JP2021040392A - Control device, charging/discharging system, and charging/discharging control program - Google Patents

Control device, charging/discharging system, and charging/discharging control program Download PDF

Info

Publication number
JP2021040392A
JP2021040392A JP2019159476A JP2019159476A JP2021040392A JP 2021040392 A JP2021040392 A JP 2021040392A JP 2019159476 A JP2019159476 A JP 2019159476A JP 2019159476 A JP2019159476 A JP 2019159476A JP 2021040392 A JP2021040392 A JP 2021040392A
Authority
JP
Japan
Prior art keywords
wind power
power generation
storage battery
target value
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019159476A
Other languages
Japanese (ja)
Other versions
JP7249915B2 (en
Inventor
純一 熊野
Junichi Kumano
純一 熊野
小島 康弘
Yasuhiro Kojima
康弘 小島
洪作 松村
Kosaku Matsumura
洪作 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019159476A priority Critical patent/JP7249915B2/en
Publication of JP2021040392A publication Critical patent/JP2021040392A/en
Application granted granted Critical
Publication of JP7249915B2 publication Critical patent/JP7249915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a control device in which linkage point power can be increased while a linkage condition is satisfied.SOLUTION: A control device 1 temporarily stores power generated by wind power generation devices 3-1, 3-2, and controls charging/discharging of power storage batteries 21-1 to 21-n that reversely supply the stored power to a power system. The control device includes a power storage battery information acquisition unit 11 that acquires power storage battery information including the stored power amounts of the power storage batteries, a wind power generation information acquisition unit 12 that acquires wind power generation information including a wind power generation output, a target value calculation unit 14 that calculates a target value of power to be reversely supplied to the power system, on the basis of an estimated output range of the wind power generation output on the basis of the wind power generation information, the power storage battery information, and a power system linkage condition, and a charging/discharging instruction unit 15 that calculates a charging/discharging instruction value to the power storage batteries on the basis of the target value.SELECTED DRAWING: Figure 2

Description

本発明は、風力発電向けの制御装置、充放電システムおよび充放電制御プログラムに関する。 The present invention relates to a control device, a charge / discharge system, and a charge / discharge control program for wind power generation.

風力発電装置を用いて発電した電力を電力会社の電力系統に逆潮流させて電力会社に売電するシステムでは、電力系統へ逆潮流させる電力である連系点電力の変動を予め定められた範囲内とする連系条件が課されることがある。このため、風力発電システムでは、連系点電力の変動を抑制するために、蓄電池システムが用いられることが多い。例えば、特許文献1には、過去から現在までの第1の期間の風力発電出力に基づいて、現在から未来までの第2の期間の連系点電力の範囲を決定することによって、連系点電力の変動を抑制するシステムが開示されている。このシステムでは、第2の期間における風力発電出力が決定した範囲を逸脱する場合、逸脱した分の電力を蓄電池システムに充電している。 In a system in which the power generated by using a wind power generator is reverse-powered to the power system of the power company and sold to the power company, the fluctuation of the interconnection point power, which is the power to be reverse-powered to the power system, is within a predetermined range. The internal interconnection condition may be imposed. Therefore, in a wind power generation system, a storage battery system is often used in order to suppress fluctuations in interconnection point power. For example, in Patent Document 1, the interconnection point is determined by determining the range of the interconnection point power in the second period from the present to the future based on the wind power generation output in the first period from the past to the present. A system that suppresses fluctuations in electric power is disclosed. In this system, when the wind power generation output in the second period deviates from the determined range, the deviated amount of electric power is charged to the storage battery system.

特開2009−079559号公報JP-A-2009-0759559

しかしながら、上記従来の技術によれば、風力発電出力が増加する場合、増加した時点から、定められた範囲内となるように連系点電力が増加する。このため、連系点電力が抑制されてしまい、電力会社へ売電する電力量が減少してしまうという問題があった。 However, according to the above-mentioned conventional technique, when the wind power generation output increases, the interconnection point power increases so as to be within a predetermined range from the point of increase. For this reason, there is a problem that the interconnection point power is suppressed and the amount of power sold to the electric power company is reduced.

本発明は、上記に鑑みてなされたものであって、連系条件を満たしつつ、連系点電力を増加させることが可能な制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a control device capable of increasing the interconnection point power while satisfying the interconnection condition.

上述した課題を解決し、目的を達成するために、本発明に係る制御装置は、風力発電装置により発電された電力を一時的に蓄えて、蓄えた電力を電力系統に逆潮流させることが可能な蓄電池の充放電を制御し、蓄電池の蓄電量を含む蓄電池情報を取得する蓄電池情報取得部と、風力発電出力を含む風力発電情報を取得する風力発電情報取得部と、風力発電情報に基づく風力発電出力の出力想定範囲と蓄電池情報と電力系統の連系条件とに基づいて、電力系統へ逆潮流させる電力の目標値を算出する目標値算出部と、目標値に基づいて、蓄電池に対する充放電指令値を算出する充放電指令部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the control device according to the present invention can temporarily store the power generated by the wind power generation device and reverse the stored power to the power system. A storage battery information acquisition unit that controls the charging and discharging of various storage batteries and acquires storage battery information including the amount of electricity stored in the storage battery, a wind power generation information acquisition unit that acquires wind power generation information including wind power generation output, and wind power based on wind power generation information. A target value calculation unit that calculates the target value of power to be reverse power flowed to the power system based on the expected output range of the power generation output, storage battery information, and the interconnection condition of the power system, and charging / discharging to the storage battery based on the target value. It is characterized by including a charge / discharge command unit for calculating a command value.

本発明によれば、連系条件を満たしつつ、連系点電力を増加させることが可能であるという効果を奏する。 According to the present invention, it is possible to increase the interconnection point power while satisfying the interconnection condition.

本発明の実施の形態1にかかる充放電システムの構成を示す図The figure which shows the structure of the charge / discharge system which concerns on Embodiment 1 of this invention. 図1に示す制御装置の機能構成を示す図The figure which shows the functional structure of the control device shown in FIG. 図2に示す制御装置の動作を説明するためのフローチャートA flowchart for explaining the operation of the control device shown in FIG. 図2に示す目標値算出部の詳細な動作の一例を示すフローチャートA flowchart showing an example of detailed operation of the target value calculation unit shown in FIG. 図2に示す目標値算出部が用いるルックアップテーブルを作成するためのデータの一例を示す図The figure which shows an example of the data for creating the look-up table used by the target value calculation part shown in FIG. 図2に示す目標値算出部が算出する連系点電力の目標値の一例を示す図The figure which shows an example of the target value of the interconnection point power calculated by the target value calculation part shown in FIG. 図1に示す各風力発電装置の風力発電出力の一例を示す図The figure which shows an example of the wind power generation output of each wind power generation apparatus shown in FIG. 図7に示す複数の風力発電装置の合計の風力発電出力を示す図The figure which shows the total wind power generation output of the plurality of wind power generation devices shown in FIG. 図8に示す風力発電出力の場合に設定される連系点電力の目標値の比較例を示す図The figure which shows the comparative example of the target value of the interconnection point power set in the case of the wind power generation output shown in FIG. 図8に示す風力発電出力の場合に図2に示す制御装置が設定する連系点電力の目標値の一例を示す図The figure which shows an example of the target value of the interconnection point power set by the control device shown in FIG. 2 in the case of the wind power generation output shown in FIG. 図2に示す制御装置の機能を実現するためのハードウェア構成の一例を示す図The figure which shows an example of the hardware configuration for realizing the function of the control device shown in FIG.

