JP2021036512A - Electrolytic solution for fluoride ion batteries, and fluoride ion battery - Google Patents

Electrolytic solution for fluoride ion batteries, and fluoride ion battery Download PDF

Info

Publication number
JP2021036512A
JP2021036512A JP2019158217A JP2019158217A JP2021036512A JP 2021036512 A JP2021036512 A JP 2021036512A JP 2019158217 A JP2019158217 A JP 2019158217A JP 2019158217 A JP2019158217 A JP 2019158217A JP 2021036512 A JP2021036512 A JP 2021036512A
Authority
JP
Japan
Prior art keywords
fluoride
fluoride ion
electrolytic solution
ion conductive
conductive organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019158217A
Other languages
Japanese (ja)
Other versions
JP7444372B2 (en
Inventor
狩野 巌大郎
Gentaro Kano
巌大郎 狩野
三津夫 川▲崎▼
Mitsuo Kawasaki
三津夫 川▲崎▼
安部 武志
Takeshi Abe
武志 安部
森垣 健一
Kenichi Morigaki
健一 森垣
博文 中本
Hirofumi Nakamoto
博文 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nissan Motor Co Ltd
Toyota Motor Corp
Original Assignee
Kyoto University
Nissan Motor Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nissan Motor Co Ltd, Toyota Motor Corp filed Critical Kyoto University
Priority to JP2019158217A priority Critical patent/JP7444372B2/en
Publication of JP2021036512A publication Critical patent/JP2021036512A/en
Application granted granted Critical
Publication of JP7444372B2 publication Critical patent/JP7444372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a nonaqueous organic electrolytic solution for fluoride ion batteries, which is superior in the solubility of the fluoride salt and chemical and electrochemical stability, and imparted with a fluoride ion-conducting property, by dissolving an alkali metal fluoride salt in a nonaqueous organic solvent having a high boiling point by simple solvation ionization dissociation.SOLUTION: The above problem is solved by a fluoride ion-conducting organic electrolytic solution, which comprises an ester-based or lactone-based single or mixed organic solvent which has α-hydrogen; and an alkali metal fluoride having an alkali metal cation and a fluoride ion.SELECTED DRAWING: None

Description

本発明は、フッ化物イオン伝導性を付与したフッ化物イオン電池用有機電解液に関する。 The present invention relates to an organic electrolytic solution for a fluoride ion battery to which fluoride ion conductivity is imparted.

高電圧かつ高エネルギー密度の蓄電池としてLiイオン電池(LIB)が知られている。LIBは正極および負極ホスト結晶中へのLiイオンの可逆的挿入・脱挿入反応を利用したカチオンベースの電池であり、非水溶媒(有機電解液)中に溶解したリチウム塩の解離で生じたLiイオンが両極の間を移動することで系内の電荷量と物質量のバランスが保たれる。 A Li-ion battery (LIB) is known as a storage battery having a high voltage and a high energy density. LIB is a cation-based battery that utilizes the reversible insertion / removal reaction of Li + ions into the positive and negative host crystals, and is caused by the dissociation of lithium salts dissolved in a non-aqueous solvent (organic electrolyte). The balance between the amount of charge and the amount of substance in the system is maintained by the movement of Li + ions between the two electrodes.

また、上記LIBのエネルギー密度を大幅に向上させる革新型の電池としてフッ化物イオン(F)と金属との反応による多価の金属フッ化物の生成とその逆反応(金属フッ化物の脱フッ化反応)を利用したアニオンベースのフッ化物イオン電池(図1)がある。この電池で両極の間を移動するのはハロゲン化物イオンの中で最も軽いFイオン(M=19)であり、さらに1金属原子あたり場合により2〜3個もしくはそれ以上の数のFイオン(およびそれと同数の電子)が電極反応に関与することが、上記の高いエネルギー密度をもたらす最大の要因である。 In addition, as an innovative battery that greatly improves the energy density of the LIB, the formation of polyvalent metal fluoride by the reaction of fluoride ion (F − ) with a metal and its reverse reaction (fluoride of the metal fluoride). There is an anion-based fluoride ion cell (FIG. 1) that utilizes a reaction). It is the lightest F- ion (M = 19) among the halide ions that moves between the two electrodes in this battery, and in some cases 2-3 or more F - ions per metal atom. The involvement of (and the same number of ions) in the electrode reaction is the largest factor that results in the high energy density described above.

上記フッ化物イオン電池はLIBの必須部材であるところのホスト格子を必要としない。Fイオンが電極反応と電解質中の電荷移動の両者で主役を演じるこの種の電池はFIB(Fluoride Ion Battery)あるいはFイオンの双方向移動の役割を強調したFSB(Fluoride Shuttle Battery)の略称で知られている。 The fluoride ion battery does not require a host grid, which is an essential member of the LIB. F - abbreviation emphasized the role of bi-directional movement of the ion FSB (Fluoride Shuttle Battery) - ions of this kind of the battery plays a leading role in both the charge transfer in the electrolyte and the electrode reaction FIB (Fluoride Ion Battery) or F Is known for.

フッ化物イオン電池の基本要素の一つとなる金属フッ化物の還元(放電)反応については固体電解質が注目された1970年代の研究ですでに少なくない数の報告がなされている。しかし、二次電池として本質的に欠かせない充放電の有意な可逆性が全固体電池の枠内で不完全ながらも確かめられたのは、比較的最近になってからのことである。 Regarding the reduction (discharge) reaction of metal fluoride, which is one of the basic elements of fluoride ion batteries, a considerable number of reports have already been made in the 1970s research, which attracted attention to solid electrolytes. However, it was only relatively recently that the significant reversibility of charge and discharge, which is essentially essential for secondary batteries, was confirmed, albeit incompletely, within the framework of all-solid-state batteries.

また、一般的には固体電解質のイオン導電性と固体/固体界面での電気化学的反応性などに関する制約により、固体FIB電池の室温動作の報告はごく最近発表された一例に止まっている。 Also, in general, due to restrictions on the ionic conductivity of solid electrolytes and the electrochemical reactivity at the solid / solid interface, reports of room temperature operation of solid FIB batteries are only one of the most recently published examples.

フッ化物イオンの輸送に非水系電解液を用いる湿式電池では原理的に上記の制約は除かれる。その目的に利用できる電解液に関する先行特許や学術論文も例に事欠かない。代表的な例としては、様々なフッ化物塩を比較的容易に溶解させるイオン液体を用いる手法(特許文献1)があり、その他、高沸点汎用有機溶媒に所謂アニオンレセプター(アニオンアクセプター)なるものを添加することで、フッ化物の溶解を促進する手法も報告されている。 In a wet battery that uses a non-aqueous electrolyte solution for transporting fluoride ions, the above restrictions are basically removed. There is no shortage of prior patents and academic papers on electrolytes that can be used for that purpose. As a typical example, there is a method using an ionic liquid that dissolves various fluoride salts relatively easily (Patent Document 1), and in addition, a so-called anion receptor (anion acceptor) in a high boiling point general-purpose organic solvent. A method of promoting the dissolution of fluoride by adding the above has also been reported.

特開2016−62821号公報Japanese Unexamined Patent Publication No. 2016-62221

フッ化物イオン電池を駆動するための電解液としては、フッ化物イオン伝導性と正負両極におけるフッ化物イオンの反応性の両方を担保できる形で、少なくとも1mM以上の濃度のフッ化物イオンが存在することが望ましい。 As the electrolytic solution for driving the fluoride ion battery, there must be a fluoride ion having a concentration of at least 1 mM or more in a form capable of ensuring both the fluoride ion conductivity and the reactivity of the fluoride ion at both the positive and negative poles. Is desirable.

しかしフッ化物イオンは極めて強いルイス塩基で求核反応性が高く、例えばプロトンとの反応で容易にフッ化水素(HF)を生成し、電解液の中で単独で安定なイオンとして存在させることは困難であった。 However, fluoride ion is an extremely strong Lewis base and has high nucleophilic reactivity. For example, it is not possible to easily generate hydrogen fluoride (HF) by reaction with a proton and allow it to exist alone in an electrolytic solution as a stable ion. It was difficult.

さらに、フッ化物イオンを電解液に溶解させるための前駆物質としてはアルカリ金属フッ化物を用いることが望ましいが、金属フッ化物の結晶格子エネルギーが非常に大きいため、これを高沸点汎用有機溶媒にそのまま単純解離溶解させることも困難であった。 Furthermore, it is desirable to use alkali metal fluoride as a precursor for dissolving fluoride ions in the electrolytic solution, but since the crystal lattice energy of metal fluoride is very large, this can be used as it is in a high boiling point general-purpose organic solvent. It was also difficult to simply dissociate and dissolve.

これらの問題を避けるための手法としてこれまで提案され開発が進められてきたのが、上記のイオン液体系やアニオンアクセプターを用いた技術であるが、電解液の安定性や限られた電位窓など実用課題が少なくなかった。 As a method for avoiding these problems, the technology using the above-mentioned ionic liquid system and anion acceptor has been proposed and developed so far, but the stability of the electrolytic solution and the limited potential window There were many practical issues such as.

本発明は、上記実情に鑑みてなされたものであり、通常の方法では解離溶解しないアルカリ金属フッ化物を、特定の高沸点有機溶媒にアルカリ金属カチオンおよびフッ化物イオンの形で単純溶媒和イオン化解離させたフッ化物イオン電池用の、フッ化物塩の溶解性と化学的および電気化学的安定性に優れた電解液を提供することを主目的とする。 The present invention has been made in view of the above circumstances, and a simple solvation ionization dissociation of an alkali metal fluoride, which is not dissociated and dissolved by a usual method, in the form of an alkali metal cation and a fluoride ion in a specific high boiling point organic solvent. An object of the present invention is to provide an electrolytic solution having excellent solubility of a fluoride salt and excellent chemical and electrochemical stability for a fluoride ion battery.

上記課題を達成するために、本発明者等が鋭意研究を重ねた。その結果、特定の高沸点有機溶媒にα位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒とアルカリ金属フッ化物からなる電解液とすることで、フッ化物塩が解離しやすくなり、フッ化物塩の溶解性が向上し、化学的および電気化学的安定性が改善されることを見出した。詳しくは、特定の高沸点有機溶媒を用い、複数の中間段階を経る新たな溶解プロセスを経ることで、アルカリ金属フッ化物が少なくとも1mM以上の濃度で当該溶媒に単純溶解分散したフッ化物イオン伝導性電解液を調製できることを見出した。本発明は、このような知見に基づくものである。 In order to achieve the above problems, the present inventors have conducted extensive research. As a result, the fluoride salt is easily dissociated by preparing an electrolytic solution composed of an ester-based or lactone-based single or mixed organic solvent having α-hydrogen in a specific high-boiling organic solvent and an alkali metal fluoride, and the fluoride salt is easily dissociated. It has been found that the solubility of fluorides is improved and the chemical and electrochemical stability is improved. Specifically, by using a specific high-boiling organic solvent and undergoing a new dissolution process through a plurality of intermediate steps, fluoride ion conductivity in which alkali metal fluoride is simply dissolved and dispersed in the solvent at a concentration of at least 1 mM or more. We have found that electrolytes can be prepared. The present invention is based on such findings.

すなわち本発明においては、特定の高沸点有機溶媒であるα位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒(単に「α位水素を有するエステル系/ラクトン系溶媒」又は「α位水素をもつ溶媒」ともいう)と、アルカリ金属カチオンおよびフッ化物イオンを有するアルカリ金属フッ化物と、を含有することを特徴とするフッ化物イオン伝導性有機電解液を提供する。 That is, in the present invention, an ester-based or lactone-based single or mixed organic solvent having α-position hydrogen, which is a specific high-boiling organic solvent (simply “ester-based / lactone-based solvent having α-position hydrogen” or “α-position hydrogen”. Provided is a fluoride ion conductive organic electrolytic solution containing an alkali metal cation and an alkali metal fluoride having a fluoride ion.

