JP2021039500A - Method of generating three-dimensional shape data of construct - Google Patents

Method of generating three-dimensional shape data of construct Download PDF

Info

Publication number
JP2021039500A
JP2021039500A JP2019159659A JP2019159659A JP2021039500A JP 2021039500 A JP2021039500 A JP 2021039500A JP 2019159659 A JP2019159659 A JP 2019159659A JP 2019159659 A JP2019159659 A JP 2019159659A JP 2021039500 A JP2021039500 A JP 2021039500A
Authority
JP
Japan
Prior art keywords
plane
coordinate system
data
axis
point cloud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019159659A
Other languages
Japanese (ja)
Other versions
JP7374433B2 (en
Inventor
剣一 水野
Kenichi Mizuno
剣一 水野
知広 溝口
Tomohiro Mizoguchi
知広 溝口
裕俊 藏重
Hirotoshi Kurashige
裕俊 藏重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Penta Ocean Construction Co Ltd
Keisoku Research Consultant Co Ltd
Original Assignee
Nihon University
Penta Ocean Construction Co Ltd
Keisoku Research Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Penta Ocean Construction Co Ltd, Keisoku Research Consultant Co Ltd filed Critical Nihon University
Priority to JP2019159659A priority Critical patent/JP7374433B2/en
Publication of JP2021039500A publication Critical patent/JP2021039500A/en
Application granted granted Critical
Publication of JP7374433B2 publication Critical patent/JP7374433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Generation (AREA)

Abstract

To generate three-dimensional shape data of a construct constituted of a plurality plane regions most of which are regularly arranged, in a shorter time compared to conventional techniques.SOLUTION: Three dominant axes are specified from point group data representing a three-dimensional shape of a construct, which is generated by SfM, and the point group data is transformed to a coordinate system with the three specified axes, and meshes of which normal vectors are along an xy plane, among meshes shown by the point group data subjected to the coordinate transform are projected on the xy plane as boundary meshes. The xy plane is divided into pixels, and pixels including the boundary meshes are defined as boundary pixels, and segments fitting the boundary pixels are specified as edges, and adjacent edges are connected. With respect to each region of regions into which pixels other than the boundary pixels are clustered, a plane region where an average value of z coordinate values of pixels within the region is taken as a z coordinate value is specified. In addition, a plane region generated by sweeping each edge of the edges between z coordinate values of two plane regions adjacent to the edge is specified.SELECTED DRAWING: Figure 8

Description

本発明は、構築物の三次元形状データを生成する技術に関する。 The present invention relates to a technique for generating three-dimensional shape data of a structure.

三次元レーザスキャナ等のデプスセンサにより生成される構築物の三次元形状を表す三次元スキャン画像データから、多数のメッシュの集まりにより当該構築物の三次元形状を表す三次元メッシュモデルデータを生成することが行われている。三次元メッシュモデルデータは三次元スキャン画像データよりも小さいデータ量で物体の三次元形状を表すため、扱いやすい。 From the 3D scan image data representing the 3D shape of the structure generated by the depth sensor such as a 3D laser scanner, it is possible to generate the 3D mesh model data representing the 3D shape of the structure by collecting a large number of meshes. It has been. The 3D mesh model data is easy to handle because it represents the 3D shape of an object with a smaller amount of data than the 3D scanned image data.

三次元スキャン画像データから三次元メッシュモデルデータを生成する方法として、例えば以下の方法がある。 As a method of generating 3D mesh model data from 3D scanned image data, for example, there are the following methods.

まず、三次元スキャン画像データに対し局所二次多項式曲面フィッティングを反復的に行いメッシュ頂点の主曲率を算出し、算出した主曲率に基づき初期セグメンテーションを行う。 First, local quadratic polymorphic curve fitting is iteratively performed on the three-dimensional scanned image data to calculate the principal curvature of the mesh vertices, and initial segmentation is performed based on the calculated principal curvature.

初期セグメンテーションにおいては、各メッシュ頂点の主曲率を解析し、本来の曲面間の境界ではなく曲面上に乗っていると推定される小さな数の連結頂点の集合からなるシード領域を生成する。続いて、二次多項式曲面と二次曲面を併用したリージョングローイングを用いて領域への曲面フィッティングとシード領域への近傍頂点追加を反復的に行い、メッシュ頂点上の部分領域とそれを近似する解析曲面を抽出する。 In the initial segmentation, the principal curvature of each mesh vertex is analyzed to generate a seed region consisting of a small set of connected vertices presumed to be on the curved surface instead of the original boundary between the curved surfaces. Then, using region glowing that uses both a quadric polynomial surface and a quadric surface, the surface fitting to the area and the addition of neighboring vertices to the seed area are performed iteratively, and the partial area on the mesh vertex and the analysis that approximates it are performed. Extract the curved surface.

続いて、リージョンマージングを用いて、ユーザが指定した閾値内で領域数ができるだけ少なくなるように初期セグメンテーションで生成された初期領域を統合する。 Subsequently, region merging is used to integrate the initial regions generated by the initial segmentation so that the number of regions is as small as possible within the threshold specified by the user.

三次元スキャン画像データから三次元メッシュモデルデータを生成する技術を開示している文献として、例えば特許文献1がある。 For example, Patent Document 1 is a document that discloses a technique for generating 3D mesh model data from 3D scanned image data.

特開2007−241996号公報JP-A-2007-241996

上述した方法によれば、構築物の形状がどのような形状であっても、その三次元形状を表す三次元メッシュモデルデータを生成することができる。ただし、上述した方法による場合、二次多項式曲面を全て探査する必要があり、多大な計算時間を要する。 According to the method described above, it is possible to generate three-dimensional mesh model data representing the three-dimensional shape of the structure regardless of the shape of the structure. However, in the case of the above-mentioned method, it is necessary to search all the quadratic polynomial curved surfaces, which requires a large amount of calculation time.