以下に、本発明の実施の形態に係る制御装置、充放電システムおよび充放電制御プログラムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the control device, the charge / discharge system, and the charge / discharge control program according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

実施の形態1.
図1は、本発明の実施の形態1にかかる充放電システム10の構成を示す図である。充放電システム10は、制御装置1と、蓄電池システム2と、風力発電装置3−1,3−2とを有する。以下の説明中において、風力発電装置3−1,3−2のそれぞれを特に区別する必要がない場合、単に風力発電装置3と称する。なお、ここでは簡単のため2台の風力発電装置3を示したが、風力発電装置3は1台であってもよいし、3台以上であってもよい。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a charge / discharge system 10 according to a first embodiment of the present invention. The charge / discharge system 10 includes a control device 1, a storage battery system 2, and a wind power generation device 3-1 and 3-2. In the following description, when it is not necessary to distinguish each of the wind power generation devices 3-1 and 3-2, it is simply referred to as the wind power generation device 3. Although two wind power generation devices 3 are shown here for simplicity, the number of wind power generation devices 3 may be one or three or more.

制御装置1は、蓄電池システム2の充放電を制御する。蓄電池システム2は、風力発電装置3が発電した電力を一時的に蓄えて、蓄えた電力を電力系統4に逆潮流させることができる。蓄電池システム2は、風力発電装置3が発電した電力のうち電力系統4に逆潮流させる量を調整するために用いられる。風力発電装置3は、風力を用いて発電する。風力発電装置3が発電した電力は、電力系統4に逆潮流させることもできるし、蓄電池システム2が充電を行っている場合、蓄電池システム2に供給することもできる。 The control device 1 controls the charging / discharging of the storage battery system 2. The storage battery system 2 can temporarily store the electric power generated by the wind power generation device 3 and reverse the stored electric power to the electric power system 4. The storage battery system 2 is used to adjust the amount of power generated by the wind power generation device 3 to be reverse-flowed to the power system 4. The wind power generator 3 uses wind power to generate electricity. The electric power generated by the wind power generation device 3 can be reverse-flowed to the electric power system 4, or can be supplied to the storage battery system 2 when the storage battery system 2 is charging.

制御装置1は、蓄電池システム2が有する蓄電池の蓄電量を含む蓄電池情報を蓄電池システム2から取得する。制御装置1は、風力発電装置3−1,3−2の風力発電出力を含む風力発電情報を風力発電装置3−1,3−2から取得する。制御装置1は、取得した蓄電池情報および風力発電情報に基づいて、電力系統4へ逆潮流させる電力である連系点電力の目標値を算出し、当該目標値に基づいて充放電指令を生成し、生成した充放電指令を蓄電池システム2に与える。したがって、制御装置1は、蓄電池システム2の充放電を制御することで、電力系統4へ逆潮流させる連系点電力を制御することができる。 The control device 1 acquires storage battery information including the amount of electricity stored in the storage battery of the storage battery system 2 from the storage battery system 2. The control device 1 acquires wind power generation information including the wind power generation output of the wind power generation devices 3-1 and 3-2 from the wind power generation devices 3-1 and 3-2. Based on the acquired storage battery information and wind power generation information, the control device 1 calculates a target value of interconnection point power, which is power to be reverse-flowed to the power system 4, and generates a charge / discharge command based on the target value. , The generated charge / discharge command is given to the storage battery system 2. Therefore, the control device 1 can control the interconnection point power to be reverse-powered to the power system 4 by controlling the charging / discharging of the storage battery system 2.

制御装置1は、上述の通り、連系点電力の目標値を算出し、連系点電力が目標値に近づくように蓄電池システム2の充放電量を指示する充放電指令を生成する。しかしながら、風力発電装置3の風力発電出力は、経時的に変化するため、現在の風力発電出力に基づいて目標値を算出すると、必ずしも連系点電力が目標値になるとは限らない。連系点電力の値には、電力系統4を管理する電力会社が定めた連系規定と呼ばれる条件が課せられている。連系規定は、風力発電装置3と電力系統4との間の連系点における電力値の基準、条件などの連系条件を示したものである。連系条件は、例えば、連系点電力の値の変化率が基準以内であるという条件を含む。より具体的には、連系条件は、1分あたりの変化量が連系定格の1%以内であるという条件を含む。制御装置1は、連系条件を満たしつつ、電力系統4へ逆潮流させる電力ができるだけ多くなるように、蓄電池システム2の充放電を制御することが好ましい。 As described above, the control device 1 calculates the target value of the interconnection point power and generates a charge / discharge command instructing the charge / discharge amount of the storage battery system 2 so that the interconnection point power approaches the target value. However, since the wind power generation output of the wind power generation device 3 changes with time, the interconnection point power does not always reach the target value when the target value is calculated based on the current wind power generation output. The value of the interconnection point power is subject to a condition called an interconnection regulation set by the electric power company that manages the power system 4. The interconnection regulation indicates the interconnection conditions such as the standard and the condition of the electric power value at the interconnection point between the wind power generation device 3 and the electric power system 4. The interconnection condition includes, for example, a condition that the rate of change of the value of the interconnection point power is within the standard. More specifically, the interconnection condition includes the condition that the amount of change per minute is within 1% of the interconnection rating. It is preferable that the control device 1 controls the charge / discharge of the storage battery system 2 so that the amount of power to be reverse-fed to the power system 4 is as large as possible while satisfying the interconnection condition.

図2は、図1に示す制御装置1の機能構成を示す図である。制御装置1は、蓄電池情報取得部11と、風力発電情報取得部12と、基準情報取得部13と、目標値算出部14と、充放電指令部15とを有する。 FIG. 2 is a diagram showing a functional configuration of the control device 1 shown in FIG. The control device 1 includes a storage battery information acquisition unit 11, a wind power generation information acquisition unit 12, a reference information acquisition unit 13, a target value calculation unit 14, and a charge / discharge command unit 15.

