JP2021034357A - Method for manufacturing positive electrode active material - Google Patents

Method for manufacturing positive electrode active material Download PDF

Info

Publication number
JP2021034357A
JP2021034357A JP2019157313A JP2019157313A JP2021034357A JP 2021034357 A JP2021034357 A JP 2021034357A JP 2019157313 A JP2019157313 A JP 2019157313A JP 2019157313 A JP2019157313 A JP 2019157313A JP 2021034357 A JP2021034357 A JP 2021034357A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
transition metal
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019157313A
Other languages
Japanese (ja)
Inventor
相田 平
Taira Aida
平 相田
慎介 菅沼
Shinsuke Suganuma
慎介 菅沼
敏弘 加藤
Toshihiro Kato
敏弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019157313A priority Critical patent/JP2021034357A/en
Publication of JP2021034357A publication Critical patent/JP2021034357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a method for stably manufacturing a positive electrode active material capable of showing superior battery characteristics without causing a handling problem.SOLUTION: A method is arranged for manufacturing a positive electrode active material consisting of a lithium transition metal composite oxide manufactured by performing a thermal treatment on a mixture of a transition metal composite hydroxide of which the compositional formula is represented by e.g. NixMnyCozMt(OH)2+α (M is one or more additive elements selected from a group consisting of Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W), and a lithium compound. In the method, the thermal treatment is performed preferably in a low-oxidization gas atmosphere of 20-30 vol.% in oxygen density in a low-temperature region of a threshold temperature or below within a range of 700°C up to 900°C, and it is performed in a high-oxidization gas atmosphere of 40 vol.% or higher in oxygen density in a high-temperature region above the predetermined threshold temperature.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用の正極活物質及びその製造方法、並びに該正極活物質を用いたリチウムイオン二次電池に関する。 The present invention relates to a positive electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the positive electrode active material.

近年、スマートフォンやタブレットPCなどの小型情報端末が普及するに伴い、高いエネルギー密度を有する小型で軽量な二次電池の需要が高まっている。また、ハイブリット電気自動車、プラグインハイブリッド電気自動車、電池式電気自動車などの電気自動車用の電源として、高出力の二次電池の開発が強く望まれている。上記用途の二次電池として、正極、負極、非水系電解質、及びセパレータで主に構成される非水系電解質二次電池が知られている。また、固体電解質を用いた全固体二次電池が次世代エネルギー貯蔵デバイスとして期待されている。 In recent years, with the spread of small information terminals such as smartphones and tablet PCs, the demand for small and lightweight secondary batteries having high energy density is increasing. Further, as a power source for electric vehicles such as hybrid electric vehicles, plug-in hybrid electric vehicles, and battery-powered electric vehicles, the development of high-output secondary batteries is strongly desired. As a secondary battery for the above application, a non-aqueous electrolyte secondary battery mainly composed of a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator is known. In addition, an all-solid-state secondary battery using a solid electrolyte is expected as a next-generation energy storage device.

上記の二次電池のうち、正極材料に層状又はスピネル型のリチウム遷移金属複合酸化物からなる活物質を用い、充放電によりリチウムの脱離・挿入を行うリチウムイオン二次電池が既に実用化されている。リチウムイオン二次電池は、4V級の電圧が得られるうえ、エネルギー密度等の特性にも優れているが、更なる特性の向上のため現在も盛んに研究開発が行われている。このリチウムイオン二次電池の正極活物質に用いるリチウム遷移金属複合酸化物には、様々な組成の複合酸化物が提案されている。 Among the above secondary batteries, a lithium ion secondary battery that uses an active material composed of a layered or spinel-type lithium transition metal composite oxide as a positive electrode material and desorbs and inserts lithium by charging and discharging has already been put into practical use. ing. Lithium-ion secondary batteries can obtain 4V class voltage and have excellent characteristics such as energy density, but research and development are still being actively carried out to further improve the characteristics. As the lithium transition metal composite oxide used as the positive electrode active material of this lithium ion secondary battery, composite oxides having various compositions have been proposed.

例えば、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)やリチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5)、コバルトの一部をニッケルとマンガンで置換した三元系のリチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)などを挙げることができる。 For example, lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium manganese composite oxide (LiMn 2 O) using manganese. 4 ), lithium nickel-manganese manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 ), and ternary lithium nickel cobalt manganese composite oxide (LiNi 1/3 Co) in which a part of cobalt is replaced with nickel and manganese. 1/3 Mn 1/3 O 2 ) and the like can be mentioned.