ところで、構築物の中には、互いに直交する3軸のいずれかに直交する平面領域の集まりに近似する形状のものがある。例えば、橋梁の上部工を下から見た形状は、多くの場合、その大半が、鉛直方向をz軸とし、橋梁の軸方向をx軸とし、橋梁の幅方向をy軸とする座標系の空間において、実質的にxy平面、xz平面、yz平面のいずれかに平行な複数の平面領域で構成されている。 By the way, some structures have a shape that approximates a set of plane regions that are orthogonal to any of the three axes that are orthogonal to each other. For example, most of the shapes of the superstructure of a bridge viewed from below are in a coordinate system in which the vertical direction is the z-axis, the axial direction of the bridge is the x-axis, and the width direction of the bridge is the y-axis. In space, it is composed of a plurality of plane regions substantially parallel to any one of the xy plane, the xz plane, and the yz plane.

上記の事情に鑑み、本発明は、大半が規則的に配置された複数の平面領域で構成される構築物の三次元形状を表す三次元形状データを従来技術と比較して短時間で生成する手段を提供する。 In view of the above circumstances, the present invention is a means for generating three-dimensional shape data representing a three-dimensional shape of a structure composed of a plurality of regularly arranged plane regions in a short time as compared with the prior art. I will provide a.

本発明は、互いに直交するx軸、y軸及びz軸を有する座標系の空間内に配置され、z軸方向に凹凸を有する構築物の表面上の複数の点の各々に関し当該点の座標値を示す点データの集まりである点群データを取得するステップと、前記点群データが示す複数の点のうちz軸に平行な平面領域内の点を境界点として抽出するステップと、xy平面において前記境界点に囲まれる複数の領域を特定するステップと、前記複数の領域の各々に関し、前記点群データに含まれる複数の点データのうちx座標値及びy座標値が当該領域内である複数の点データのz座標値の代表値をz座標値とするxy平面に平行な平面領域を特定するステップと、特定した複数の前記xy平面に平行な平面領域のうち互いに隣接する2つの平面領域の外縁を2辺とする矩形のz軸に平行な平面領域を特定するステップと、前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表すデータを、前記構築物の三次元形状を表す三次元形状データとして生成するステップとを備える構築物の三次元形状データの生成方法を第1の態様として提供する。 In the present invention, the coordinate values of the points are set for each of a plurality of points on the surface of the structure which are arranged in the space of the coordinate system having the x-axis, the y-axis and the z-axis orthogonal to each other and have irregularities in the z-axis direction. A step of acquiring point group data which is a collection of point data to be shown, a step of extracting a point in a plane region parallel to the z-axis among a plurality of points indicated by the point group data as a boundary point, and the step of extracting the point in the xy plane. A step of specifying a plurality of regions surrounded by boundary points, and a plurality of point data included in the point group data in which the x-coordinate value and the y-coordinate value are within the region for each of the plurality of regions. A step of specifying a plane region parallel to the xy plane whose z coordinate value is a representative value of the z coordinate value of the point data, and two plane regions adjacent to each other among the plurality of specified plane regions parallel to the xy plane. The three-dimensional shape of the structure is obtained by providing data representing a step of specifying a plane region parallel to the z-axis of a rectangle having two outer edges and a plane region parallel to the xy plane and a plane region parallel to the z-axis. As a first aspect, a method for generating three-dimensional shape data of a structure including a step of generating as three-dimensional shape data representing the above is provided.

第1の態様に係る構築物の三次元形状データの生成方法によれば、大半が規則的に配置された複数の平面領域で構成される構築物の三次元形状を表す三次元形状データを従来技術と比較して短時間で生成することができる。 According to the method for generating the three-dimensional shape data of the structure according to the first aspect, the three-dimensional shape data representing the three-dimensional shape of the structure composed of a plurality of regularly arranged plane regions is used as the conventional technique. It can be generated in a short time in comparison.

また、本発明は、第1の態様に係る構築物の三次元形状データの生成方法であって、前記座標系を第2座標系とし、前記点群データを第2座標系点群データとするとき、前記点群データを取得するステップは、前記第2座標系とは異なる第1座標系で前記構築物の表面上の複数の点の各々に関し当該点の座標値を示す点データの集まりである第1座標系点群データを取得するステップと、前記第1座標系点群データが表す三次元形状の支配的な3軸を前記第2座標系の3軸として特定するステップと、前記第1座標系点群データが示す点群の座標値を前記第2座標系の座標値に変換して前記第2座標系点群データを生成するステップとを有する、という構成を第2の態様として提案する。 Further, the present invention is a method for generating three-dimensional shape data of a structure according to the first aspect, when the coordinate system is a second coordinate system and the point cloud data is a second coordinate system point cloud data. The step of acquiring the point cloud data is a collection of point data indicating the coordinate values of the points with respect to each of the plurality of points on the surface of the structure in the first coordinate system different from the second coordinate system. A step of acquiring the 1-coordinate system point cloud data, a step of specifying the dominant three axes of the three-dimensional shape represented by the first coordinate system point cloud data as the three axes of the second coordinate system, and the first coordinate. As the second aspect, we propose a configuration including a step of converting the coordinate value of the point cloud indicated by the system point cloud data into the coordinate value of the second coordinate system to generate the second coordinate system point cloud data. ..

第2の態様に係る構築物の三次元形状データの生成方法によれば、構築物の三次元形状の支配的な3軸とは異なる3軸の座標系の座標値により当該構築物の三次元形状を表す点群データを用いて、当該構築物の三次元形状を複数の平面領域で表す三次元形状データを生成することができる。 According to the method of generating the three-dimensional shape data of the structure according to the second aspect, the three-dimensional shape of the structure is represented by the coordinate values of the coordinate system of the three axes different from the dominant three axes of the three-dimensional shape of the structure. Using the point cloud data, it is possible to generate three-dimensional shape data representing the three-dimensional shape of the structure in a plurality of plane regions.