蓄電池情報取得部11は、蓄電池システム2から蓄電池情報を取得する。蓄電池システム2は、蓄電池21−1〜21−nと、PCS(Power Conditioning System)22−1〜22−nとを有する。以下、蓄電池21−1〜21−nのそれぞれを区別する必要がない場合、単に蓄電池21と称する。同様にPCS22−1〜22−nのそれぞれを区別する必要がない場合、単にPCS22と称する。PCS22は、直流電力と交流電力とを双方向に変換する電力変換装置である。PCS22は、制御装置1からの充放電指令に基づいて、蓄電池21に指令値を出力する。蓄電池情報は、蓄電池21−1〜21−nの蓄電量を含む。蓄電池情報取得部11は、取得した蓄電池情報を目標値算出部14に出力する。 The storage battery information acquisition unit 11 acquires storage battery information from the storage battery system 2. The storage battery system 2 has a storage battery 21-1 to 21-n and a PCS (Power Conditioning System) 22-1 to 22-n. Hereinafter, when it is not necessary to distinguish each of the storage batteries 21-1 to 21-n, it is simply referred to as the storage battery 21. Similarly, when it is not necessary to distinguish each of PCS22-1 to 22-n, it is simply referred to as PCS22. The PCS 22 is a power conversion device that converts DC power and AC power in both directions. The PCS 22 outputs a command value to the storage battery 21 based on a charge / discharge command from the control device 1. The storage battery information includes the storage amount of the storage batteries 21-1 to 21-n. The storage battery information acquisition unit 11 outputs the acquired storage battery information to the target value calculation unit 14.

風力発電情報取得部12は、風力発電装置3から風力発電情報を取得する。風力発電情報は、風力発電装置3の発電電力である風力発電出力の値を含む。ここで風力発電情報に含まれる風力発電出力の値は、複数の風力発電装置3−1,3−2の風力発電出力の合計値である。風力発電情報取得部12は、取得した風力発電情報を目標値算出部14に出力する。 The wind power generation information acquisition unit 12 acquires wind power generation information from the wind power generation device 3. The wind power generation information includes the value of the wind power generation output which is the power generated by the wind power generation device 3. Here, the value of the wind power generation output included in the wind power generation information is the total value of the wind power generation output of the plurality of wind power generation devices 3-1 and 3-2. The wind power generation information acquisition unit 12 outputs the acquired wind power generation information to the target value calculation unit 14.

基準情報取得部13は、目標値算出部14が連系点電力の目標値を算出するために用いる情報である基準情報を取得する。基準情報は、例えば、過去に取得された風力発電装置3の風力発電出力の値などの、目標値算出部14が風力発電出力の出力想定範囲を算出するために使用する情報と、電力系統4の連系条件とを含む。基準情報取得部13は、制御装置1の内部に備わる記憶領域から基準情報を取得してもよいし、制御装置1に接続される他の情報処理装置から基準情報を取得してもよい。基準情報取得部13は、取得した基準情報を目標値算出部14に出力する。 The reference information acquisition unit 13 acquires reference information which is information used by the target value calculation unit 14 to calculate the target value of the interconnection point power. The reference information includes information used by the target value calculation unit 14 to calculate the expected output range of the wind power generation output, such as the value of the wind power generation output of the wind power generation device 3 acquired in the past, and the power system 4. Including the interconnection conditions of. The reference information acquisition unit 13 may acquire reference information from a storage area provided inside the control device 1, or may acquire reference information from another information processing device connected to the control device 1. The reference information acquisition unit 13 outputs the acquired reference information to the target value calculation unit 14.

目標値算出部14は、風力発電情報と、蓄電池情報と、基準情報とに基づいて、電力系統4に逆潮流させる電力の目標値を算出する。例えば、目標値算出部14は、風力発電情報と基準情報とに基づいて、風力発電装置3の風力発電出力の出力想定範囲を求める。このとき、目標値算出部14は、過去に蓄積した風力発電出力に基づいて、出力想定範囲を求めることができる。目標値算出部14は、出力想定範囲内の代表値と蓄電池情報とを加算することで、電力系統4に逆潮流させることが可能な電力量を算出する。ここで、代表値は、例えば、出力想定範囲の下限値である。そして目標値算出部14は、算出した電力量を電力系統4の連系条件に基づいて調整することで、電力系統4へ逆潮流させる電力の目標値を算出することができる。目標値算出部14は、算出した目標値を充放電指令部15に出力する。 The target value calculation unit 14 calculates the target value of the electric power to be reverse-flowed to the electric power system 4 based on the wind power generation information, the storage battery information, and the reference information. For example, the target value calculation unit 14 obtains an expected output range of the wind power generation output of the wind power generation device 3 based on the wind power generation information and the reference information. At this time, the target value calculation unit 14 can obtain the expected output range based on the wind power generation output accumulated in the past. The target value calculation unit 14 calculates the amount of electric power that can be reverse-fed to the electric power system 4 by adding the representative value within the expected output range and the storage battery information. Here, the representative value is, for example, the lower limit value of the expected output range. Then, the target value calculation unit 14 can calculate the target value of the electric power to be reverse-flowed to the electric power system 4 by adjusting the calculated electric energy amount based on the interconnection condition of the electric power system 4. The target value calculation unit 14 outputs the calculated target value to the charge / discharge command unit 15.

充放電指令部15は、電力系統4へ逆潮流させる電力の目標値に基づいて、蓄電池システム2の充電量または放電量を指示するための充放電指令を生成する。充放電指令部15は、生成した充放電指令を蓄電池システム2に出力する。図2に示すように、蓄電池システム2が複数の蓄電池21を有する場合、充放電指令部15は、複数の蓄電池21のそれぞれに充電量または放電量を分配して、各蓄電池21に対する充放電指令を生成することができる。この場合、充放電指令部15は、生成した充放電指令を複数の蓄電池21のそれぞれに対応して設けられた複数のPCS22のそれぞれに出力する。 The charge / discharge command unit 15 generates a charge / discharge command for instructing the charge amount or the discharge amount of the storage battery system 2 based on the target value of the electric power to be reverse-flowed to the power system 4. The charge / discharge command unit 15 outputs the generated charge / discharge command to the storage battery system 2. As shown in FIG. 2, when the storage battery system 2 has a plurality of storage batteries 21, the charge / discharge command unit 15 distributes the charge amount or the discharge amount to each of the plurality of storage batteries 21 and gives a charge / discharge command to each storage battery 21. Can be generated. In this case, the charge / discharge command unit 15 outputs the generated charge / discharge command to each of the plurality of PCS 22s provided corresponding to the plurality of storage batteries 21.