また、正極活物質の形態も様々なものが提案されており、例えば特許文献1には、層状構造を有する六方晶系リチウム含有複合酸化物からなり、空隙を備えた二次粒子の形態を有する正極活物質が開示されており、平均粒径を3〜12μmにすると共に粒度分布を狭く抑えることで、放電容量が大きく且つ高出力の二次電池が得られると記載されている。 Further, various forms of the positive electrode active material have been proposed. For example, Patent Document 1 has a form of secondary particles made of a hexagonal lithium-containing composite oxide having a layered structure and having voids. The positive electrode active material is disclosed, and it is described that a secondary battery having a large discharge capacity and a high output can be obtained by setting the average particle size to 3 to 12 μm and suppressing the particle size distribution to be narrow.

特開2013−229339号公報Japanese Unexamined Patent Publication No. 2013-229339

上記特許文献1に開示されているように、比較的小粒径で粒度分布が狭い、即ち粒子径が揃った正極活物質を用いることで、サイクル特性や出力特性に優れたリチウムイオン二次電池を得ることが可能になる。しかしながら、小型情報端末や電気自動車は、近年ますます高機能化や高性能化が進められており、これらに搭載されるリチウムイオン二次電池には、より一層高い充電時の安定性が求められる傾向にある。かかる要望に応えるには、正極活物質の製造工程において、熱処理温度を上げたり、熱処理時間を長くしたりすることによって、正極活物質の結晶性を高めることが有効と考えられる。 As disclosed in Patent Document 1, a lithium ion secondary battery having excellent cycle characteristics and output characteristics by using a positive electrode active material having a relatively small particle size and a narrow particle size distribution, that is, having a uniform particle size. Can be obtained. However, small information terminals and electric vehicles have become more and more sophisticated and high-performance in recent years, and the lithium-ion secondary batteries mounted on them are required to have even higher stability during charging. There is a tendency. In order to meet such a demand, it is considered effective to increase the crystallinity of the positive electrode active material by raising the heat treatment temperature or lengthening the heat treatment time in the manufacturing process of the positive electrode active material.

しかしながら、上記の熱処理条件では、正極活物質の粒子同士の凝集や焼結が促進されるため、凝集塊や焼結体が生成しやすくなって、該熱処理後に得られる粉粒体の形態を有する正極活物質の流動性が低下するなどの取り扱い上の問題が生ずるうえ、この正極活物質を用いたリチウムイオン二次電池の電池特性にばらつきが生ずることがあった。本発明は上記の実状に鑑みてなされたものであり、優れた電池特性を有する正極活物質を安定的に且つ取り扱い上の問題を生ずることなく製造する方法を提供することを目的とする。 However, under the above heat treatment conditions, agglomeration and sintering of the particles of the positive electrode active material are promoted, so that agglomerates and sintered bodies are easily formed, and the particles have the form of powder or granular material obtained after the heat treatment. In addition to problems in handling such as a decrease in the fluidity of the positive electrode active material, the battery characteristics of the lithium ion secondary battery using the positive electrode active material may vary. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a positive electrode active material having excellent battery characteristics in a stable manner and without causing problems in handling.

上記目的を達成するため、本発明に係る正極活物質の製造方法は、前駆体としての遷移金属複合水酸化物とリチウム化合物との混合物を熱処理することで製造するリチウム遷移金属複合酸化物からなる正極活物質の製造方法であって、前記熱処理は、所定の閾値温度以下の低温域では酸素濃度20容量%以上30容量%以下の低酸化性ガス雰囲気で行い、該所定の閾値温度を超えた高温域では酸素濃度40容量%以上の高酸化性ガス雰囲気で行うことを特徴としている。 In order to achieve the above object, the method for producing a positive electrode active material according to the present invention comprises a lithium transition metal composite oxide produced by heat-treating a mixture of a transition metal composite hydroxide as a precursor and a lithium compound. A method for producing a positive electrode active material, the heat treatment is performed in a low oxidizing gas atmosphere having an oxygen concentration of 20% by volume or more and 30% by volume or less in a low temperature region below a predetermined threshold temperature, and exceeds the predetermined threshold temperature. In the high temperature region, it is characterized in that it is carried out in a highly oxidizing gas atmosphere having an oxygen concentration of 40% by volume or more.

