JP2021035277A - Power plant operation planning device and power plant operation planning method - Google Patents

Power plant operation planning device and power plant operation planning method Download PDF

Info

Publication number
JP2021035277A
JP2021035277A JP2019156285A JP2019156285A JP2021035277A JP 2021035277 A JP2021035277 A JP 2021035277A JP 2019156285 A JP2019156285 A JP 2019156285A JP 2019156285 A JP2019156285 A JP 2019156285A JP 2021035277 A JP2021035277 A JP 2021035277A
Authority
JP
Japan
Prior art keywords
power
adjustment
demand
plan
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019156285A
Other languages
Japanese (ja)
Other versions
JP7241644B2 (en
Inventor
将太 田中
Shota Tanaka
将太 田中
聖一 北村
Seiichi Kitamura
聖一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019156285A priority Critical patent/JP7241644B2/en
Publication of JP2021035277A publication Critical patent/JP2021035277A/en
Application granted granted Critical
Publication of JP7241644B2 publication Critical patent/JP7241644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To formulate an operation plan for a power plant so as to meet power demand and heat demand, and secure the supply and demand adjustment power on the basis of adjustment power information.SOLUTION: A power plant operation planning device with a power generation device and an energy storage device includes a demand plan acquisition unit 210 that acquires a power demand plan and a heat demand plan, an adjustment power information acquisition unit 240 that acquires adjustment power information regarding at least one of the up adjustment power and the down adjustment power as supply and demand adjustment power, and an operation planning unit 250 that meets the power demand plan and heat demand plan and formulates an operation plan of the power generation device and energy storage device so as to minimize the operating cost of the power plant, and the operation planning unit 250 formulates an operation plan so as to secure the supply and demand adjustment power on the basis of the adjustment power information.SELECTED DRAWING: Figure 4

Description

本願は、発電プラントの運転計画装置および発電プラントの運転計画立案方法に関するものである。 The present application relates to a power plant operation planning device and a power plant operation planning method.

2020年4月、電力システム改革の一環で、一般電気事業者は、一般送配電事業者と、発電事業者および小売電気事業者に法的分離される(発送電分離)。発電部門は今まで以上に競争部門となることが想定され、発電事業者はより効率的に発電を行い、小売電気事業者に電気を供給することが要求される。自家発電設備を有する企業においても、工場側で必要となる電力および熱供給をより効率的に行い、余剰電力を電力会社または卸電力市場(例えば、一般社団法人日本卸電力取引所(JEPX:Japan Electric Power Exchange))に売電することで、更なる利益の創出を図る動きがある。また近年では、蓄エネルギー設備を併設することで、発電プラントの運用性または効率性向上を図る検討が行われている。 In April 2020, as part of the power system reform, general electric power companies will be legally separated into general power transmission and distribution companies, power generation companies and retail electric power companies (separation of power transmission and distribution). The power generation sector is expected to become a more competitive sector than ever before, and power generation companies are required to generate electricity more efficiently and supply electricity to retail electricity companies. Even companies with private power generation facilities can supply the electricity and heat required by the factory more efficiently, and use the surplus electricity from the electric power company or the Japan Electric Power Exchange (for example, Japan Electric Power Exchange (JEPX)). There is a movement to generate further profits by selling electricity to Electric Power Exchange)). In recent years, studies have been conducted to improve the operability or efficiency of power plants by installing energy storage equipment.

例えば特許文献1では、エネルギー需給調整装置として、需要家が応答可能な少なくとも熱のデマンドレスポンスの条件を含むデマンドレスポンス情報を取得する熱DR情報収集部と、需要家の電熱需要を予測する電熱需要予測部と、デマンドレスポンス情報および電熱需要をパラメータに含む最適化計算により、運転スケジュールと、需要家に指令する熱のデマンドレスポンスのスケジュールを含む指令スケジュールとを作成するスケジュール作成部を備えるものがあった。 For example, in Patent Document 1, as an energy supply / demand adjusting device, a thermal DR information collecting unit that acquires demand response information including at least heat demand response conditions that a consumer can respond to, and an electric heating demand that predicts the electric heating demand of the consumer. Some have a forecasting unit and a schedule creation unit that creates an operation schedule and a command schedule including a heat demand response schedule that commands the consumer by optimizing calculation that includes demand response information and electric heat demand as parameters. It was.

特開2017−20426号公報JP-A-2017-20426

発送電分離により、旧一般電気事業者の役目であった電力系統の周波数および需給バランスの維持については、今後は一般送配電事業者が行う必要がある。一般送配電事業者は今後創設される需給調整市場から電力を購入することで周波数調整および需給バランス調整用の電源を調達することになる。 Due to the separation of power transmission and distribution, it will be necessary for the general power transmission and distribution business to maintain the frequency and supply-demand balance of the power system, which was the role of the former general power business. General power transmission and distribution business operators will procure power sources for frequency adjustment and supply and demand balance adjustment by purchasing electricity from the supply and demand adjustment market that will be created in the future.

発電事業者は発電した電力を小売事業者または卸電力取引市場(JEPX等)に供給するほかに、発電余力を需給調整力としての上げ調整力または下げ調整力として需給調整市場に販売することで更なる利益を創出することができるようになる。 In addition to supplying the generated power to the retailer or the wholesale power trading market (JEPX, etc.), the power generation company sells the surplus power generation capacity to the supply and demand adjustment market as an increase adjustment power or a decrease adjustment power as a supply and demand adjustment power. You will be able to generate more profits.

特許文献1のエネルギー需給調整装置は、デマンドレスポンス情報および電熱需要をパラメータに含む最適化計算により、運転スケジュールを作成するようにしているが、需給調整力としての上げ調整力または下げ調整力を考慮して、運転スケジュールを作成していない。 The energy supply and demand adjustment device of Patent Document 1 creates an operation schedule by an optimization calculation that includes demand response information and electric heat demand as parameters, but considers an increase adjustment force or a decrease adjustment force as the supply and demand adjustment force. And I haven't created an operation schedule.

本願は、上記のような課題を解決するための技術を開示するものであり、電力需要および熱需要を満たすとともに、需給調整力としての上げ調整力または下げ調整力を考慮して発電プラントの運転計画を立案することができる発電プラントの運転計画装置および発電プラントの運転計画立案方法を提供する。 The present application discloses a technique for solving the above-mentioned problems, and operates a power plant in consideration of raising or lowering adjustment power as supply and demand adjusting power while satisfying electric power demand and heat demand. Provided are a power plant operation planning device capable of making a plan and a power plant operation planning method.

本願に開示される発電プラントの運転計画装置は、
発電設備および蓄エネルギー設備を有する発電プラントの運転計画装置であって、
電力需要計画および熱需要計画を取得する需要計画取得部と、
需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得部と、
前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするように前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画部とを備え、
前記運転計画部は、前記調整力情報に基づいて前記需給調整力を確保するように前記運転計画を立案するものである。
また、本願に開示される発電プラントの運転計画立案方法は、
発電設備および蓄エネルギー設備を有する発電プラントの運転計画立案方法であって、
電力需要計画および熱需要計画を取得する需要計画取得工程と、
需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得工程と、
前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするようにし、前記調整力情報に基づいて前記需給調整力を確保するように、前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画工程とを備えたものである。
また、本願に開示される発電プラントの運転計画立案方法は、
発電設備および蓄エネルギー設備を有する発電プラントの運転計画立案方法であって、
電力需要計画および熱需要計画を取得する需要計画取得工程と、
需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得工程と、
前記発電プラントの併設工場の電力および熱デマンドレスポンス情報を取得するデマンドレスポンス取得工程と、
前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするようにし、前記調整力情報および前記電力および熱デマンドレスポンス情報に基づいて前記需給調整力を確保するように、前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画工程とを備えたものである。
The power plant operation planning device disclosed in the present application is
An operation planning device for a power plant that has power generation equipment and energy storage equipment.
Demand plan acquisition department that acquires power demand plan and heat demand plan,
The Coordination Power Information Acquisition Department, which acquires adjustment power information regarding at least one of the up adjustment power and the down adjustment power as the supply and demand adjustment power,
It is provided with an operation planning unit that satisfies the power demand plan and the heat demand plan and formulates an operation plan of the power generation facility and the energy storage facility so as to minimize the operating cost of the power plant.
The operation planning unit formulates the operation plan so as to secure the supply and demand adjustment power based on the adjustment power information.
In addition, the method for formulating an operation plan for a power plant disclosed in the present application is as follows.
It is a method of planning the operation of a power plant that has power generation equipment and energy storage equipment.
Demand plan acquisition process to acquire power demand plan and heat demand plan,
The adjustment power information acquisition process for acquiring adjustment power information regarding at least one of the up adjustment power and the down adjustment power as the supply and demand adjustment power, and
The power generation equipment and the energy storage so as to satisfy the power demand plan and the heat demand plan, minimize the operating cost of the power plant, and secure the supply and demand adjustment power based on the adjustment power information. It is equipped with an operation planning process for formulating an operation plan for equipment.
In addition, the method for formulating an operation plan for a power plant disclosed in the present application is as follows.
It is a method of planning the operation of a power plant that has power generation equipment and energy storage equipment.
Demand plan acquisition process to acquire power demand plan and heat demand plan,
The adjustment power information acquisition process for acquiring adjustment power information regarding at least one of the up adjustment power and the down adjustment power as the supply and demand adjustment power, and
The demand response acquisition process for acquiring the power and heat demand response information of the factory attached to the power plant, and
Satisfy the power demand plan and the heat demand plan, minimize the operating cost of the power plant, and secure the supply and demand adjustment power based on the adjusting power information and the power and heat demand response information. It is provided with an operation planning process for formulating an operation plan for the power generation facility and the energy storage facility.

本願に開示される発電プラントの運転計画装置および発電プラントの運転計画立案方法によれば、電力需要および熱需要を満たすとともに、需給調整力としての上げ調整力または下げ調整力を考慮して発電プラントの運転計画を立案することができる。 According to the operation planning device of the power plant and the operation planning method of the power plant disclosed in the present application, the power plant satisfies the power demand and the heat demand, and also considers the up adjustment power or the down adjustment power as the supply and demand adjustment power. Can make an operation plan for.

