 7.72 (ddd, J = 1.2, 6.7, 8.9 Hz, 2H, CH), 7.64-7.70 (m, 3H, Ph) NH, CH), 7.55-7.62 (m, 2H, CH), 7.52 (ddd, J = 1.2, 6.7, 8.9 Hz, 2H, CH), 7.32-7.38 (m, 2H, CH), 7.19-7.24 (m) , 2H, CH), 7.09-7.13 (m, 2H, CH), 7.03-7.07 (m, 2H, CH), 6.72 (t, J = 5.4 Hz, 1H, NH), 4.71 (s, 4H, CH 2) ), 4.49 (s, 4H, CH 2), 3.85 - 3.90 (m, 2H, CH 2), 3.82-3.85 (m, 2H, CH 2), 3.75-3.79 (m, 2H, CH 2), 3.67- 3.72 (m, 2H, CH 2 ), 3.54-3.59 (m, 2H, CH 2 ), 3.45-3.51 (m, 2H, CH 2 ).

Figure 2021042188
Figure 2021042188

(6) 二核化配位子(Hbdpamide-PEG3-pyr)の合成
(6-1) pyrene-1-carbonyl chloride
100 mLナスフラスコに1-pyrenecarboxylic acid (0.103 g, 0.419 mmol), dry CH2Cl2 (20 mL), SOCl2(0.5 mL, 6.85 mmol), dry DMF 3滴を加え、60℃の油浴で1時間攪拌した。ロータリーエバポレーターで濃縮し、真空乾燥すると黄色の固体を得た(0.110 g, Yield quant.)。
1H NMR (500 MHz, CDCl3); δ/ppm: 9.10 (d, J = 8.6 Hz, 1H, CH), 8.96 (d, J = 8.6 Hz, 1H, CH), 8.37-8.40 (m, 3H, CH), 8.29 (d, J = 8.6 Hz, 1H, CH), 8.25 (d, J = 8.6 Hz, 1H, CH), 8.11-8.16 (m, 2H, CH).
(6) Synthesis of dinuclear ligand (Hbdpamide-PEG3-pyr)
(6-1) pyrene-1-carbonyl chloride
Add 1-pyrenecarboxylic acid (0.103 g, 0.419 mmol), dry CH 2 Cl 2 (20 mL), SOCl 2 (0.5 mL, 6.85 mmol), and 3 drops of dry DMF to a 100 mL eggplant flask and place in an oil bath at 60 ° C. Stirred for 1 hour. Concentrated on a rotary evaporator and vacuum dried to give a yellow solid (0.110 g, Yield quant.).
1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 9.10 (d, J = 8.6 Hz, 1H, CH), 8.96 (d, J = 8.6 Hz, 1H, CH), 8.37-8.40 (m, 3H) , CH), 8.29 (d, J = 8.6 Hz, 1H, CH), 8.25 (d, J = 8.6 Hz, 1H, CH), 8.11-8.16 (m, 2H, CH).