本発明によれば、取り扱いが容易で且つ電池特性に優れた正極活物質を工業規模で安定的に製造することができる。 According to the present invention, a positive electrode active material that is easy to handle and has excellent battery characteristics can be stably produced on an industrial scale.

本発明の実施例の正極活物質の製造方法において採用した焼成工程の炉内温度プロフィールを示すグラフである。It is a graph which shows the temperature profile in the furnace of the firing process adopted in the manufacturing method of the positive electrode active material of the Example of this invention. 本発明の比較例の正極活物質の製造方法において採用した焼成工程の炉内温度プロフィールを示すグラフである。It is a graph which shows the temperature profile in the furnace of the firing process adopted in the manufacturing method of the positive electrode active material of the comparative example of this invention.

本発明者は、取り扱いが容易で且つリチウムイオン二次電池の正極材料として用いたときに優れた出力特性が得られるリチウムイオン二次電池用の正極活物質の製造方法について鋭意検討を重ねた結果、前駆体の遷移金属複合水酸化物とリチウム原料との混合物を熱処理する際の雰囲気を特定の条件下で行うことで、粒子同士の焼結を抑えつつ、リチウムイオン二次電池の正極材料として用いたときに優れた出力特性を示す正極活物質が得られることを見出し、本発明を完成するに至った。以下、かかる本発明の正極活物質の製造方法の実施形態について説明する。先ず、該正極活物質の製造方法において中間原料となる前駆体としての遷移金属複合水酸化物粒子の製造方法について説明する。 The present inventor has made extensive studies on a method for producing a positive electrode active material for a lithium ion secondary battery, which is easy to handle and has excellent output characteristics when used as a positive electrode material for a lithium ion secondary battery. As a positive electrode material for lithium-ion secondary batteries, while suppressing the sintering of particles, the atmosphere when heat-treating the mixture of the transition metal composite hydroxide of the precursor and the lithium raw material is performed under specific conditions. They have found that a positive electrode active material showing excellent output characteristics can be obtained when used, and have completed the present invention. Hereinafter, embodiments of the method for producing the positive electrode active material of the present invention will be described. First, a method for producing transition metal composite hydroxide particles as a precursor as an intermediate raw material in the method for producing the positive electrode active material will be described.

1. 遷移金属複合水酸化物粒子の製造方法
本発明の実施形態に係る正極活物質の前駆体である遷移金属複合水酸化物粒子は、例えば、組成式Aが、NiMnCo(OH)2+α(式中、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、−0.20≦α≦0.20であり、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素である)で示される。
1. transition metal composite positive electrode active which is a precursor of a substance transition metal composite hydroxide particles according to the embodiment of the manufacturing method the invention of the hydroxide particles, for example, formula A is, Ni x Mn y Co z M t (OH) 2 + α (in the formula, x + y + z + t = 1, 0.3 ≦ x ≦ 0.95, 0.05 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, − 0.20 ≦ α ≦ 0.20, and M is one or more additive elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. ).

この遷移金属複合水酸化物粒子は、原料調製工程において調製した遷移金属を含む原料水溶液、及びアンモニウムイオン供給体を含む水溶液を反応槽に供給し、該反応槽内で晶析反応によって生成するのが好ましい。この晶析反応は、核生成工程及び粒子成長工程の順に2工程に分けて行うことが好ましい。具体的には、先ず核生成工程において、該反応槽内の反応水溶液のpH値を液温25℃基準で12.0〜14.0程度に調整して核の生成を行い、次に粒子成長工程において、該核生成工程で生成した核を含む反応水溶液のpH値を、液温25℃基準で該核生成工程のpH値よりも好適には0.5以上低い例えば10.5〜12.0程度に調整して核を成長させる。 The transition metal composite hydroxide particles are produced by supplying an aqueous solution containing a transition metal and an aqueous solution containing an ammonium ion feeder prepared in the raw material preparation step to a reaction vessel and performing a crystallization reaction in the reaction vessel. Is preferable. This crystallization reaction is preferably carried out in two steps in the order of the nucleation step and the particle growth step. Specifically, first, in the nucleation step, the pH value of the reaction aqueous solution in the reaction vessel is adjusted to about 12.0 to 14.0 based on the liquid temperature of 25 ° C. to generate nuclei, and then particle growth. In the step, the pH value of the reaction aqueous solution containing the nucleation produced in the nucleation step is preferably 0.5 or more lower than the pH value of the nucleation step based on the liquid temperature of 25 ° C., for example, 10.5-12. Adjust to about 0 to grow the nucleus.