図3は、図2に示す制御装置1の動作を説明するためのフローチャートである。制御装置1の基準情報取得部13は、基準情報を取得する(ステップS101)。制御装置1の蓄電池情報取得部11は、蓄電池情報を取得する(ステップS102)。風力発電情報取得部12は、風力発電情報を取得する(ステップS103)。 FIG. 3 is a flowchart for explaining the operation of the control device 1 shown in FIG. The reference information acquisition unit 13 of the control device 1 acquires the reference information (step S101). The storage battery information acquisition unit 11 of the control device 1 acquires the storage battery information (step S102). The wind power generation information acquisition unit 12 acquires wind power generation information (step S103).

目標値算出部14は、基準情報と、風力発電情報とに基づいて、風力発電出力の出力想定範囲の代表値を算出する(ステップS104)。目標値算出部14は、算出した代表値と、蓄電池情報と、基準情報とに基づいて、連系点電力の目標値を算出する(ステップS105)。 The target value calculation unit 14 calculates a representative value of the expected output range of the wind power generation output based on the reference information and the wind power generation information (step S104). The target value calculation unit 14 calculates the target value of the interconnection point power based on the calculated representative value, the storage battery information, and the reference information (step S105).

充放電指令部15は、ステップS105において算出された連系点電力の目標値に基づいて、充放電指令を生成する(ステップS106)。ここで、制御装置1は、前回、蓄電池情報を取得してから予め定められた時間が経過したか否かを判断する(ステップS107)。予め定められた時間は、連系点電力の目標値を算出する間隔であり、例えば、100msである。 The charge / discharge command unit 15 generates a charge / discharge command based on the target value of the interconnection point power calculated in step S105 (step S106). Here, the control device 1 determines whether or not a predetermined time has elapsed since the last time the storage battery information was acquired (step S107). The predetermined time is an interval for calculating the target value of the interconnection point power, for example, 100 ms.

予め定められた時間が経過していない場合(ステップS107:No)、ステップS107の処理を繰返す。予め定められた時間が経過した場合(ステップS107:Yes)、制御装置1は、ステップS102の処理に戻る。 If the predetermined time has not elapsed (step S107: No), the process of step S107 is repeated. When the predetermined time has elapsed (step S107: Yes), the control device 1 returns to the process of step S102.

以上説明した動作を行うことで、制御装置1は、予め定められた時間おきに、連系点電力の目標値を算出し、算出した目標値に従って充放電指令が生成される。生成された充放電指令は、蓄電池システム2に出力され、蓄電池システム2は、充放電指令に従って、充電または放電を行う。このため、制御装置1は、予め定められた時間おきに、蓄電池システム2の充電量または放電量の指令値を更新することになり、結果として連系点電力を制御することができる。 By performing the operation described above, the control device 1 calculates a target value of the interconnection point power at predetermined time intervals, and a charge / discharge command is generated according to the calculated target value. The generated charge / discharge command is output to the storage battery system 2, and the storage battery system 2 charges or discharges according to the charge / discharge command. Therefore, the control device 1 updates the command value of the charge amount or the discharge amount of the storage battery system 2 at predetermined time intervals, and as a result, the interconnection point power can be controlled.

図4は、図2に示す目標値算出部14の詳細な動作の一例を示すフローチャートである。図4に示す動作は、図3に示すステップS104およびステップS105の詳細に相当する。本願発明者らは、風力発電出力の至近10分の平均値と、将来3時間の風力発電出力の平均値との間に、相関があることを発見した。そこで、本実施の形態では、制御装置1の目標値算出部14は、風力発電出力の至近10分の平均値に基づいて、将来3時間の風力発電出力の出力想定範囲を求める。 FIG. 4 is a flowchart showing an example of a detailed operation of the target value calculation unit 14 shown in FIG. The operation shown in FIG. 4 corresponds to the details of steps S104 and S105 shown in FIG. The inventors of the present application have found that there is a correlation between the mean value of the wind power generation output in the last 10 minutes and the mean value of the wind power generation output for the next 3 hours. Therefore, in the present embodiment, the target value calculation unit 14 of the control device 1 obtains the expected output range of the wind power generation output for the next 3 hours based on the average value of the wind power generation output in the nearest 10 minutes.

目標値算出部14は、風力発電情報に基づいて、風力発電出力の至近10分の平均値を算出する(ステップS201)。なお、至近10分の平均値は、現時点の風力発電出力の一例であり、細かな変動の影響を抑制するために、現時点以前の予め定められた期間の平均値が現時点の風力発電出力として用いられている。 The target value calculation unit 14 calculates the average value of the wind power generation output for the nearest 10 minutes based on the wind power generation information (step S201). The average value for the last 10 minutes is an example of the current wind power generation output, and the average value for a predetermined period before the current time is used as the current wind power generation output in order to suppress the influence of small fluctuations. Has been done.

目標値算出部14は、至近10分の平均値と、将来3時間の風力発電出力の平均値との相関を示すルックアップテーブルを用いて、将来3時間の風力発電出力の平均値である出力想定範囲の代表値を取得する(ステップS202)。ここで用いるルックアップテーブルは、目標値算出部14が風力発電出力の出力想定範囲の代表値を算出するために使用する情報の一例であり、基準情報に含まれている。またルックアップテーブルは、現時点の風力発電出力と出力想定範囲との間の関係を予め定めており、例えば、過去に蓄積した風力発電出力のデータに基づいて作成される。 The target value calculation unit 14 uses a lookup table showing the correlation between the average value of the nearest 10 minutes and the average value of the wind power output for the next 3 hours, and outputs the average value of the wind power output for the next 3 hours. Acquire the representative value of the assumed range (step S202). The look-up table used here is an example of information used by the target value calculation unit 14 to calculate a representative value of the expected output range of the wind power generation output, and is included in the reference information. In addition, the look-up table defines the relationship between the current wind power generation output and the expected output range in advance, and is created based on, for example, the wind power generation output data accumulated in the past.

図5は、図2に示す目標値算出部14が用いるルックアップテーブルを作成するためのデータの一例を示す図である。図5は、過去に蓄積した風力発電出力のデータに基づいて作成されている。図5の横軸は、ある時点よりも過去の至近10分の風力発電出力の平均値を示している。図5の縦軸は、ある時点から将来3時間の風力発電出力の平均値を示している。図5は、過去に蓄積した風力発電出力の予め定められた期間の平均出力と、当該期間の開始時点の出力値とを対応づけたデータを示している。予め定められた期間は、例えば3時間であり、当該期間の開始時点の出力値は、開始時点以前の至近10分の平均値が用いられている。このとき、開始時点の出力値を算出するための予め定められた期間は、将来の平均出力値を算出するための予め定められた期間よりも十分に短い。また、図5においては、データのばらつきを箱ひげ図で示している。箱ひげ図の真ん中の長方形の箱は、±25.0%の分散範囲を示しており、箱の中心線は中央値を示している。箱から延びる直線はひげとも呼ばれ、±99.9%の分散範囲を示している。箱とひげとを含む範囲からの外れ値は、プロットで示されている。 FIG. 5 is a diagram showing an example of data for creating a look-up table used by the target value calculation unit 14 shown in FIG. FIG. 5 is created based on the wind power output data accumulated in the past. The horizontal axis of FIG. 5 shows the average value of the wind power generation output for the nearest 10 minutes in the past from a certain point in time. The vertical axis of FIG. 5 shows the average value of the wind power generation output for 3 hours from a certain point in the future. FIG. 5 shows data in which the average output of the wind power generation output accumulated in the past for a predetermined period is associated with the output value at the start of the period. The predetermined period is, for example, 3 hours, and the output value at the start time of the period is the average value of the nearest 10 minutes before the start time. At this time, the predetermined period for calculating the output value at the start time is sufficiently shorter than the predetermined period for calculating the future average output value. Further, in FIG. 5, the variation of the data is shown in a box plot. The rectangular box in the middle of the box plot shows a variance range of ± 25.0%, and the centerline of the box shows the median. The straight line extending from the box, also called the whiskers, shows a dispersion range of ± 99.9%. Outliers out of range including the box and whiskers are shown in the plot.