Figure 2021042188
Figure 2021042188

(6-2) 4-(8-N-(9-pyrenecarbamoyl)-3,6-dioxaoctyl)-N-carbamoyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)hydroxybenzene (Hbdpamide-PEG3-pyr配位子)
100 mL二口反応容器に回転子を入れ、三方コック、バルーンを取り付けて真空乾燥した。反応容器にN-(8-amino-3,6-dioxaoctyl)-2,6-bis(N,N-bis(2-pyridylmethyl)carbamoyl)-1-hydroxy-4-benzamide (103 mg, 0.143 mmol)をdry THF (10 mL)に溶かした溶液、Et3N (80.7 μL, 0.574 mmol) を加えた。氷浴につけ、N2フローしpyrene-1-carbonyl chloride (37.7 mg, 0.142 mmol)をdry THFに溶かしゆっくり加え、N2置換し遮光して一晩攪拌した。ロータリーエバポレーターで濃縮し真空乾燥すると薄褐色の固体を得た。この固体をアルミナカラムクロマトグラフィー(CHCl3: MeOH = 100 : 0 →100 : 1 →10 : 1)で精製し、ロータリーエバポレーターで濃縮、真空乾燥すると黄褐色固体が得られた。さらにHPLCにより精製を行い黄色固体を得た(46.9 m g, Yield 39%)。1H NMR及びESI-MSスペクトルをそれぞれ図8,9に示す。
1H NMR (500 MHz, CDCl3); δ/ppm: 12.3-12.7 (brs, 1H, OH), 8.59 (d, J= 9.5 Hz, 2H, CH), 8.40-8.44 (m, 4H, CH), 8.15-8.22 (m, 2H, CH), 7.98-8.12 (m, 5H, CH) 7.92 (s, 2H, Ph), 7.58-7.68 (m, 2H, CH), 7.50-7.55 (m, 2H, CH), 7.28-7.35 (m, 3H, NH, CH), 7.14-7.18 (m, 2H, CH), 7.05-7.14 (m, 4H, CH), 6.81 (t, J = 5.4 Hz, 2H, NH), 4.82 (s, 4H, CH2), 4.53 (s, 4H, CH2), 3.76-3.84 (m, 4H, CH2), 3.72-3.75 (m, 2H, CH2), 3.65-3.69 (m, 2H, CH2), 3.57-3.61 (m, 2H, CH2), 3.47-3.52 (m, 2H, CH2).
(6-2) 4- (8-N- (9-pyrenecarbamoyl) -3,6-dioxaoctyl) -N-carbamoyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) hydroxybenzene ( Hbdpamide-PEG3-pyr ligand)
The rotor was placed in a 100 mL two-mouth reaction vessel, a three-way cock and a balloon were attached, and the mixture was vacuum dried. N- (8-amino-3,6-dioxaoctyl) -2,6-bis (N, N-bis (2-pyridylmethyl) carbamoyl) -1-hydroxy-4-benzamide (103 mg, 0.143 mmol) in the reaction vessel Et 3 N (80.7 μL, 0.574 mmol) was added. The mixture was placed in an ice bath, N 2 flowed, pyrene-1-carbonyl chloride (37.7 mg, 0.142 mmol) was dissolved in dry THF, slowly added, N 2 substituted, shielded from light, and stirred overnight. Concentrated with a rotary evaporator and vacuum dried to give a light brown solid. This solid was purified by alumina column chromatography (CHCl 3 : MeOH = 100: 0 → 100: 1 → 10: 1), concentrated on a rotary evaporator, and vacuum dried to obtain a yellowish brown solid. Further purification was performed by HPLC to obtain a yellow solid (46.9 mg, Yield 39%). 1 H NMR and ESI-MS spectra are shown in FIGS. 8 and 9, respectively.
1 H NMR (500 MHz, CDCl 3 ); δ / ppm: 12.3-12.7 (brs, 1H, OH), 8.59 (d, J = 9.5 Hz, 2H, CH), 8.40-8.44 (m, 4H, CH) , 8.15-8.22 (m, 2H, CH), 7.98-8.12 (m, 5H, CH) 7.92 (s, 2H, Ph), 7.58-7.68 (m, 2H, CH), 7.50-7.55 (m, 2H, CH) CH), 7.28-7.35 (m, 3H, NH, CH), 7.14-7.18 (m, 2H, CH), 7.05-7.14 (m, 4H, CH), 6.81 (t, J = 5.4 Hz, 2H, NH ), 4.82 (s, 4H, CH 2 ), 4.53 (s, 4H, CH 2 ), 3.76-3.84 (m, 4H, CH 2 ), 3.72-3.75 (m, 2H, CH 2 ), 3.65-3.69 ( m, 2H, CH 2 ), 3.57-3.61 (m, 2H, CH 2 ), 3.47-3.52 (m, 2H, CH 2 ).

Figure 2021042188
Figure 2021042188

(7) 二核金属錯体の合成
(7-1) 二核金属錯体[Cu2(μ-OAc)-2(bdpamide)](OAc) (1)の合成
100 mLナスフラスコに回転子を入れ、CH3CN (12 mL)に溶かしたCuII(CH3COO)2 (61.1 mg, 0.336 mol)を加え、その後CH3CN (12 mL)に溶かしたHbdpamide (64.5 mg, 0.0865 mmol)をパスツールでゆっくりと加えると溶液の色は深緑色に変化した。ESI-MSで配位子や単核錯体が存在しないことを確認した後、ロータリーエバポレーターで濃縮し少量のEt2Oを加えると深緑色の固体が析出した。これを桐山漏斗で吸引濾過すると深緑色の固体を得た(77.5 mg)。ESI-MSスペクトルを図10に示す。
(7) Synthesis of dinuclear metal complex
(7-1) binuclear metal complex - Synthesis of [Cu 2 (μ-OAc) 2 (bdpamide)] (OAc) (1)
A rotator was placed 100 mL eggplant flask, CH 3 Cu II dissolved in CN (12 mL) (CH 3 COO) 2 (61.1 mg, 0.336 mol) was added, Hbdpamide then dissolved in CH 3 CN (12 mL) Slow addition of (64.5 mg, 0.0865 mmol) with a pasteur changed the color of the solution to dark green. After confirming the absence of ligands and mononuclear complexes by ESI-MS, the mixture was concentrated on a rotary evaporator and a small amount of Et 2 O was added to precipitate a dark green solid. This was suction filtered with a Kiriyama funnel to give a dark green solid (77.5 mg). The ESI-MS spectrum is shown in FIG.