上記の核生成工程及び粒子成長工程の初期段階では、該反応槽内の雰囲気を酸素濃度5容量%を超える酸化性雰囲気にし、該粒子成長工程の初期段階より後の段階では、該反応槽内の雰囲気を酸素濃度5容量%以下の非酸化性雰囲気にすることが好ましい。これにより、粒度分布が狭い遷移金属複合水酸化物粒子を効率よく生成することができる。 In the initial stages of the nucleation formation step and the particle growth step, the atmosphere in the reaction vessel is made into an oxidizing atmosphere having an oxygen concentration of more than 5% by volume, and in the stages after the initial stage of the particle growth step, the inside of the reaction vessel is made. It is preferable that the atmosphere of the above is a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less. This makes it possible to efficiently generate transition metal composite hydroxide particles having a narrow particle size distribution.

なお、上記反応水溶液の液温は、上記生成工程及び粒子成長工程を通して、20〜60℃の範囲内に制御することが好ましい。この液温が20℃未満では、反応水溶液の溶解度が低くなることに起因して核生成が起こりやすくなり、最終的に得られる遷移金属複合水酸化物粒子の平均粒径や粒度分布の制御が困難になる。逆に上記液温が60℃を超えると、アンモニアの揮発が促進されるので、これを補うためにアンモニウムイオン供給体を含む水溶液の供給量が増加して生産コストが増加してしまう。以下、遷移金属複合水酸化物粒子の製造方法を構成する上記各工程ごとに具体的に説明する。 The temperature of the reaction aqueous solution is preferably controlled within the range of 20 to 60 ° C. through the production step and the particle growth step. If the liquid temperature is less than 20 ° C., nucleation is likely to occur due to the low solubility of the reaction aqueous solution, and the average particle size and particle size distribution of the finally obtained transition metal composite hydroxide particles can be controlled. It will be difficult. On the contrary, when the liquid temperature exceeds 60 ° C., the volatilization of ammonia is promoted, so that the supply amount of the aqueous solution containing the ammonium ion feeder increases to compensate for this, and the production cost increases. Hereinafter, each of the above steps constituting the method for producing the transition metal composite hydroxide particles will be specifically described.

1.1 原料調製工程
先ず、晶析反応が行われる反応水溶液の原料となる遷移金属の化合物を含んだ原料水溶液、該反応水溶液中において錯化剤の役割を担うアンモニウムイオン供給体を含む水溶液、及び該反応水溶液のpH値を調整する役割を担うアルカリ水溶液をそれぞれ下記に示す方法で調製する。
(a)原料水溶液
原料水溶液の調製では、該原料水溶液に含有させる遷移金属元素のモル基準の配合割合が、目的とする遷移金属複合水酸化物粒子の組成に一致するように配合する。例えば、前述した一般式Aで表される遷移金属複合水酸化物粒子を生成する場合は、原料水溶液中の金属元素のモル比が、Ni:Mn:Co:M=x:y:z:t(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1)となるように配合する。
1.1 Raw material preparation step First, a raw material aqueous solution containing a transition metal compound that is a raw material of the reaction aqueous solution in which the crystallization reaction is carried out, and an aqueous solution containing an ammonium ion feeder that plays a role of a complexing agent in the reaction aqueous solution. And an alkaline aqueous solution that plays a role in adjusting the pH value of the reaction aqueous solution is prepared by the methods shown below.
(A) Raw Material Aqueous Solution In the preparation of the raw material aqueous solution, the transition metal element contained in the raw material aqueous solution is blended so that the molar-based blending ratio matches the composition of the target transition metal composite hydroxide particles. For example, in the case of producing the transition metal composite hydroxide particles represented by the general formula A described above, the molar ratio of the metal elements in the raw material aqueous solution is Ni: Mn: Co: M = x: y: z: t. (However, x + y + z + t = 1, 0.3 ≦ x ≦ 0.95, 0.05 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1).

上記遷移金属は、各々、化合物の形態で水に添加して原料水溶液を調製する。具体的な化合物の種類には限定はないが、取り扱いの容易さの観点から硝酸塩、硫酸塩、又は塩化物などの水溶性の化合物が好ましく、これらの中ではコストやハロゲンの混入を防止する観点から硫酸塩が特に好ましい。また、遷移金属複合水酸化物粒子中に必要に応じて添加される添加元素M(Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、及びWからなる群から選択される1種以上の添加元素)においても、上記と同様に水溶性の化合物が好ましい。 Each of the above transition metals is added to water in the form of a compound to prepare a raw material aqueous solution. The specific type of compound is not limited, but a water-soluble compound such as nitrate, sulfate, or chloride is preferable from the viewpoint of ease of handling, and among these, a viewpoint of cost and prevention of halogen contamination. Sulfate is particularly preferred. Further, the additive elements M (M is from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) added to the transition metal composite hydroxide particles as needed. As for one or more additive elements selected from the above group), a water-soluble compound is preferable as described above.