また、本発明は、第2の態様に係る構築物の三次元形状データの生成方法であって、前記生成するステップは、前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表す前記第2座標系の座標値を前記第1座標系の座標値に変換するステップと、変換した前記第1座標系の座標値により前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表す三次元形状データを生成するステップとを有する、という構成を第3の態様として提案する。 Further, the present invention is a method for generating three-dimensional shape data of a structure according to a second aspect, and the generation step comprises a plane region parallel to the xy plane and a plane region parallel to the z-axis. The step of converting the coordinate value of the second coordinate system to be represented by the coordinate value of the first coordinate system, and the converted coordinate value of the first coordinate system make the plane region parallel to the xy plane parallel to the z-axis. As a third aspect, we propose a configuration having a step of generating three-dimensional shape data representing a plane region.

第3の態様に係る構築物の三次元形状データの生成方法によれば、用いる点群データの座標系の座標値で構築物の三次元形状を表す三次元形状データを生成することができる。 According to the method for generating the three-dimensional shape data of the structure according to the third aspect, the three-dimensional shape data representing the three-dimensional shape of the structure can be generated by the coordinate values of the coordinate system of the point cloud data to be used.

また、本発明は、第1乃至第3のいずれかの態様に係る構築物の三次元形状データの生成方法であって、前記複数の領域を特定するステップは、前記境界点を含む領域を通る線を近似する直線又は所定の特性の曲線を特定するステップと、特定した前記直線又は所定の特性の曲線を外縁とする複数の領域を特定するステップとを有する、という構成を第4の態様として提案する。 Further, the present invention is a method for generating three-dimensional shape data of a structure according to any one of the first to third aspects, and a step of specifying the plurality of regions is a line passing through a region including the boundary point. A configuration is proposed as a fourth aspect, which includes a step of specifying a straight line or a curve having a predetermined characteristic, and a step of specifying a plurality of regions having the specified straight line or a curve of a predetermined characteristic as an outer edge. To do.

第4の態様に係る構築物の三次元形状データの生成方法によれば、構築物の三次元形状を構成する平面領域の境界線の形状が直線又は円や楕円等の所定の特性の曲線で構成されている場合、当該構築物の三次元形状を高い精度で表す三次元形状データを生成することができる。 According to the method for generating the three-dimensional shape data of the structure according to the fourth aspect, the shape of the boundary line of the plane region constituting the three-dimensional shape of the structure is composed of a straight line or a curve having a predetermined characteristic such as a circle or an ellipse. If so, it is possible to generate three-dimensional shape data representing the three-dimensional shape of the structure with high accuracy.

また、本発明は、コンピュータに、互いに直交するx軸、y軸及びz軸を有する座標系の空間内に配置され、z軸方向に凹凸を有する構築物の表面上の複数の点の各々に関し当該点の座標値を示す点データの集まりである点群データを取得する処理と、前記点群データが示す複数の点のうちz軸に平行な平面領域内の点を境界点として抽出する処理と、xy平面において前記境界点に囲まれる複数の領域を特定する処理と、前記複数の領域の各々に関し、前記点群データに含まれる複数の点データのうちx座標値及びy座標値が当該領域内である複数の点データのz座標値の代表値をz座標値とするxy平面に平行な平面領域を特定する処理と、特定した複数の前記xy平面に平行な平面領域のうち互いに隣接する2つの平面領域の外縁を2辺とする矩形のz軸に平行な平面領域を特定する処理と、前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表すデータを、前記構築物の三次元形状を表す三次元形状データとして生成する処理とを実行させるためのプログラムを第5の態様として提供する。 The present invention also relates to each of a plurality of points on the surface of a structure that is arranged on a computer in a space of a coordinate system having x-axis, y-axis, and z-axis orthogonal to each other and has irregularities in the z-axis direction. A process of acquiring point group data, which is a collection of point data indicating the coordinate values of points, and a process of extracting a point in a plane region parallel to the z-axis from a plurality of points indicated by the point group data as a boundary point. , The process of specifying a plurality of regions surrounded by the boundary points on the xy plane, and for each of the plurality of regions, the x-coordinate value and the y-coordinate value of the plurality of point data included in the point group data are the regions. The process of specifying a plane region parallel to the xy plane whose z coordinate value is the representative value of the z coordinate value of the plurality of point data in the data, and the plane region parallel to the specified xy plane are adjacent to each other. The process of specifying the plane region parallel to the z-axis of the rectangle having the outer edges of the two plane regions as two sides, and the data representing the plane region parallel to the xy plane and the plane region parallel to the z-axis are obtained. As a fifth aspect, a program for executing a process of generating as three-dimensional shape data representing a three-dimensional shape of a structure is provided.

第5の態様に係るプログラムによればコンピュータにより、大半が規則的に配置された複数の平面領域で構成される構築物の三次元形状を表す三次元形状データを従来技術と比較して短時間で生成することができる。 According to the program according to the fifth aspect, three-dimensional shape data representing the three-dimensional shape of a structure composed of a plurality of plane regions, most of which are regularly arranged, is obtained by a computer in a short time as compared with the prior art. Can be generated.

本発明によれば、大半が規則的に配置された複数の平面領域で構成される構築物の三次元形状を表す三次元形状データを従来技術と比較して短時間で生成することができる。 According to the present invention, it is possible to generate three-dimensional shape data representing a three-dimensional shape of a structure composed of a plurality of plane regions, most of which are regularly arranged, in a short time as compared with the prior art.

一実施形態に係る方法の処理フローを示した図。The figure which showed the processing flow of the method which concerns on one Embodiment. 一実施形態に係る方法の処理フローを示した図。The figure which showed the processing flow of the method which concerns on one Embodiment. 一実施形態に係る方法において生成される第2座標系点群データが表す画像を例示した図。The figure which illustrated the image represented by the 2nd coordinate system point cloud data generated by the method which concerns on one Embodiment. 一実施形態に係る方法において特定される境界ピクセルを表す画像を例示した図。The figure which illustrated the image which represents the boundary pixel specified by the method which concerns on one Embodiment. 一実施形態に係る方法において特定されるエッジを表す画像を例示した図。The figure which illustrated the image which shows the edge specified in the method which concerns on one Embodiment. 一実施形態に係る方法において2本のエッジを接続する処理を説明するための図。The figure for demonstrating the process which connects two edges in the method which concerns on one Embodiment. 一実施形態に係る方法において2本のエッジを接続する処理を説明するための図。The figure for demonstrating the process which connects two edges in the method which concerns on one Embodiment. 一実施形態に係る方法において特定されるxy平面に平行な平面領域を表す画像を例示した図。The figure which illustrated the image which represents the plane area parallel to the xy plane specified by the method which concerns on one Embodiment. 一実施形態に係る方法において生成される点群データと三次元簡略化モデルデータが表す三次元形状を例示した図。The figure which illustrated the 3D shape represented by the point cloud data and 3D simplified model data generated by the method which concerns on 1 Embodiment.