(7-2) 二核金属錯体[Cu2(μ-OAc)2(bdpamide)](ClO4) (2)の合成
錯体1をCH3CNに溶解させ、NaClO4を加え、CH3CN/Et2O条件下で再結晶すると、褐色の単結晶が得られた。このX線単結晶構造を図11のORTEP図にて示す。単結晶構造解析の結果、二核銅中心には酢酸イオンが2つ架橋していることが明らかになり、その架橋様式は単原子架橋及びsyn-syn型架橋の二重架橋であることが見出された。また、銅周りの結合角度から算出したτ値は、それぞれ0.378と0.471であり、歪んだ四角錐構造を取っていることが明らかになった。
(7-2) Synthesis of dinuclear metal complex [Cu 2 (μ-OAc) 2 (bdpamide)] (ClO 4 ) (2) Dissolve complex 1 in CH 3 CN, add NaCl O 4 and add CH 3 CN / Recrystallization under Et 2 O conditions gave a brown single crystal. This X-ray single crystal structure is shown in the ORTEP diagram of FIG. As a result of single crystal structure analysis, it was clarified that two acetate ions were cross-linked at the center of the dinuclear copper, and it was found that the cross-linking mode was a double cross-linking of a monoatomic crosslink and a syn-syn type crosslink. It was issued. The τ values calculated from the coupling angles around copper were 0.378 and 0.471, respectively, indicating that they have a distorted quadrangular pyramid structure.

(7-3)二核金属錯体 [Cu2(μ-OAc)(μ-H2O)(bdpamide)](ClO4)2(3)の合成
100 mLマイヤーにMilli-Q water (4 mL)に溶かしたCuII(CH3COO)2(48 mg, 0.264 mmol)を加え、その後Milli-Q water (4 mL)に溶かしたHbpcp (48.5 mg, 0.0868 mmol)をパスツールでゆっくりと加えると溶液の色は濃い緑色に変化した。カウンター交換の為,NaClO4・H2O (64.1 mg, 0.456 mmol)をMilli-Q water (2 mL)に溶かして加え、ドライヤーで数分加熱後、静置させることによってX線単結晶構造解析に適した緑色の固体が析出した。2日後、析出した結晶を濾過し、緑色の結晶を得た(43.1 mg)。結晶構造を図12のORTEP図にて示す。単結晶構造解析の結果、二核銅中心には酢酸イオンがsyn-syn型架橋で架橋しているとともに、水が架橋していることが明らかになった。また、銅周りの結合角度から算出したτ値は、それぞれ0.309と0.251であり、歪んだ四角錐構造を取っていることが明らかになった。
(7-3) Synthesis of dinuclear metal complex [Cu 2 (μ-OAc) (μ-H 2 O) (bdpamide)] (ClO 4 ) 2 (3)
Cu II (CH 3 COO) 2 (48 mg, 0.264 mmol) dissolved in Milli-Q water (4 mL) was added to 100 mL Meyer, and then Hbpcp (48.5 mg, 48.5 mg,) dissolved in Milli-Q water (4 mL). When 0.0868 mmol) was added slowly with a pasteur, the color of the solution changed to dark green. To replace the counter , dissolve NaClO 4 · H 2 O (64.1 mg, 0.456 mmol) in Milli-Q water (2 mL), heat it with a dryer for several minutes, and let it stand to analyze the X-ray single crystal structure. A green solid suitable for the above was precipitated. After 2 days, the precipitated crystals were filtered to give green crystals (43.1 mg). The crystal structure is shown in the ORTEP diagram of FIG. As a result of single crystal structure analysis, it was clarified that acetate ion is cross-linked by syn-syn type cross-linking and water is cross-linked at the center of dinuclear copper. In addition, the τ values calculated from the coupling angles around copper were 0.309 and 0.251, respectively, and it was clarified that they had a distorted quadrangular pyramid structure.