本願の実施の形態1による発電プラントの運転計画装置で対象とする発電プラントの概念図である。FIG. 5 is a conceptual diagram of a power plant targeted by the operation planning device for the power plant according to the first embodiment of the present application. 本願の実施の形態1による需給調整力確保の仕組みについて説明するための概念図である。It is a conceptual diagram for demonstrating the mechanism of securing the supply and demand adjustment ability by Embodiment 1 of this application. 本願の実施の形態1による需給調整力確保の仕組みについて説明するための概念図である。It is a conceptual diagram for demonstrating the mechanism of securing the supply and demand adjustment ability by Embodiment 1 of this application. 本願の実施の形態1による発電プラントの運転計画装置を示す機能ブロック図である。It is a functional block diagram which shows the operation planning apparatus of the power plant by Embodiment 1 of this application. 本願の実施の形態1による発電プラントの運転計画装置のハードウエア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the operation planning apparatus of the power plant according to Embodiment 1 of this application. 本願の実施の形態1による発電プラントの運転計画装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the operation planning apparatus of the power plant by Embodiment 1 of this application. 本願の実施の形態2による需給調整力確保の仕組みについて説明するための概念図である。It is a conceptual diagram for demonstrating the mechanism of securing the supply and demand adjustment ability by Embodiment 2 of this application. 本願の実施の形態2による需給調整力確保の仕組みについて説明するための概念図である。It is a conceptual diagram for demonstrating the mechanism of securing the supply and demand adjustment ability by Embodiment 2 of this application. 本願の実施の形態2による発電プラントの運転計画装置を示す機能ブロック図である。It is a functional block diagram which shows the operation planning apparatus of the power plant by Embodiment 2 of this application. 本願の実施の形態2による発電プラントの運転計画装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the operation planning apparatus of the power plant by Embodiment 2 of this application.

実施の形態1.
図1は、本願の実施の形態1による発電プラントの運転計画装置で対象とする発電プラントの概念図である。
Embodiment 1.
FIG. 1 is a conceptual diagram of a power plant targeted by the operation planning device for the power plant according to the first embodiment of the present application.

図1に示すように、本実施の形態において対象とする発電プラント100は、ボイラ10Aおよび10B、ボイラ10Aおよび10Bに接続されるタービン11Aおよび11B、タービン11Aおよび11Bと連結する発電機12Aおよび12Bで代表される発電設備、並びに蓄電池13および蓄熱槽14に代表される蓄エネルギー設備を含んで構成される。なお、本実施の形態の発電プラント100は、ボイラ10Aおよび10B、タービン11Aおよび11B、並びに発電機12Aおよび12Bをそれぞれ2機備え、蓄電池13および蓄熱槽14を1機備えた例を示している。しかしながら、それぞれの機数は上記の数に限らない。また、ボイラ10Aおよび10B、タービン11Aおよび11B、並びに発電機12Aおよび12Bについては、それぞれ以下の説明で、ボイラ10、タービン11、および発電機12と称する。 As shown in FIG. 1, the power plant 100 targeted in the present embodiment includes the boilers 10A and 10B, the turbines 11A and 11B connected to the boilers 10A and 10B, and the generators 12A and 12B connected to the turbines 11A and 11B. The power generation equipment represented by the above, and the energy storage equipment represented by the storage battery 13 and the heat storage tank 14 are included. The power plant 100 of the present embodiment shows an example in which the boilers 10A and 10B, the turbines 11A and 11B, and the generators 12A and 12B are provided, respectively, and the storage battery 13 and the heat storage tank 14 are provided. .. However, the number of each machine is not limited to the above number. Further, the boilers 10A and 10B, the turbines 11A and 11B, and the generators 12A and 12B are referred to as the boiler 10, the turbine 11, and the generator 12 in the following description, respectively.

図1に示す発電プラント100において、燃料Fをボイラ10で燃焼して、ボイラ10で発生した熱により水から高温高圧の蒸気を発生させる。ボイラ10で発生した蒸気によりタービン11を駆動して発電機12を回転させて電力を発生させる。太実線矢印Cは蒸気の流れを示し、太点線矢印Dは電力の流れを示している。発電機12からの電力の流れは、蓄電池13、電力売買16、発電プラント所内および併設工場内の電力需要および熱需要17のうちの電力需要に接続されている。ボイラ10又はタービン11からの蒸気の流れは、蓄熱槽14、発電プラント所内および併設工場内の電力需要および熱需要17のうちの熱需要に接続されている。 In the power plant 100 shown in FIG. 1, the fuel F is burned in the boiler 10 to generate high-temperature and high-pressure steam from water by the heat generated in the boiler 10. The steam generated in the boiler 10 drives the turbine 11 to rotate the generator 12 to generate electric power. The thick solid line arrow C indicates the flow of steam, and the thick dotted arrow D indicates the flow of electric power. The flow of electric power from the generator 12 is connected to the electric power demand among the storage battery 13, the electric power trading 16, the electric power demand in the power plant and the annex factory, and the heat demand 17. The steam flow from the boiler 10 or the turbine 11 is connected to the heat demand of the power demand and the heat demand 17 in the heat storage tank 14, the power plant, and the annex factory.

ここで、発電プラント所内および併設工場内(併設工場が有る場合)の電力需要および熱需要17のうちの電力需要については、発電機12の発電、蓄電池13の放電、電力系統からの受電により確保している。また、発電プラント所内および併設工場内(併設工場などが有る場合)の電力需要および熱需要17のうちの熱需要については、ボイラ10またはタービン11からの抽気、蓄熱槽14からの放熱により確保している。 Here, the power demand among the power demand and the heat demand 17 in the power plant and the annex factory (when there is an annex factory) is secured by the power generation of the generator 12, the discharge of the storage battery 13, and the power reception from the power system. doing. Further, the power demand and the heat demand of the heat demand 17 in the power plant and the annex factory (when there is an annex factory etc.) are secured by extracting air from the boiler 10 or the turbine 11 and radiating heat from the heat storage tank 14. ing.

図2および図3は、実施の形態1による需給調整力確保と発電プラントの運転計画立案の仕組みを表した概念図である。 2 and 3 are conceptual diagrams showing the mechanism of securing the supply and demand adjusting ability and formulating the operation plan of the power plant according to the first embodiment.

まず、実施の形態1による需給調整力確保と発電プラントの運転計画立案の仕組みの概要について説明する。
本願では、需給調整力として上げ調整力と下げ調整力を考える。上げ調整力はエリアの電力供給力の不足に対応するためのものであり、エリアの電力需要の高い昼間において、その調整力価格(上げ調整力単価)が高くなる傾向がある。それに対して、下げ調整力はエリアの電力供給力の余剰に対応するためのものであり、エリアの電力需要の低い夜間において、その調整力価格(下げ調整力単価)が高くなる傾向がある。なお、ここでのエリアとは、発電プラント100の電力供給の対象となる地域を意味する。
First, the outline of the mechanism for securing the supply and demand adjustment ability and the operation planning of the power plant according to the first embodiment will be described.
In this application, we consider the power to adjust supply and demand as the power to adjust up and down. The increase adjustment power is for responding to the shortage of the power supply capacity in the area, and the adjustment power price (unit price of the increase adjustment power) tends to be high in the daytime when the power demand in the area is high. On the other hand, the lowering adjustment power is for responding to the surplus of the power supply capacity of the area, and the adjusting power price (lowering adjustment power unit price) tends to be high at night when the power demand of the area is low. The area here means an area to which the power of the power plant 100 is supplied.

本実施の形態の発電プラントの運転計画装置では、上げ調整力単価が高くなる時間帯には、蓄エネルギー設備(蓄電池13および蓄熱槽14)から電力および熱を出力することにより、発電設備(発電機12)の発電余力を引き上げて需給調整力を確保することを考える。また、下げ調整力単価が高くなる時間帯には、蓄エネルギー設備(蓄電池13および蓄熱槽14)に電力および熱を蓄え、発電設備(発電機12)の発電余力を引き下げて需給調整力を確保することを考える。 In the operation planning device of the power generation plant of the present embodiment, the power generation equipment (power generation) is generated by outputting electric power and heat from the energy storage equipment (storage battery 13 and heat storage tank 14) during the time when the unit price of the raising adjustment power is high. Consider increasing the power generation capacity of the machine 12) to secure the supply and demand adjustment capacity. In addition, during times when the unit price for lowering adjustment power is high, power and heat are stored in the energy storage equipment (storage battery 13 and heat storage tank 14), and the power generation capacity of the power generation equipment (generator 12) is reduced to secure supply and demand adjustment power. Think about what to do.

次に、図2に基づいて、上げ調整力と発電プラントの運転計画の関係について説明する。図2の左側一段目は、調整力価格としての上げ調整力単価(ΔkW単価)の予想を示している。点線U1で囲まれた部分は、上げ調整力単価が高くなる時間帯である。図2の左側二段目は電力(kW)のグラフを示しており、太実線は電力需要曲線を表し、太点線は発電機12(12Aおよび12B)による発電電力曲線を表している。図2の左側三段目は単位時間当たりの蒸気量(t/h)のグラフを示しており、太実線は熱需要曲線を表し、太点線は発電プラント内熱発生施設(ボイラ10、タービン11)による熱発生曲線を表している。図2の左側四段目は蓄エネルギー設備(蓄電池13および蓄熱槽14)の残量すなわち蓄電池残量および蓄熱槽残量を表している。図2の右側の図は、発電機12の発電余力を表している。 Next, the relationship between the raising adjustment force and the operation plan of the power plant will be described with reference to FIG. The first row on the left side of FIG. 2 shows the forecast of the increase adjustment power unit price (ΔkW unit price) as the adjustment power price. The portion surrounded by the dotted line U1 is the time zone in which the unit price of the raising adjustment force becomes high. The second row on the left side of FIG. 2 shows a graph of electric power (kW), the thick solid line represents the electric power demand curve, and the thick dotted line represents the electric power generated by the generators 12 (12A and 12B). The third stage on the left side of FIG. 2 shows a graph of the amount of steam (t / h) per unit time, the thick solid line shows the heat demand curve, and the thick dotted line shows the heat generation facility in the power plant (boiler 10, turbine 11). ) Represents the heat generation curve. The fourth row on the left side of FIG. 2 shows the remaining amount of the energy storage equipment (storage battery 13 and heat storage tank 14), that is, the remaining amount of the storage battery and the remaining amount of the heat storage tank. The figure on the right side of FIG. 2 shows the power generation capacity of the generator 12.