[実施形態]
以下、本発明の一実施形態に係る構築物の三次元形状データの生成方法(以下、「方法M」という)を説明する。方法Mは、点群により構築物の三次元形状を表す三次元形状データ(以下、「点群データ」という)から、頂点、エッジ、ループ、領域を示すデータ群により構築物の三次元形状を表す三次元形状データ(以下、「三次元簡略化モデルデータ」という)を生成する方法である。
[Embodiment]
Hereinafter, a method for generating three-dimensional shape data of a structure according to an embodiment of the present invention (hereinafter, referred to as “method M”) will be described. In the method M, the three-dimensional shape data representing the three-dimensional shape of the structure by the point cloud (hereinafter referred to as “point cloud data”) is used to represent the three-dimensional shape of the structure by the data group indicating the vertices, edges, loops, and regions. This is a method of generating original shape data (hereinafter referred to as "three-dimensional simplified model data").

ただし、方法Mにより有効な三次元簡略化モデルデータが生成できる構築物は、互いに直交する支配的な3軸が存在する構築物である。なお、互いに直交する支配的な3軸が存在する構築物とは、構築物の表面の大半が互いに直交する3軸のいずれか1つを法線とする複数の平面領域で構成されている構築物を意味する。 However, a structure capable of generating effective three-dimensional simplified model data by the method M is a structure in which there are three dominant axes orthogonal to each other. A structure having three dominant axes orthogonal to each other means a structure in which most of the surface of the structure is composed of a plurality of plane regions having any one of the three axes orthogonal to each other as a normal. To do.

図1A及び図1B(以下、これらを「図1」と呼ぶ)は、方法Mの処理フローを示した図である。図1に示される処理はコンピュータが本実施形態に係るプログラムに従い行う。以下、三次元簡略化モデルデータの生成の対象を構築物Sとし、下から見た橋梁の上部工が構築物Sである場合を例に方法Mの処理フローを説明する。 1A and 1B (hereinafter, these are referred to as "FIG. 1") are diagrams showing the processing flow of the method M. The processing shown in FIG. 1 is performed by the computer according to the program according to the present embodiment. Hereinafter, the processing flow of the method M will be described by taking as an example the case where the target for generating the three-dimensional simplified model data is the structure S and the superstructure of the bridge seen from below is the structure S.

まず、構築物Sを複数の視点から撮影して得られる二次元画像を表す画像データを取得する(ステップS01)。続いて、SfM(Structure from Motion)により、ステップS01において取得した複数の画像データから構築物の点群データを生成する(ステップS02)。本実施形態においては、ステップS02において、法線ベクトルを持つメッシュ群を表す点群データを生成する。ステップS02で生成される点群データが表すメッシュの各々の頂点や法線ベクトルは、或る座標系(以下、「第1座標系」という)における座標値を用いて表現されている。以下、ステップS02で生成される点群データを「第1座標系点群データ」という。 First, image data representing a two-dimensional image obtained by photographing the structure S from a plurality of viewpoints is acquired (step S01). Subsequently, the point cloud data of the structure is generated from the plurality of image data acquired in step S01 by SfM (Structure from Motion) (step S02). In the present embodiment, in step S02, point cloud data representing a mesh group having a normal vector is generated. Each vertex and normal vector of the mesh represented by the point cloud data generated in step S02 is represented using coordinate values in a certain coordinate system (hereinafter, referred to as "first coordinate system"). Hereinafter, the point cloud data generated in step S02 will be referred to as "first coordinate system point cloud data".

続いて、第1座標系点群データが表す三次元形状の支配的な3軸を、頂点法線ベクトルのガウシアンマッピングとRANSAC法により特定する(ステップS03)。 Subsequently, the dominant three axes of the three-dimensional shape represented by the first coordinate system point cloud data are specified by the Gaussian mapping of the vertex normal vector and the RANSAC method (step S03).

以下、ステップS03において特定された3軸をx軸、y軸、z軸とする座標系を「第2座標系」と呼ぶ。第2座標系のz軸は鉛直方向の軸であり、x軸は構築物Sの軸方向(車両等の走行方向)の軸であり、y軸は構築物Sの幅方向(車両等の幅方向)の軸である。 Hereinafter, the coordinate system in which the three axes specified in step S03 are the x-axis, the y-axis, and the z-axis is referred to as a "second coordinate system". The z-axis of the second coordinate system is the vertical axis, the x-axis is the axial direction of the structure S (traveling direction of the vehicle, etc.), and the y-axis is the width direction of the structure S (width direction of the vehicle, etc.). Is the axis of.

続いて、第1座標系点群データが示す点群の座標値を第2座標系の座標値に変換した点群データ(以下、「第2座標系点群データ」という)を生成する(ステップS04)(請求の範囲に記載の点群データを取得するステップの一例)。図2は、第2座標系点群データが表す画像を例示した図である。 Subsequently, point cloud data (hereinafter referred to as "second coordinate system point cloud data") obtained by converting the coordinate values of the point cloud indicated by the first coordinate system point cloud data into the coordinate values of the second coordinate system is generated (step). S04) (an example of a step of acquiring the point cloud data described in the claim range). FIG. 2 is a diagram illustrating an image represented by the second coordinate system point cloud data.