(7-4) 二核金属錯体[Cu2(μ-OAc)-2(bdpamide4-Cl)](OAc) (4)の合成
100 mLナスフラスコに回転子を入れ、Cu(OAc)2(20.8 mg, 0.115 mmol), MeCN (2 mL)を加え、溶解させた。ここに、MeCN (4 mL)に溶解させたHbpcp4-Cl(30.0 mg, 0.0431 mmol)を、パスツールを用いてゆっくり加えた。室温で1時間攪拌した後、ロータリーエバポレーターでMeCNをある程度まで濃縮した後、攪拌しながらEt2Oを加えると、緑色の沈殿が生じた。これをメンブレンで濾過、真空乾燥すると緑色固体が得られた。ESI-MSスペクトルを図13に示す。
(7-4) binuclear metal complex - Synthesis of [Cu 2 (μ-OAc) 2 (bdpamide 4-Cl)] (OAc) (4)
The rotor was placed in a 100 mL eggplant flask, and Cu (OAc) 2 (20.8 mg, 0.115 mmol) and MeCN (2 mL) were added and dissolved. To this, Hbpcp 4-Cl (30.0 mg, 0.0431 mmol) dissolved in MeCN (4 mL) was slowly added using Pasteur. After stirring at room temperature for 1 hour, MeCN was concentrated to some extent with a rotary evaporator, and then Et 2 O was added with stirring, and a green precipitate was formed. This was filtered through a membrane and vacuum dried to obtain a green solid. The ESI-MS spectrum is shown in FIG.

(7-5) 二核金属錯体[Cu2(μ-OAc)-2(bdpamide4-OMe)](OAc) (5)の合成
100 mLナスフラスコに回転子を入れ、Cu(OAc)2(34.8 mg, 0.192 mmol), MeCN (3 mL)を加え、溶解させた。ここに、MeCN (3 mL)に溶解させたHbpcp4-OMe(43.4 mg, 0.0639 mmol)を、パスツールを用いてゆっくり加えた。室温で1時間攪拌した後、ロータリーエバポレーターでMeCNをある程度まで濃縮した後、攪拌しながらEt2Oを加えると、緑色の沈殿が生じた。これをメンブレンで濾過、真空乾燥すると緑色固体が得られた。ESI-MSスペクトルを図14に示す。
(7-5) binuclear metal complex - Synthesis of [Cu 2 (μ-OAc) 2 (bdpamide 4-OMe)] (OAc) (5)
The rotor was placed in a 100 mL eggplant flask, and Cu (OAc) 2 (34.8 mg, 0.192 mmol) and MeCN (3 mL) were added and dissolved. To this, Hbpcp 4-OMe (43.4 mg, 0.0639 mmol) dissolved in MeCN (3 mL) was slowly added using Pasteur. After stirring at room temperature for 1 hour, MeCN was concentrated to some extent with a rotary evaporator, and then Et 2 O was added with stirring, and a green precipitate was formed. This was filtered through a membrane and vacuum dried to obtain a green solid. The ESI-MS spectrum is shown in FIG.

(7-6) 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-phen)](OAc) (6)の合成
100 mLナスフラスコに回転子を入れ、Cu(OAc)2(7.1 mg, 39.1 μmol), MeCN (1 mL)を加え、溶解させた。ここに,MeCN (1.5 mL)に溶解させたHbdpamide-PEG3-phen (17.8 mg, 19.3 μmol)を、パスツールを用いてゆっくり加えた。室温で1時間攪拌した。ロータリーエバポレーターでMeCNをある程度まで濃縮した後、攪拌しながらEt2Oを加えると、緑色の沈殿が生じた。これをメンブレンで濾過、真空乾燥すると緑色固体が得られた。ESI-MSスペクトルを図15に示す。
(7-6) binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide-PEG3-phen)] Synthesis of (OAc) (6)
The rotor was placed in a 100 mL eggplant flask, and Cu (OAc) 2 (7.1 mg, 39.1 μmol) and MeCN (1 mL) were added and dissolved. Hbdpamide-PEG3-phen (17.8 mg, 19.3 μmol) dissolved in MeCN (1.5 mL) was slowly added thereto using Pasteur. The mixture was stirred at room temperature for 1 hour. After concentrating MeCN to some extent on a rotary evaporator, Et 2 O was added with stirring to produce a green precipitate. This was filtered through a membrane and vacuum dried to obtain a green solid. The ESI-MS spectrum is shown in FIG.