図2の左側の図において、上げ調整力単価が高くなる時間帯U1において、発電機12による発電電力を抑えて蓄電池13による放電P1を行うとともに、発電プラント内熱発生施設(ボイラ10、タービン11)による熱発生を抑えて蓄熱槽14による放熱Q1を行う。
これにより、図2の右側の図に示すように、上げ調整力価格が高くなる時間帯U1において、発電機12による発電余力が引き上げられ、需給調整力を確保することができる。
In the figure on the left side of FIG. 2, in the time zone U1 when the unit price of the raising adjustment force is high, the power generated by the generator 12 is suppressed and the discharge P1 is performed by the storage battery 13, and the heat generation facility (boiler 10, turbine 11) in the power plant is performed. ) Is suppressed and heat dissipation Q1 is performed by the heat storage tank 14.
As a result, as shown in the figure on the right side of FIG. 2, the surplus power generation capacity of the generator 12 is increased in the time zone U1 when the price of the increase adjustment capacity is high, and the supply and demand adjustment capacity can be secured.

次に、図3に基づいて、下げ調整力と発電プラントの運転計画の関係について説明する。図3の左側一段目は、調整力価格としての下げ調整力単価(ΔkW)の予想を示している。点線U2で囲まれた部分は、下げ調整力単価が高くなる時間帯である。図3の左側二段目は電力(kW)のグラフを示しており、太実線は電力需要曲線を表し、太点線は発電機12(12Aおよび12B)による発電電力曲線を表している。図3の左側三段目は単位時間当たりの蒸気量(t/h)のグラフを示しており、太実線は熱需要曲線を表し、太点線は発電プラント内熱発生施設(ボイラ10、タービン11)による熱発生曲線を表している。図3の左側四段目は蓄エネルギー設備(蓄電池13および蓄熱槽14)の残量すなわち蓄電池残量および蓄熱槽残量を表している。図3の右側の図は、発電機12の発電余力を表している。 Next, the relationship between the lowering adjustment force and the operation plan of the power plant will be described with reference to FIG. The first row on the left side of FIG. 3 shows the forecast of the lower adjustment power unit price (ΔkW) as the adjustment power price. The portion surrounded by the dotted line U2 is the time zone in which the unit price of the lowering adjustment force becomes high. The second row on the left side of FIG. 3 shows a graph of electric power (kW), the thick solid line represents the electric power demand curve, and the thick dotted line represents the electric power generated by the generators 12 (12A and 12B). The third row on the left side of FIG. 3 shows a graph of the amount of steam (t / h) per unit time, the thick solid line shows the heat demand curve, and the thick dotted line shows the heat generation facility in the power plant (boiler 10, turbine 11). ) Represents the heat generation curve. The fourth row on the left side of FIG. 3 shows the remaining amount of the energy storage equipment (storage battery 13 and heat storage tank 14), that is, the remaining amount of the storage battery and the remaining amount of the heat storage tank. The figure on the right side of FIG. 3 shows the power generation surplus capacity of the generator 12.

図3の左側の図において、下げ調整力単価が高くなる時間帯U2において、発電機12の発電電力により蓄電池13に対して充電P2を行うとともに、発電プラント内熱発生施設(ボイラ10、タービン11)による蓄熱槽14の蓄熱Q2を行う。
これにより、図3の右側の図に示すように、下げ調整力価格が高くなる時間帯U2において、発電機12による発電余力が引き下げられ、需給調整力を確保することができる。
In the figure on the left side of FIG. 3, in the time zone U2 when the unit price of the lowering adjustment force is high, the storage battery 13 is charged P2 by the generated power of the generator 12, and the heat generation facility (boiler 10, turbine 11) in the power plant is charged. ), The heat storage Q2 of the heat storage tank 14 is performed.
As a result, as shown in the figure on the right side of FIG. 3, the surplus power generation capacity of the generator 12 is reduced in the time zone U2 when the lower adjustment power price is high, and the supply and demand adjustment power can be secured.

次に、本願の実施の形態1による発電プラントの運転計画装置の構成について説明する。図4は実施の形態1による発電プラントの運転計画装置を示す機能ブロック図である。 Next, the configuration of the operation planning device of the power plant according to the first embodiment of the present application will be described. FIG. 4 is a functional block diagram showing an operation planning device for a power plant according to the first embodiment.

図4に示すように、実施の形態1の発電プラントの運転計画装置200は、需要計画取得部210と、蓄エネルギー設備情報取得部220と、買電および売電情報取得部230と、調整力情報取得部240と、運転計画部250とを備える。 As shown in FIG. 4, the operation planning device 200 of the power plant of the first embodiment has a demand plan acquisition unit 210, an energy storage equipment information acquisition unit 220, a power purchase and sale information acquisition unit 230, and an adjusting force. It includes an information acquisition unit 240 and an operation planning unit 250.

需要計画取得部210は、発電プラントの運転計画を立案する対象期間の電力需要計画および熱需要計画を取得する。需要計画取得部210は、エリア内の需要家の電力需要計画については外部より取得する。また、需要計画取得部210は、発電プラント側で必要となる所内需要については、発電プラントの運転状態において都度変化することが考えられるため、発電電力量に関するモデル式(下記の(2)式:P_usej(t)=g(Pj(t)))で表現し、計画計算時点で考慮するものとする。併設工場で必要となる電力需要および熱需要については、工場の生産計画などから、重回帰分析などの予測手法を用い予測する。 The demand plan acquisition unit 210 acquires the power demand plan and the heat demand plan for the target period for formulating the operation plan of the power plant. The demand plan acquisition unit 210 acquires the power demand plan of the consumers in the area from the outside. In addition, the demand plan acquisition unit 210 may change the in-house demand required on the power generation plant side each time depending on the operating state of the power generation plant. It is expressed as P_usej (t) = g (Pj (t))) and shall be considered at the time of planning calculation. Electricity demand and heat demand required at the annex factory are predicted using a prediction method such as multiple regression analysis from the production plan of the factory.

蓄エネルギー設備情報取得部220は、蓄エネルギー設備(蓄電池13および蓄熱槽14)における計画対象期間のはじめのエネルギー残量、すなわち、蓄電池残量および蓄熱槽残量を取得する。 The energy storage equipment information acquisition unit 220 acquires the remaining energy at the beginning of the planned period in the energy storage equipment (storage battery 13 and heat storage tank 14), that is, the remaining energy of the storage battery and the remaining amount of the heat storage tank.

買電および売電情報取得部230は、計画対象期間における電力会社からの買電単価および売電単価を取得する。 The power purchase and sale information acquisition unit 230 acquires the power purchase unit price and the power sale unit price from the electric power company during the planned period.

調整力情報取得部240は、需給調整力としての上げ調整力および下げ調整力を需給調整市場に販売する際に考慮される上げ調整力単価および下げ調整力単価を取得する。 The adjustment power information acquisition unit 240 acquires the increase adjustment power unit price and the decrease adjustment power unit price that are considered when selling the increase adjustment power and the decrease adjustment power as the supply and demand adjustment power to the supply and demand adjustment market.

運転計画部250は、需要計画取得部210、蓄エネルギー設備情報取得部220、買電および売電情報取得部230および調整力情報取得部240で取得した情報に基づいて、発電プラントの運用にかかるコストの最適化計算を行い、発電プラントの運転計画を立案する。なお、コストの最適化計算については後述する。 The operation planning unit 250 operates the power plant based on the information acquired by the demand plan acquisition unit 210, the energy storage equipment information acquisition unit 220, the power purchase and sale information acquisition unit 230, and the adjustment power information acquisition unit 240. Perform cost optimization calculations and formulate an operation plan for the power plant. The cost optimization calculation will be described later.

図5は実施の形態1による発電プラントの運転計画装置のハードウエア構成を示すブロック図である。
図5に示すように、運転計画装置200は、ハードウエア構成として、制御部310と、記憶部320と、外部インターフェース(外部I/F)330を備える。制御部310は、プロセッサであるCPU(Central Processing Unit)311、RAM(Random Access Memory)312、ROM(Read Only Memory)313を含み、図4の各取得部210〜240および運転計画部250の情報処理および演算処理を行う。記憶部320は、図示していないが、RAM、ROM、フラッシュメモリ、ハードディスク等で構成され、各取得部210〜240および運転計画部250の情報処理および演算処理を行うためのプログラム321を記憶している。外部インターフェース330は、運転計画装置200の外部と接続するためのインターフェースであり、図4の各取得部210〜240が外部から情報を取得するとともに、運転計画部250の情報処理の結果を外部に出力するためのものである。
FIG. 5 is a block diagram showing a hardware configuration of the operation planning device of the power plant according to the first embodiment.
As shown in FIG. 5, the operation planning device 200 includes a control unit 310, a storage unit 320, and an external interface (external I / F) 330 as a hardware configuration. The control unit 310 includes a CPU (Central Processing Unit) 311 which is a processor, a RAM (Random Access Memory) 312, and a ROM (Read Only Memory) 313, and provides information on the acquisition units 210 to 240 and the operation planning unit 250 in FIG. Performs processing and arithmetic processing. Although not shown, the storage unit 320 is composed of a RAM, a ROM, a flash memory, a hard disk, etc., and stores a program 321 for performing information processing and arithmetic processing of each acquisition unit 210-240 and the operation planning unit 250. ing. The external interface 330 is an interface for connecting to the outside of the operation planning device 200, and each acquisition unit 210 to 240 in FIG. 4 acquires information from the outside and outputs the information processing result of the operation planning unit 250 to the outside. It is for output.

図6は本願の実施の形態1による発電プラントの運転計画装置の動作を示すフローチャートである。 FIG. 6 is a flowchart showing the operation of the operation planning device of the power plant according to the first embodiment of the present application.

ステップS101において、需要計画取得部210は、発電プラントの運転計画を立案する対象期間の電力需要計画および熱需要計画を取得する。
ステップS102において、蓄エネルギー設備情報取得部220は、蓄エネルギー設備における計画対象期間のはじめのエネルギー残量を取得する。
ステップS103において、買電および売電情報取得部230は、計画対象期間における電力会社からの買電単価および売電単価を取得する。
ステップS104において、調整力情報取得部240は、需給調整力としての上げ調整力の上げ調整力単価および下げ調整力の下げ調整力単価を取得する。
ステップS105において、運転計画部250は、需要計画取得部210、蓄エネルギー設備情報取得部220、買電および売電情報取得部230、および調整力情報取得部240で取得した情報に基づいて、発電プラントの運用にかかるコストを最適化計算を行い、発電プラントの運転計画を立案する。
In step S101, the demand plan acquisition unit 210 acquires the power demand plan and the heat demand plan for the target period for formulating the operation plan of the power plant.
In step S102, the energy storage equipment information acquisition unit 220 acquires the remaining energy at the beginning of the planned period in the energy storage equipment.
In step S103, the power purchase and power sale information acquisition unit 230 acquires the power purchase unit price and the power sale unit price from the electric power company during the planning target period.
In step S104, the adjustment force information acquisition unit 240 acquires the increase adjustment force unit price of the increase adjustment force and the decrease adjustment force unit price of the decrease adjustment force as the supply and demand adjustment force.
In step S105, the operation planning unit 250 generates power based on the information acquired by the demand plan acquisition unit 210, the energy storage equipment information acquisition unit 220, the power purchase and sale information acquisition unit 230, and the adjustment power information acquisition unit 240. Optimize and calculate the cost of plant operation and formulate an operation plan for the power plant.