上記遷移金属の化合物及び必要に応じて添加される添加元素Mの化合物は、原料水溶液中のそれらの合計モル濃度が1.0〜2.6mol/Lであるのが好ましく、1.5〜2.2mol/Lであるのがより好ましい。このモル濃度が1.0mol/L未満では、反応水溶液の単位体積当たりの析出量が少なくなるので生産性が低下する。逆に、このモル濃度が2.6mol/Lを超えると、常温において飽和濃度を超えるものが生じうるため、金属化合物の結晶が再析出して配管などを詰まらせるおそれがある。なお、目的とする化合物以外の化合物が生成されるのを防ぐため、各金属化合物ごとに水溶液を調製して反応槽に導入してもよい。 The transition metal compound and the compound of the additive element M added as needed preferably have a total molar concentration of 1.0 to 2.6 mol / L in the aqueous solution of the raw material, 1.5 to 2. It is more preferably .2 mol / L. If the molar concentration is less than 1.0 mol / L, the amount of precipitation per unit volume of the reaction aqueous solution is small, so that the productivity is lowered. On the contrary, if this molar concentration exceeds 2.6 mol / L, some of them exceed the saturated concentration at room temperature, so that crystals of the metal compound may reprecipitate and clog the pipe or the like. In addition, in order to prevent the formation of compounds other than the target compound, an aqueous solution may be prepared for each metal compound and introduced into the reaction vessel.

(b)アンモニウム供給体を含む水溶液
アンモニウムイオン供給体を含む水溶液の種類には特に限定はなく、例えば、アンモニア水、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどの水溶液を使用することができる。これらの中ではアンモニア水が好ましい。アンモニア水を使用する場合は、その濃度は20〜30質量%が好ましく、22〜28質量%がより好ましい。アンモニア水の濃度を20〜30質量%の範囲内に調整することにより、揮発などによるアンモニアの損失を抑制できるので生産コストを抑えることができる。
(B) Aqueous Solution Containing Ammonium Feeder The type of aqueous solution containing an ammonium ion feeder is not particularly limited, and for example, an aqueous solution such as aqueous ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride can be used. .. Of these, ammonia water is preferable. When ammonia water is used, its concentration is preferably 20 to 30% by mass, more preferably 22 to 28% by mass. By adjusting the concentration of ammonia water within the range of 20 to 30% by mass, the loss of ammonia due to volatilization and the like can be suppressed, so that the production cost can be suppressed.

(c)アルカリ水溶液
アルカリ水溶液の種類には特に限定はなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。このアルカリ金属水酸化物は、pH制御を容易にするため、水溶液の形態で添加することが好ましい。この場合のアルカリ金属水酸化物の水溶液濃度は、20〜50質量%が好ましく、26〜30質量%がより好ましい。上記のようにアルカリ金属水酸化物の水溶液濃度を20〜50質量%の範囲内に調整することにより、晶析反応系に導入される溶媒としての水の量を抑制しつつ、該アルカリ金属水酸化物の添加位置で局所的にpH値が高くなることを防止することができる。その結果、粒度分布の狭い複合水酸化物粒子を効率的に得ることが可能となる。
(C) Alkaline aqueous solution The type of alkaline aqueous solution is not particularly limited, and a general alkali metal hydroxide aqueous solution such as sodium hydroxide or potassium hydroxide can be used. This alkali metal hydroxide is preferably added in the form of an aqueous solution in order to facilitate pH control. In this case, the concentration of the aqueous solution of the alkali metal hydroxide is preferably 20 to 50% by mass, more preferably 26 to 30% by mass. By adjusting the concentration of the aqueous solution of the alkali metal hydroxide within the range of 20 to 50% by mass as described above, the alkali metal water is suppressed while suppressing the amount of water as a solvent introduced into the crystallization reaction system. It is possible to prevent the pH value from becoming locally high at the position where the oxide is added. As a result, it becomes possible to efficiently obtain composite hydroxide particles having a narrow particle size distribution.