続いて、第2座標系点群データが示す複数のメッシュの中から、法線ベクトルがxy平面との間でなす角度が所定の閾値内(実質的に平行)のメッシュを抽出する(ステップS05)(請求の範囲に記載の抽出するステップの一例)。なお、ステップS05において抽出されるメッシュは、構築物Sの表面のうちz軸に平行な平面領域内のメッシュである。以下、ステップS05において抽出されるメッシュを「境界メッシュ」と呼び、境界メッシュの頂点を「境界頂点」(請求の範囲に記載の境界点の一例)と呼ぶ。 Subsequently, from the plurality of meshes indicated by the second coordinate system point cloud data, a mesh in which the angle formed by the normal vector with the xy plane is within a predetermined threshold (substantially parallel) is extracted (step S05). ) (An example of the extraction steps described in the billing scope). The mesh extracted in step S05 is a mesh in a plane region parallel to the z-axis on the surface of the structure S. Hereinafter, the mesh extracted in step S05 is referred to as a “boundary mesh”, and the vertices of the boundary mesh are referred to as “boundary vertices” (an example of the boundary points described in the claims).

続いて、第2座標系点群データが示すメッシュの頂点をxy平面に投影する(ステップS06)。なお、点をxy平面に投影する、という場合、その点のz座標値をゼロ値に変更することを意味する。 Subsequently, the vertices of the mesh indicated by the second coordinate system point cloud data are projected onto the xy plane (step S06). When projecting a point on the xy plane, it means changing the z-coordinate value of the point to a zero value.

続いて、xy平面を所定サイズの所定形状の単位領域であるピクセルに分割する(ステップS07)。本実施形態においては、例として、1ピクセルは10cm四方の正方形とする。 Subsequently, the xy plane is divided into pixels, which are unit regions of a predetermined size and a predetermined shape (step S07). In this embodiment, as an example, one pixel is a square of 10 cm square.

続いて、境界頂点を含むピクセルを抽出する(ステップS08)。以下、ステップS08において抽出されるピクセルを「境界ピクセル」と呼ぶ。図3は、境界ピクセルを表す画像を例示した図である。なお、図3において、境界ピクセルは白で示されている。 Subsequently, the pixels including the boundary vertices are extracted (step S08). Hereinafter, the pixels extracted in step S08 are referred to as "boundary pixels". FIG. 3 is a diagram illustrating an image representing boundary pixels. In FIG. 3, the boundary pixels are shown in white.

続いて、境界ピクセルを対象に、領域成長法により直線状に分布するピクセル群を1塊とするセグメンテーションを行う(ステップS09)。続いて、セグメンテーションされたピクセル群にフィットする直線(線分)を特定する(ステップS10)。なお、ステップS10において特定される直線は、セグメンテーションされたピクセル群(境界頂点を含む領域)を通る線を近似する直線である。以下、ステップS10において特定される線分を「エッジ」(請求の範囲に記載の外縁の一例)と呼ぶ。エッジの両端が三次元簡略化モデルにおける頂点となる。図4は、エッジを表す画像を例示した図である。 Subsequently, segmentation is performed on the boundary pixels with a group of pixels linearly distributed by the region growth method as one block (step S09). Subsequently, a straight line (line segment) that fits the segmented pixel group is specified (step S10). The straight line specified in step S10 is a straight line that approximates a line passing through a segmented pixel group (a region including a boundary vertex). Hereinafter, the line segment specified in step S10 will be referred to as an "edge" (an example of the outer edge described in the claims). Both ends of the edge are the vertices in the 3D simplified model. FIG. 4 is a diagram illustrating an image representing an edge.

続いて、不連続なエッジ間の接続処理を行う(ステップS11)。具体的には、以下の2つのパターンに関して、エッジ間の接続処理を行う。 Subsequently, connection processing between discontinuous edges is performed (step S11). Specifically, the connection processing between edges is performed for the following two patterns.

(パターン1)図5(a)に示すように、隣接する2本のエッジの端点間の距離が所定の閾値以内である場合、2本のエッジの各々を延長して交点を特定し、その交点を2本のエッジに共通の新たな頂点とする(図5(b))。 (Pattern 1) As shown in FIG. 5A, when the distance between the end points of two adjacent edges is within a predetermined threshold value, each of the two edges is extended to identify the intersection, and the intersection is specified. Let the intersection be a new vertex common to the two edges (Fig. 5 (b)).

(パターン2)図6(a)に示すように、隣接する2本のエッジの一方の端点と他方のエッジとの距離が所定の閾値以内である場合、一方のエッジを延長して交点を特定し、その交点を延長したエッジの新たな頂点とするとともに、他方のエッジをその交点で2本のエッジに分割する(図6(b))。 (Pattern 2) As shown in FIG. 6A, when the distance between one end point of two adjacent edges and the other edge is within a predetermined threshold value, one edge is extended to specify an intersection. Then, the intersection is used as a new vertex of the extended edge, and the other edge is divided into two edges at the intersection (FIG. 6 (b)).

続いて、境界ピクセルでないピクセルが連続する領域をクラスタリングする(ステップS12)。続いて、クラスタリングした領域の各々に関し、領域内のピクセルのz座標値の平均値を当該ピクセルのz座標値とするxy平面に平行な平面領域を特定する(ステップS13)(請求の範囲に記載のxy平面に平行な平面領域を特定するステップの一例)。図7は、xy平面に平行な平面領域を表す画像を例示した図である。 Subsequently, a region in which non-boundary pixels are continuous is clustered (step S12). Subsequently, for each of the clustered regions, a plane region parallel to the xy plane having the average value of the z-coordinate values of the pixels in the region as the z-coordinate value of the pixel is specified (step S13) (described in the claim range). An example of a step of identifying a plane region parallel to the xy plane of. FIG. 7 is a diagram illustrating an image showing a plane region parallel to the xy plane.

続いて、ステップS13において特定した平面領域の中から、各エッジに隣接する2つの平面領域を探索し、平面領域間の隣接関係を特定する(ステップS14)。また、ステップS13において特定した平面領域の各々に関し、平面領域を囲むエッジ群をループとして特定する(ステップS15)。 Subsequently, from the plane regions specified in step S13, two plane regions adjacent to each edge are searched, and the adjacency relationship between the plane regions is specified (step S14). Further, for each of the plane regions specified in step S13, the edge group surrounding the plane region is specified as a loop (step S15).