(7-7) 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-acr)](OAc) (7)の合成
200 mLナスフラスコに回転子を入れ、Cu(OAc)2 (18.5 mg, 102 μmol), MeCN (2.0 mL)を加え溶解させた。ここにMeCN (1 mL)に溶解させたHbdpamide-PEG3-acr (46.9 mg, 50.8 μmol)をパスツールでゆっくり加えた。室温で2時間攪拌し、溶液量を減らし攪拌しながらEtO2を加えると緑色の沈殿が得られた。これをメンブレンで濾過し、真空乾燥すると光沢のある緑色固体が得られた(54.2 mg, Yield 92%)。ESI-MSスペクトルを図16に示す。
(7-7) binuclear metal complex - Synthesis of [Cu 2 (μ-OAc) 2 (bdpamide-PEG3-acr)] (OAc) (7)
The rotor was placed in a 200 mL eggplant flask, and Cu (OAc) 2 (18.5 mg, 102 μmol) and MeCN (2.0 mL) were added and dissolved. Hbdpamide-PEG3-acr (46.9 mg, 50.8 μmol) dissolved in MeCN (1 mL) was slowly added thereto using Pasteur. Stirring at room temperature for 2 hours, reducing the amount of solution and adding EtO 2 while stirring resulted in a green precipitate. This was filtered through a membrane and vacuum dried to give a glossy green solid (54.2 mg, Yield 92%). The ESI-MS spectrum is shown in FIG.

(7-8) 二核金属錯体[Cu2(μ-OAc)-2(bdpamide-PEG3-pyr)](OAc) (8)の合成
200 mLナスフラスコに回転子を入れ、Cu(OAc)2(30.2 mg, 166 μmol), MeCN (2.5 mL)を加え溶解させた。ここにMeCN (1.5 mL)に溶解させたHbdpamide-PEG3-pyr (78.6 mg, 83.0 μmol)をパスツールでゆっくり加えた。室温で2時間攪拌し、溶液量を減らしたのち攪拌しながらEtO2を加えると緑色の沈殿が得られた。これをメンブレンで濾過し、真空乾燥すると光沢のある緑色固体が得られた(79.2 mg, Yield 76%)。ESI-MSスペクトルを図17に示す。
(7-8) binuclear metal complex [Cu 2 (μ-OAc) - 2 (bdpamide-PEG3-pyr)] Synthesis of (OAc) (8)
The rotor was placed in a 200 mL eggplant flask, and Cu (OAc) 2 (30.2 mg, 166 μmol) and MeCN (2.5 mL) were added and dissolved. Hbdpamide-PEG3-pyr (78.6 mg, 83.0 μmol) dissolved in MeCN (1.5 mL) was slowly added thereto using Pasteur. Stirring at room temperature for 2 hours, reducing the amount of solution, and then adding EtO 2 while stirring gave a green precipitate. This was filtered through a membrane and vacuum dried to give a glossy green solid (79.2 mg, Yield 76%). The ESI-MS spectrum is shown in FIG.

(8) 二核金属錯体1の酸化的切断反応のH2O2濃度依存
錯体1について、以下に示すようにH2O2によるDNAの酸化切断を行った。本測定のために[NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [complex] = 10 μM, [pUC19 DNA] = 50 μM bp, [H2O2] = 0-50 μMとなるように溶液を調製して測定を行った。
(8) The H 2 O 2 concentration-dependent complex 1 of the oxidative cleavage reaction of the dinuclear metal complex 1 was subjected to oxidative cleavage of DNA by H 2 O 2 as shown below. For this measurement, [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [complex] = 10 μM, [pUC19 DNA] = 50 μM bp, [H 2 O 2 ] = 0 The solution was prepared to have a pH of -50 μM and measured.

この結果を図18に示す。H2O2のみのblank実験においてDNAは全く切断されないことは当研究室が見出しており、錯体1はH2O2の濃度に依存して切断活性が大きく向上することが見出された。錯体1は二核構造を持つため、2つの銅イオンがH2O2の2つの酸素原子を結合し、低濃度のH2O2でも容易に二核銅ハイドロパーオキソ錯体を生成してDNAを酸化的に切断すると考えられる。 The result is shown in FIG. H 2 O DNA in 2 only blank experiment not at all cut is heading our laboratory, complex 1 were found to of H 2 O 2 concentration dependence to cleavage activity is greatly improved. Since complex 1 with binuclear structure, two copper ions are bonded to two oxygen atoms of H 2 O 2, to produce a readily binuclear copper hydroperoxide oxo complexes even of H 2 O 2 concentration lower DNA Is thought to oxidatively cleave.