本発明によれば、添加剤を別途添加しない場合であっても、フッ化物イオン電池を動作させるに十分な反応活性を同時に有したフッ化物イオン伝導性有機電解液が作製できるため、電池の大容量化が格段に容易になる。ここでいう余分な添加剤とは、有機溶媒、アルカリ金属フッ化物、電解液に共溶解可能な任意のリチウム塩および電解液に共溶解可能な任意のバリウム塩以外の他の添加剤をいうものとする。 According to the present invention, a fluoride ion conductive organic electrolytic solution having sufficient reaction activity at the same time to operate a fluoride ion battery can be produced even when no additive is added separately, so that the size of the battery is large. Capacity increase becomes much easier. The term "extra additive" as used herein refers to an additive other than an organic solvent, an alkali metal fluoride, an arbitrary lithium salt co-dissolvable in an electrolytic solution, and an arbitrary barium salt co-dissolvable in an electrolytic solution. And.

上記発明においては、上記高沸点有機溶媒が、200℃以上の沸点を有するα位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒であることが好ましい。 In the above invention, the high boiling point organic solvent is preferably an ester-based or lactone-based single or mixed organic solvent having α-hydrogen having a boiling point of 200 ° C. or higher.

上記発明においては、上記アルカリ金属フッ化物が、フッ化セシウム、フッ化ルビジウム、フッ化カリウムのいずれか1つ、もしくはそれらの2つ以上の混合物であることが好ましい。 In the above invention, the alkali metal fluoride is preferably any one of cesium fluoride, rubidium fluoride, and potassium fluoride, or a mixture of two or more thereof.

上記発明においては、該フッ化物イオン伝導性有機電解液の負高電位での安定性と反応性を確保するために、当該電解液に共溶解可能な任意のリチウム塩、好ましくはLiFSA、LiTFSA、LiBF、LiPF、LiClOのいずれか1つもしくはそれらの2つ以上の混合物、および/または当該電解液に共溶解可能な任意のバリウム塩、好ましくはBa(FSA)、Ba(TFSA)、Ba(BFのいずれかもしくはそれらの混合物、好ましくはLiFSA、LiTFSA、LiBF、LiPF、LiClOのいずれか1つまたはそれらの2つ以上の混合物をそれぞれに、解離溶解したアルカリ金属フッ化物の濃度の少なくとも3倍以上、好ましくは5倍以上の濃度で混合することが好ましい。これは過剰のリチウムカチオンあるいはバリウムカチオンとフッ化物イオンの相互作用により、フッ化物イオンの負高電位領域での反応性が制御できるためである。 In the above invention, in order to ensure the stability and reactivity of the fluoride ion conductive organic electrolytic solution at a negative high potential, any lithium salt co-dissolvable in the electrolytic solution, preferably LiFSA, LiTFSA, is used. One or a mixture of any one or more of LiBF 4 , LiPF 6 , LiClO 4 and / or any barium salt co-dissolvable in the electrolyte, preferably Ba (FSA) 2 , Ba (TFSA). 2. Any one of Ba (BF 4 ) 2 or a mixture thereof, preferably any one of LiFSA, LiTFSA, LiBF 4 , LiPF 6 , LiClO 4 or a mixture thereof, was dissociated and dissolved in each. It is preferable to mix at a concentration of at least 3 times or more, preferably 5 times or more the concentration of the alkali metal fluoride. This is because the reactivity of fluoride ions in the negative high potential region can be controlled by the interaction between excess lithium cations or barium cations and fluoride ions.

本発明によれば、多様な金属種とそのフッ化物の間の可逆反応を制御することが可能になるため、本発明による電解液を用いることで、2〜3V級の室温で動作する大容量フッ化物イオン二次電池を構築する道が開かれる。 According to the present invention, it is possible to control the reversible reaction between various metal species and their fluorides. Therefore, by using the electrolytic solution according to the present invention, a large capacity operating at room temperature of 2 to 3 V class is used. It opens the way for building fluoride ion secondary batteries.

本発明のフッ化物イオン伝導性有機電解液は、α位水素を有するエステル系/ラクトン系溶媒とアルカリ金属フッ化物からなり、添加剤を別途添加しない場合であっても、電気化学的安定性に優れ、多様な金属種とそのフッ化物の間の可逆反応を引起す反応活性を同時に有する。このため、出力電圧も大きくとれ、もって大容量フッ化物イオン二次電池に適したフッ化物イオン伝導性有機電解液を提供することができる。 The fluoride ion conductive organic electrolyte solution of the present invention is composed of an ester / lactone solvent having α-hydrogen and an alkali metal fluoride, and has excellent electrochemical stability even when no additive is added separately. It is excellent and has a reaction activity that causes a reversible reaction between various metal species and their fluorides at the same time. Therefore, a large output voltage can be obtained, and a fluoride ion conductive organic electrolytic solution suitable for a large-capacity fluoride ion secondary battery can be provided.

本発明に係るフッ化物イオンシャトル電池の原理を示す概念図である。It is a conceptual diagram which shows the principle of the fluoride ion shuttle battery which concerns on this invention. <ステージI>CsF/RBL電解液(実施例1)のFT−IRスペクトルを純GBLのそれと比較した図である。<Stage I> It is a figure which compared the FT-IR spectrum of the CsF / RBL electrolytic solution (Example 1) with that of pure GBL. <ステージI>CsF/RBL電解液(実施例1)に対して測定された4種類の核スピンに関するNMRスペクトルである。<Stage I> NMR spectra of four types of nuclear spins measured against a CsF / RBL electrolyte (Example 1). <ステージI>CsF/RBL電解液(実施例1)を用いて、種々の金属電極を作用極として測定した可逆CV波形を示す図である。<Stage I> It is a figure which shows the reversible CV waveform measured by using the CsF / RBL electrolytic solution (Example 1), using various metal electrodes as working electrodes. <ステージI>CsF/RBL電解液(実施例1)を用いて、ITO基板上に製膜した銀超薄膜作用極と亜鉛線を対極として測定した2極式セルの充放電特性を銀の重量あたりの容量を横軸として示した図である。<Stage I> Using a CsF / RBL electrolytic solution (Example 1), the charge / discharge characteristics of a two-pole cell measured with a silver ultrathin film acting electrode formed on an ITO substrate and a zinc wire as opposite electrodes are measured by the weight of silver. It is the figure which showed the capacity per area as a horizontal axis. <ステージII>CsF/RBL電解液(実施例2)のFT−IRスペクトルを純GBLのそれと比較した図である。<Stage II> It is a figure which compared the FT-IR spectrum of the CsF / RBL electrolytic solution (Example 2) with that of pure GBL. <ステージII>CsF/RBL電解液(実施例2)に対して測定された4種類の核スピンに関するNMRスペクトルである。<Stage II> NMR spectra of four types of nuclear spins measured against a CsF / RBL electrolyte (Example 2). <ステージII>CsF/RBL電解液(実施例2)をGBLで段階的に希釈した電解液のイオン伝導度とCsFモル濃度の平方根の関係を示すKohlraushプロットである。<Stage II> A Conductivity plot showing the relationship between the ionic conductivity of a CsF / RBL electrolyte (Example 2) diluted stepwise with GBL and the square root of the CsF molar concentration. <ステージII>KF/RBL電解液(実施例3)に対して測定された19FのNMRスペクトルである。<Stage II> The NMR spectrum of 19 F measured with respect to the KF / RBL electrolytic solution (Example 3). <ステージI>CsF/電解液にLiFSA塩を混合した電解液(実施例5)中でアルミニウムを作用極として測定した可逆CV波形を示す図である。<Stage I> It is a figure which shows the reversible CV waveform measured with aluminum as a working electrode in the electrolytic solution (Example 5) which mixed LiFSA salt with CsF / electrolytic solution. <ステージI>CsF/電解液にBaTSA塩を混合した電解液(実施例6)中でアルミニウムを作用極として測定した、不可逆還元電流が顕著に抑制されたCV波形を示す図である。<Stage I> FIG. 6 is a diagram showing a CV waveform in which an irreversible reduction current is remarkably suppressed, which is measured using aluminum as a working electrode in an electrolytic solution (Example 6) in which a BaTSA salt is mixed with a CsF / electrolytic solution. CsF/PC:EC電解液(比較例1)に対して測定された4種類の核スピンに関するNMRスペクトルである。CsF / PC: NMR spectra of four types of nuclear spins measured against an EC electrolyte (Comparative Example 1). CsF/PC:EC電解液(比較例1)の電位窓の広さを示すCV波形である。CsF / PC: CV waveform showing the width of the potential window of the EC electrolytic solution (Comparative Example 1). グルタル酸をカチオンアクセプターとしてCsFをGBLに解離溶解させた電解液(比較例2)の19Fおよび13CのNMRスペクトルである。9 is an NMR spectrum of 19 F and 13 C of an electrolytic solution (Comparative Example 2) in which CsF was dissociated and dissolved in GBL using glutaric acid as a cation acceptor.

以下、本発明のフッ化物イオン伝導性有機電解液(フッ化物イオン電池用電解液)およびこれを用いたフッ化物イオン電池の実施形態について詳細に説明する。 Hereinafter, a fluoride ion conductive organic electrolytic solution (electrolyte solution for a fluoride ion battery) of the present invention and an embodiment of a fluoride ion battery using the same will be described in detail.

[塩の溶解度を決定する因子]
任意の溶媒に塩を溶解させる場合、その溶解量を決定する因子としては、熱力学的上限と速度論的な制限の両方を考慮する必要がある。
[Factors that determine salt solubility]
When a salt is dissolved in any solvent, both the thermodynamic upper limit and the kinetic limitation must be considered as factors that determine the amount of the salt dissolved.

本発明に係るα位水素を有する溶媒であるGBL(γ−ブチロラクトン)のような非水溶媒にも、CsF(フッ化セシウム)やKF(フッ化カリウム)等のアルカリ金属フッ化物(単に「アルカリ塩」、「フッ化物塩」ともいう)はみかけ上、ほとんど溶解しないが、これは該溶媒中の該アルカリ塩の熱力学的な溶解量の上限がゼロに近いことを意味しない。 Alkali metal fluorides such as CsF (cesium fluoride) and KF (potassium fluoride) can also be used in non-aqueous solvents such as GBL (γ-butyrolactone), which is a solvent having α-hydrogen according to the present invention (simply "alkali"). (Also referred to as "salt" and "fluoride salt") apparently hardly dissolve, but this does not mean that the upper limit of the thermodynamic dissolution amount of the alkali salt in the solvent is close to zero.

すなわち後述するように、α位水素を有する溶媒中では、α位水素とフッ化物イオンとの特異的な相互作用による安定化により、該アルカリ塩であるCsFが単純解離溶解した50mM程度のモル濃度の電解液が本来は作製できるはずである。これが熱力学的上限である。 That is, as will be described later, in a solvent having α-position hydrogen, a molar concentration of about 50 mM in which CsF, which is the alkali salt, is simply dissociated and dissolved by stabilization by a specific interaction between α-position hydrogen and fluoride ions. It should be possible to prepare the electrolytic solution of. This is the thermodynamic upper limit.

具体的に、溶解した該アルカリ塩(例えば、CsF)の解離度を100%とすれば、上記濃度のCsイオンとFイオンに相当する溶解度積は比較的小さく、これに対応する溶解の標準自由エネルギー変化は正、つまり熱力学的には溶解反応は確かに不利ではあるが、50mM程度を上限とする溶解は熱力学的に可能である。 Specifically, assuming that the degree of dissociation of the dissolved alkali salt (for example, CsF) is 100%, the solubility product corresponding to the above-mentioned concentrations of Cs + ion and F - ion is relatively small, and the corresponding dissolution The standard free energy change is positive, that is, the dissolution reaction is thermodynamically disadvantageous, but dissolution up to about 50 mM is thermodynamically possible.

それにも拘わらず、通常の方法(単純攪拌)でこのレベルの濃度が現実的に達成できないのは、CsF結晶の格子エネルギー(Madelunngエネルギー)が非常に大きく、これをバリヤーとする速度論的な制約によるものである。 Nevertheless, the reason why this level of concentration cannot be realistically achieved by the usual method (simple stirring) is that the lattice energy (Maderunng energy) of the CsF crystal is very large, and this is a kinetic constraint that makes this a barrier. It is due to.