続いて、各エッジを、そのエッジに隣接する2つの平面領域のz座標値間でz軸方向にスイープして生成される平面領域を、z軸に平行な平面領域として特定する(ステップS16)(請求の範囲に記載のz軸に平行な平面領域を特定するステップの一例)。なお、ステップS16において特定される平面領域は、隣接する2つの平面領域のエッジを2辺とする矩形の平面領域である。ステップS16の処理によって、新たなエッジとループが生成される。 Subsequently, the plane region generated by sweeping each edge in the z-axis direction between the z-coordinate values of the two plane regions adjacent to the edge is specified as a plane region parallel to the z-axis (step S16). (An example of a step of specifying a plane region parallel to the z-axis described in the claim range). The plane region specified in step S16 is a rectangular plane region having two edges as two adjacent plane regions. The process of step S16 creates new edges and loops.

以上の処理により、構築物Sの形状を表す、xy平面に平行な平面領域と、z軸に平行な平面領域と、それらの平面領域を囲むループと、各ループを構成するエッジと、各エッジの両端の頂点が特定される。 By the above processing, a plane region parallel to the xy plane, a plane region parallel to the z-axis, a loop surrounding those plane regions, an edge constituting each loop, and each edge representing the shape of the structure S The vertices at both ends are identified.

続いて、上記のように特定された平面領域、ループ、エッジ及び頂点を示す座標値を、第1座標系の座標値に変換する(ステップS17)。そして、ステップS17における変換後の座標値により平面領域、ループ、エッジ及び頂点を示すデータを、構築物Sの三次元形状を表す三次元簡略化モデルデータ(請求の範囲に記載の三次元形状データの一例)として生成する(ステップS18)(請求の範囲に記載の生成するステップの一例)。図8は、第1座標系点群データが表す三次元形状と、ステップS18において生成される三次元簡略化モデルデータが表す三次元形状を例示した図である。図8(a)は第1座標系点群データが表す三次元形状の例であり、図8(b)は三次元簡略化モデルデータが表す三次元形状の例であり、図8(c)はそれらの三次元形状を重ね合わせた図の例である。方法Mにより生成される三次元簡略化モデルデータは、第1座標系点群データより大幅に要素数が削減されているが、図8より、第1座標系点群データが表す三次元形状をよく近似していることが分かる。 Subsequently, the coordinate values indicating the plane region, loop, edge, and vertex specified as described above are converted into the coordinate values of the first coordinate system (step S17). Then, the data indicating the plane region, the loop, the edge, and the apex according to the coordinate values after the conversion in step S17 are converted into the three-dimensional simplified model data (the three-dimensional shape data described in the claim range) representing the three-dimensional shape of the structure S. Generate as (an example) (step S18) (an example of the generation step described in the scope of claim). FIG. 8 is a diagram illustrating the three-dimensional shape represented by the first coordinate system point cloud data and the three-dimensional shape represented by the three-dimensional simplified model data generated in step S18. FIG. 8 (a) is an example of the three-dimensional shape represented by the first coordinate system point cloud data, and FIG. 8 (b) is an example of the three-dimensional shape represented by the three-dimensional simplified model data, FIG. 8 (c). Is an example of a diagram in which these three-dimensional shapes are superimposed. The three-dimensional simplified model data generated by the method M has a significantly reduced number of elements compared to the first coordinate system point cloud data, but from FIG. 8, the three-dimensional shape represented by the first coordinate system point cloud data can be obtained. It can be seen that they are very similar.

以上が方法Mの処理の説明である。上述した方法Mによれば、構築物Sを少ないデータ量で表す三次元簡略化モデルデータが従来技術による場合と比較して短時間で生成される。 The above is the description of the processing of the method M. According to the above-mentioned method M, three-dimensional simplified model data representing the structure S with a small amount of data is generated in a short time as compared with the case of the conventional technique.

[変形例]
上述の実施形態は本発明の一具体例であって、本発明の技術的思想の範囲内において様々に変形可能である。以下にそれらの変形の例を示す。なお、以下に示す2以上の変形例が適宜組み合わされてもよい。
[Modification example]
The above-described embodiment is a specific example of the present invention, and can be variously modified within the scope of the technical idea of the present invention. Examples of these modifications are shown below. In addition, two or more modified examples shown below may be combined as appropriate.

(1)ステップS01及びS02において第1座標系点群データを生成する手法はSfMに限られない。例えば、ステレオカメラやレーザスキャナ等のデプスセンサにより第1座標系点群データが生成されてもよい。その場合、コンピュータは外部の装置により生成された第1座標系点群データを取得し、その第1座標系点群データを用いて、ステップS03以降の処理を行えばよい。 (1) The method for generating the first coordinate system point cloud data in steps S01 and S02 is not limited to SfM. For example, the first coordinate system point cloud data may be generated by a depth sensor such as a stereo camera or a laser scanner. In that case, the computer may acquire the first coordinate system point cloud data generated by the external device, and perform the processing after step S03 using the first coordinate system point cloud data.

(2)第1座標系点群データの形式は法線ベクトルを持つメッシュ群を表すものに限られない。例えば、ポリゴンモデルを表す第1座標系点群データが用いられてもよい。 (2) The format of the first coordinate system point cloud data is not limited to that representing a mesh group having a normal vector. For example, first coordinate system point cloud data representing a polygon model may be used.

(3)ステップS03において、第1座標系点群データが表す三次元形状の支配的な3軸を特定する手法は、頂点法線ベクトルのガウシアンマッピングとRANSAC法を用いる手法に限られない。 (3) In step S03, the method for specifying the dominant three axes of the three-dimensional shape represented by the first coordinate system point cloud data is not limited to the method using the Gaussian mapping of the vertex normal vector and the RANSAC method.

(4)ピクセルのサイズ及び形状は上述したものに限られない。 (4) The size and shape of the pixel are not limited to those described above.