ルックアップテーブルは、期間の開始時点の風力発電出力が同一の複数のデータの将来3時間の平均出力値の下限値を示す下限ライン51に基づいて作成される。下限ライン51は、至近10分の平均値が同一の複数のデータの将来3時間の平均出力値のうち、最小値に基づいて生成される。このとき、外れ値を除くために、最小値は、箱ひげ図に示される±99.9%の範囲の下限値とすることができる。下限ライン51は、箱ひげ図の±99.9%の範囲の下限値をつなぐ曲線としてもよいし、±99.9%の範囲の下限値を近似する直線であってもよい。 The look-up table is created based on the lower limit line 51, which indicates the lower limit of the average output value for the next 3 hours of a plurality of data having the same wind power output at the start of the period. The lower limit line 51 is generated based on the minimum value among the average output values of a plurality of data having the same average value in the nearest 10 minutes for the next 3 hours. At this time, in order to exclude outliers, the minimum value can be the lower limit value in the range of ± 99.9% shown in the box plot. The lower limit line 51 may be a curve connecting the lower limit values in the range of ± 99.9% of the boxplot, or may be a straight line that approximates the lower limit value in the range of ± 99.9%.

図4の説明に戻る。目標値算出部14は、ステップS202において算出した代表値に、蓄電池システム2の蓄電量を加算した値を連系点電力の目標値とする(ステップS203)。目標値算出部14は、連系条件に基づいて、連系点電力の目標値を補正する(ステップS204)。 Returning to the description of FIG. The target value calculation unit 14 sets a value obtained by adding the amount of electricity stored in the storage battery system 2 to the representative value calculated in step S202 as the target value of the interconnection point power (step S203). The target value calculation unit 14 corrects the target value of the interconnection point power based on the interconnection condition (step S204).

図6は、図2に示す目標値算出部14が算出する連系点電力の目標値の一例を示す図である。図4のステップS203で算出した目標値は、蓄電池システム2の充電量を示すSOC(State Of Charge)が100%の場合、図6に示す目標値52−1となる。また、蓄電池システム2のSOCが50%の場合、図4のステップS203で算出した目標値は、図6に示す目標値52−2となる。なお、ここでは、目標値52−2が現在の風力発電出力53を超えないように調整されている。 FIG. 6 is a diagram showing an example of a target value of the interconnection point power calculated by the target value calculation unit 14 shown in FIG. The target value calculated in step S203 of FIG. 4 is the target value 52-1 shown in FIG. 6 when the SOC (State Of Charge) indicating the charge amount of the storage battery system 2 is 100%. When the SOC of the storage battery system 2 is 50%, the target value calculated in step S203 of FIG. 4 is the target value 52-2 shown in FIG. Here, the target value 52-2 is adjusted so as not to exceed the current wind power generation output 53.

風力発電においては、逆潮流可能な電力量が多すぎる分には、風力発電装置3を止めることで電力系統4に逆潮流させる電力量を調整し、連系条件を満たすことが可能である。しかしながら、逆潮流可能な電力量が不足する場合、電力量を調整する手段がなく、連系条件を満たすことが困難となる。このため、本実施の形態では、将来3時間の平均値として取り得る値のうち下限値にSOCを加算して、風力発電出力の目標値を算出する。これにより、電力系統4に逆潮流させる電力が不足して、電力系統4への連系条件を満たせなくなるといった状態の発生を抑制することが可能になる。 In wind power generation, if the amount of power that can be reverse-powered is too large, it is possible to adjust the amount of power that can be reverse-powered to the power system 4 by stopping the wind power generation device 3 and satisfy the interconnection condition. However, when the amount of power that can be reverse power flow is insufficient, there is no means for adjusting the amount of power, and it becomes difficult to satisfy the interconnection condition. Therefore, in the present embodiment, the SOC is added to the lower limit value among the values that can be taken as the average value for 3 hours in the future to calculate the target value of the wind power generation output. As a result, it is possible to suppress the occurrence of a state in which the power to be reverse-fed to the power system 4 is insufficient and the connection condition to the power system 4 cannot be satisfied.

ここで、本実施の形態の効果について説明する。図7は、図1に示す各風力発電装置3−1,3−2の風力発電出力の一例を示す図である。図7の横軸は時間であり、縦軸は風力発電出力である。 Here, the effect of this embodiment will be described. FIG. 7 is a diagram showing an example of the wind power generation output of each of the wind power generation devices 3-1 and 3-2 shown in FIG. The horizontal axis of FIG. 7 is time, and the vertical axis is wind power output.

風力発電装置3−1の風力発電出力は、時間によらず100MWである。風力発電装置3−2の風力発電出力は、時間t1までは50MWであり、時間t1以降は100MWに変化している。 The wind power output of the wind power generation device 3-1 is 100 MW regardless of the time. The wind power generation output of the wind power generation device 3-2 is 50 MW until the time t1, and changes to 100 MW after the time t1.

図8は、図7に示す複数の風力発電装置3−1,3−2の合計の風力発電出力を示す図である。風力発電装置3−1の風力発電出力と風力発電装置302の風力発電出力との合計は、図8に示すように、時間t1までは150MWであり、時間t1以降は200MWとなる。このとき、電力系統4に供給可能な風力発電出力をそのまま連系点電力の目標値としてしまうと、図8に示すように時間t1において急激に連系点電力が変化してしまう。この場合、連系点電力の時間当たりの変化量に対して課された連系条件を満たすことができない。このため、制御装置1は、蓄電池システム2の充放電機能を用いて、連系点電力の時間当たりの変化量が連系条件を満たすように、連系点電力の目標値を制御する。 FIG. 8 is a diagram showing the total wind power generation output of the plurality of wind power generation devices 3-1 and 3-2 shown in FIG. 7. As shown in FIG. 8, the total of the wind power generation output of the wind power generation device 3-1 and the wind power generation output of the wind power generation device 302 is 150 MW until the time t1 and 200 MW after the time t1. At this time, if the wind power generation output that can be supplied to the power system 4 is set as the target value of the interconnection point power as it is, the interconnection point power suddenly changes at time t1 as shown in FIG. In this case, the interconnection condition imposed on the amount of change in the interconnection point power per hour cannot be satisfied. Therefore, the control device 1 uses the charge / discharge function of the storage battery system 2 to control the target value of the interconnection point power so that the amount of change in the interconnection point power per hour satisfies the interconnection condition.