事実、液温を130℃以上に保って、数時間以上攪拌すれば、通常の方法でも当該塩の解離溶解による有意なイオン伝導度を発現させることができる。但し、この方法では溶媒自身がCsF固体の触媒的な作用もあって容易に熱的副反応を起こし、何らかの共役重合物の生成により液が濃い褐色を呈するに至る。多量の副生物が混在するこのような状態はフッ化物イオン電池用電解液として使用することはできない。 In fact, if the liquid temperature is maintained at 130 ° C. or higher and the mixture is stirred for several hours or longer, significant ionic conductivity due to dissociation and dissolution of the salt can be exhibited by a usual method. However, in this method, the solvent itself easily causes a thermal side reaction due to the catalytic action of the CsF solid, and the liquid becomes dark brown due to the formation of some conjugated polymer. Such a state in which a large amount of by-products are mixed cannot be used as an electrolytic solution for a fluoride ion battery.

α位水素を有する溶媒自身のこの熱的な反応に関連して、特にGBLはそれ単独の高温加熱でもしばしば黄色〜褐色に着色する。ところが、本発明に係る開発のある段階で、意図的に数%の純水を加えて加熱したところ、この変色が抑制できることに気づいた。直接的な因果関係はないが、本調製法はこの観察に端を発している。 In connection with this thermal reaction of the solvent itself with alpha hydrogen, especially GBL, even with its own high temperature heating, often turns yellow to brown. However, at a certain stage of development according to the present invention, it was noticed that this discoloration could be suppressed when a few percent of pure water was intentionally added and heated. Although not directly causal, this preparation method stems from this observation.

[電解液の調製方法]
以下、α位水素を有する溶媒のうち、GBLを代表的な例として本特許の電解液を作製するための具体的な手順とその原理を説明する。
[Preparation method of electrolyte]
Hereinafter, a specific procedure and its principle for producing the electrolytic solution of the present patent will be described using GBL as a typical example among the solvents having hydrogen at the α-position.

上記アルカリ塩であるCsFもKFも純水には数M以上の高濃度で容易に溶解する。本法ではまず、この濃厚水溶液(1.5M程度)を過剰のGBLと、水の割合が10v%(体積%)程度になるように混合し、攪拌加熱する。作業雰囲気は大気中でも支障ない。 Both CsF and KF, which are the alkali salts, are easily dissolved in pure water at a high concentration of several M or more. In this method, first, this concentrated aqueous solution (about 1.5 M) is mixed with excess GBL so that the ratio of water is about 10 v% (volume%), and the mixture is stirred and heated. The working atmosphere does not interfere with the atmosphere.

高濃度CsF水溶液中のイオンは複数の水分子による溶媒和で強く安定化されている。この溶媒和エネルギーはCsF結晶の格子エネルギーを上回る大きさであり、このことが該塩を純水中で高濃度で溶解できる理由である。 The ions in the high-concentration CsF aqueous solution are strongly stabilized by solvation with a plurality of water molecules. This solvation energy is larger than the lattice energy of CsF crystals, which is the reason why the salt can be dissolved in pure water at a high concentration.

逆に、このように複数の水分子で強く溶媒和されて安定化しているCsイオンとFイオンの周りの水分子を一度(一挙)にGBL分子に置換すること自体も、固体粉末を溶解させる以上に速度論的には困難である。 Conversely, thus more solvated strongly water molecules are stabilized Cs + ions and F - also themselves be substituted water molecules around the ions once (once) to GBL molecule, a solid powder It is more difficult in terms of speed than to dissolve it.

しかし本法では、こうした一挙的な溶媒和置換は起こらない。上記混合液を攪拌加熱すると、液温が110℃付近で水の蒸発による発泡が始まる。120℃付近でこの定常的な蒸発が続くような加熱条件を設定すると、10分程度で見かけ上、水がほぼ全て蒸発し発泡が収まる。 However, in this method, such solvation substitution does not occur at once. When the mixed solution is stirred and heated, foaming due to evaporation of water starts when the solution temperature is around 110 ° C. When heating conditions are set so that this steady evaporation continues at around 120 ° C., almost all of the water apparently evaporates in about 10 minutes and the foaming stops.

上記の時間の間に、各イオンの周りでは、溶媒和水分子が段階的に徐々にGBL分子で置換される状況が生まれる。このようにして、極度に大きな速度論的バリヤーを伴うことなく、溶媒和構造が水からGBLに段階的に変換され、最終的に50mM程度の熱力学的な上限濃度がスムーズに達成できる。これが本発明の基本コンセプトであり、実施例1の「多段階の溶解過程を経る」(または上記した「複数の中間段階を経る新たな溶解プロセスを経る」)の意味するところである。 During the above time, a situation arises around each ion in which the solvated water molecules are gradually and gradually replaced by GBL molecules. In this way, the solvated structure is gradually converted from water to GBL without an extremely large kinetic barrier, and finally a thermodynamic upper limit concentration of about 50 mM can be smoothly achieved. This is the basic concept of the present invention, which is the meaning of "going through a multi-step dissolution process" (or "going through a new dissolution process through a plurality of intermediate steps") in Example 1.

但し、上記の発泡が収まった液には、まだ水分が0.1v%以上のレベルで残存している。これを使用目的に合わせた必要なレベルまで低下させるためには、さらに攪拌加熱を延長する必要があり、場合により加熱温度を150℃程度まで高めたり、不活性ガスの同時バブリングにより脱水を促進する工夫が必要である。これが実施例2の「さらに追加処理を加えて」の意味するところである(実施例2では前者の追加加熱を実施)。 However, in the liquid in which the above foaming is contained, water still remains at a level of 0.1 v% or more. In order to reduce this to the required level according to the purpose of use, it is necessary to further extend the stirring heating, and in some cases, the heating temperature is raised to about 150 ° C., or the simultaneous bubbling of the inert gas promotes dehydration. Ingenuity is required. This is the meaning of "additional additional treatment" in Example 2 (in Example 2, the former additional heating is carried out).

上記の追加の加熱等の処理は、上記電解液の作製時に完全には抑制できない副次的な生成物を蒸発により取り除くためにも有効である。後の実施例では、水分の低減も含めて必要最小限の加熱処理を経たものを<ステージI電解液>と称し、さらに追加加熱等の条件を厳しくして水分や副次的な生成物を極限まで取り除いたものを<ステージII電解液>と称して区別している。 The above-mentioned additional treatments such as heating are also effective for removing by evaporation of secondary products that cannot be completely suppressed during the preparation of the above-mentioned electrolytic solution. In the later examples, the one that has undergone the minimum necessary heat treatment including the reduction of water content is referred to as <Stage I electrolyte>, and the conditions such as additional heating are further tightened to remove water and secondary products. Those removed to the utmost limit are referred to as <stage II electrolyte> to distinguish them.

なお後の実施例では、その副次的な生成物の正体についても詳しく説明しているが、この副次的な生成物は該塩の解離溶解には全く関与しておらず、添加剤(意図的なもの)を使用しなくとも優れた性能を発揮しうるフッ化物イオン電池用電解液の定義にも抵触しない。 In the later examples, the identity of the by-product is also described in detail, but this by-product is not involved in the dissociation and dissolution of the salt at all, and the additive ( It does not violate the definition of an electrolyte for fluoride ion batteries that can exhibit excellent performance without using intentional ones).

[α位水素を有する溶媒]
α位に水素をもつ溶媒分子としては、特に制限されるものではないが、GBL(γ−ブチロラクトン)とε−カプロラクトンのいずれか一つもしくはそれらの混合物が好ましい。これらが好ましいのは、この部位(α位水素部位)が微妙な強さの一種のアニオンアクセプターとして働き、解離溶解したフッ化物イオンの適度な溶媒和を可能にするためである。本実施形態のフッ化物イオン伝導性有機電解液中のフッ化物イオンはイオン伝導を担うのみならず、正・負極におけるフッ化反応を効率的に引起すものでなければならない。フッ化物イオンを強く束縛するような溶媒や添加物はこの目的に適さない。
[Solvent with α-hydrogen]
The solvent molecule having hydrogen at the α-position is not particularly limited, but any one of GBL (γ-butyrolactone) and ε-caprolactone or a mixture thereof is preferable. These are preferable because this site (α-position hydrogen site) acts as a kind of anion acceptor having a delicate strength and enables appropriate solvation of dissociated and dissolved fluoride ions. Fluoride ion conductivity of the present embodiment Fluoride ions in the organic electrolytic solution must not only be responsible for ion conduction but also efficiently induce a fluoride reaction in the positive and negative electrodes. Solvents and additives that strongly bind fluoride ions are not suitable for this purpose.

ただし、本実施形態で利用できる有機溶媒は必ずしも上記の条件に制約されるものではなく、フッ化物イオンの伝導性と電極反応性を阻害するものでなければ、任意の高沸点有機溶媒を選択する余地がある。 However, the organic solvent that can be used in the present embodiment is not necessarily limited to the above conditions, and any high boiling point organic solvent is selected as long as it does not inhibit the conductivity and electrode reactivity of fluoride ions. There is room.

[アルカリ金属フッ化物塩]
電極反応に直接与るイオン伝導性フッ化物イオンは、有機フッ化物塩の溶解によっても電解液中に導入することができるが、共存する有機カチオンの電気化学的安定性の問題などの理由で高容量フッ化物イオン電池には適さない。その他の条件として二次電池の重量エネルギー密度への影響も考慮すると、フッ化物イオンの最も望ましいソースは、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化ルビジウム(RbF)、フッ化セシウム(CsF)等のアルカリ金属フッ化物である。
[Alkali metal fluoride salt]
Ion-conducting fluoride ions that directly affect the electrode reaction can be introduced into the electrolytic solution by dissolving the organic fluoride salt, but they are high due to problems such as the electrochemical stability of coexisting organic cations. Not suitable for capacitive fluoride ion batteries. Considering the effect on the weight energy density of the secondary battery as another condition, the most desirable sources of fluoride ions are lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and fluoride. It is an alkali metal fluoride such as rubidium (RbF) and cesium fluoride (CsF).

上記のアルカリ金属フッ化物の内、どの化合物が実際に使用できるかはフッ化物結晶の格子エネルギーに依存する。例えばLiFは純水にさえほとんど溶解しないため、本実施形態によっても高沸点有機溶媒であるα位水素を有するエステル系/ラクトン系溶媒中で単純溶媒和イオン化解離させることは至難である。これらの点を考慮すれば、アルカリ金属フッ化物の内、フッ化セシウム(CsF)、フッ化ルビジウム(RbF)、フッ化カリウム(KF)のいずれか1つもしくはそれらの2つ以上の混合物であるのが好ましい。また、電極反応に直接与るイオン伝導性フッ化物イオン(解離溶解で生成したフッ化物イオン)の19F−NMR化学シフトは、−150±10ppmの範囲にあるのが好ましい。本実施形態の電解液に特徴的な化学シフト値であるためである。さらに、電解液中のフッ化物イオンの濃度は、少なくとも1mM以上であるのが好ましい。フッ化物イオン濃度が1mM以上であれば、フッ化物イオン電池を駆動するための電解液として、フッ化物イオンの伝導性と正負両極におけるフッ化物イオンの反応性の両方を担保できる。 Which of the above alkali metal fluorides can actually be used depends on the lattice energy of the fluoride crystals. For example, since LiF is hardly dissolved even in pure water, it is extremely difficult to dissociate by simple solvation ionization in an ester / lactone solvent having α-hydrogen, which is a high boiling point organic solvent, even in this embodiment. Considering these points, among the alkali metal fluorides, any one of cesium fluoride (CsF), rubidium fluoride (RbF), and potassium fluoride (KF) or a mixture of two or more thereof. Is preferable. Further, the 19 F-NMR chemical shift of the ionic conductive fluoride ion (fluoride ion generated by dissociation dissolution) directly exerted on the electrode reaction is preferably in the range of −150 ± 10 ppm. This is because the chemical shift value is characteristic of the electrolytic solution of the present embodiment. Further, the concentration of fluoride ions in the electrolytic solution is preferably at least 1 mM or more. When the fluoride ion concentration is 1 mM or more, both the conductivity of fluoride ions and the reactivity of fluoride ions at both positive and negative poles can be ensured as the electrolytic solution for driving the fluoride ion battery.