(5)上述した実施形態においては、エッジは直線であるものとしたが、エッジが円弧や楕円弧等の所定の特性を持つ曲線であってもよい。この場合、ステップS10において、セグメンテーションされたピクセル群にフィットする直線又は所定の特性を持つ曲線を特定することになる。 (5) In the above-described embodiment, the edge is a straight line, but the edge may be a curved line having a predetermined characteristic such as an arc or an elliptical arc. In this case, in step S10, a straight line or a curve having a predetermined characteristic that fits the segmented pixel group is specified.

(6)上述した実施形態においては、ステップS13において特定するxy平面に平行な平面領域のz座標値として、ステップS12においてクラスタリングした領域内のピクセルのz座標値の平均値を用いるものとした。ここで、平均値に代えて、中間値、最頻値等の他の統計値を用いてもよい。 (6) In the above-described embodiment, the average value of the z-coordinate values of the pixels in the clustered region in step S12 is used as the z-coordinate value of the plane region parallel to the xy plane specified in step S13. Here, instead of the average value, other statistical values such as an intermediate value and a mode value may be used.

(7)上述した実施形態においては、第2座標系点群データが示すメッシュのうち法線ベクトルがxy平面と実質的に平行なものを抽出し、それらのメッシュの頂点(境界点)を含む領域を通る線をxy平面に平行な平面領域の境界線として特定する。xy平面に平行な平面領域の境界線の特定方法はこれに限られない。例えば、第2座標系点群データが示す点をxy平面に投影し、xy平面において投影された点群の分布に基づき、境界線の特定を行ってもよい。すなわち、xy平面において点群の密度が所定の閾値以上である領域を通る線を境界線として特定してもよい。 (7) In the above-described embodiment, among the meshes indicated by the second coordinate system point cloud data, those whose normal vector is substantially parallel to the xy plane are extracted, and the vertices (boundary points) of those meshes are included. A line passing through the region is specified as a boundary line of a plane region parallel to the xy plane. The method of specifying the boundary line of the plane region parallel to the xy plane is not limited to this. For example, the points indicated by the second coordinate system point cloud data may be projected onto the xy plane, and the boundary line may be specified based on the distribution of the projected point cloud on the xy plane. That is, a line passing through a region where the density of the point cloud is equal to or higher than a predetermined threshold value on the xy plane may be specified as a boundary line.

Claims (5)

互いに直交するx軸、y軸及びz軸を有する座標系の空間内に配置され、z軸方向に凹凸を有する構築物の表面上の複数の点の各々に関し当該点の座標値を示す点データの集まりである点群データを取得するステップと、
前記点群データが示す複数の点のうちz軸に平行な平面領域内の点を境界点として抽出するステップと、
xy平面において前記境界点に囲まれる複数の領域を特定するステップと、
前記複数の領域の各々に関し、前記点群データに含まれる複数の点データのうちx座標値及びy座標値が当該領域内である複数の点データのz座標値の代表値をz座標値とするxy平面に平行な平面領域を特定するステップと、
特定した複数の前記xy平面に平行な平面領域のうち互いに隣接する2つの平面領域の外縁を2辺とする矩形のz軸に平行な平面領域を特定するステップと、
前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表すデータを、前記構築物の三次元形状を表す三次元形状データとして生成するステップと
を備える構築物の三次元形状データの生成方法。
Point data indicating the coordinate values of a plurality of points on the surface of a structure having irregularities in the z-axis direction, which are arranged in the space of a coordinate system having x-axis, y-axis, and z-axis orthogonal to each other. Steps to acquire point cloud data that is a collection,
A step of extracting a point in a plane region parallel to the z-axis from a plurality of points indicated by the point cloud data as a boundary point, and
A step of identifying a plurality of regions surrounded by the boundary points in the xy plane, and
For each of the plurality of regions, the representative value of the z-coordinate value of the plurality of point data whose x-coordinate value and y-coordinate value are within the region among the plurality of point data included in the point cloud data is defined as the z-coordinate value. Steps to identify the plane area parallel to the xy plane to be
A step of specifying a plane region parallel to the z-axis of a rectangle having two outer edges of two plane regions adjacent to each other among a plurality of specified plane regions parallel to the xy plane.
Generation of three-dimensional shape data of a structure including a step of generating data representing a plane region parallel to the xy plane and a plane region parallel to the z-axis as three-dimensional shape data representing the three-dimensional shape of the structure. Method.
前記座標系を第2座標系とし、前記点群データを第2座標系点群データとするとき、
前記点群データを取得するステップは、
前記第2座標系とは異なる第1座標系で前記構築物の表面上の複数の点の各々に関し当該点の座標値を示す点データの集まりである第1座標系点群データを取得するステップと、
前記第1座標系点群データが表す三次元形状の支配的な3軸を前記第2座標系の3軸として特定するステップと、
前記第1座標系点群データが示す点群の座標値を前記第2座標系の座標値に変換して前記第2座標系点群データを生成するステップと
を有する
請求項1に記載の構築物の三次元形状データの生成方法。
When the coordinate system is the second coordinate system and the point cloud data is the second coordinate system point cloud data,
The step of acquiring the point cloud data is
A step of acquiring first coordinate system point cloud data which is a collection of point data indicating the coordinate values of the points with respect to each of a plurality of points on the surface of the structure in the first coordinate system different from the second coordinate system. ,
A step of specifying the dominant three axes of the three-dimensional shape represented by the first coordinate system point cloud data as the three axes of the second coordinate system, and
The structure according to claim 1, further comprising a step of converting the coordinate value of the point cloud indicated by the first coordinate system point cloud data into the coordinate value of the second coordinate system to generate the second coordinate system point cloud data. How to generate 3D shape data.
前記生成するステップは、
前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表す前記第2座標系の座標値を前記第1座標系の座標値に変換するステップと、
変換した前記第1座標系の座標値により前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表す三次元形状データを生成するステップと
を有する
請求項2に記載の構築物の三次元形状データの生成方法。
The step to generate is
A step of converting the coordinate values of the second coordinate system representing the plane region parallel to the xy plane and the plane region parallel to the z-axis into the coordinate values of the first coordinate system.
The structure according to claim 2, further comprising a step of generating three-dimensional shape data representing a plane region parallel to the xy plane and a plane region parallel to the z-axis based on the converted coordinate values of the first coordinate system. How to generate 3D shape data.
前記複数の領域を特定するステップは、
前記境界点を含む領域を通る線を近似する直線又は所定の特性の曲線を特定するステップと、
特定した前記直線又は所定の特性の曲線を外縁とする複数の領域を特定するステップと
を有する
請求項1乃至3のいずれか1項に記載の構築物の三次元形状データの生成方法。
The step of identifying the plurality of regions is
A step of specifying a straight line that approximates a line passing through a region including the boundary point or a curve having a predetermined characteristic, and
The method for generating three-dimensional shape data of a structure according to any one of claims 1 to 3, further comprising a step of specifying a plurality of regions having the specified straight line or a curve having a predetermined characteristic as an outer edge.
コンピュータに、
互いに直交するx軸、y軸及びz軸を有する座標系の空間内に配置され、z軸方向に凹凸を有する構築物の表面上の複数の点の各々に関し当該点の座標値を示す点データの集まりである点群データを取得する処理と、
前記点群データが示す複数の点のうちz軸に平行な平面領域内の点を境界点として抽出する処理と、
xy平面において前記境界点に囲まれる複数の領域を特定する処理と、
前記複数の領域の各々に関し、前記点群データに含まれる複数の点データのうちx座標値及びy座標値が当該領域内である複数の点データのz座標値の代表値をz座標値とするxy平面に平行な平面領域を特定する処理と、
特定した複数の前記xy平面に平行な平面領域のうち互いに隣接する2つの平面領域の外縁を2辺とする矩形のz軸に平行な平面領域を特定する処理と、
前記xy平面に平行な平面領域と前記z軸に平行な平面領域とを表すデータを、前記構築物の三次元形状を表す三次元形状データとして生成する処理と
を実行させるためのプログラム。
On the computer
Point data indicating the coordinate values of a plurality of points on the surface of a structure having irregularities in the z-axis direction, which are arranged in the space of a coordinate system having x-axis, y-axis, and z-axis orthogonal to each other. The process of acquiring point cloud data, which is a collection, and
A process of extracting a point in a plane region parallel to the z-axis from a plurality of points indicated by the point cloud data as a boundary point, and
The process of identifying a plurality of regions surrounded by the boundary points on the xy plane, and
For each of the plurality of regions, the representative value of the z-coordinate value of the plurality of point data whose x-coordinate value and y-coordinate value are within the region among the plurality of point data included in the point cloud data is defined as the z-coordinate value. The process of specifying the plane area parallel to the xy plane to be performed, and
A process of specifying a plane region parallel to the z-axis of a rectangle having two sides as outer edges of two plane regions adjacent to each other among a plurality of specified plane regions parallel to the xy plane.
A program for executing a process of generating data representing a plane region parallel to the xy plane and a plane region parallel to the z-axis as three-dimensional shape data representing the three-dimensional shape of the structure.
JP2019159659A 2019-09-02 2019-09-02 How to generate three-dimensional shape data of a structure Active JP7374433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159659A JP7374433B2 (en) 2019-09-02 2019-09-02 How to generate three-dimensional shape data of a structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159659A JP7374433B2 (en) 2019-09-02 2019-09-02 How to generate three-dimensional shape data of a structure