1.2 核生成工程
核生成工程では、先ず反応槽に上記原料調製工程で調製したアルカリ水溶液とアンモニウムイオン供給体を含む水溶液とを導入し、pH計で測定した液温25℃基準のpH値が12.0〜14.0、イオンメータで測定したアンモニウムイオン濃度が3〜25g/Lの反応前水溶液を調製する。
1.2 Nuclear formation step In the nuclear formation step, first, an alkaline aqueous solution prepared in the raw material preparation step and an aqueous solution containing an ammonium ion feeder are introduced into the reaction vessel, and the pH value measured with a pH meter based on a liquid temperature of 25 ° C. 12.0 to 14.0, and an aqueous solution before reaction having an ammonium ion concentration of 3 to 25 g / L measured with an ion meter is prepared.

次に、この反応前水溶液を撹拌しながら、上記原料調製工程で調製した原料水溶液を供給する。これにより、反応槽内において、遷移金属複合水酸化物粒子の芯となる核が生成される。この核生成工程においては、核の生成が行われる反応水溶液のpH値を液温25℃基準で12.0〜14.0の範囲内に制御するのが好ましい。これにより、核の成長を抑制しつつ新しい核の生成を優先させることが可能となり、よって核生成工程で生成される核を均質でかつ粒度分布の狭いものにすることができる。 Next, the raw material aqueous solution prepared in the above raw material preparation step is supplied while stirring the pre-reaction aqueous solution. As a result, a nucleus serving as a core of the transition metal composite hydroxide particles is generated in the reaction vessel. In this nucleation step, it is preferable to control the pH value of the reaction aqueous solution in which nucleation is performed within the range of 12.0 to 14.0 based on the liquid temperature of 25 ° C. This makes it possible to prioritize the generation of new nuclei while suppressing the growth of nuclei, and thus to make the nuclei produced in the nucleation step homogeneous and have a narrow particle size distribution.

この反応水溶液のpH値が12.0未満では、核生成と共に核の成長が進行しやすくなるため、晶析工程において最終的に得られる遷移金属複合水酸化物粒子の粒径が不均一になり、粒度分布が広がるおそれがある。逆にこのpH値が14.0を超えると、生成する核が微細になりすぎるため、該反応水溶液がゲル化するおそれがある。この核生成工程においては、更にpH値の変動幅が±0.2以内に制御されることが好ましい。これにより、遷移金属複合水酸化物粒子の粒度分布をより一層狭くすることが可能になる。 If the pH value of this reaction aqueous solution is less than 12.0, the growth of nuclei tends to proceed with nucleation, so that the particle size of the transition metal composite hydroxide particles finally obtained in the crystallization step becomes non-uniform. , The particle size distribution may widen. On the contrary, when this pH value exceeds 14.0, the formed nuclei become too fine, and the reaction aqueous solution may gel. In this nucleation step, it is preferable that the fluctuation range of the pH value is further controlled within ± 0.2. This makes it possible to further narrow the particle size distribution of the transition metal composite hydroxide particles.

なお、核生成工程では、核生成に伴って反応水溶液のpH値及びアンモニウムイオン濃度が変化するので、上記pHの範囲及びアンモニウムイオン濃度の範囲が維持されるように、アルカリ水溶液及びアンモニウム供給体を含む水溶液を適宜供給するのが好ましい。アルカリ水溶液の供給方法には特に限定はないが、反応槽内の反応水溶液のpH値が局所的に高くならないように、反応水溶液を十分に撹拌しながら定量ポンプなどの流量制御が可能なポンプにより供給するのが好ましい。同様にアンモニウムイオン供給体を含む水溶液も、流量制御が可能なポンプにより供給するのが好ましい。 In the nucleation step, the pH value and the ammonium ion concentration of the reaction aqueous solution change with the nucleation, so the alkaline aqueous solution and the ammonium feeder are used so that the above pH range and the ammonium ion concentration range are maintained. It is preferable to appropriately supply the containing aqueous solution. The method of supplying the alkaline aqueous solution is not particularly limited, but a pump such as a metering pump that can control the flow rate while sufficiently stirring the reaction aqueous solution is used so that the pH value of the reaction aqueous solution in the reaction vessel does not rise locally. It is preferable to supply. Similarly, it is preferable to supply the aqueous solution containing the ammonium ion feeder by a pump capable of controlling the flow rate.