[混合リチウム塩]
アルカリ金属フッ化物のみが1mM以上の濃度で解離溶解した該フッ化物イオン伝導性電解液は、負高電位領域でフッ化物イオン由来の溶媒が関与した副還元反応を生じやすく、亜鉛よりも更に卑な金属のフッ化反応と競合して本来の電池動作を妨げる。この問題は、LiFSA(FSA:ビス(フルオロスルホニル)アミド)に代表される、本実施形態の電解液に共溶解可能な任意のリチウム塩を該電解液に過剰に混合することで容易に解決でき、アルミニウムやランタンなどの最も卑な金属種のフッ化反応を利用した電池を動作させることが可能になる。
[Mixed lithium salt]
The fluoride ion conductive electrolyte solution in which only alkali metal fluoride is dissociated and dissolved at a concentration of 1 mM or more is likely to cause a side reduction reaction involving a fluoride ion-derived solvent in a negative high potential region, and is even more base than zinc. It competes with the fluoride reaction of various metals and interferes with the original battery operation. This problem can be easily solved by excessively mixing an arbitrary lithium salt co-dissolvable in the electrolytic solution of the present embodiment, represented by LiFSA (FSA: bis (fluorosulfonyl) amide), in the electrolytic solution. , It will be possible to operate batteries that utilize the fluorination reaction of the most base metal species such as aluminum and lanterns.

上記の混合電解液の作製において、過剰に添加するリチウム塩の濃度は、解離したアルカリ金属フッ化物の濃度の少なくとも3倍以上、好ましくは5倍以上、より好ましくは10倍程度に調製することが望ましい。このリチウム塩の濃度(添加量)が3倍以上であれば、フッ化物イオンとリチウムイオンが不溶性の固形物を形成しないためフッ化物イオン濃度を低下させることもなく望ましい。 In the preparation of the above mixed electrolytic solution, the concentration of the lithium salt added in excess may be adjusted to be at least 3 times or more, preferably 5 times or more, more preferably about 10 times the concentration of the dissociated alkali metal fluoride. desirable. When the concentration (addition amount) of this lithium salt is 3 times or more, it is desirable that the fluoride ion concentration is not lowered because the fluoride ion and the lithium ion do not form an insoluble solid substance.

該リチウム塩のアニオン種としては、FSA以外にTFSA、BF 、PF 、ClO でも差し支えない。即ち、過剰に添加するリチウム塩は、LiFSA、LiTFSA、LiBF、LiPF、LiClOのいずれか1つまたはそれらの2つ以上の混合物であるのが好ましい。 As the anion species of the lithium salt, TFSA , BF 4 , PF 6 , and ClO 4 may be used in addition to FSA − . That is, the lithium salt to be added in excess is preferably any one of LiFSA, LiTFSA, LiBF 4 , LiPF 6 , and LiClO 4 or a mixture of two or more thereof.

[混合バリウム塩]
リチウム塩ほどの効果は期待できないものの、Ba(FSA)に代表されるバリウム塩を該電解液に過剰に混合することでも負高電位領域での不可逆還元電流を抑制することができる。上記の混合電解液の作製において、過剰に添加するバリウム塩の濃度は、解離したアルカリ金属フッ化物の濃度の少なくとも3倍以上、好ましくは5倍以上、より好ましくは10倍程度に調製することが望ましい。このバリウム塩の濃度(添加量)が3倍以上であれば、フッ化物イオンとリチウムイオンが不溶性の固形物を形成しないためフッ化物イオン濃度を低下させることもなく望ましい。該バリウム塩のアニオン種としては、FSA以外にTFSA、BF でも差し支えない。即ち、過剰に添加するバリウム塩は、Ba(FSA)、Ba(TFSA)、Ba(BFのいずれか1つまたはそれらの2つ以上の混合物であるのが好ましい。
[Mixed barium salt]
Although not as effective as a lithium salt, an irreversible reduction current in a negative high potential region can be suppressed by excessively mixing a barium salt typified by Ba (FSA) 2 with the electrolytic solution. In the preparation of the above mixed electrolytic solution, the concentration of the barium salt added in excess may be adjusted to be at least 3 times or more, preferably 5 times or more, more preferably about 10 times the concentration of the dissociated alkali metal fluoride. desirable. When the concentration (addition amount) of this barium salt is 3 times or more, it is desirable that the fluoride ion concentration is not lowered because the fluoride ion and the lithium ion do not form an insoluble solid substance. Examples of the anionic species of the barium salt, FSA - except the TFSA -, BF 4 - but no problem. That is, the barium salt to be added in excess is preferably any one of Ba (FSA) 2 , Ba (TFSA) 2 , and Ba (BF 4 ) 2 or a mixture of two or more thereof.

[フッ化物イオン電池]
本発明のフッ化物イオン電池の実施形態は、上述したフッ化物イオン伝導性電解液を使用するかぎり特に限定されるものではない。上述したフッ化物イオン伝導性電解液を使用することで、出力電圧も大きくとれ、もって大容量のフッ化物イオン電池を提供できる。また、本発明のフッ化物イオン電池は、一次電池であっても良く、二次電池であっても良いが、繰り返し充放電ができる二次電池であることが好ましい。
[Fluoride ion battery]
The embodiment of the fluoride ion battery of the present invention is not particularly limited as long as the above-mentioned fluoride ion conductive electrolytic solution is used. By using the above-mentioned fluoride ion conductive electrolytic solution, a large output voltage can be obtained, and a large capacity fluoride ion battery can be provided. Further, the fluoride ion battery of the present invention may be a primary battery or a secondary battery, but is preferably a secondary battery that can be repeatedly charged and discharged.

[フッ化物イオン伝導性有機電解液の製造方法]
本発明のフッ化物イオン伝導性有機電解液の製造方法の実施形態は、上記した[電解液の調製方法]で説明した通りである。具体的に、本発明の他の形態に係るフッ化物イオン伝導性有機電解液の製造方法は、アルカリ金属フッ化物を水に溶解させて水溶液を得ることと、α位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒と前記水溶液とを混合して第1の混合溶液を得ることと、前記混合溶液に加熱処理を施すことにより水を除去して有機電解液を得ることとを含むものである。この製造方法により、本発明の一形態に係るフッ化物イオン伝導性有機電解液を製造することができる(第1形態)。上記フッ化物塩は溶解性が低く、有機溶媒にそのまま溶解しようとしても溶けないというのが従来の常識であった。また、α位水素を有するエステル系/ラクトン系溶媒はフッ化物イオンと相互作用することから多少溶けやすくはなるものの、やはりそのままでは溶けにくいという問題があった。そこで、本発明の製造方法では、上記フッ化物塩が水には良く溶けるという性質を利用し、フッ化物塩を一旦水に溶かして水溶液を得る。その後、α位水素を有するエステル系/ラクトン系有機溶媒またはこれらの混合溶媒と混合して混合溶液(本明細書中、「第1の混合溶液」ともいう)を得る。そして、このようにして得られた第1の混合溶液に加熱処理を施すことにより水を除去する。そうすると、上記有機溶媒にアルカリ金属フッ化物が高濃度で溶解した有機電解液が調製されうるのである。なお、本発明者等の検討によれば、他の有機溶媒を用いた場合にはフッ化物イオンが安定に存在できず、フッ化物塩が再析出しやすくなるため、本発明の製造方法を適用することができないことも判明した。
[Method for Producing Fluoride Ion Conductive Organic Electrolyte]
An embodiment of the method for producing a fluoride ion conductive organic electrolytic solution of the present invention is as described in the above-mentioned [Method for preparing an electrolytic solution]. Specifically, the method for producing a fluoride ion conductive organic electrolytic solution according to another embodiment of the present invention comprises dissolving an alkali metal fluoride in water to obtain an aqueous solution, and an ester-based or lactone having α-hydrogen. It includes mixing a single or mixed organic solvent of the system with the aqueous solution to obtain a first mixed solution, and removing water by heat-treating the mixed solution to obtain an organic electrolytic solution. .. By this production method, the fluoride ion conductive organic electrolytic solution according to one embodiment of the present invention can be produced (first embodiment). It has been a conventional wisdom that the fluoride salt has low solubility and does not dissolve even if it is tried to dissolve in an organic solvent as it is. Further, although the ester / lactone solvent having α-hydrogen interacts with the fluoride ion, it becomes slightly soluble, but there is a problem that it is difficult to dissolve as it is. Therefore, in the production method of the present invention, the fluoride salt is once dissolved in water to obtain an aqueous solution by utilizing the property that the fluoride salt is well dissolved in water. Then, it is mixed with an ester / lactone-based organic solvent having α-hydrogen or a mixed solvent thereof to obtain a mixed solution (also referred to as “first mixed solution” in the present specification). Then, water is removed by heat-treating the first mixed solution thus obtained. Then, an organic electrolytic solution in which the alkali metal fluoride is dissolved in the organic solvent at a high concentration can be prepared. According to the study by the present inventors, fluoride ions cannot be stably present when other organic solvents are used, and fluoride salts are likely to be reprecipitated. Therefore, the production method of the present invention is applied. It also turned out that it couldn't be done.

より詳細に、本実施形態(第1形態)に係るフッ化物イオン伝導性有機電解液の製造方法では、まず、アルカリ金属フッ化物を一旦水(例えば、純水)に数M以上の高濃度で溶解する。この濃厚水溶液(例えば、1.5M程度の濃度のもの)をα位水素を有するエステル系/ラクトン系溶媒の過剰量と、水の割合が10v%(10体積%)程度になるように混合し、攪拌加熱する。作業雰囲気は大気中でも支障ないし、真空・減圧下で行ってもよい。上記混合溶液(第1の混合溶液)を攪拌加熱すると、液温が110℃付近で水の蒸発による発泡が始まる。120℃付近(例えば、120℃±10℃の範囲)でこの定常的な蒸発が続くような加熱条件を設定すると、10分程度で見かけ上、水がほぼ全て蒸発して発泡が収まる。上記の時間の間に、各イオンの周囲では、溶媒和水分子が段階的に徐々にGBL等の有機溶媒分子で置換される状況が生まれる。このようにして、極度に大きな速度論的バリヤーを伴うことなく、溶媒和構造が水からα位水素を有するエステル系/ラクトン系溶媒に段階的に変換され、最終的に50mM程度の熱力学的な上限濃度がスムーズに達成できるのである。第1形態に係る製造方法では、この時点(水の蒸発による発泡が終了した時点)で、加熱処理による水の除去を終了する。このような製造方法によれば、比較的簡便な操作によって、十分に実用的なフッ化物イオン伝導性有機電解液を製造することが可能である。 More specifically, in the method for producing a fluoride ion conductive organic electrolytic solution according to the present embodiment (first embodiment), first, the alkali metal fluoride is once added to water (for example, pure water) at a high concentration of several M or more. Dissolve. This concentrated aqueous solution (for example, one having a concentration of about 1.5 M) is mixed with an excess amount of the ester / lactone solvent having α-hydrogen so that the ratio of water is about 10 v% (10% by volume). , Stir and heat. The working atmosphere does not interfere with the atmosphere, and may be performed under vacuum or reduced pressure. When the above mixed solution (first mixed solution) is stirred and heated, foaming due to evaporation of water starts when the liquid temperature is around 110 ° C. When heating conditions are set so that this steady evaporation continues at around 120 ° C. (for example, in the range of 120 ° C. ± 10 ° C.), almost all of the water evaporates apparently in about 10 minutes and the foaming stops. During the above time, a situation arises in which the solvation water molecules are gradually and gradually replaced with organic solvent molecules such as GBL around each ion. In this way, the solvation structure is gradually converted from water to an ester / lactone solvent having α-hydrogen without an extremely large kinetic barrier, and finally thermodynamically about 50 mM. The upper limit concentration can be achieved smoothly. In the production method according to the first embodiment, the removal of water by the heat treatment is completed at this point (when the foaming due to the evaporation of water is completed). According to such a production method, it is possible to produce a sufficiently practical fluoride ion conductive organic electrolytic solution by a relatively simple operation.