Publications (2)

Publication Number Publication Date
JP2021039500A true JP2021039500A (en) 2021-03-11
JP7374433B2 JP7374433B2 (en) 2023-11-07

Family

ID=74847097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159659A Active JP7374433B2 (en) 2019-09-02 2019-09-02 How to generate three-dimensional shape data of a structure

Country Status (1)

Country Link
JP (1) JP7374433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113935081A (en) * 2021-08-31 2022-01-14 重庆大学 Post-manufacturing method of connecting plate for bolted bridge engineering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113935081A (en) * 2021-08-31 2022-01-14 重庆大学 Post-manufacturing method of connecting plate for bolted bridge engineering
CN113935081B (en) * 2021-08-31 2024-04-02 重庆大学 Post-manufacturing method of connecting plate for bolted bridge engineering

Also Published As

Publication number Publication date
JP7374433B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN109872397B (en) Three-dimensional reconstruction method of airplane parts based on multi-view stereo vision
EP3754295B1 (en) Three-dimensional measuring system and three-dimensional measuring method
JP5870273B2 (en) Object detection apparatus, object detection method, and program
JP2019534510A5 (en)
WO2018061010A1 (en) Point cloud transforming in large-scale urban modelling
JP2007310707A (en) Apparatus and method for estimating posture
JP2010171976A (en) Method and system for correcting distorted document image
JP6534296B2 (en) Three-dimensional model generation device, three-dimensional model generation method, and program
WO2023093739A1 (en) Multi-view three-dimensional reconstruction method
JP2003323640A (en) Method, system and program for preparing highly precise city model using laser scanner data and aerial photographic image
KR102158390B1 (en) Method and apparatus for image processing
JP2018036898A (en) Image processing device and control method of the same
JP2008158984A (en) Image processor and area tracing program
JP7374433B2 (en) How to generate three-dimensional shape data of a structure
Chen et al. Range image segmentation for modeling and object detection in urban scenes
CN111127622B (en) Three-dimensional point cloud outlier rejection method based on image segmentation
JP2019120590A (en) Parallax value calculation device, parallax value calculation method and program
CN112002007A (en) Model obtaining method and device based on air-ground image, equipment and storage medium
JP7298687B2 (en) Object recognition device and object recognition method
JP2023059069A (en) Overhead line recognition device and overhead line recognition method
CN113592976A (en) Map data processing method and device, household appliance and readable storage medium
KR101079359B1 (en) A system for generating digital map using an aerial photograph and aerial light detection of ranging data
JP2017199285A (en) Information processor, information processing method, program
JP6838912B2 (en) Image processing equipment, image processing methods and programs
Gkeli et al. Automatic 3D reconstruction of buildings roof tops in densely urbanized areas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231017

R150 Certificate of patent or registration of utility model

Ref document number: 7374433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150