最適化計算における目的関数式および制約条件式は、例えば、発電にかかる燃料コストを最小にするとともに、販売等で得られる利益を最大にする場合を想定すると、以下の関係式が考えられる。 Assuming that the objective function formula and the constraint condition formula in the optimization calculation are, for example, the case where the fuel cost for power generation is minimized and the profit obtained from sales or the like is maximized, the following relational formulas can be considered.

すなわち、以下の式(1)のF(x)を目的関数とし、この目的関数F(x)を最小化することを考える。 That is, consider minimizing the objective function F (x) by using F (x) in the following equation (1) as the objective function.

Figure 2021035277
Figure 2021035277

ここで、制約条件式は以下の式(2)〜(9)となる。 Here, the constraint condition equations are the following equations (2) to (9).

Figure 2021035277
Figure 2021035277

ただし、式(1)〜(9)において、
F(x):発電プラントの運用にかかる総コストを表す関数、
T:計画期間、
F(i、t):燃種ごとの燃料消費量、
Funi(i):燃種ごとの燃料単価、
I:燃種数、
P_buy(t):買電量、
P_buyuni(t):買電単価、
P_sell(t):売電量、
P_selluni(t):売電単価、
Ucap_sell(t):販売上げ調整力、
Ucap_selluni(t):上げ調整力単価、
Dcap_sell(t):販売下げ調整力、
Dcap_selluni(t):下げ調整力単価、
Pj(t):発電設備の発電量、
fj(t):発電設備の発電量モデル関数、
J:発電設備数、
P_usej(t):発電プラント内の電力需要量、
Q(t):発電設備の蒸気量(熱量)、
P_ch(t):蓄電池の蓄電量、
P_in(t):蓄電池への充電量、
P_out(t):蓄電池からの放電量、
α:蓄電池の充電効率、
β:蓄電池の放電効率、
Q_ch(t):蓄熱槽の蓄熱量、
Q_in(t):蓄熱槽への蓄熱量、
Q_out(t):蓄熱槽からの放熱量、
γ:蓄熱槽の蓄熱効率、
δ:蓄熱槽の放熱効率、
P_dem(t):電力需要、
Q_dem(t):熱需要、
Pa(t):発電設備の運用下限、
Pb(t):発電設備の運用上限、
Pmin(t):発電設備の設備運用下限、
Pmax(t):発電設備の設備運用上限、
である。
However, in the equations (1) to (9),
F (x): A function that represents the total cost of operating a power plant,
T: Planning period,
F (i, t): Fuel consumption by fuel type,
Funi (i): Fuel unit price for each fuel type,
I: Number of fuel species,
P_buy (t): Electric charge amount,
P_buy uni (t): Power purchase unit price,
P_sell (t): Electric charge,
P_sell uni (t): Unit price for selling electricity,
Ucap_sel (t): Sales adjustment ability,
Ucap_sell uni (t): Raising adjustment power unit price,
Dcap_sell (t): Sales reduction adjustment ability,
Dcap_sell uni (t): Lowering adjustment power unit price,
Pj (t): Power generation amount of power generation equipment,
fj (t): Power generation amount model function of power generation equipment,
J: Number of power generation facilities,
P_usej (t): Electricity demand in the power plant,
Q (t): Steam amount (heat amount) of power generation equipment,
P_ch (t): Storage capacity of storage battery,
P_in (t): Charge amount to the storage battery,
P_out (t): Amount of discharge from the storage battery,
α: Charging efficiency of storage battery,
β: Battery discharge efficiency,
Q_ch (t): Heat storage amount in the heat storage tank,
Q_in (t): Amount of heat stored in the heat storage tank,
Q_out (t): Amount of heat dissipated from the heat storage tank,
γ: Heat storage efficiency of heat storage tank,
δ: Heat dissipation efficiency of heat storage tank,
P_dem (t): Electric power demand,
Q_dem (t): Heat demand,
Pa (t): Lower limit of operation of power generation equipment,
Pb (t): Upper limit of operation of power generation equipment,
Pmin (t): Lower limit of equipment operation of power generation equipment,
Pmax (t): Upper limit of equipment operation of power generation equipment,
Is.

式(1)は最適化計算における目的関数であり、第1項[A]は発電設備における燃料コスト、第2項[B]は電力会社から買電する買電コスト、第3項[C]は電力会社に売電する売電収益、第4項[D]は需給調整力としての上げ調整力および下げ調整力を販売することによる収益を表す。 Equation (1) is an objective function in the optimization calculation, the first term [A] is the fuel cost in the power generation facility, the second term [B] is the power purchase cost to purchase power from the electric power company, and the third term [C]. Is the revenue from selling electricity to the electric power company, and item 4 [D] is the revenue from selling the upward adjustment power and the downward adjustment power as the supply and demand adjustment power.

式(2)〜(9)は最適化計算における制約条件であり、式(3)は上述の発電電力量に関するモデル式、式(2)、式(4)、式(5)は発電設備および蓄エネルギー設備の設備特性をもとに作られる関係式、式(6)、式(7)は電力および熱エネルギーのバランス式、式(8)、式(9)は発電設備の発電量と需給調整力の関係を表す式である。 Equations (2) to (9) are constraint conditions in the optimization calculation, equation (3) is a model equation for the above-mentioned power generation amount, equations (2), equations (4), and equations (5) are power generation equipment and. Relational equations (6) and (7) created based on the equipment characteristics of energy storage equipment are balanced equations for electric power and thermal energy, and equations (8) and (9) are the amount of power generated and supply and demand of power generation equipment. It is an equation expressing the relationship of adjusting power.

本最適化問題は、最適化問題の中でも線形計画問題に分類され、例えば、単体法(シンプレックス法)を用いることで求解できる。なお、単体法を用いた求解は一例であり、どのような手法を用い求解してもよい。 This optimization problem is classified into a linear programming problem among the optimization problems, and can be solved by using, for example, the simplex method (simplex method). The solution using the simplex method is an example, and any method may be used for the solution.

以上のように、実施の形態1は、発電設備および蓄エネルギー設備を有する発電プラントの運転計画装置であって、電力需要計画および熱需要計画を取得する需要計画取得部と、需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得部と、前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするように前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画部とを備え、前記運転計画部は、前記調整力情報に基づいて前記需給調整力を確保するように前記運転計画を立案するようにしたので、電力需要および熱需要を満たすとともに、調整力情報に基づいて需給調整力を確保するように発電プラントの運転計画を立案することができる。 As described above, the first embodiment is an operation planning device for a power plant having a power generation facility and an energy storage facility, and serves as a demand plan acquisition unit for acquiring a power demand plan and a heat demand plan, and a supply / demand adjusting force. To satisfy the power demand plan and the heat demand plan with the adjustment power information acquisition unit that acquires the adjustment power information regarding at least one of the up adjustment power and the down adjustment power, and to minimize the operating cost of the power plant. It is provided with an operation planning unit for formulating an operation plan for the power generation facility and the energy storage facility, and the operation planning unit formulates the operation plan so as to secure the supply and demand adjustment capability based on the adjustment force information. Therefore, it is possible to formulate an operation plan of the power plant so as to satisfy the power demand and the heat demand and to secure the supply and demand adjustment power based on the adjustment power information.

また、前記調整力情報取得部は、前記調整力情報として前記上げ調整力に関する調整力情報を取得し、前記運転計画部は、前記上げ調整力を販売することによる収益を前記発電プラントの運用コストに含ませ、前記発電プラントの運用コストを最小にするように前記運転計画を立案するようにしたので、需給調整力の販売を視野に入れた発電プラントの経済的な運転計画の立案が可能となる。 Further, the adjustment force information acquisition unit acquires the adjustment force information related to the increase adjustment force as the adjustment force information, and the operation planning unit uses the profit from selling the increase adjustment force as the operating cost of the power plant. Since the operation plan is formulated so as to minimize the operating cost of the power plant, it is possible to formulate an economical operation plan of the power plant with a view to selling the supply and demand adjustment ability. Become.

さらに、前記調整力情報取得部は、前記調整力情報として前記下げ調整力に関する調整力情報を取得し、前記運転計画部は、前記下げ調整力を販売することによる収益を前記発電プラントの運用コストに含ませ、前記発電プラントの運用コストを最小にするように前記運転計画を立案するようにしたので、需給調整力の販売を視野に入れた発電プラントの経済的な運転計画の立案が可能となる。 Further, the adjustment force information acquisition unit acquires the adjustment force information related to the lower adjustment force as the adjustment force information, and the operation planning unit uses the profit from selling the lower adjustment force as the operating cost of the power plant. Since the operation plan is formulated so as to minimize the operating cost of the power plant, it is possible to formulate an economical operation plan of the power plant with a view to selling the supply and demand adjustment ability. Become.

また、前記運転計画部は、前記発電プラントの運用コストとして、前記発電設備の燃料コスト、前記発電プラントの買電による買電価格、前記発電プラントの売電による売電価格、前記上げ調整力を販売することによる収益、および前記下げ調整力を販売することによる収益を含ませ、前記発電プラントの運用コストが最小になるように前記運転計画を立案するようにしたので、需給調整力の販売を視野に入れた発電プラントの経済的な運転計画の立案が可能となる。 Further, the operation planning unit sets the operating cost of the power plant as the fuel cost of the power generation facility, the power purchase price due to the power purchase of the power plant, the power sale price due to the power sale of the power plant, and the increase adjustment power. Since the operation plan is formulated so as to minimize the operating cost of the power plant by including the profit from selling and the profit from selling the downward adjustment power, the supply and demand adjustment power can be sold. It is possible to formulate an economical operation plan for a power plant with a view to it.