本実施形態のフッ化物イオン伝導性有機電解液の製造方法では、水の蒸発による発泡が終了した時点より後に、さらに加熱温度を上昇させて加熱処理を継続することにより水を追加除去することも好ましい形態である(第2形態)。このような加熱処理の継続による水の追加除去の際には、不活性ガスをバブリングすることにより脱水処理を促進することが好ましい。ここで、上述した水の蒸発による発泡が終了した液には、まだ水分が0.1v%以上のレベルで残存している。そして、本発明者等のけんとうによれば、場合により加熱温度を150℃程度(例えば、150℃±20℃の範囲)まで高めたり、不活性ガスの同時バブリングにより脱水を促進する工夫をさらに施すことで、使用目的に合わせた必要なレベルまで水分含有量を低下させることが可能であることが見出されたのである。 In the method for producing a fluoride ion conductive organic electrolytic solution of the present embodiment, water may be additionally removed by further raising the heating temperature and continuing the heat treatment after the time when the foaming due to the evaporation of water is completed. This is a preferred form (second form). When the additional water is removed by continuing the heat treatment, it is preferable to promote the dehydration treatment by bubbling the inert gas. Here, in the above-mentioned liquid in which foaming due to evaporation of water is completed, water still remains at a level of 0.1 v% or more. Then, according to the present inventors, in some cases, the heating temperature may be raised to about 150 ° C. (for example, in the range of 150 ° C. ± 20 ° C.), or the simultaneous bubbling of the inert gas may be further devised to promote dehydration. Therefore, it was found that it is possible to reduce the water content to the required level according to the purpose of use.

また、本実施形態のフッ化物イオン伝導性有機電解液の製造方法では、フッ化物イオン伝導性有機電解液に共溶解可能な任意のリチウム塩および/またはバリウム塩を、α位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒に溶解させてリチウム塩および/またはバリウム塩の溶液を作製し、前記リチウム塩および/またはバリウム塩の溶液と、上記第1又は第2形態の製造方法により得られたフッ化物イオン伝導性有機電解液を所定の比率で混合して希釈し、さらに前記有機溶媒で所望の濃度になるように希釈してもよい。すなわち、本発明のさらに他の形態によれば、上述したフッ化物イオン伝導性有機電解液の製造方法によってフッ化物イオン伝導性有機電解液を作製することと、フッ化物イオン伝導性有機電解液に共溶解可能なリチウム塩および/またはバリウム塩がα位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒に溶解した溶液を前記フッ化物イオン伝導性有機電解液と混合して混合溶液(本明細書中、「第2の混合溶液」ともいう)を得ることと、前記第2の混合溶液を前記有機溶媒で希釈することを含むフッ化物イオン伝導性有機電解液の製造方法もまた、提供される。 Further, in the method for producing a fluoride ion conductive organic electrolytic solution of the present embodiment, any lithium salt and / or barium salt co-dissolvable in the fluoride ion conductive organic electrolytic solution is used as an ester-based ester having hydrogen at the α-position. Alternatively, a solution of a lithium salt and / or a barium salt is prepared by dissolving it in a lactone-based single or mixed organic solvent, and the solution of the lithium salt and / or barium salt is obtained by the above-mentioned production method of the first or second form. The obtained fluoride ion conductive organic electrolytic solution may be mixed and diluted at a predetermined ratio, and further diluted with the organic solvent to a desired concentration. That is, according to still another embodiment of the present invention, the fluoride ion conductive organic electrolyte solution can be produced by the above-mentioned method for producing a fluoride ion conductive organic electrolyte solution, and the fluoride ion conductive organic electrolyte solution can be used. A mixed solution in which a co-dissolvable lithium salt and / or barium salt is dissolved in an ester-based or lactone-based single or mixed organic solvent having α-hydrogen is mixed with the fluoride ion conductive organic electrolytic solution (the present). Also provided is a method for producing a fluoride ion conductive organic electrolyte solution, which comprises obtaining (also referred to as "second mixed solution") in the specification and diluting the second mixed solution with the organic solvent. Will be done.

ここで、リチウム塩およびバリウム塩は、解離溶解したアルカリ金属フッ化物の濃度に対して、いずれも5倍以上の濃度で混合することが望ましい。これは、広い電位領域で様々な金属電極のフッ化・脱フッ化反応を可能にするフッ化物イオン伝導性有機電解液の製造方法では、フッ化物イオン伝導性有機電解液に共溶解可能な任意のリチウム電解液が、アルミニウム、ランタン、セリウム、マグネシウムなどの反応が期待される負高電位領域でフッ化物イオンとその他の溶液種が複雑に関与した不可逆還元反応を引き起こすことがない点で優れている。フッ化物イオン伝導性有機電解液に共溶解可能な任意のリチウム塩および/またはバリウム塩に関しては、上記フッ化物イオン伝導性有機電解液の形態で説明した通りである。 Here, it is desirable that the lithium salt and the barium salt are mixed at a concentration of 5 times or more the concentration of the dissociated and dissolved alkali metal fluoride. This is an arbitrary method for producing a fluoride ion conductive organic electrolyte solution that enables a fluoride / defluorination reaction of various metal electrodes in a wide potential region, and is co-dissolvable in a fluoride ion conductive organic electrolyte solution. Lithium electrolyte is excellent in that it does not cause a complex irreversible reduction reaction involving fluoride ions and other solution species in the negative high potential region where reactions such as aluminum, lantern, cerium and magnesium are expected. There is. Any lithium salt and / or barium salt that can be co-dissolved in the fluoride ion conductive organic electrolyte is as described above in the form of the fluoride ion conductive organic electrolyte.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

以下に実施例と比較例を示して本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例1]
<ステージI>CsF/RBL電解液
<ステージI>CsF/RBL電解液は、γ−ブチロラクトンと、セシウムカチオンおよびフッ化物イオンを有するフッ化セシウムと、を含有するフッ化物イオン伝導性有機電解液であり、多段階の溶解処理を経て、代表的なアルカリ金属フッ化物であるフッ化セシウム(CsF)がγ−ブチロラクトン(GBL)溶媒中に単純溶媒和イオン化解離した電解液である。ただし該溶解処理によって溶媒自身の有意な改質が生じている可能性を示すため、電解液を構成する溶媒名として以後純GBL溶媒と区別したRBL(Reformed Butyrolactone)の名称を用いる。また溶解処理が最小限必要なステップのみを経ていることを示すために、<ステージI>という調整法類別のための表記を語頭に追加した。詳細には、<ステージI>CsF/RBL電解液は、以下のように「多段階の溶解処理を経て」作製した。まず、CsFを純水に加えて撹拌混合して溶解し、CsFの1.4M水溶液を作製した。次に、過剰のGBLと、CsFの1.4M水溶液と、を10:1(体積比)で混合して混合液(混合液中約0.13MのCsF)を作製し、攪拌加熱した。上記混合液を攪拌加熱すると、液温が110℃付近で水の蒸発による発泡が始まり、120℃付近でこの定常的な蒸発(による発泡)が続くような加熱条件を設定することで、10分程度で水がほぼ全て蒸発し発泡が収まった。この発泡が収まった液を、<ステージI>CsF/RBL電解液として得た。なお、作業雰囲気は大気中とした。
[Example 1]
<Stage I> CsF / RBL electrolytic solution <Stage I> CsF / RBL electrolytic solution is a fluoride ion conductive organic electrolytic solution containing γ-butyrolactone and cesium fluoride having a cesium cation and a fluoride ion. This is an electrolytic solution in which cesium fluoride (CsF), which is a typical alkali metal fluoride, is simply solvent-harmonized and dissociated in a γ-butyrolactone (GBL) solvent after undergoing a multi-step dissolution treatment. However, in order to show the possibility that the solvent itself is significantly modified by the dissolution treatment, the name of RBL (Reformed Butyrolactone), which is distinguished from the pure GBL solvent, is used as the name of the solvent constituting the electrolytic solution. In addition, a notation for categorizing the adjustment method called <Stage I> was added to the beginning of the word to indicate that the dissolution treatment has undergone only the minimum necessary steps. Specifically, the <Stage I> CsF / RBL electrolyte was prepared "through a multi-step dissolution process" as follows. First, CsF was added to pure water, stirred and mixed to dissolve, and a 1.4 M aqueous solution of CsF was prepared. Next, excess GBL and a 1.4 M aqueous solution of CsF were mixed at a ratio of 10: 1 (volume ratio) to prepare a mixed solution (about 0.13 M CsF in the mixed solution), and the mixture was stirred and heated. When the above mixed solution is stirred and heated, foaming due to evaporation of water starts at a liquid temperature of around 110 ° C., and this steady evaporation (foaming due to) continues at around 120 ° C. for 10 minutes. Almost all of the water evaporated and the foaming subsided. A liquid in which this foaming was contained was obtained as a <stage I> CsF / RBL electrolytic solution. The working atmosphere was in the atmosphere.

<ステージI>CsF/RBL電解液の室温でのイオン伝導度の実測値は0.6〜0.8mS/cmであった。また原子吸光法で定量したCsの重量濃度をもとに、等モル量のフッ化物イオンが溶解していると仮定して計算したフッ化物イオンのモル濃度の平均値は50mMであった。この値は後述するNMRスペクトルの情報とも合致している。また該電解液を調製直後の残留水分の実測値は100ppm未満であった。当該溶媒中の100ppmの水分はモル濃度にして約5mMに相当する。 <Stage I> The measured value of the ionic conductivity of the CsF / RBL electrolytic solution at room temperature was 0.6 to 0.8 mS / cm. The average molar concentration of fluoride ions calculated on the assumption that an equal molar amount of fluoride ions was dissolved was 50 mM based on the weight concentration of Cs quantified by the atomic absorption method. This value also matches the information of the NMR spectrum described later. Further, the measured value of the residual water immediately after preparing the electrolytic solution was less than 100 ppm. The water content of 100 ppm in the solvent corresponds to about 5 mM in molar concentration.

<ステージI>CsF/RBL電解液の成分分析のため532nm励起ラマンスペクトルを測定したところ、純GBL溶媒のそれと完全に重なり両者を区別することはできなかった。そこでラマン分光法よりも感度の高いFT−IRスペクトルを測定したところ、図2に示す結果となり、OH伸縮振動に相当する高波数領域にのみ純GBLでは見られないピークが認められた。なお純GBLで測定した参照スペクトルで同領域に見える小さなピークはカルボニル伸縮振動の倍音であり、また2400cm−1付近の信号は大気中の二酸化炭素によるバックグラウンド信号である。<ステージI>CsF/RBL電解液のスペクトルではこの部分がバックグラウンド二酸化炭素量の変動のために負のピークとして現れている。 <Stage I> When the 532 nm excited Raman spectrum was measured for component analysis of the CsF / RBL electrolytic solution, it completely overlapped with that of the pure GBL solvent and the two could not be distinguished. Therefore, when the FT-IR spectrum, which is more sensitive than Raman spectroscopy, was measured, the results shown in FIG. 2 were obtained, and a peak not seen in pure GBL was observed only in the high frequency region corresponding to the OH expansion and contraction oscillation. In the reference spectrum measured by pure GBL, the small peak seen in the same region is the overtone of the carbonyl expansion and contraction vibration, and the signal near 2400 cm -1 is the background signal due to carbon dioxide in the atmosphere. <Stage I> In the spectrum of the CsF / RBL electrolyte, this portion appears as a negative peak due to fluctuations in the amount of background carbon dioxide.