図9は、図8に示す風力発電出力の場合に設定される連系点電力の目標値の比較例を示す図である。図10は、図8に示す風力発電出力の場合に図2に示す制御装置1が設定する連系点電力の目標値の一例を示す図である。 FIG. 9 is a diagram showing a comparative example of the target value of the interconnection point power set in the case of the wind power generation output shown in FIG. FIG. 10 is a diagram showing an example of a target value of interconnection point power set by the control device 1 shown in FIG. 2 in the case of the wind power generation output shown in FIG.

比較例では、将来の風力発電出力の出力想定範囲は用いられず、現在の風力発電出力に基づいて、連系点電力の目標値が設定される。このため、連系点電力の目標値は、時間t1が到来した後に、時間当たりの変化量が連系条件を満たすように、徐々に増加する。このとき、風力発電出力と、連系点電力との間の差分は、蓄電池システム2に充電される。 In the comparative example, the expected output range of the future wind power output is not used, and the target value of the interconnection point power is set based on the current wind power output. Therefore, the target value of the interconnection point power gradually increases after the time t1 so that the amount of change per hour satisfies the interconnection condition. At this time, the difference between the wind power generation output and the interconnection point power is charged in the storage battery system 2.

これに対して本実施の形態による制御装置1は、風力発電出力の出力想定範囲を求め、出力想定範囲の代表値、例えば下限値に基づいて、連系点電力の目標値を算出する。このため、時間t1よりも手前の時間t2において、将来3時間の発電電力の平均値が、現在よりも増えると予測されると、風力発電出力の出力想定範囲の代表値に蓄電量を加算した値を目標値とした後、連系条件を満たすように、目標値の時間当たりの変化量が調整される。このため、時間t2から徐々に目標値が増加し、実際に風力発電出力が増加する時間t1までは、蓄電池システム2から放電して連系点電力の不足を補い、時間t1において風力発電出力が増加すると、発電電力と連系点電力との間の差分は、蓄電池システム2に充電される。 On the other hand, the control device 1 according to the present embodiment obtains the expected output range of the wind power generation output, and calculates the target value of the interconnection point power based on the representative value of the assumed output range, for example, the lower limit value. Therefore, when it is predicted that the average value of the generated power for the next 3 hours will increase from the present at the time t2 before the time t1, the amount of electricity stored is added to the representative value of the expected output range of the wind power generation output. After setting the value as the target value, the amount of change in the target value per hour is adjusted so as to satisfy the interconnection condition. Therefore, the target value gradually increases from the time t2, and until the time t1 when the wind power generation output actually increases, the storage battery system 2 discharges to compensate for the shortage of the interconnection point power, and the wind power generation output increases at the time t1. When increased, the difference between the generated power and the interconnection point power is charged to the storage battery system 2.

図11は、図2に示す制御装置1の機能を実現するためのハードウェア構成の一例を示す図である。制御装置1の蓄電池情報取得部11、風力発電情報取得部12、基準情報取得部13、目標値算出部14および充放電指令部15の機能は、プロセッサ91と、メモリ92とを用いて実現することができる。プロセッサ91は、CPU(Central Processing Unit)であり、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。 FIG. 11 is a diagram showing an example of a hardware configuration for realizing the function of the control device 1 shown in FIG. The functions of the storage battery information acquisition unit 11, the wind power generation information acquisition unit 12, the reference information acquisition unit 13, the target value calculation unit 14, and the charge / discharge command unit 15 of the control device 1 are realized by using the processor 91 and the memory 92. be able to. The processor 91 is a CPU (Central Processing Unit), and is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 92 is, for example, a non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EPROM (registered trademark) (Electrically EPROM). Magnetic discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Disks), etc.

プロセッサ91は、メモリ92に記憶された、各構成要素の処理に対応するコンピュータプログラムを読み出して実行することにより、制御装置1の各機能が実現される。また、メモリ92は、プロセッサ91が実行する各処理における一時メモリとしても使用される。 The processor 91 realizes each function of the control device 1 by reading and executing a computer program stored in the memory 92 corresponding to the processing of each component. The memory 92 is also used as a temporary memory in each process executed by the processor 91.

以上説明したように、本発明の実施の形態1によれば、制御装置1は、現在の風力発電出力に基づく風力発電出力の出力想定範囲と蓄電池21の蓄電量と連系条件とに基づいて、電力系統4に逆潮流させる電力の目標値を算出する。ここで出力想定範囲が用いられるため、将来のある時間t1において風力発電出力が増加する場合、風力発電出力が増加する時間t1よりも手前の時間t2から、蓄電池システム2に蓄えられた電力を放電することで目標値を増加させることができる。このため、制御装置1は、連系条件を満たしつつ、連系点電力を増加させることが可能である。 As described above, according to the first embodiment of the present invention, the control device 1 is based on the expected output range of the wind power generation output based on the current wind power generation output, the storage amount of the storage battery 21, and the interconnection condition. , Calculate the target value of the power to be reverse-flowed to the power system 4. Since the expected output range is used here, when the wind power generation output increases at a certain time t1 in the future, the power stored in the storage battery system 2 is discharged from the time t2 before the time t1 when the wind power generation output increases. By doing so, the target value can be increased. Therefore, the control device 1 can increase the interconnection point power while satisfying the interconnection condition.