また、発電設備および蓄エネルギー設備を有する発電プラントの運転計画立案方法であって、電力需要計画および熱需要計画を取得する需要計画取得工程と、需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得工程と、前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするようにし、前記調整力情報に基づいて前記需給調整力を確保するように、前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画工程とを備えるようにしたので、電力需要および熱需要を満たすとともに、調整力情報に基づいて需給調整力を確保するように発電プラントの運転計画を立案することができる。 In addition, it is a method of making an operation plan of a power plant having power generation equipment and energy storage equipment, and includes a demand plan acquisition process for acquiring a power demand plan and a heat demand plan, and an increase adjustment ability and a decrease adjustment ability as supply and demand adjustment ability. Based on the adjustment power information acquisition process for acquiring adjustment power information regarding at least one of them, satisfying the power demand plan and the heat demand plan, and minimizing the operating cost of the power plant. In order to secure the supply and demand adjustment ability, the power generation facility and the operation planning process for formulating the operation plan of the energy storage facility are provided, so that the power demand and the heat demand are satisfied and the adjustment ability information is used as the basis. It is possible to formulate an operation plan for a power plant so as to secure the ability to adjust supply and demand.

実施の形態2.
実施の形態1では、蓄エネルギー設備を活用して需給調整力を確保および販売することにより、発電プラントの経済的な運転計画の立案を行なった。実施の形態2では、需給調整力を確保する際に、発電プラントの併設工場の電力デマンドレスポンス(以下、電力DRと称する)、および熱デマンドレスポンス(以下、熱DRと称する)についても考慮する。例えば、上げ調整力単価が高くなる時間帯において電力DRおよび熱DRを発動し、発電機の出力をより抑えることにより、更なる需給調整力の確保を可能とする。一方、例えば、下げ調整力単価が高くなる時間帯において電力DRおよび熱DRを発動し、発電機の出力をより上げることにより、更なる需給調整力の確保を可能とする。以下、実施の形態2の詳細について説明する。
Embodiment 2.
In the first embodiment, an economical operation plan of the power plant was formulated by securing and selling the supply and demand adjustment ability by utilizing the energy storage equipment. In the second embodiment, when securing the supply and demand adjusting ability, the power demand response (hereinafter referred to as power DR) and the heat demand response (hereinafter referred to as heat DR) of the factory attached to the power plant are also considered. For example, it is possible to further secure the supply and demand adjusting power by activating the electric power DR and the thermal DR in the time zone when the unit price of the raising adjustment power becomes high and further suppressing the output of the generator. On the other hand, for example, by activating the electric power DR and the thermal DR in the time zone when the unit price of the lowering adjustment power becomes high and further increasing the output of the generator, it is possible to further secure the supply and demand adjusting power. Hereinafter, the details of the second embodiment will be described.

実施の形態2による発電プラントの運転計画装置で対象とする発電プラントは、図1と同様であるのでその説明は省略する。 Since the power plant targeted by the operation planning device of the power plant according to the second embodiment is the same as that in FIG. 1, the description thereof will be omitted.

図7および図8は、実施の形態2による発電プラントの運転計画立案の仕組みを表した概念図である。 7 and 8 are conceptual diagrams showing a mechanism for formulating an operation plan for a power plant according to the second embodiment.

まず、実施の形態2による発電プラントの運転計画立案の仕組みの概要について説明する。なお、需給調整力としての上げ調整力と下げ調整力については、実施の形態1と同様であるのでその説明を省略する。 First, an outline of the mechanism for formulating an operation plan for a power plant according to the second embodiment will be described. Since the raising adjustment force and the lowering adjusting force as the supply and demand adjusting force are the same as those in the first embodiment, the description thereof will be omitted.

実施の形態2の発電プラントの運転計画装置では、上げ調整力価格が高くなる時間帯には、蓄エネルギー設備(蓄電池13および蓄熱槽14)から電力および熱を出力して発電機12の発電余力を引き上げるとともに、電力DRおよび熱DR情報に基づいて発電機12の発電余力をさらに引き上げるようにして需給調整力を確保することを考える。また、下げ調整力価格が高くなる時間帯には、蓄エネルギー設備(蓄電池13および蓄熱槽14)に電力および熱を蓄えて発電機12の発電余力を引き下げるとともに、電力DRおよび熱DR情報に基づいて発電機12の発電余力をさらに引き下げるようにして需給調整力を確保することを考える。 In the operation planning device of the power generation plant of the second embodiment, the power and heat are output from the energy storage equipment (storage battery 13 and heat storage tank 14) during the time when the raising adjustment power price is high, and the power generation capacity of the generator 12 is surplus. It is considered to secure the supply and demand adjustment ability by further increasing the power generation capacity of the generator 12 based on the power DR and thermal DR information. In addition, during the time when the lower adjustment power price is high, power and heat are stored in the energy storage equipment (storage battery 13 and heat storage tank 14) to reduce the power generation capacity of the generator 12, and based on the power DR and heat DR information. Therefore, it is considered to secure the supply and demand adjustment ability by further reducing the power generation capacity of the generator 12.

次に、図7に基づいて、上げ調整力と発電プラントの運転計画の関係について説明する。図7の左側一段目は、調整力価格としての上げ調整力単価(ΔkW単価)の予想を示している。点線U1で囲まれた部分は、上げ調整力単価が高くなる時間帯である。図7の左側二段目は電力(kW)のグラフを示しており、太実線は電力需要曲線を表し、太点線は発電機12による発電電力曲線を表している。図7の左側三段目は単位時間当たりの蒸気量(t/h)のグラフを示しており、太実線は熱需要曲線を表し、太点線は発電プラント内熱発生施設(ボイラ10、タービン11)による熱発生曲線を表している。図7の左側四段目は蓄エネルギー設備(蓄電池13および蓄熱槽14)の残量すなわち蓄電池残量および蓄熱槽残量を表している。図7の右側の図は、発電機12の発電余力を表している。 Next, the relationship between the raising adjustment force and the operation plan of the power plant will be described with reference to FIG. 7. The first row on the left side of FIG. 7 shows the forecast of the increase adjustment power unit price (ΔkW unit price) as the adjustment power price. The portion surrounded by the dotted line U1 is the time zone in which the unit price of the raising adjustment force becomes high. The second row on the left side of FIG. 7 shows a graph of electric power (kW), the thick solid line represents the electric power demand curve, and the thick dotted line represents the electric power generated by the generator 12. The third stage on the left side of FIG. 7 shows a graph of the amount of steam (t / h) per unit time, the thick solid line shows the heat demand curve, and the thick dotted line shows the heat generation facility in the power plant (boiler 10, turbine 11). ) Represents the heat generation curve. The fourth row on the left side of FIG. 7 shows the remaining amount of the energy storage equipment (storage battery 13 and heat storage tank 14), that is, the remaining amount of the storage battery and the remaining amount of the heat storage tank. The figure on the right side of FIG. 7 shows the power generation capacity of the generator 12.

図7の左側の図において、上げ調整力単価が高くなる時間帯U1において、発電機12による発電電力を抑えて蓄電池13による放電P1を行うとともに、発電プラント内熱発生施設(ボイラ10、タービン11)による熱発生を抑えて蓄熱槽14による放熱Q1を行う。
さらに、上げ調整力単価が高くなる時間帯U1において、発電プラント100の併設工場に電力および熱の需要を抑制する要請(デマンド)を行い、要請を受けた併設工場は抑制可能な電力量および熱量を知らせ(レスポンス)、抑制可能な電力DR量および熱DR量とする。
これにより、図7の右側の図に示すように、上げ調整力価格が高くなる時間帯U1において、実施の形態1より発電機12による発電余力が引き上げられ、需給調整力を確保することができる。
In the figure on the left side of FIG. 7, in the time zone U1 when the unit price of the raising adjustment force is high, the power generated by the generator 12 is suppressed and the discharge P1 is performed by the storage battery 13, and the heat generation facility (boiler 10, turbine 11) in the power plant is performed. ) Is suppressed and heat dissipation Q1 is performed by the heat storage tank 14.
Furthermore, during the time period U1 when the unit price of the raising adjustment power is high, a request (demand) is made to the annex factory of the power plant 100 to suppress the demand for electric power and heat, and the annex factory that receives the request can suppress the amount of electric power and heat. Is notified (response), and the amount of power DR and the amount of heat DR that can be suppressed are set.
As a result, as shown in the figure on the right side of FIG. 7, the surplus power generation capacity of the generator 12 is increased from the first embodiment in the time zone U1 when the price of the increase adjustment capacity is high, and the supply and demand adjustment capacity can be secured. ..

次に、図8に基づいて、下げ調整力と発電プラントの運転計画の関係について説明する。図8の左側一段目は、調整力価格としての下げ調整力単価(ΔkW)の予想を示している。点線U2で囲まれた部分は、下げ調整力単価が高くなる時間帯である。図8の左側二段目は電力(kW)のグラフを示しており、太実線は電力需要曲線を表し、太点線は発電機12による発電電力曲線を表している。図3の左側三段目は単位時間当たりの蒸気量(t/h)のグラフを示しており、太実線は熱需要曲線を表し、太点線は発電プラント内熱発生施設(ボイラ10、タービン11)による熱発生曲線を表している。図8の左側四段目は蓄エネルギー設備(蓄電池13および蓄熱槽14)の残量すなわち蓄電池残量および蓄熱槽残量を表している。図8の右側の図は、発電機12の発電余力を表している。 Next, the relationship between the lowering adjustment force and the operation plan of the power plant will be described with reference to FIG. The first row on the left side of FIG. 8 shows the forecast of the lower adjustment power unit price (ΔkW) as the adjustment power price. The portion surrounded by the dotted line U2 is the time zone in which the unit price of the lowering adjustment force becomes high. The second row on the left side of FIG. 8 shows a graph of electric power (kW), the thick solid line represents the electric power demand curve, and the thick dotted line represents the electric power generated by the generator 12. The third row on the left side of FIG. 3 shows a graph of the amount of steam (t / h) per unit time, the thick solid line shows the heat demand curve, and the thick dotted line shows the heat generation facility in the power plant (boiler 10, turbine 11). ) Represents the heat generation curve. The fourth row on the left side of FIG. 8 shows the remaining amount of the energy storage equipment (storage battery 13 and heat storage tank 14), that is, the remaining amount of the storage battery and the remaining amount of the heat storage tank. The figure on the right side of FIG. 8 shows the remaining power generation capacity of the generator 12.