(9) 二核金属錯体2, 6, 7, 8の酸化的切断反応の錯体濃度依存性
錯体2, 6, 7, 8について、以下に示すようにH2O2によるDNAの酸化切断を行った。本測定のために[NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [complex] = 0-20μM, [pUC19 DNA] = 10 μM bp, [H2O2] = 10 μMとなるように溶液を調製し測定を行った。過酸化水素濃度が10 μMの条件での反応において0, 5, 10, 20, 30, 40, 60分ごとに、それぞれ反応溶液を一部とり、各時間におけるpUC19 DNA の切断状況をアガロースゲル電気泳動によって測定した。
(9) For the complex concentration-dependent complexes 2, 6, 7, 8 of the oxidative cleavage reaction of the dinuclear metal complex 2, 6, 7, 8, DNA oxidative cleavage by H 2 O 2 was performed as shown below. It was. For this measurement, [NaCl] = 10 mM, [buffer] = 10 mM (pH 6.0 (MES)), [complex] = 0-20 μM, [pUC19 DNA] = 10 μM bp, [H 2 O 2 ] = The solution was prepared to a pH of 10 μM and measured. In the reaction under the condition of hydrogen peroxide concentration of 10 μM, take a part of the reaction solution every 0, 5, 10, 20, 30, 40, 60 minutes, and check the cleavage status of pUC19 DNA at each time on agarose gel electrophoresis. Measured by electrophoresis.

この結果を図19,20,21,22に示す。核錯体において、錯体濃度に依存して切断活性が大きく向上することが見出された。また、錯体濃度が20 μMにおいてForm IIIの生成割合は1時間後に錯体2で0%,6で10.3%,7で4.1%,8で9.2%となることがわかった。このことから、DNAインターカレーターであるフェナントレン、アクリジン、ピレンを導入した二核銅錯体6, 7, 8は、錯体2と比較してDNAと強く結合し、またその位置が固定され、最初に切断した位置付近のDNAを再度切断できる構造が形成されたため、高いDNA酸化的切断活性を示したと考えられる。 The results are shown in FIGS. 19, 20, 21 and 22. In the nuclear complex, it was found that the cleavage activity was greatly improved depending on the complex concentration. It was also found that when the complex concentration was 20 μM, the formation rate of Form III was 0% for complex 2, 10.3% for 6, 4.1% for 7, and 9.2% for 8 after 1 hour. From this, the dinuclear copper complexes 6, 7, and 8 introduced with the DNA intercalators phenanthrene, aclysine, and pyrene bind more strongly to the DNA than complex 2, and their positions are fixed, so that they are cleaved first. It is considered that the DNA oxidative cleavage activity was high because a structure was formed in which the DNA near the position where the DNA was formed could be cleaved again.

ブレオマイシンはDNAの酸化切断を触媒する。ブレオマイシンは高い抗がん活性を示す抗生物質(抗がん性抗生物質)である。これはブレオマイシンががん細胞のDNAを酸化切断して、がん細胞を細胞死させるためである。ここで、ブレオマイシンは鉄錯体であり、鉄(III)状態ではH2O2と反応して速やかにactive bleomycinと呼ばれる活性型のブレオマイシンを生じる。これは鉄(III)のハイドロパーオキソ錯体と考えられている。さらに、ハイドロパーオキソのO-O結合の開裂により酸化活性種が生じると推定されている。また、ブレオマイシンにはDNA minor groove バインダーが存在しており、それを結合するためにスペーサー部位も存在する。この様にH2O2を酸化剤として働くブレオマイシンに代わる新たな抗がん剤として構造が類似している錯体1-8が有用であると考えられる。 Bleomycin catalyzes oxidative cleavage of DNA. Bleomycin is an antibiotic (anticancer antibiotic) that exhibits high anticancer activity. This is because bleomycin oxidatively cleaves the DNA of cancer cells, causing them to die. Here, bleomycin is an iron complex, and in the iron (III) state, it reacts with H 2 O 2 to rapidly produce an active form of bleomycin called active bleomycin. It is believed to be a hydroperoxo complex of iron (III). Furthermore, it is presumed that cleavage of the OO bond of hydroperoxo produces an oxidatively active species. Bleomycin also has a DNA minor groove binder and a spacer site to bind it. Thus, complex 1-8, which has a similar structure, is considered to be useful as a new anticancer agent to replace bleomycin, which acts as an oxidizing agent for H 2 O 2.