目標値算出部14は、過去に蓄積した風力発電出力に基づいて、風力発電出力の出力想定範囲を求めることができる。特に、本願の発明者達は、風力発電出力において、現時点以前の至近10分の平均値と、現時点以降の3時間の平均値との相関が高いことを見出した。このため、目標値算出部14は、現時点以前の至近10分の平均値と、現時点以降の3時間の平均値との関係を示すテーブルを用いて、出力想定範囲の代表値を算出することができる。ここで、出力想定範囲は、3時間の平均値が取り得る値の範囲とすることができ、代表値は、出力想定範囲の下限値とすることができる。 The target value calculation unit 14 can obtain the expected output range of the wind power generation output based on the wind power generation output accumulated in the past. In particular, the inventors of the present application have found that there is a high correlation between the mean value of the nearest 10 minutes before the present time and the mean value of the 3 hours after the present time in the wind power generation output. Therefore, the target value calculation unit 14 can calculate a representative value of the expected output range by using a table showing the relationship between the average value of the nearest 10 minutes before the present time and the average value of the 3 hours after the present time. it can. Here, the expected output range can be a range of values that the average value for 3 hours can take, and the representative value can be a lower limit value of the assumed output range.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

例えば、上記の実施の形態では、蓄電池システム2は、複数の蓄電池21と、蓄電池21と同数のPCS22とを有することとしたが、本実施の形態はかかる例に限定されない。蓄電池システム2は、1台のPCS22と、大規模な1つの蓄電池21とを有してもよい。また、本実施の形態では、複数の風力発電装置3に対して1つの蓄電池システム2を設置して、連系点電力を制御している。この場合、複数の風力発電装置3の風力発電出力の合計の変動は、複数の風力発電装置3のそれぞれの変動と比較して平滑化される。このため、複数の風力発電装置3のそれぞれに対応して蓄電池21を設けて個別に制御する場合と比較して、蓄電池システム2の容量、充放電量を抑制することができる。したがって、蓄電池21の設置にかかるコストおよび設置面積を抑制することができる。 For example, in the above embodiment, the storage battery system 2 has a plurality of storage batteries 21 and the same number of PCS 22s as the storage batteries 21, but the present embodiment is not limited to such an example. The storage battery system 2 may have one PCS 22 and one large-scale storage battery 21. Further, in the present embodiment, one storage battery system 2 is installed for each of the plurality of wind power generation devices 3 to control the interconnection point power. In this case, the fluctuation of the total wind power generation output of the plurality of wind power generation devices 3 is smoothed as compared with the fluctuation of each of the plurality of wind power generation devices 3. Therefore, the capacity and charge / discharge amount of the storage battery system 2 can be suppressed as compared with the case where the storage batteries 21 are provided corresponding to each of the plurality of wind power generation devices 3 and individually controlled. Therefore, the cost and installation area required for installing the storage battery 21 can be suppressed.

また、上記の実施の形態では、制御装置1の機能をプロセッサ91とメモリ92を用いて実現することができることを説明したが、制御装置1の機能を記述したコンピュータプログラムは、記録媒体に記憶させて提供されてもよいし、通信路を介して提供されてもよい。また、本実施の形態にかかる発明は、制御装置1が上記のコンピュータプログラムに記述された各ステップを実行する方法として実現することもできる。 Further, in the above embodiment, it has been described that the function of the control device 1 can be realized by using the processor 91 and the memory 92, but the computer program describing the function of the control device 1 is stored in the recording medium. It may be provided via a communication path. Further, the invention according to the present embodiment can also be realized as a method in which the control device 1 executes each step described in the above computer program.

1 制御装置、2 蓄電池システム、3,3−1,3−2 風力発電装置、4 電力系統、10 充放電システム、11 蓄電池情報取得部、12 風力発電情報取得部、13 基準情報取得部、14 目標値算出部、15 充放電指令部、21,21−1〜21−n 蓄電池、22,22−1〜22−n PCS、51 下限ライン、52−1,52−2 目標値、53 現在の風力発電出力、91 プロセッサ、92 メモリ。 1 Control device, 2 Storage battery system, 3,3-1,3-2 Wind power generation device, 4 Power system, 10 Charge / discharge system, 11 Storage battery information acquisition unit, 12 Wind power generation information acquisition unit, 13 Standard information acquisition unit, 14 Target value calculation unit, 15 charge / discharge command unit, 21 / 21-1 to 21-n storage battery, 22, 22-1 to 22-n PCS, 51 lower limit line, 52-1, 52-2 target value, 53 Current Wind power output, 91 processors, 92 memories.

Claims (10)