図8の左側の図において、下げ調整力単価が高くなる時間帯U2において、発電機12の発電電力により蓄電池13を充電P2を行うとともに、発電プラント内熱発生施設(ボイラ10、タービン11)による蓄熱槽14の蓄熱Q2を行う。
さらに、下げ調整力単価が高くなる時間帯U2において、発電プラント100の併設工場に電力および熱の需要を上げる要請(デマンド)を行い、要請を受けた併設工場は抑制可能な電力量および熱量を知らせ(レスポンス)、増加可能な電力DR量および熱DR量とする。
これにより、図8の右側の図に示すように、下げ調整力価格が高くなる時間帯U2において、実施の形態1よりも発電機12による発電余力が引き下げられ、需給調整力を確保することができる。
In the figure on the left side of FIG. 8, in the time zone U2 when the unit price of the lowering adjustment force is high, the storage battery 13 is charged P2 by the generated power of the generator 12, and the heat generation facility (boiler 10, turbine 11) in the power plant is used. The heat storage Q2 of the heat storage tank 14 is performed.
Furthermore, during the time period U2 when the unit price of the lowering adjustment power is high, a request (demand) is made to the annex factory of the power plant 100 to increase the demand for electric power and heat, and the annex factory that receives the request reduces the amount of electric power and heat that can be suppressed. Notification (response), increaseable power DR amount and heat DR amount.
As a result, as shown in the figure on the right side of FIG. 8, the surplus power generation capacity of the generator 12 is reduced as compared with the first embodiment in the time zone U2 when the lower adjustment power price is high, and the supply and demand adjustment power can be secured. it can.

次に、本願の実施の形態2による発電プラントの運転計画装置の構成について説明する。図9は実施の形態2による発電プラントの運転計画装置を示す機能ブロック図である。 Next, the configuration of the operation planning device of the power plant according to the second embodiment of the present application will be described. FIG. 9 is a functional block diagram showing an operation planning device for a power plant according to a second embodiment.

図9に示すように、実施の形態2の発電プラントの運転計画装置200は、需要計画取得部210と、蓄エネルギー設備情報取得部220と、買電および売電情報取得部230と、調整力情報取得部240と、電力DRおよび熱DR情報取得部260と、運転計画部250とを備える。 As shown in FIG. 9, the operation planning device 200 of the power plant of the second embodiment has a demand plan acquisition unit 210, an energy storage equipment information acquisition unit 220, a power purchase and sale information acquisition unit 230, and an adjusting force. It includes an information acquisition unit 240, a power DR and thermal DR information acquisition unit 260, and an operation planning unit 250.

需要計画取得部210は、発電プラントの運転計画を立案する対象期間の電力需要計画および熱需要計画を取得する。需要計画取得部210は、エリア内の需要家の電力需要計画については外部より取得する。また、需要計画取得部210は、発電プラント側で必要となる所内需要については、発電プラントの運転状態において都度変化することが考えられるため、発電電力量に関するモデル式(下記の(12)式:P_usej(t)=g(Pj(t)))で表現し、計画計算時点で考慮するものとする。併設工場で必要となる電力需要および熱需要については、工場の生産計画などから、重回帰分析などの予測手法を用い予測する。 The demand plan acquisition unit 210 acquires the power demand plan and the heat demand plan for the target period for formulating the operation plan of the power plant. The demand plan acquisition unit 210 acquires the power demand plan of the consumers in the area from the outside. In addition, since the demand plan acquisition unit 210 may change the in-house demand required on the power plant side each time in the operating state of the power plant, the model formula ((12) below) regarding the amount of generated power: It is expressed as P_usej (t) = g (Pj (t))) and shall be considered at the time of planning calculation. Electricity demand and heat demand required at the annex factory are predicted using a prediction method such as multiple regression analysis from the production plan of the factory.

蓄エネルギー設備情報取得部220、買電および売電情報取得部230、並びに調整力情報取得部240の構成および動作は、実施の形態1と同様であるのでその説明は省略する。 Since the configuration and operation of the energy storage equipment information acquisition unit 220, the power purchase and sale information acquisition unit 230, and the adjustment force information acquisition unit 240 are the same as those in the first embodiment, the description thereof will be omitted.

電力DRおよび熱DR情報取得部260は、上げ調整力単価が高くなる時間帯U1において、発電プラント100の併設工場に対して電力および熱の需要を抑制する要請(デマンド)を行い、要請を受けた併設工場は抑制可能な電力量および熱量を知らせ(レスポンス)、電力DRおよび熱DR情報取得部260は運転計画部250に対して抑制可能な電力DR量および熱DR量を出力する。
また、電力DRおよび熱DR情報取得部260は、下げ調整力単価が高くなる時間帯U2において、発電プラント100の併設工場に対して電力および熱の需要を上げる要請(デマンド)を行い、要請を受けた併設工場は抑制可能な電力量および熱量を知らせ(レスポンス)、電力DRおよび熱DR情報取得部260は運転計画部250に対して増加可能な電力DR量および熱DR量を出力する。
The electric power DR and thermal DR information acquisition unit 260 makes a request (demand) to suppress the demand for electric power and heat to the factory attached to the power generation plant 100 in the time zone U1 when the unit price of the raising adjustment power is high, and receives the request. The annexed factory notifies the amount of power and heat that can be suppressed (response), and the power DR and heat DR information acquisition unit 260 outputs the amount of power DR and heat DR that can be suppressed to the operation planning unit 250.
In addition, the electric power DR and thermal DR information acquisition unit 260 makes a request (demand) to increase the demand for electric power and heat to the annexed factory of the power generation plant 100 in the time zone U2 when the unit price of the lowering adjustment force is high, and makes a request. The annex factory that received the notification informs (response) the amount of electric power and the amount of heat that can be suppressed, and the electric power DR and thermal DR information acquisition unit 260 outputs the amount of electric power DR and the amount of thermal DR that can be increased to the operation planning unit 250.

運転計画部250は、需要計画取得部210、蓄エネルギー設備情報取得部220、買電および売電情報取得部230、調整力情報取得部240および電力DRおよび熱DR情報取得部260で取得した情報に基づいて、以下に説明する発電プラントの運用にかかるコストの最適化計算を行い、発電プラントの運転計画を立案する。 The operation planning unit 250 is the information acquired by the demand plan acquisition unit 210, the energy storage equipment information acquisition unit 220, the power purchase and sale information acquisition unit 230, the adjustment power information acquisition unit 240, and the power DR and thermal DR information acquisition unit 260. Based on the above, the optimization calculation of the operation cost of the power plant described below is performed, and the operation plan of the power plant is formulated.

実施の形態2による発電プラントの運転計画装置のハードウエア構成は、実施の形態1(図5)と同様であるので、その説明を省略する。 Since the hardware configuration of the operation planning device of the power plant according to the second embodiment is the same as that of the first embodiment (FIG. 5), the description thereof will be omitted.

図10は本願の実施の形態2による発電プラントの運転計画装置の動作を示すフローチャートである。 FIG. 10 is a flowchart showing the operation of the operation planning device of the power plant according to the second embodiment of the present application.

ステップS201において、需要計画取得部210は、発電プラントの運転計画を立案する対象期間の電力需要計画および熱需要計画を取得する。
ステップS202において、蓄エネルギー設備情報取得部220は、蓄エネルギー設備における計画対象期間のはじめのエネルギー残量を取得する。
ステップS203において、買電および売電情報取得部230は、計画対象期間における電力会社からの買電単価および売電単価を取得する。
ステップS204において、調整力情報取得部240は、需給調整力としての上げ調整力および下げ調整力を需給調整市場に販売する際の上げ調整力単価および下げ調整力単価を取得する。
ステップS205において、電力DRおよび熱DR情報取得部260は、発電プラントの併設工場の電力DRおよび熱DR可能量を取得する。
ステップS206において、運転計画部250は、需要計画取得部210、蓄エネルギー設備情報取得部220、買電および売電情報取得部230、調整力情報取得部240、および電力DRおよび熱DR情報取得部260で取得した情報に基づいて、発電プラントの運用にかかるコストを最適化計算を行い、発電プラントの運転計画を立案する。
In step S201, the demand plan acquisition unit 210 acquires the power demand plan and the heat demand plan for the target period for formulating the operation plan of the power plant.
In step S202, the energy storage equipment information acquisition unit 220 acquires the remaining energy at the beginning of the planned period in the energy storage equipment.
In step S203, the power purchase and power sale information acquisition unit 230 acquires the power purchase unit price and the power sale unit price from the electric power company during the planning target period.
In step S204, the adjustment force information acquisition unit 240 acquires the increase adjustment force unit price and the decrease adjustment force unit price when selling the increase adjustment force and the decrease adjustment force as the supply and demand adjustment force to the supply and demand adjustment market.
In step S205, the electric power DR and thermal DR information acquisition unit 260 acquires the electric power DR and thermal DR possible amount of the factory attached to the power plant.
In step S206, the operation planning unit 250 includes a demand plan acquisition unit 210, an energy storage equipment information acquisition unit 220, a power purchase and sale information acquisition unit 230, a coordinating power information acquisition unit 240, and a power DR and thermal DR information acquisition unit. Based on the information acquired in 260, the cost of operating the power plant is optimized and calculated, and the operation plan of the power plant is formulated.

最適化計算における目的関数式および制約条件式は、例えば、発電にかかる燃料コストを最小にするとともに、販売等で得られる利益を最大にする場合を想定すると、以下の関係式が考えられる。 Assuming that the objective function formula and the constraint condition formula in the optimization calculation are, for example, the case where the fuel cost for power generation is minimized and the profit obtained from sales or the like is maximized, the following relational formulas can be considered.

すなわち、以下の式(10)のF(x)を目的関数とし、この目的関数F(x)を最小化することを考える。 That is, it is considered that F (x) of the following equation (10) is used as the objective function and the objective function F (x) is minimized.

Figure 2021035277
Figure 2021035277

ここで、制約条件式は以下の式(11)〜(20)となる。 Here, the constraint condition equations are the following equations (11) to (20).