抗がん剤として利用可能である。 It can be used as an anticancer drug.

Claims (10)

下記化学式(I)又は(II)で示されることを特徴とする二核化配位子(下記式において、(i)Xは同一又は異なってH、Cl、OMe、又は、Meであり、(ii)化学式(I)においてYは、水素原子、炭素数1〜8の直鎖若しくは枝鎖のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、エステルアルキル基、又は、フェニル基、ピリジル基、アミノ基、水酸基、チオール基、フッ素原子、塩素原子であり、前記アミノ基はNR1R1’基と記載でき、R1及びR1’はそれぞれ独立に、水素原子、置換若しくは未置換のアルキル基、置換若しくは未置換のアルケニル基、又は、置換若しくは未置換のアリール基であり、(iii)化学式(II)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物であり、nは1〜8の整数である。)。
Figure 2021042188
Figure 2021042188
A dinuclearized ligand represented by the following chemical formula (I) or (II) (in the following formula, (i) X is the same or different H, Cl, OMe, or Me, and ( ii) In the chemical formula (I), Y is a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, an ester alkyl group, or a phenyl group or a pyridyl group. an amino group, a hydroxyl group, a thiol group, a fluorine atom, a chlorine atom, the amino group 'can described as group, R 1 and R 1' NR 1 R 1 are each independently a hydrogen atom, a substituted or unsubstituted alkyl A group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted aryl group, and (iii) in the chemical formula (II), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound. And n is an integer of 1 to 8).
Figure 2021042188
Figure 2021042188
下記化学式(III)で示されることを特徴とする請求項1に記載の二核化配位子。
Figure 2021042188
The dinuclearization ligand according to claim 1, which is represented by the following chemical formula (III).
Figure 2021042188
前記多環式芳香族複素環化合物は、アクリジン、キサンテン、カルバゾール又はポルフィリン及びその誘導体であることを特徴とする請求項1記載の二核化配位子。 The dinuclearization ligand according to claim 1, wherein the polycyclic aromatic heterocyclic compound is an acridine, xanthene, carbazole or porphyrin and a derivative thereof. 前記多環式芳香族炭化水素化合物は、フェナントレン、ピレン、アントラセン、テトラセン、ペンタセン、ベンゾピレン、クリセン、トリフェニレン、コランニュレン、コロネン又はオバレンであることを特徴とする請求項1又は3に記載の二核化配位子。 The dinuclearization according to claim 1 or 3, wherein the polycyclic aromatic hydrocarbon compound is phenanthrene, pyrene, anthracene, tetracene, pentacene, benzopyrene, chrysen, triphenylene, corannulene, coronene or ovalene. Logen. 請求項1乃至4の何れか1項に記載の二核化配位子を有することを特徴とする核酸切断剤。 A nucleic acid cleavage agent comprising the dinuclearization ligand according to any one of claims 1 to 4. 請求項1乃至4の何れか1項に記載の二核化配位子を有することを特徴とする抗がん剤。 An anticancer agent comprising the dinuclearization ligand according to any one of claims 1 to 4. 下記化学式(IV)又は(V)で示されることを特徴とする二核金属錯体(下記式において、(i)Mは、Cu、Fe、Zn、Co、Mn、Re、Ru、Rh、Pd、Pt又はCeであり、(ii)化学式(V)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物であり、nは1〜8の整数である。)。
Figure 2021042188
Figure 2021042188
A dinuclear metal complex represented by the following chemical formula (IV) or (V) (in the following formula, (i) M is Cu, Fe, Zn, Co, Mn, Re, Ru, Rh, Pd, It is Pt or Ce, and (ii) in the chemical formula (V), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic hydrocarbon compound, and n is an integer of 1 to 8).
Figure 2021042188
Figure 2021042188
下記化学式(VI)又は(VII)で示されることを特徴とする請求項7に記載の二核金属錯体(化学式(VII)においてRは、多環式芳香族複素環化合物又は多環式芳香族炭化水素化合物であり、nは1〜8の整数である。)。
Figure 2021042188
Figure 2021042188
The dinuclear metal complex according to claim 7, which is represented by the following chemical formula (VI) or (VII) (in chemical formula (VII), R is a polycyclic aromatic heterocyclic compound or a polycyclic aromatic compound. It is a hydrocarbon compound, and n is an integer of 1 to 8).
Figure 2021042188
Figure 2021042188
請求項7又は8項に記載の二核金属錯体を有することを特徴とする核酸切断剤。 A nucleic acid cleavage agent comprising the dinuclear metal complex according to claim 7 or 8. 請求項7又は8項に記載の二核金属錯体を有することを特徴とする抗がん剤。 An anticancer agent comprising the dinuclear metal complex according to claim 7 or 8.
JP2019167720A 2019-09-13 2019-09-13 Dinucleating ligand or dinuclear metal complex Pending JP2021042188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167720A JP2021042188A (en) 2019-09-13 2019-09-13 Dinucleating ligand or dinuclear metal complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167720A JP2021042188A (en) 2019-09-13 2019-09-13 Dinucleating ligand or dinuclear metal complex