風力発電装置により発電された電力を一時的に蓄えて、蓄えた電力を電力系統に逆潮流させることが可能な蓄電池の充放電を制御する制御装置であって、
前記蓄電池の蓄電量を含む蓄電池情報を取得する蓄電池情報取得部と、
風力発電出力を含む風力発電情報を取得する風力発電情報取得部と、
前記風力発電情報に基づく前記風力発電出力の出力想定範囲と前記蓄電池情報と前記電力系統の連系条件とに基づいて、前記電力系統へ逆潮流させる電力の目標値を算出する目標値算出部と、
前記目標値に基づいて、前記蓄電池に対する充放電指令値を算出する充放電指令部と、
を備えることを特徴とする制御装置。
It is a control device that controls the charging and discharging of a storage battery that can temporarily store the power generated by the wind power generation device and reverse the stored power to the power system.
A storage battery information acquisition unit that acquires storage battery information including the amount of electricity stored in the storage battery, and a storage battery information acquisition unit.
The wind power generation information acquisition department that acquires wind power generation information including wind power generation output,
A target value calculation unit that calculates a target value of power to be reverse-flowed to the power system based on the expected output range of the wind power output based on the wind power generation information, the storage battery information, and the interconnection condition of the power system. ,
A charge / discharge command unit that calculates a charge / discharge command value for the storage battery based on the target value,
A control device comprising.
前記目標値算出部は、過去に蓄積した前記風力発電出力に基づいて、前記出力想定範囲を求めることを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, wherein the target value calculation unit obtains the expected output range based on the wind power generation output accumulated in the past. 前記目標値算出部は、現時点の前記風力発電出力と、前記出力想定範囲内の代表値との関係を予め定めたテーブルを用いて、前記代表値を算出し、算出した前記代表値と前記蓄電量との和に基づいて前記目標値を算出することを特徴とする請求項1に記載の制御装置。 The target value calculation unit calculates the representative value using a table in which the relationship between the current wind power generation output and the representative value within the expected output range is determined in advance, and the calculated representative value and the stored electricity are stored. The control device according to claim 1, wherein the target value is calculated based on the sum of the amounts. 前記代表値は、前記出力想定範囲の下限値であることを特徴とする請求項3に記載の制御装置。 The control device according to claim 3, wherein the representative value is a lower limit value of the expected output range. 前記目標値算出部は、現時点以前の予め定めた期間の前記風力発電出力の平均値を現時点の前記風力発電出力とすることを特徴とする請求項3または4に記載の制御装置。 The control device according to claim 3 or 4, wherein the target value calculation unit uses the average value of the wind power generation output for a predetermined period prior to the present time as the current wind power generation output. 前記風力発電情報は、複数の風力発電出力を含み、
前記目標値算出部は、前記複数の風力発電出力の合計の現時点以前の予め定めた期間の平均値を現在の前記風力発電出力とすることを特徴とする請求項3に記載の制御装置。
The wind power generation information includes a plurality of wind power generation outputs.
The control device according to claim 3, wherein the target value calculation unit sets an average value of the total of the plurality of wind power generation outputs for a predetermined period before the present time as the current wind power generation output.
前記蓄電池情報は、複数の前記蓄電池の蓄電量を含み、
前記充放電指令部は、複数の前記蓄電池のそれぞれに対する充放電指令値を算出することを特徴とする請求項1から6のいずれか1項に記載の制御装置。
The storage battery information includes a plurality of storage amounts of the storage batteries.
The control device according to any one of claims 1 to 6, wherein the charge / discharge command unit calculates a charge / discharge command value for each of the plurality of storage batteries.
前記連系条件は、前記電力系統に逆潮流する電力の値の変化率が基準以内であることを含むことを特徴とする請求項1から7のいずれか1項に記載の制御装置。 The control device according to any one of claims 1 to 7, wherein the interconnection condition includes that the rate of change of the value of the power flowing back to the power system is within the reference range. 風力発電により発電された電力を一時的に蓄えることが可能な蓄電池と、
前記蓄電池の充放電を制御することで電力系統に逆潮流させる電力である連系電力を制御する制御装置と、
を備え、
前記制御装置は、
前記蓄電池の蓄電量を含む蓄電池情報を取得する蓄電池情報取得部と、
風力発電出力を含む風力発電情報を取得する風力発電情報取得部と、
前記風力発電情報に基づく前記風力発電出力の出力想定範囲と前記蓄電池情報と前記電力系統の連系条件とに基づいて、前記連系電力の目標値を算出する目標値算出部と、
前記目標値に基づいて、前記蓄電池に対する充放電指令値を算出する充放電指令部と、
を有することを特徴とする充放電システム。
A storage battery that can temporarily store the power generated by wind power generation,
A control device that controls interconnection power, which is power that reverse power flows into the power system by controlling the charging and discharging of the storage battery.
With
The control device is
A storage battery information acquisition unit that acquires storage battery information including the amount of electricity stored in the storage battery, and a storage battery information acquisition unit.
The wind power generation information acquisition department that acquires wind power generation information including wind power generation output,
A target value calculation unit that calculates a target value of the interconnection power based on the expected output range of the wind power generation output based on the wind power generation information, the storage battery information, and the interconnection condition of the power system.
A charge / discharge command unit that calculates a charge / discharge command value for the storage battery based on the target value,
A charge / discharge system characterized by having.
蓄電池の蓄電量を含む蓄電池情報を取得するステップと、
風力発電出力を含む風力発電情報を取得するステップと、
前記風力発電情報に基づく前記風力発電出力の出力想定範囲と前記蓄電池情報と電力系統の連系条件とに基づいて、前記電力系統に逆潮流する電力の目標値を算出するステップと、
前記目標値に基づいて、前記蓄電池に対する充放電指令値を算出するステップと、
をコンピュータに実行させることを特徴とする充放電制御プログラム。
Steps to acquire storage battery information including the amount of electricity stored in the storage battery,
Steps to get wind power information, including wind power output,
A step of calculating a target value of power flowing back to the power system based on the expected output range of the wind power output based on the wind power information, the storage battery information, and the interconnection condition of the power system.
A step of calculating a charge / discharge command value for the storage battery based on the target value, and
A charge / discharge control program characterized by having a computer execute.
JP2019159476A 2019-09-02 2019-09-02 Controller, charge/discharge system and charge/discharge control program Active JP7249915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159476A JP7249915B2 (en) 2019-09-02 2019-09-02 Controller, charge/discharge system and charge/discharge control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159476A JP7249915B2 (en) 2019-09-02 2019-09-02 Controller, charge/discharge system and charge/discharge control program

Publications (2)

Publication Number Publication Date
JP2021040392A true JP2021040392A (en) 2021-03-11
JP7249915B2 JP7249915B2 (en) 2023-03-31

Family

ID=74847535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159476A Active JP7249915B2 (en) 2019-09-02 2019-09-02 Controller, charge/discharge system and charge/discharge control program

Country Status (1)

Country Link
JP (1) JP7249915B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219941A (en) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd Control method and control device of power generation system using renewable energy
JP2015087886A (en) * 2013-10-30 2015-05-07 富士電機株式会社 Power selling plan creation method, power selling plan creation device, power selling plan creation system and power selling plan creation program
JP2018161041A (en) * 2017-03-23 2018-10-11 富士電機株式会社 Power stabilization system using power storage device and controller
JP2019115233A (en) * 2017-12-26 2019-07-11 住友電気工業株式会社 Control system, control method, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219941A (en) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd Control method and control device of power generation system using renewable energy
JP2015087886A (en) * 2013-10-30 2015-05-07 富士電機株式会社 Power selling plan creation method, power selling plan creation device, power selling plan creation system and power selling plan creation program
JP2018161041A (en) * 2017-03-23 2018-10-11 富士電機株式会社 Power stabilization system using power storage device and controller
JP2019115233A (en) * 2017-12-26 2019-07-11 住友電気工業株式会社 Control system, control method, and computer program

Also Published As

Publication number Publication date
JP7249915B2 (en) 2023-03-31

Similar Documents

Publication Publication Date Title
JP6216377B2 (en) Power adjustment device, power adjustment method, power adjustment system, power storage device, server, program
US20130193928A1 (en) Charge management for energy storage temperature control
JP6790833B2 (en) Storage battery control system, storage battery control method, and recording medium
JP6364567B1 (en) Power generation control device and power generation control system using the same
JP6373476B2 (en) Power management apparatus, power management system, and power management method
US11177659B2 (en) Computer-implemented method, system, and computer program product for setting a target power demand corresponding to a consumer
WO2015059873A1 (en) Power management apparatus
JP7147166B2 (en) Control system, control method and computer program
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program
JP2014140281A (en) Control device, method, and program, and natural energy power generation device comprising the same
JPWO2015111144A1 (en) Power supply system and energy management system used therefor
JP7443161B2 (en) Storage battery management device, storage battery management method, and storage battery management program
JP6751614B2 (en) Distribution control system, distribution control method
JP6688981B2 (en) Battery control device
JP2021040392A (en) Control device, charging/discharging system, and charging/discharging control program
JP6225051B2 (en) Storage battery control device, storage battery control method and program
JP2014217198A (en) Power storage amount management device and power storage amount management system
WO2017022000A1 (en) Information processing apparatus, charge or discharge scheduling method, and program
JP2012060829A (en) Power supply system and power supply method
JP6787706B2 (en) Power storage control device, storage battery system and power storage control program
JP2018174623A (en) Power management device, and application power generation amount calculation method
JP7103811B2 (en) Power supply system
JP2014168343A (en) Power storage system, controller of power storage system, control method of power storage system, and control program of power storage system
JP2018152943A (en) Control device, control method and computer program
JP2018023188A (en) Charge/discharge schedule setting program, charge/discharge schedule setting method, and charge/discharge schedule setting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150