この核生成工程は、反応水溶液中に所定量の核が生成した時点で終了する。この所定量の核が生成した時点は、反応槽に供給した原料水溶液に含まれる金属化合物の量から判断することができる。具体的には、核生成工程及び粒子成長工程を通して供給する全ての原料水溶液に含まれる金属化合物中の全金属元素に対して、好適には0.1〜2原子%、より好適には0.2〜1.5原子%が供給された時点で核生成工程を終了することが好ましい。これにより、粒度分布の狭い遷移金属複合水酸化物粒子を生成することができる。 This nucleation step ends when a predetermined amount of nuclei is formed in the reaction aqueous solution. The time when this predetermined amount of nuclei is generated can be determined from the amount of the metal compound contained in the raw material aqueous solution supplied to the reaction vessel. Specifically, it is preferably 0.1 to 2 atomic%, more preferably 0., with respect to all the metal elements in the metal compounds contained in all the raw material aqueous solutions supplied through the nucleation step and the particle growth step. It is preferable to end the nucleation step when 2 to 1.5 atomic% is supplied. This makes it possible to generate transition metal composite hydroxide particles having a narrow particle size distribution.

1.3 粒子成長工程
上記の核生成工程の次工程の粒子成長工程では、反応槽内の反応水溶液のpH値を液温25℃基準で10.5〜12.0に調整すると共に、アンモニウムイオン濃度を3〜25g/Lに調整する。これにより、新たな核の生成を抑制しつつ、反応水溶液中に含まれる核生成工程において生成した核を成長させることができる。その結果、最終的に生成される遷移金属複合水酸化物粒子をより均質でかつ粒度分布が狭いものにすることができる。
1.3 Particle growth step In the particle growth step, which is the next step after the above nucleation step, the pH value of the reaction aqueous solution in the reaction vessel is adjusted to 10.5 to 12.0 based on the liquid temperature of 25 ° C., and ammonium ions. Adjust the concentration to 3-25 g / L. As a result, it is possible to grow the nuclei generated in the nucleation step contained in the reaction aqueous solution while suppressing the formation of new nuclei. As a result, the finally produced transition metal composite hydroxide particles can be made more homogeneous and have a narrower particle size distribution.

このpH値が10.5未満では、アンモニウムイオン濃度が上昇して金属イオンの溶解度が高くなるため、晶析反応の速度が遅くなるうえ、反応水溶液中に残存する金属イオン量が増加して生産性が低下するおそれがある。逆に、このpH値が12.0を超えると、粒子成長工程中の核生成量が増加し、得られる複合水酸化物粒子の粒径が不均一になるおそれがある。この粒子成長工程では、更にpH値の変動幅が±0.2以内に制御されることが好ましい。これにより、より粒度分布の狭い遷移金属複合水酸化物粒子を生成することが可能になる。この粒子成長工程においても、粒子成長に伴って反応水溶液のpH値及びアンモニウムイオン濃度が変化するので、上記pH値及びアンモニウムイオン濃度の範囲が維持されるようにアルカリ水溶液及びアンモニア水溶液を適宜供給するのが好ましい。 If this pH value is less than 10.5, the ammonium ion concentration increases and the solubility of metal ions increases, so that the rate of the crystallization reaction slows down and the amount of metal ions remaining in the reaction aqueous solution increases for production. There is a risk of reduced sex. On the contrary, if this pH value exceeds 12.0, the amount of nucleation in the particle growth step increases, and the particle size of the obtained composite hydroxide particles may become non-uniform. In this particle growth step, it is preferable that the fluctuation range of the pH value is further controlled within ± 0.2. This makes it possible to generate transition metal composite hydroxide particles having a narrower particle size distribution. In this particle growth step as well, the pH value and ammonium ion concentration of the reaction aqueous solution change with particle growth, so an alkaline aqueous solution and an ammonia aqueous solution are appropriately supplied so that the above pH value and ammonium ion concentration ranges are maintained. Is preferable.