Publications (1)

Publication Number Publication Date
JP2021042188A true JP2021042188A (en) 2021-03-18

Family

ID=74863767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167720A Pending JP2021042188A (en) 2019-09-13 2019-09-13 Dinucleating ligand or dinuclear metal complex

Country Status (1)

Country Link
JP (1) JP2021042188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957347A (en) * 2022-07-01 2022-08-30 武汉轻工大学 Preparation method of bipyridyl copper-zinc heterobinuclear macrocyclic complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957347A (en) * 2022-07-01 2022-08-30 武汉轻工大学 Preparation method of bipyridyl copper-zinc heterobinuclear macrocyclic complex

Similar Documents

Publication Publication Date Title
US10766914B2 (en) DNA alkylating agents
CN111153899B (en) Substituted pyridine compound, preparation method and application thereof
EP2854948B1 (en) Metal-based thiophene photodynamic compounds and their use
KR20080086436A (en) Camptothecin derivatives as chemoradiosensitizing agents
Mikata et al. Quinoline-attached triazacyclononane (TACN) derivatives as fluorescent zinc sensors
US9233995B2 (en) Quinazoline derivatives and quinazoline complex protein kinase inhibitor for inhibiting multiplication of tumor cells and preparation method thereof
EP0313874B1 (en) Disulfur analogs of LL-E33288 antitumor agents
JP2021042188A (en) Dinucleating ligand or dinuclear metal complex
Iqbal et al. Substitution of the chlorido ligand for PPh3 in anticancer organoruthenium complexes of sulfonamide-functionalized pyridine-2-carbothioamides leads to high cytotoxic activity
CN102731493B (en) Anti-tumor compound containing benzothiazole heterocyclic structure and application thereof
WO2016119643A1 (en) Compound containing indoleacetic acid core structure and use thereof
Alexander et al. G-Quadruplex selectivity and cytotoxicity of a guanidine-encapsulated porphyrin-cyclodextrin conjugate
WO2012155559A1 (en) Organic hybridized tetra-core platinum complex and preparation method thereof as well as the use thereof in manufacturing medicament for antitumor
EP4393924A1 (en) Imidazo [1,2-a] pyrazine or pyrazolo [1,5-a] pyrimidine derivative and use thereof
JP2021042187A (en) Dinucleating ligand or dinuclear metal complex
JP2002506855A (en) Cytotoxic metal chelating agents, their preparation and use
Chorbu et al. Ditopic pyridyl-benzothiazole–Pyridylmethylene-2-thiohydantoin conjugates: Synthesis and study in complexation with CuCl2
JP7332148B2 (en) Dinucleated ligands or binuclear metal complexes
JP6892103B2 (en) Dinuclear ligand or dinuclear metal complex
CN113292554A (en) Dihydronaphtho [2,1-d ] isoxazole amide derivatives and application thereof in antitumor drugs
JP2024033341A (en) Tetranucleating ligand, nucleic acid cleaving agent, anticancer agent or tetranuclear metal complex
CN110483531A (en) A kind of water-soluble porphyrin ene derivative, preparation method, anti-tumor drug and application
CN114591346B (en) Camptothecin prodrug, preparation method, application and salt thereof
CN114805375B (en) N-phenylalkoxy dibenzoazepine compound, preparation method and medical application thereof
CN114057696B (en) Carbazole-pyrimidine derivative and preparation method and application thereof