上記の成分の正体を明らかにするため、また溶解解離したフッ化セシウムの状態と濃度に関する情報を得るためにH、13C、19F、および133Csの4種類のNMRスペクトルを測定した。測定結果を図3に示す。予想どおり、Hおよび13Cスペクトルから、純GBL溶媒中には存在しない化学種が1%未満の濃度で存在することがわかった。GC−MS法でさらに詳しく分析したところ、この化学種の正体はGBLの加水分解で生成するγ−ヒドロキシ酪酸(分子量104)であることがわかった。その濃度は最大で約0.5wt%、モル濃度に換算すると約50mMとなり、解離溶解しているCsFのモル濃度に匹敵する。ただし、後述する<ステージII>CsF/RBL電解液の分析結果からも証明されるように、該γ−ヒドロキシ酪酸は副次的な生成物に過ぎず、CsFの解離溶解には関与していない。 Four types of NMR spectra of 1 H, 13 C, 19 F, and 133 Cs were measured in order to clarify the identity of the above components and to obtain information on the state and concentration of cesium fluoride that had been dissolved and dissociated. The measurement results are shown in FIG. As expected, the 1 H and 13 C spectra showed that there were less than 1% concentrations of chemical species that were not present in the pure GBL solvent. Further detailed analysis by the GC-MS method revealed that the true identity of this species was γ-hydroxybutyric acid (molecular weight 104) produced by hydrolysis of GBL. Its concentration is about 0.5 wt% at the maximum, which is about 50 mM when converted to molar concentration, which is comparable to the molar concentration of dissociated and dissolved CsF. However, as evidenced by the analysis results of the <Stage II> CsF / RBL electrolyte solution described later, the γ-hydroxybutyric acid is only a by-product and is not involved in the dissociation and dissolution of CsF. ..

図3に併せて示した19Fと133CsのNMRスペクトルは実測された解離CsF濃度と合致する強度のシグナルを与える。また、19Fスペクトルは該電解液に特徴的な化学シフト値である−150ppm付近に数本のピークを示し、フッ化物イオンの溶媒和の状態が必ずしも一様ではないことを示唆する。 The NMR spectra of 19 F and 133 Cs shown together with FIG. 3 give an intensity signal that matches the measured dissociated CsF concentration. In addition, the 19 F spectrum shows several peaks around -150 ppm, which is a chemical shift value characteristic of the electrolytic solution, suggesting that the solvation state of fluoride ions is not always uniform.

<ステージI>CsF/RBL電解液の電位窓の広さと各種金属のフッ化・脱フッ化反応に対する可逆性を評価するために、銀線を参照極、白金メッシュを対極とした三極セルでCV(サイクリックボルタンメトリー)波形を測定したところ、亜鉛から金に至る広い電位範囲で、M+nF⇔MF+ne(Mは金属元素を表す)、の反応に対応する電位領域に可逆的な応答が見出された(図4)。図4には示していないが、その他Pb、Bi、In、Tiなど、Znより貴なほぼ全ての金属でも同様な応答が確認された。電位窓の広さは少なくとも3V以上で、フッ化物イオン電池に必要な電解液の条件を満たしていることがわかった。 <Stage I> In order to evaluate the width of the potential window of the CsF / RBL electrolyte and the reversibility of various metals to the fluorination / defluorination reaction, a triode cell with a silver wire as a reference electrode and a platinum mesh as a counter electrode was used. When the CV (cyclic voltammetry) waveform was measured, a reversible response was made to the potential region corresponding to the reaction of M + nF − ⇔ MF n + ne − (M represents a metal element) in a wide potential range from zinc to gold. Was found (Fig. 4). Although not shown in FIG. 4, a similar response was confirmed for almost all metals noble than Zn, such as Pb, Bi, In, and Ti. It was found that the width of the potential window was at least 3 V or more, which satisfied the conditions of the electrolytic solution required for the fluoride ion battery.

次にモデル電池としてITO基板上に平均厚さが、わずか27nmの銀超薄膜をスパッタ成膜したものを正極、亜鉛線を対極とした二極セルを作製し、充放電試験を行った結果を図5に示す。成膜された銀の重量はごくわずかなので、ここで使用した5μAの電流値でも充放電レートは非常に大きくなる。それにも拘わらず、充電時間を延長した場合に銀の理論容量にほぼ等しい容量と、ほぼ100%に近いクーロン効率が得られた。フッ化物イオン電池の電解液として、該電解液が非常に優れた特性を有することを示す端的な事例である。 Next, as a model battery, a bipolar cell having a positive electrode and a zinc wire as a counter electrode was prepared by sputtering a silver ultrathin film having an average thickness of only 27 nm on an ITO substrate, and a charge / discharge test was performed. It is shown in FIG. Since the weight of the formed silver is very small, the charge / discharge rate becomes very large even with the current value of 5 μA used here. Nevertheless, when the charging time was extended, a capacity almost equal to the theoretical capacity of silver and a Coulomb efficiency close to 100% were obtained. This is a simple example showing that the electrolytic solution has very excellent characteristics as an electrolytic solution of a fluoride ion battery.

[実施例2]
<ステージII>CsF/RBL電解液
<ステージII>CsF/RBL電解液は、<ステージI>CsF/RBL電解液にさらに追加処理を加えて、前述の副次物や水分濃度をさらに低下させた電解液である。しかし該電解液の室温でのイオン伝導度の実測値は0.6〜0.8mS/cmの範囲にあり、ステージIとほぼ等価であった。図6に示した該電解液のFT−IRスペクトルでは、図2で見られた高波数ピークは消失し、純GBLに相当する参照スペクトルと全く区別がつかなくなったことから、副次物の濃度が激減していることがわかる。詳細には、<ステージII>CsF/RBL電解液は、以下のように、<ステージI>CsF/RBL電解液にさらに追加加熱の条件を厳しくした「追加処理を加えて」作製した。まず、実施例1で作製した<ステージI>CsF/RBL電解液を、さらに攪拌加熱を加熱温度(液温)を150℃程度まで高めて、10分程度追加加熱を行ったものを<ステージII>CsF/RBL電解液とした。なお、作業雰囲気は大気中とした。
[Example 2]
<Stage II> CsF / RBL electrolytic solution <Stage II> CsF / RBL electrolytic solution further reduced the above-mentioned by-products and water concentration by further adding treatment to the <Stage I> CsF / RBL electrolytic solution. It is an electrolytic solution. However, the measured value of the ionic conductivity of the electrolytic solution at room temperature was in the range of 0.6 to 0.8 mS / cm, which was almost equivalent to that of Stage I. In the FT-IR spectrum of the electrolytic solution shown in FIG. 6, the high frequency peak seen in FIG. 2 disappeared, and it became completely indistinguishable from the reference spectrum corresponding to pure GBL. Can be seen to have decreased sharply. Specifically, the <Stage II> CsF / RBL electrolytic solution was prepared by "adding an additional treatment" to the <Stage I> CsF / RBL electrolytic solution with stricter additional heating conditions as follows. First, the <Stage I> CsF / RBL electrolytic solution prepared in Example 1 was further heated by stirring and heating to a heating temperature (liquid temperature) of about 150 ° C., and further heated for about 10 minutes in <Stage II. > CsF / RBL electrolyte was used. The working atmosphere was in the atmosphere.

この事実は、図7に示した<ステージII>CsF/RBL電解液のNMRスペクトルからも確認できる。特に13CのNMRスペクトルには拡大スケールを用いても副次物の信号は認められない。一方、19Fと133CsのNMRスペクトルにはステージIのそれと比べて大きな差は見当たらず、19Fスペクトルの特徴的な化学シフトの値も同じ範囲にある。 This fact can also be confirmed from the NMR spectrum of the <Stage II> CsF / RBL electrolytic solution shown in FIG. In particular, no by-product signal is observed in the 13 C NMR spectrum even when the magnifying scale is used. On the other hand, the NMR spectra of 19 F and 133 Cs did not show a large difference from those of stage I, and the characteristic chemical shift values of the 19 F spectra were also in the same range.

また、該電解液を純GBL溶媒で様々な濃度に希釈したときのイオン伝導度とモル濃度の1/2乗(平方根)の関係を調べたところ、図8のように低濃度領域で良好な直線関係(Kohlraush平方根則)の成立を確認できた。これは該電解液中で解離溶解したCsFが強電解質として振舞うことを意味しており、CsFが単純溶媒和イオン化解離して該電解液のイオン伝導性を担っていることを間接的に証明している。 Further, when the relationship between the ionic conductivity and the molar concentration to the 1/2 power (square root) when the electrolytic solution was diluted with a pure GBL solvent to various concentrations was investigated, it was found to be good in the low concentration region as shown in FIG. We were able to confirm the establishment of a linear relationship (Kohllution square root rule). This means that CsF dissociated and dissolved in the electrolytic solution behaves as a strong electrolyte, indirectly demonstrating that CsF undergoes simple solvation ionization dissociation and is responsible for the ionic conductivity of the electrolytic solution. ing.

また、該電解液のフッ化物イオン電池用電解液としての特性は、ステージIのそれと殆ど差はなく、後者に含まれていた副次成分がCsFの溶解解離そのものにも、電気化学的な特性にも、全く関与していないことを証明している。 Further, the characteristics of the electrolytic solution as an electrolytic solution for a fluoride ion battery are almost the same as those of stage I, and the secondary component contained in the latter is also an electrochemical characteristic in the dissolution dissociation of CsF itself. Also proves that he is not involved at all.

さらに、図8のような希釈により実質的なフッ化物イオンの濃度が数mMに低下した電解液を用いた場合にも、図4と同様な可逆動作の発現を確認することができた。すなわち該電解液中でのフッ化物イオン濃度が製造時の1割程度に低下した系でもフッ化物イオン電池の動作は持続する。 Furthermore, even when an electrolytic solution in which the substantial concentration of fluoride ions was reduced to several mM by dilution as shown in FIG. 8 was used, the same reversible operation as in FIG. 4 could be confirmed. That is, the operation of the fluoride ion battery is maintained even in a system in which the fluoride ion concentration in the electrolytic solution is reduced to about 10% at the time of production.

[実施例3]
<ステージII>KF/RBL電解液
<ステージII>KF/RBL電解液は、γ−ブチロラクトンと、カリウムカチオンおよびフッ化物イオンを有するフッ化カリウムと、を含有するフッ化物イオン伝導性有機電解液であり、アルカリ金属フッ化物としてKFを用いた以外は<ステージII>CsF/RBL電解液と同じ製法で調製した電解液である。<ステージII>CsF/RBL電解液と比べた場合、室温でのイオン伝導度の実測値は約0.3mS/cmとなり、フッ化物イオン濃度も有意に減少したが、フッ化物イオン電池を動作させる性能にほとんど差は確認できなかった。
[Example 3]
<Stage II> KF / RBL Electrolyte <Stage II> KF / RBL Electrolyte is a fluoride ion conductive organic electrolyte containing γ-butyrolactone and potassium fluoride having potassium cation and fluoride ions. Yes, it is an electrolytic solution prepared by the same production method as the <Stage II> CsF / RBL electrolytic solution except that KF is used as the alkali metal fluoride. <Stage II> Compared with the CsF / RBL electrolyte, the measured value of ionic conductivity at room temperature was about 0.3 mS / cm, and the fluoride ion concentration was significantly reduced, but the fluoride ion battery was operated. Almost no difference in performance could be confirmed.

また図9に示したように、該電解液の19F−NMRスペクトルが−150ppm付近にCsF/RBL電解液と同様な複数のピークを与えることも確認できた。 Further, as shown in FIG. 9, it was also confirmed that the 19 F-NMR spectrum of the electrolytic solution gives a plurality of peaks similar to those of the CsF / RBL electrolytic solution in the vicinity of −150 ppm.