Figure 2021035277
Figure 2021035277

ただし、式(10)〜(20)において、
F(x):発電プラントの運用にかかる総コストを表す関数、
T:計画期間、
F(i、t):燃種ごとの燃料消費量、
Funi(i):燃種ごとの燃料単価、
I:燃種数、
P_buy(t):買電量、
P_buyuni(t):買電単価、
P_sell(t):売電量、
P_selluni(t):売電単価、
Ucap_sell(t):販売上げ調整力、
Ucap_selluni(t):上げ調整力単価、
Dcap_sell(t):販売下げ調整力、
Dcap_selluni(t):下げ調整力単価、
Pj(t):発電設備の発電量、
fj(t):発電設備の発電量モデル関数、
J:発電設備数、
P_usej(t):発電プラント内の電力需要量、
Q(t):発電設備の蒸気量(熱量)、
P_ch(t):蓄電池の蓄電量、
P_in(t):蓄電池への充電量、
P_out(t):蓄電池からの放電量、
α:蓄電池の充電効率、
β:蓄電池の放電効率、
Q_ch(t):蓄熱槽の蓄熱量、
Q_in(t):蓄熱槽への蓄熱量、
Q_out(t):蓄熱槽からの放熱量、
γ:蓄熱槽の蓄熱効率、
δ:蓄熱槽の放熱効率、
P_dem(t):電力需要、
Q_dem(t):熱需要、
Pa(t):発電設備の運用下限、
Pb(t):発電設備の運用上限、
Pmin(t):発電設備の設備運用下限、
Pmax(t):発電設備の設備運用上限、
P_DR(t):電力DR量、
Q_DR(t):熱DR量、
である。
However, in the equations (10) to (20),
F (x): A function that represents the total cost of operating a power plant,
T: Planning period,
F (i, t): Fuel consumption by fuel type,
Funi (i): Fuel unit price for each fuel type,
I: Number of fuel species,
P_buy (t): Electric charge amount,
P_buy uni (t): Power purchase unit price,
P_sell (t): Electric charge,
P_sell uni (t): Unit price for selling electricity,
Ucap_sel (t): Sales adjustment ability,
Ucap_sell uni (t): Raising adjustment power unit price,
Dcap_sell (t): Sales reduction adjustment ability,
Dcap_sell uni (t): Lowering adjustment power unit price,
Pj (t): Power generation amount of power generation equipment,
fj (t): Power generation amount model function of power generation equipment,
J: Number of power generation facilities,
P_usej (t): Electricity demand in the power plant,
Q (t): Steam amount (heat amount) of power generation equipment,
P_ch (t): Storage capacity of storage battery,
P_in (t): Charge amount to the storage battery,
P_out (t): Amount of discharge from the storage battery,
α: Charging efficiency of storage battery,
β: Battery discharge efficiency,
Q_ch (t): Heat storage amount in the heat storage tank,
Q_in (t): Amount of heat stored in the heat storage tank,
Q_out (t): Amount of heat dissipated from the heat storage tank,
γ: Heat storage efficiency of heat storage tank,
δ: Heat dissipation efficiency of heat storage tank,
P_dem (t): Electric power demand,
Q_dem (t): Heat demand,
Pa (t): Lower limit of operation of power generation equipment,
Pb (t): Upper limit of operation of power generation equipment,
Pmin (t): Lower limit of equipment operation of power generation equipment,
Pmax (t): Upper limit of equipment operation of power generation equipment,
P_DR (t): Power DR amount,
Q_DR (t): Thermal DR amount,
Is.

式(10)は最適化計算における目的関数であり、第1項[A]は発電設備における燃料コスト、第2項[B]は電力会社から買電する買電コスト、第3項[C]は電力会社に売電する売電収益、第4項[D]は需給調整力としての上げ調整力および下げ調整力を販売することによる収益を表す。 Equation (10) is an objective function in the optimization calculation, the first term [A] is the fuel cost in the power generation facility, the second term [B] is the power purchase cost to purchase power from the electric power company, and the third term [C]. Is the revenue from selling electricity to the electric power company, and item 4 [D] is the revenue from selling the upward adjustment power and the downward adjustment power as the supply and demand adjustment power.

式(11)〜(20)は最適化計算における制約条件であり、式(12)は上述の発電電力量に関するモデル式、式(11)、式(13)、式(14)は発電設備および蓄エネルギー設備の設備特性をもとに作られる関係式、式(15)、式(16)は電力および熱エネルギーのバランス式、式(17)、式(18)は発電設備の発電量と需給調整力の関係を表す式、式(19)、式(20)は計画立案期間における電力DR量および熱DR量の総合計値に関する制約式である。 Equations (11) to (20) are constraint conditions in the optimization calculation, equation (12) is a model equation relating to the above-mentioned power generation amount, equations (11), equations (13), and equations (14) are power generation equipment and. Relational equations (15) and (16) created based on the equipment characteristics of energy storage equipment are balanced equations for electric power and thermal energy, and equations (17) and (18) are the amount of power generation and supply and demand of power generation equipment. The equations, equations (19), and equations (20) expressing the relationship between the adjusting forces are constraint equations relating to the total value of the electric energy DR amount and the thermal DR amount during the planning period.

電力需要および熱需要のうち、併設工場で必要となる電力需要および熱需要は、工場の生産量に基づいて決まるため、計画立案期間における総合計値は変わらないものとする。つまり、計画立案期間における併設工場総生産量は変わらないものとする。 Of the electricity demand and heat demand, the electricity demand and heat demand required at the annex factory are determined based on the production volume of the factory, so the total value during the planning period shall not change. In other words, the total production volume of the annexed factory during the planning period shall not change.

本最適化問題は、最適化問題の中でも線形計画問題に分類され、例えば、単体法(シンプレックス法)を用いることで求解できる。なお、単体法を用いた求解は一例であり、どのような手法を用い求解してもよい。 This optimization problem is classified into a linear programming problem among the optimization problems, and can be solved by using, for example, the simplex method (simplex method). The solution using the simplex method is an example, and any method may be used for the solution.

以上のように、実施の形態2は、実施の形態1に加えて、発電プラントの併設工場の電力および熱デマンドレスポンス情報を取得するデマンドレスポンス情報取得部を備え、運転計画部は、前記電力および熱デマンドレスポンス情報および前記調整力情報に基づいて前記需給調整力を確保するように、前記運転計画を立案するようにしたので、需給調整力並びに電力および熱デマンドレスポンス情報を視野に入れた発電プラントの経済的な運転計画の立案が可能となる。 As described above, in the second embodiment, in addition to the first embodiment, the demand response information acquisition unit for acquiring the electric power and heat demand response information of the factory attached to the power plant is provided, and the operation planning unit includes the electric power and the electric power and the heat demand response information. Since the operation plan was formulated so as to secure the supply and demand adjustment ability based on the heat demand response information and the adjustment power information, the power plant with a view to the supply and demand adjustment power and the power and heat demand response information. It is possible to formulate an economical operation plan.

また、発電設備および蓄エネルギー設備を有する発電プラントの運転計画立案方法であって、電力需要計画および熱需要計画を取得する需要計画取得工程と、需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得工程と、前記発電プラントの併設工場の電力および熱デマンドレスポンス情報を取得するデマンドレスポンス取得工程と、前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするようにし、前記調整力情報および前記電力および熱デマンドレスポンス情報に基づいて前記需給調整力を確保するように、前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画工程とを備えたので、電力需要および熱需要を満たすとともに、需給調整力並びに電力および熱デマンドレスポンス情報を視野に入れた発電プラントの経済的な運転計画の立案が可能となる。 In addition, it is a method of making an operation plan of a power plant having power generation equipment and energy storage equipment, and includes a demand plan acquisition process for acquiring a power demand plan and a heat demand plan, and an increase adjustment ability and a decrease adjustment ability as supply and demand adjustment ability. The adjustment power information acquisition process for acquiring the adjustment power information for at least one of them, the demand response acquisition process for acquiring the power and heat demand response information of the plant attached to the power plant, and the power demand plan and the heat demand plan. The power generation equipment and the energy storage equipment so as to satisfy and minimize the operating cost of the power plant and secure the supply and demand adjustment power based on the adjustment power information and the power and heat demand response information. Since it is equipped with an operation planning process for formulating an operation plan, it is possible to meet the power demand and heat demand, and to formulate an economical operation plan for the power plant with a view to supply and demand adjustment ability and power and heat demand response information. It becomes.

また、前記運転計画部は、前記発電プラントの運用コストとして、前記発電設備の燃料コスト、前記発電プラントの買電による買電価格、前記発電プラントの売電による売電価格、前記上げ調整力を販売することによる収益、および前記下げ調整力を販売することによる収益を含ませ、前記発電プラントの運用コストが最小になるように前記運転計画を立案するようにしたので、需給調整力を視野に入れた発電プラントの経済的な運転計画の立案が可能となる。 Further, the operation planning unit sets the operating cost of the power plant as the fuel cost of the power generation facility, the power purchase price due to the power purchase of the power plant, the power sale price due to the power sale of the power plant, and the increase adjustment power. Since the operation plan is formulated so as to minimize the operating cost of the power plant by including the profit from selling and the profit from selling the downward adjustment ability, the supply and demand adjustment ability is taken into consideration. It is possible to formulate an economical operation plan for the power plant that has been put in.

本願は、様々な例示的な実施例が記載されているが、1つ、または複数の実施例に記載された様々な特徴、態様、および機能は特定の実施例の適用に限られるのではなく、単独で、または様々な組み合わせで実施例に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施例の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments, the various features, embodiments, and functions described in one or more embodiments are not limited to the application of a particular embodiment. , Alone, or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with other components of the embodiment.

10A,10B ボイラ、11A,11B タービン、12A,12B 発電機、
13 蓄電池、14 蓄熱槽、16 電力売買、
17 所内および併設工場内の電力需要および熱需要、100 発電プラント、
200 運転計画装置、210 需要計画取得部、
220 蓄エネルギー設備情報取得部、230 買電および売電情報取得部、
240 調整力情報取得部、250 運転計画部、
260 電力DRおよび熱DR情報取得部、310 制御部、311 CPU、
312 RAM、313 ROM、320 記憶部、321 プログラム、
330 外部インターフェース。
10A, 10B boiler, 11A, 11B turbine, 12A, 12B generator,
13 storage battery, 14 heat storage tank, 16 power trading,
Electricity and heat demand in 17 plants and factories, 100 power plants,
200 Operation planning equipment, 210 Demand planning acquisition department,
220 Energy storage equipment information acquisition department, 230 Power purchase and sale information acquisition department,
240 Coordination power information acquisition department, 250 Operation planning department,
260 power DR and thermal DR information acquisition unit, 310 control unit, 311 CPU,
312 RAM, 313 ROM, 320 storage, 321 program,
330 External interface.