[実施例4]
<ステージI>CsF/ε−カプロラクトン電解液
<ステージI>CsF/ε−カプロラクトン電解液は、ε−カプロラクトンと、セシウムカチオンおよびフッ化物イオンを有するフッ化セシウムと、を含有するフッ化物イオン伝導性有機電解液であり、α位水素を有するエステル系/ラクトン系溶媒としてラクトン系に属する他の代表的な溶媒であるε−カプロラクトンを用いた以外は<ステージI>CsF/RBL電解液と同じ製法で調製した電解液である。室温でのイオン伝導度の実測値は約0.15mS/cmまで低下したが、フッ化物イオン電池を動作させる作用は十分であった。
[Example 4]
<Stage I> CsF / ε-caprolactone electrolyte <Stage I> CsF / ε-caprolactone electrolyte contains fluoride ion conductivity containing ε-caprolactone and cesium fluoride having cesium cations and fluoride ions. The same production method as <Stage I> CsF / RBL electrolyte except that it is an organic electrolyte and ε-caprolactone, which is another typical solvent belonging to the lactone system, is used as the ester / lactone-based solvent having α-hydrogen. It is an electrolytic solution prepared in. The measured value of the ionic conductivity at room temperature decreased to about 0.15 mS / cm, but the action of operating the fluoride ion battery was sufficient.

[実施例5]
広い電位領域で様々な金属電極のフッ化・脱フッ化反応を可能にするCsF/RBL電解液は、アルミニウム、ランタン、セリウム、マグネシウムなどの反応が期待される負高電位領域ではフッ化物イオンとその他の溶液種が複雑に関与した不可逆還元反応を引き起こす。この問題はリチウム塩としてLiFSA、LiTFSA、LiBF、LiPF、LiClOのいずれかもしくはそれらの混合物を解離溶解したアルカリ金属フッ化物の濃度に対して少なくとも5倍以上の濃度で混合することにより解決できる。
[Example 5]
The CsF / RBL electrolyte, which enables the fluoride / defluorination reaction of various metal electrodes in a wide potential region, contains fluoride ions in the negative high potential region where reactions such as aluminum, lantern, cerium, and magnesium are expected. Other solution species cause complex irreversible reduction reactions. This problem is solved by mixing LiFSA, LiTFSA, LiBF 4 , LiPF 6 , LiClO 4 or a mixture thereof as a lithium salt at a concentration of at least 5 times or more the concentration of the alkali metal fluoride dissociated and dissolved. it can.

図10は、一例として純GBL溶媒にリチウム塩としてLiTFSAを2Mの濃度で溶解させたLi塩溶液と<ステージI>CsF/RBL電解液を1:3の容量比で混合した電解液をさらにGBLで3倍に希釈した電解液(ε−カプロラクトンと、セシウムカチオンおよびフッ化物イオンを有するフッ化セシウムと、LiTFSAと、を含有するフッ化物イオン伝導性有機電解液)中で、アルミニウム薄板を作用極として測定したCV波形である。銀参照電位基準で−2V付近にCsF/RBL電解液単独では得られない可逆アノードピークが発現し、また電流値がゼロを横切る動的平衡電位はアルミニウムのフッ化・脱フッ化理論平衡電位とほぼ一致した。 In FIG. 10, as an example, an electrolytic solution obtained by mixing a Li salt solution prepared by dissolving LiTFSA as a lithium salt in a pure GBL solvent at a concentration of 2M and a <stage I> CsF / RBL electrolytic solution at a volume ratio of 1: 3 is further added to GBL. In the electrolytic solution diluted 3-fold with (ε-caprolactone, fluoride ion conductive organic electrolytic solution containing cesium fluoride having cesium cation and fluoride ion, and LiTFSA), the aluminum thin plate was used as a working electrode. It is a CV waveform measured as. A reversible anode peak that cannot be obtained by CsF / RBL electrolyte alone appears near -2V based on the silver reference potential, and the dynamic equilibrium potential at which the current value crosses zero is the fluorination / defluorination theoretical equilibrium potential of aluminum. It almost matched.

この有用な混合効果は総合的に見てリチウム塩に特有のものであり、LiカチオンとFアニオンとの特殊な相互作用を通じて、フッ化物イオンの反応性が好ましい形で制御されることに基づく。ただし、以下の実施例を参照すると、バリウム塩の添加によっても限定的ではあるが類似の効果が得られる。 This useful mixing effect is generally unique to lithium salts, and the reactivity of fluoride ions is preferably controlled through a special interaction between the Li + cation and the F -anion. Based on. However, referring to the following examples, the addition of barium salt also has a limited but similar effect.

[実施例6]
Ba塩混合CsF/RBL電解液
リチウム塩のLiTFSAに替えてバリウム塩のBaTFSA塩を用いた以外は実施例5と同様な混合電解液としてBa塩混合CsF/RBL電解液(ε−カプロラクトンと、セシウムカチオンおよびフッ化物イオンを有するフッ化セシウムと、BaTFSAと、を含有するフッ化物イオン伝導性有機電解液)を作製した。混合後のBaTFSA濃度は0.5M、CsF濃度は0.017Mであった。アルミニウム薄板を作用極として測定したCV波形と同じ濃度のCsFのみを含む電解液で測定したCV波形を比較した結果を図11に示す。図10とは異なり、可逆アノードピークの発現は認められなかったが、CsF単独電解液での顕著な不可逆還元電流は著しく抑制されていることがわかる。
[Example 6]
Ba salt mixed CsF / RBL electrolytic solution Ba salt mixed CsF / RBL electrolytic solution (ε-caprolactone and cesium) as a mixed electrolytic solution similar to Example 5 except that BaTFSA salt of barium salt was used instead of LiTFSA of lithium salt. A fluoride ion conductive organic electrolyte solution containing cesium fluoride having cations and fluoride ions and BaTFSA) was prepared. The BaTFSA concentration after mixing was 0.5 M, and the CsF concentration was 0.017 M. FIG. 11 shows a result of comparing the CV waveform measured with the electrolytic solution containing only CsF having the same concentration as the CV waveform measured with the aluminum thin plate as the working electrode. Unlike FIG. 10, the expression of the reversible anode peak was not observed, but it can be seen that the remarkable irreversible reduction current in the CsF single electrolytic solution was remarkably suppressed.

[比較例1]
CsF/PC:EC電解液
Liイオン電池に用いられる代表的な非水有機溶媒を使用した比較例として、GBLと分子構造は類似しているがα位の水素を持たないPC(プロピレンカーボネート)とEC(エチレンカーボネート)の1:1(容量比)の混合溶媒を用いて、CsF/RBL電解液と同じ製法でCsFが解離溶解した電解液(CsF/PC:EC電解液)を作製した。その室温でのイオン伝導度の実測値は1.2mS/cmという、ラクトン系よりも高い値を示した。
[Comparative Example 1]
CsF / PC: EC electrolyte As a comparative example using a typical non-aqueous organic solvent used in Li-ion batteries, PC (propylene carbonate) having a molecular structure similar to that of GBL but not having hydrogen at the α-position was used. An electrolytic solution (CsF / PC: EC electrolytic solution) in which CsF was dissociated and dissolved was prepared by the same production method as the CsF / RBL electrolytic solution using a 1: 1 (volume ratio) mixed solvent of EC (ethylene carbonate). The measured value of the ionic conductivity at room temperature was 1.2 mS / cm, which was higher than that of the lactone type.

しかしながら、該電解液についてやはり4種類のNMRスペクトルを測定したところ、図12に示したように、Hと13Cのスペクトルに溶媒分子以外の副次物が溶媒自身の約1割もの強度で観測された。モル濃度に換算すると数Mに近い異常に高い濃度である。 However, the measured again four NMR spectrum of the electrolyte solution, as shown in FIG. 12, secondary product other than the solvent molecules in the spectrum of the 1 H and 13 C are in strength as about 10% of the solvent itself It was observed. When converted to molar concentration, it is an abnormally high concentration close to several meters.

この時、19F(図12)のスペクトルは比較的低磁場側に1本、また異常に高い高磁場側に別の1本のピークを示した。フッ化物イオンと副次物の間の複雑な相互作用を反映したもので、この相互作用を介してCsFの解離溶解が進行したものと推定される。 At this time, the spectrum of 19 F (FIG. 12) showed one peak on the relatively low magnetic field side and another peak on the abnormally high high magnetic field side. It reflects the complex interaction between fluoride ions and by-products, and it is presumed that the dissociation and dissolution of CsF proceeded through this interaction.

白金電極を作用極として該電解液の電位窓の広さを確認した結果を図13に示す。銀参照極に対し負電位側では約−1Vまで、正電位側では約1Vまでの広さしかなく、亜鉛極の可逆動作はもちろん、この電位窓の中に入る銀正極の反応の可逆性も不十分であった。多量に存在する副次物が関与した不可逆的な酸化および還元反応が原因と推定される。 FIG. 13 shows the result of confirming the width of the potential window of the electrolytic solution using the platinum electrode as the working electrode. The negative potential side has a range of up to about -1V and the positive potential side has a range of up to about 1V with respect to the silver reference electrode. Not only the reversible operation of the zinc electrode, but also the reversibility of the reaction of the silver positive electrode entering this potential window. It was inadequate. It is presumed that the cause is an irreversible oxidation and reduction reaction involving a large amount of by-products.

[比較例2]
CsF/グルタル酸/GBL電解液
非水有機溶媒にアルカリ金属フッ化物を溶解させる別の手法としては、アニオンアクセプターを利用する先行例の他にも、アルカリ金属カチオンに強く配位する分子(カチオンアクセプター)を用いる方法が考えられる。その一例としてジカルボン酸の一種であるグルタル酸を0.3Mの濃度でGBLに溶解させた液にCsFを飽和溶解させた電解液を作製した。
[Comparative Example 2]
CsF / Gluteric Acid / GBL Electrolyte As another method for dissolving alkali metal fluoride in a non-aqueous organic solvent, in addition to the previous example using an anion acceptor, a molecule (cation) that strongly coordinates with an alkali metal cation. A method using an acceptor) can be considered. As an example, an electrolytic solution in which CsF was saturated and dissolved in a solution in which glutaric acid, which is a kind of dicarboxylic acid, was dissolved in GBL at a concentration of 0.3 M was prepared.

該電解液の室温でのイオン伝導度は0.5mS/cmという比較的高い値を示し、図14に示したNMRスペクトルもCsFの解離溶解を裏付けるが、19FスペクトルはCsF/RBL電解液とは明確に異なる−135ppmの位置に1本の主要なピークを与えた。 The ionic conductivity of the electrolytic solution at room temperature shows a relatively high value of 0.5 mS / cm, and the NMR spectrum shown in FIG. 14 also supports the dissociation and dissolution of CsF, but the 19 F spectrum is the same as that of the CsF / RBL electrolytic solution. Gave one major peak at a distinctly different -135 ppm position.

さらに比較例1の電解液と同様に、電位窓の広さは高々2Vしかなく、亜鉛負極を動作させることはできなかった。該電位窓の中に入る銀正極の反応の可逆性も不十分であった。添加物としてのグルタル酸自身の不可逆的な酸化および還元反応が原因と推定される。 Further, as in the electrolytic solution of Comparative Example 1, the width of the potential window was only 2 V at the most, and the zinc negative electrode could not be operated. The reversibility of the reaction of the silver positive electrode entering the potential window was also insufficient. It is presumed that the cause is the irreversible oxidation and reduction reaction of glutaric acid itself as an additive.

[比較例3]
Li塩以外の塩の混合効果
NaFSAやKFSAなど、アニオン種は共通でカチオン種がLi以外の塩をCsF/RBL電解液に混合したところ、負高電位領域での不可逆的還元電流を抑制することはできなかった。さらに比較例1の電解液と同様に、電位窓の広さは高々2Vしかなく、亜鉛負極を動作させることはできなかった。
[Comparative Example 3]
Mixing effect of salts other than Li salt Common anion species such as NaFSA and KFSA When a salt other than Li is mixed with a CsF / RBL electrolyte, the irreversible reduction current in the negative high potential region is suppressed. I couldn't. Further, as in the electrolytic solution of Comparative Example 1, the width of the potential window was only 2 V at the most, and the zinc negative electrode could not be operated.

1…負極活物質の還元(金属)層、
2…負極活物質のフッ化物層、
3…電解液層、
4…正極活物質のフッ化物層、
5…正極活物質の還元(金属)層。
1 ... Reduction (metal) layer of negative electrode active material,
2 ... Fluoride layer of negative electrode active material,
3 ... Electrolyte layer,
4 ... Fluoride layer of positive electrode active material,
5 ... Reduction (metal) layer of positive electrode active material.

Claims (16)

α位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒と、
アルカリ金属カチオンおよびフッ化物イオンを有するアルカリ金属フッ化物と、を含有することを特徴とするフッ化物イオン伝導性有機電解液。
With an ester-based or lactone-based single or mixed organic solvent having hydrogen at the α-position,
A fluoride ion conductive organic electrolytic solution containing an alkali metal cation and an alkali metal fluoride having a fluoride ion.
前記アルカリ金属フッ化物が、フッ化セシウム、フッ化ルビジウム、フッ化カリウムのいずれか1つもしくはそれらの2つ以上の混合物であることを特徴とする請求項1に記載のフッ化物イオン伝導性有機電解液。 The fluoride ion conductive organic according to claim 1, wherein the alkali metal fluoride is one of cesium fluoride, rubidium fluoride, and potassium fluoride, or a mixture thereof. Electrolyte. 前記フッ化物イオンの19F−NMR化学シフトが、−150±10ppmの範囲にあることを特徴とする請求項1または2に記載のフッ化物イオン伝導性有機電解液。 The fluoride ion conductive organic electrolytic solution according to claim 1 or 2, wherein the 19 F-NMR chemical shift of the fluoride ion is in the range of −150 ± 10 ppm. 前記有機溶媒が、γ−ブチロラクトンとε−カプロラクトンのいずれか一つもしくはそれらの混合物であることを特徴とする請求項1〜3のいずれか1項に記載のフッ化物イオン伝導性有機電解液。 The fluoride ion conductive organic electrolytic solution according to any one of claims 1 to 3, wherein the organic solvent is any one of γ-butyrolactone and ε-caprolactone or a mixture thereof. 前記フッ化物イオン伝導性有機電解液に共溶解可能な任意のリチウム塩を、解離溶解した前記アルカリ金属フッ化物の濃度の少なくとも3倍以上の濃度でさらに含有してなることを特徴とする請求項1〜4のいずれか1項に記載のフッ化物イオン伝導性有機電解液。 The claim is characterized in that an arbitrary lithium salt co-dissolvable in the fluoride ion conductive organic electrolytic solution is further contained at a concentration of at least 3 times or more the concentration of the dissociated and dissolved alkali metal fluoride. The fluoride ion conductive organic electrolytic solution according to any one of 1 to 4. 前記リチウム塩が、LiFSA、LiTFSA、LiBF、LiPF、LiClOのいずれか1つまたはそれらの2つ以上の混合物であることを特徴とする請求項6に記載のフッ化物イオン伝導性有機電解液。 The fluoride ion conductive organic electrolysis according to claim 6, wherein the lithium salt is any one of LiFSA, LiTFSA, LiBF 4 , LiPF 6 , and LiClO 4 or a mixture thereof. liquid. 前記フッ化物イオン伝導性有機電解液に共溶解可能な任意のバリウム塩を、解離溶解した前記アルカリ金属フッ化物の濃度の少なくとも3倍以上の濃度でさらに含有してなることを特徴とする請求項1〜6のいずれか1項に記載のフッ化物イオン伝導性有機電解液。 The claim is characterized in that an arbitrary barium salt co-dissolvable in the fluoride ion conductive organic electrolytic solution is further contained at a concentration of at least 3 times or more the concentration of the dissociated and dissolved alkali metal fluoride. The fluoride ion conductive organic electrolytic solution according to any one of 1 to 6. 前記バリウム塩が、Ba(FSA)、Ba(TFSA)、Ba(BFのいずれか1つまたはそれらの2つ以上の混合物であることを特徴とする請求項7に記載のフッ化物イオン伝導性有機電解液。 The fluoride according to claim 7, wherein the barium salt is any one of Ba (FSA) 2 , Ba (TFSA) 2 , and Ba (BF 4 ) 2 or a mixture thereof. Fluoride ion conductive organic electrolyte. 前記フッ化物イオンの濃度が、1mM以上であることを特徴とする請求項1〜8のいずれか1項に記載のフッ化物イオン伝導性有機電解液。 The fluoride ion conductive organic electrolytic solution according to any one of claims 1 to 8, wherein the fluoride ion concentration is 1 mM or more. 有機溶媒と、前記フッ化物塩、前記リチウム塩および前記バリウム塩の塩以外の他の添加剤を含有しないことを特徴とする請求項1〜9のいずれか1項に記載のフッ化物イオン伝導性有機電解液。 The fluoride ion conductivity according to any one of claims 1 to 9, which contains no organic solvent and additives other than the fluoride salt, the lithium salt and the barium salt. Organic electrolyte. 請求項1〜10のいずれか1項に記載のフッ化物イオン伝導性有機電解液を含有してなることを特徴とするフッ化物イオン電池。 A fluoride ion battery comprising the fluoride ion conductive organic electrolytic solution according to any one of claims 1 to 10. アルカリ金属フッ化物を水に溶解させて水溶液を得ることと、
α位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒と前記水溶液とを混合して第1の混合溶液を得ることと、
前記混合溶液に加熱処理を施すことにより水を除去して有機電解液を得ることと、
を含むことを特徴とするフッ化物イオン伝導性有機電解液の製造方法。
To obtain an aqueous solution by dissolving alkali metal fluoride in water,
To obtain a first mixed solution by mixing the aqueous solution with an ester-based or lactone-based single or mixed organic solvent having hydrogen at the α-position.
Water is removed by heat-treating the mixed solution to obtain an organic electrolytic solution.
A method for producing a fluoride ion conductive organic electrolytic solution, which comprises.
水の蒸発による発泡が終了した時点で、前記加熱処理による水の除去を終了することを特徴とする請求項12に記載のフッ化物イオン伝導性有機電解液の製造方法。 The method for producing a fluoride ion conductive organic electrolytic solution according to claim 12, wherein when the foaming due to evaporation of water is completed, the removal of water by the heat treatment is completed. 水の蒸発による発泡が終了した時点より後に加熱温度を上昇させて前記加熱処理を継続することにより水を追加除去することをさらに含むことを特徴とする請求項12に記載のフッ化物イオン伝導性有機電解液の製造方法。 The fluoride ion conductivity according to claim 12, further comprising removing additional water by raising the heating temperature and continuing the heat treatment after the time when foaming due to evaporation of water is completed. A method for producing an organic electrolyte. 水を追加除去する際に不活性ガスをバブリングすることをさらに含むことを特徴とする請求項14に記載のフッ化物イオン伝導性有機電解液の製造方法。 The method for producing a fluoride ion conductive organic electrolytic solution according to claim 14, further comprising bubbling an inert gas when the water is additionally removed. 請求項12〜15のいずれか1項に記載の製造方法によってフッ化物イオン伝導性有機電解液を作製することと、
フッ化物イオン伝導性有機電解液に共溶解可能なリチウム塩および/またはバリウム塩がα位水素を有するエステル系もしくはラクトン系の単独もしくは混合有機溶媒に溶解した溶液を前記フッ化物イオン伝導性有機電解液と混合して第2の混合溶液を得ることと、
前記第2の混合溶液を前記有機溶媒で希釈することと、
を含むことを特徴とするフッ化物イオン伝導性有機電解液の製造方法。
To prepare a fluoride ion conductive organic electrolytic solution by the production method according to any one of claims 12 to 15,
The fluoride ion conductive organic electrolytic solution is prepared by dissolving a solution in which a lithium salt and / or barium salt co-dissolvable in a fluoride ion conductive organic electrolytic solution is dissolved in an ester-based or lactone-based single or mixed organic solvent having α-hydrogen. Mixing with the solution to obtain a second mixed solution,
Diluting the second mixed solution with the organic solvent and
A method for producing a fluoride ion conductive organic electrolytic solution, which comprises.
JP2019158217A 2019-08-30 2019-08-30 Fluoride ion battery electrolyte and fluoride ion battery Active JP7444372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019158217A JP7444372B2 (en) 2019-08-30 2019-08-30 Fluoride ion battery electrolyte and fluoride ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158217A JP7444372B2 (en) 2019-08-30 2019-08-30 Fluoride ion battery electrolyte and fluoride ion battery

Publications (2)

Publication Number Publication Date
JP2021036512A true JP2021036512A (en) 2021-03-04
JP7444372B2 JP7444372B2 (en) 2024-03-06

Family

ID=74716402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158217A Active JP7444372B2 (en) 2019-08-30 2019-08-30 Fluoride ion battery electrolyte and fluoride ion battery

Country Status (1)

Country Link
JP (1) JP7444372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101831A (en) * 2022-07-05 2022-09-23 大连理工大学 Long-life aqueous fluoride ion battery based on salt-coated water electrolyte and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529222A (en) * 2006-03-03 2009-08-13 カリフォルニア・インスティテュート・オブ・テクノロジー Fluoride ion electrochemical cell
JP2017117592A (en) * 2015-12-22 2017-06-29 国立大学法人京都大学 Electrolyte for secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529222A (en) * 2006-03-03 2009-08-13 カリフォルニア・インスティテュート・オブ・テクノロジー Fluoride ion electrochemical cell
JP2017117592A (en) * 2015-12-22 2017-06-29 国立大学法人京都大学 Electrolyte for secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101831A (en) * 2022-07-05 2022-09-23 大连理工大学 Long-life aqueous fluoride ion battery based on salt-coated water electrolyte and preparation method thereof
CN115101831B (en) * 2022-07-05 2024-05-14 大连理工大学 Long-life water-based fluoride ion battery based on salt-coated electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JP7444372B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US20220045349A1 (en) Aqueous and Hybrid Electrolytes With Wide Electrochemical Stability Windows
Xie et al. Molecular crowding electrolytes for high-voltage aqueous batteries
Xu et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4|| Li4Ti5O12 pouch cells
Ji A perspective of ZnCl2 electrolytes: the physical and electrochemical properties
Yamada et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries
Laoire et al. Elucidating the mechanism of oxygen reduction for lithium-air battery applications
Abouimrane et al. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations
Nikitina et al. Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery
Pahari et al. Greener, safer, and sustainable batteries: an insight into aqueous electrolytes for sodium-ion batteries
Xu et al. Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration?
Knipping et al. Room temperature ionic liquids versus organic solvents as lithium–oxygen battery electrolytes
Kao‐ian et al. Stability Enhancement of Zinc‐Ion Batteries Using Non‐Aqueous Electrolytes
CN104756301B (en) Electrochemical energy storage device
CN111244540B (en) Aqueous high-voltage window anti-freezing electrolyte and application thereof
CN106946925A (en) Fluoroalkyl trifluoro lithium borate salt and its preparation method and application
De Sloovere et al. Deep eutectic solvents as nonflammable electrolytes for durable sodium‐ion batteries
Liang et al. Comprehensive Review of Electrolyte Modification Strategies for Stabilizing Zn Metal Anodes
Messaggi et al. Oxygen redox reaction in lithium-based electrolytes: from salt-in-solvent to solvent-in-salt
Chen et al. N, N-dimethylacetamide-diluted nitrate electrolyte for aqueous Zn//LiMn2O4 hybrid ion batteries
Zhang et al. Advances and issues in developing intercalation graphite cathodes for aqueous batteries
JP2021036512A (en) Electrolytic solution for fluoride ion batteries, and fluoride ion battery
Zhang LiBF3Cl as an alternative salt for the electrolyte of Li-ion batteries
JP2004200015A (en) Electrolyte for nonaqueous battery, its manufacturing method, and nonaqueous battery electrolytic solution
EP3783720A1 (en) An electrolyte solution comprising an alkali metal bis (oxalato)borate salt
JP7112084B2 (en) Electrolyte, secondary battery, and method for producing electrolyte

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7444372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150