Claims (7)

発電設備および蓄エネルギー設備を有する発電プラントの運転計画装置であって、
電力需要計画および熱需要計画を取得する需要計画取得部と、
需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得部と、
前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするように前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画部とを備え、
前記運転計画部は、前記調整力情報に基づいて前記需給調整力を確保するように前記運転計画を立案する発電プラントの運転計画装置。
An operation planning device for a power plant that has power generation equipment and energy storage equipment.
Demand plan acquisition department that acquires power demand plan and heat demand plan,
The Coordination Power Information Acquisition Department, which acquires adjustment power information regarding at least one of the up adjustment power and the down adjustment power as the supply and demand adjustment power,
It is provided with an operation planning unit that satisfies the power demand plan and the heat demand plan and formulates an operation plan of the power generation facility and the energy storage facility so as to minimize the operating cost of the power plant.
The operation planning unit is an operation planning device for a power plant that formulates an operation plan so as to secure the supply and demand adjustment power based on the adjustment power information.
前記調整力情報取得部は、前記調整力情報として前記上げ調整力に関する調整力情報を取得し、
前記運転計画部は、前記上げ調整力を販売することによる収益を前記発電プラントの運用コストに含ませ、前記発電プラントの運用コストを最小にするように前記運転計画を立案する請求項1に記載の発電プラントの運転計画装置。
The adjustment force information acquisition unit acquires the adjustment force information regarding the raising adjustment force as the adjustment force information, and obtains the adjustment force information.
The operation planning unit includes the profit from selling the raising adjustment power in the operating cost of the power plant, and the operation planning unit formulates the operating plan so as to minimize the operating cost of the power plant. Power plant operation planning equipment.
前記調整力情報取得部は、前記調整力情報として前記下げ調整力に関する調整力情報を取得し、
前記運転計画部は、前記下げ調整力を販売することによる収益を前記発電プラントの運用コストに含ませ、前記発電プラントの運用コストを最小にするように前記運転計画を立案する請求項1または請求項2に記載の発電プラントの運転計画装置。
The adjusting force information acquisition unit acquires the adjusting force information regarding the lowering adjusting force as the adjusting force information, and obtains the adjusting force information.
Claim 1 or claim that the operation planning unit includes the profit from selling the lowering adjustment force in the operation cost of the power plant and formulates the operation plan so as to minimize the operation cost of the power plant. Item 2. The operation planning device for the power plant according to Item 2.
前記発電プラントの併設工場の電力および熱デマンドレスポンス情報を取得するデマンドレスポンス情報取得部を備え、
前記運転計画部は、前記電力および熱デマンドレスポンス情報および前記調整力情報に基づいて前記需給調整力を確保するように、前記運転計画を立案する請求項1から請求項3のいずれか1項に記載の発電プラントの運転計画装置。
It is equipped with a demand response information acquisition unit that acquires power and heat demand response information from the factory attached to the power plant.
According to any one of claims 1 to 3, the operation planning unit formulates the operation plan so as to secure the supply and demand adjustment power based on the power and heat demand response information and the adjustment power information. The operation planning device of the power plant described.
前記運転計画部は、前記発電プラントの運用コストとして、前記発電設備の燃料コスト、前記発電プラントの買電による買電価格、前記発電プラントの売電による売電価格、前記上げ調整力を販売することによる収益、および前記下げ調整力を販売することによる収益を含ませ、前記発電プラントの運用コストが最小になるように前記運転計画を立案する請求項1から請求項4のいずれか1項に記載の発電プラントの運転計画装置。 The operation planning unit sells the fuel cost of the power generation facility, the power purchase price of the power plant, the power sale price of the power plant, and the increase adjustment power as the operation cost of the power plant. In any one of claims 1 to 4, the operation plan is formulated so as to minimize the operating cost of the power plant by including the profit from the result and the profit from selling the downward adjustment power. The operation planning device of the power plant described. 発電設備および蓄エネルギー設備を有する発電プラントの運転計画立案方法であって、
電力需要計画および熱需要計画を取得する需要計画取得工程と、
需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得工程と、
前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするようにし、前記調整力情報に基づいて前記需給調整力を確保するように、前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画工程とを備えた発電プラントの運転計画立案方法。
It is a method of planning the operation of a power plant that has power generation equipment and energy storage equipment.
Demand plan acquisition process to acquire power demand plan and heat demand plan,
The adjustment power information acquisition process for acquiring adjustment power information regarding at least one of the up adjustment power and the down adjustment power as the supply and demand adjustment power, and
The power generation equipment and the energy storage so as to satisfy the power demand plan and the heat demand plan, minimize the operating cost of the power plant, and secure the supply and demand adjustment power based on the adjustment power information. A method for formulating an operation plan for a power plant, which includes an operation planning process for formulating an operation plan for equipment.
発電設備および蓄エネルギー設備を有する発電プラントの運転計画立案方法であって、
電力需要計画および熱需要計画を取得する需要計画取得工程と、
需給調整力としての上げ調整力および下げ調整力のうち少なくとも一つに関する調整力情報を取得する調整力情報取得工程と、
前記発電プラントの併設工場の電力および熱デマンドレスポンス情報を取得するデマンドレスポンス取得工程と、
前記電力需要計画および前記熱需要計画を満たすとともに、前記発電プラントの運用コストを最小にするようにし、前記調整力情報および前記電力および熱デマンドレスポンス情報に基づいて前記需給調整力を確保するように、前記発電設備および前記蓄エネルギー設備の運転計画を立案する運転計画工程とを備えた発電プラントの運転計画立案方法。
It is a method of planning the operation of a power plant that has power generation equipment and energy storage equipment.
Demand plan acquisition process to acquire power demand plan and heat demand plan,
The adjustment power information acquisition process for acquiring adjustment power information regarding at least one of the up adjustment power and the down adjustment power as the supply and demand adjustment power, and
The demand response acquisition process for acquiring the power and heat demand response information of the factory attached to the power plant, and
Satisfy the power demand plan and the heat demand plan, minimize the operating cost of the power plant, and secure the supply and demand adjustment power based on the power and heat demand response information. , A method for formulating an operation plan of a power plant including an operation planning process for formulating an operation plan for the power generation facility and the energy storage facility.
JP2019156285A 2019-08-29 2019-08-29 Power plant operation planning device and power plant operation planning method Active JP7241644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019156285A JP7241644B2 (en) 2019-08-29 2019-08-29 Power plant operation planning device and power plant operation planning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019156285A JP7241644B2 (en) 2019-08-29 2019-08-29 Power plant operation planning device and power plant operation planning method

Publications (2)

Publication Number Publication Date
JP2021035277A true JP2021035277A (en) 2021-03-01
JP7241644B2 JP7241644B2 (en) 2023-03-17

Family

ID=74676789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019156285A Active JP7241644B2 (en) 2019-08-29 2019-08-29 Power plant operation planning device and power plant operation planning method

Country Status (1)

Country Link
JP (1) JP7241644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153289B1 (en) * 2021-09-14 2022-10-14 山東大学 Low-carbon CSP system collaborative optimization method and apparatus based on cluster learning
WO2023042591A1 (en) * 2021-09-16 2023-03-23 Eneos株式会社 Information processing device, hydrogen manufacturing system, power supply system, operation plan creation method, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198523A (en) * 2014-04-01 2015-11-09 大成建設株式会社 Facility apparatus operation system and facility apparatus operation method
JP2016067125A (en) * 2014-09-25 2016-04-28 株式会社日立製作所 Energy equipment operation controller and energy equipment operation control method
JP2017020426A (en) * 2015-07-13 2017-01-26 三菱電機株式会社 Energy supply-demand adjusting device
JP2017220354A (en) * 2016-06-07 2017-12-14 株式会社東芝 Operation planning device, fuel cell device, operation planning method, and operation planning program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198523A (en) * 2014-04-01 2015-11-09 大成建設株式会社 Facility apparatus operation system and facility apparatus operation method
JP2016067125A (en) * 2014-09-25 2016-04-28 株式会社日立製作所 Energy equipment operation controller and energy equipment operation control method
JP2017020426A (en) * 2015-07-13 2017-01-26 三菱電機株式会社 Energy supply-demand adjusting device
JP2017220354A (en) * 2016-06-07 2017-12-14 株式会社東芝 Operation planning device, fuel cell device, operation planning method, and operation planning program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153289B1 (en) * 2021-09-14 2022-10-14 山東大学 Low-carbon CSP system collaborative optimization method and apparatus based on cluster learning
WO2023042591A1 (en) * 2021-09-16 2023-03-23 Eneos株式会社 Information processing device, hydrogen manufacturing system, power supply system, operation plan creation method, and computer program

Also Published As

Publication number Publication date
JP7241644B2 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
Kiptoo et al. Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies
Alipour et al. Short-term scheduling of combined heat and power generation units in the presence of demand response programs
Nojavan et al. Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach
Jiang et al. Risk-based performance of power-to-gas storage technology integrated with energy hub system regarding downside risk constrained approach
Majidi et al. Optimal stochastic short-term thermal and electrical operation of fuel cell/photovoltaic/battery/grid hybrid energy system in the presence of demand response program
Nazari-Heris et al. Network constrained economic dispatch of renewable energy and CHP based microgrids
Mirzaei et al. A novel hybrid two-stage framework for flexible bidding strategy of reconfigurable micro-grid in day-ahead and real-time markets
Alipour et al. Stochastic scheduling of renewable and CHP-based microgrids
Aghaei et al. Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory
Moradi et al. A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids utilizing renewable energy resources
Wittmann et al. Methodology for optimized operation strategies of solar thermal power plants with integrated heat storage
Naraharisetti et al. A linear diversity constraint–application to scheduling in microgrids
Lozano et al. Allocation of economic costs in trigeneration systems at variable load conditions
Provata et al. Development of optimization algorithms for the Leaf Community microgrid
Jordehi Scheduling heat and power microgrids with storage systems, photovoltaic, wind, geothermal power units and solar heaters
JP7438029B2 (en) energy management system
Qiu et al. Techno‐economic optimization of a grid‐connected hybrid energy system considering electric and thermal load prediction
Shahinzadeh et al. Multi-objective scheduling of CHP-based microgrids with cooperation of thermal and electrical storage units in restructured environment
Tan et al. Strategic investment for district heating systems participating in energy and reserve markets using heat flexibility
Vahedipour-Dahraie et al. Stochastic frequency-security constrained scheduling of a microgrid considering price-driven demand response
JP7241644B2 (en) Power plant operation planning device and power plant operation planning method
Mohammadi et al. Impacts of energy storage technologies and renewable energy sources on energy hub systems
JP6529366B2 (en) Energy supply and demand regulator
Jirdehi et al. The optimal energy management in multiple grids: Impact of interconnections between microgrid–nanogrid on the proposed planning by considering the uncertainty of clean energies
Song et al. Distributed scheduling of HVACs based on transactive energy and ADMM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230307

R151 Written notification of patent or utility model registration

Ref document number: 7241644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151