上記の核生成工程及び粒子成長工程のいずれの場合においても、アンモニウムイオン濃度が3g/L未満では、金属イオンの溶解度を一定に維持することが困難になったり、反応水溶液がゲル化しやすくなったりし、形状や粒径の整った遷移金属複合水酸化物粒子を得ることが困難となる。逆に、アンモニウムイオン濃度が25g/Lを超えると、金属イオンの溶解度が大きくなりすぎるため、反応水溶液中に残存する金属イオン量が増加し、組成ずれなどの問題が生じるおそれがある。なお、アンモニウムイオン濃度は変動幅を±5g/L程度の一定の変動幅に抑えることが好ましい。 In any of the above nucleation step and particle growth step, if the ammonium ion concentration is less than 3 g / L, it becomes difficult to keep the solubility of metal ions constant, or the reaction aqueous solution tends to gel. However, it becomes difficult to obtain transition metal composite hydroxide particles having a uniform shape and particle size. On the other hand, if the ammonium ion concentration exceeds 25 g / L, the solubility of the metal ions becomes too high, so that the amount of metal ions remaining in the reaction aqueous solution increases, which may cause problems such as composition deviation. It is preferable that the fluctuation range of the ammonium ion concentration is suppressed to a constant fluctuation range of about ± 5 g / L.

粒子成長工程の終了時点においては、反応槽内のスラリーは、遷移金属複合水酸化物粒子からなる固形分の濃度が、30〜200g/Lの範囲内にあるのが好ましく、80〜150g/Lの範囲内にあるのがより好ましい。この固形分濃度が30g/L未満では、一次粒子の凝集が不十分になる場合がある。逆に、200g/Lを超えると、反応槽内において該遷移金属複合水酸化物粒子の拡散が不十分になり、粒子成長に偏りが生じるおそれがある。 At the end of the particle growth step, the slurry in the reaction vessel preferably has a solid content concentration of transition metal composite hydroxide particles in the range of 30 to 200 g / L, preferably 80 to 150 g / L. It is more preferable that it is within the range of. If the solid content concentration is less than 30 g / L, the aggregation of the primary particles may be insufficient. On the contrary, if it exceeds 200 g / L, the diffusion of the transition metal composite hydroxide particles becomes insufficient in the reaction vessel, and there is a possibility that the particle growth is biased.

1.4 被覆工程
必要に応じて添加される添加元素Mは、前述したように必須の遷移金属と共に原料水溶液として調製してもよいが、この被覆工程において、上記粒子成長工程により得た遷移金属複合水酸化物粒子の表面に添加元素Mを含む化合物を被覆することで添加してもよい。具体的には、上記粒子成長工程で生成した遷移金属複合水酸化物粒子に水を加えてスラリー化した後、そのスラリーのpH値を所定の範囲に制御しながら、該添加元素Mを含む化合物が溶解された被覆用水溶液を添加する。これにより遷移金属複合水酸化物の粒子表面に添加元素Mを含む化合物が析出するので、被覆された遷移金属複合水酸化物粒子が得られる。
1.4 Coating step The additive element M added as needed may be prepared as a raw material aqueous solution together with the essential transition metal as described above, but in this coating step, the transition metal obtained by the particle growth step is described. It may be added by coating the surface of the composite hydroxide particle with a compound containing the additive element M. Specifically, after adding water to the transition metal composite hydroxide particles generated in the particle growth step to form a slurry, a compound containing the additive element M while controlling the pH value of the slurry within a predetermined range. Add the coating aqueous solution in which is dissolved. As a result, a compound containing the additive element M is precipitated on the particle surface of the transition metal composite hydroxide, so that coated transition metal composite hydroxide particles can be obtained.

なお、上記の被覆用水溶液に代えて、添加元素Mのアルコキシド溶液をスラリー化した遷移金属複合水酸化物粒子に添加することで被覆してもよいし、添加元素Mを含む化合物を溶解した水溶液又はスラリーを遷移金属複合水酸化物粒子にそのまま吹き付けて乾燥することで被覆してもよい。更に別の被覆方法として、遷移金属複合水酸化物粒子と添加元素Mを含む化合物とを混合して調製したスラリーを噴霧乾燥することで被覆してもよいし、遷移金属複合水酸化物粒子と添加元素Mを含む化合物とを固相法で混合することで被覆してもよい。 Instead of the above aqueous solution for coating, an alkoxide solution of the additive element M may be added to the slurry of transition metal composite hydroxide particles for coating, or an aqueous solution in which a compound containing the additive element M is dissolved. Alternatively, the slurry may be coated by spraying the transition metal composite hydroxide particles as they are and drying them. As yet another coating method, the slurry prepared by mixing the transition metal composite hydroxide particles and the compound containing the additive element M may be spray-dried to coat the transition metal composite hydroxide particles. It may be coated by mixing the compound containing the additive element M by the solid phase method.

このように、遷移金属複合水酸化物粒子の表面を添加元素Mで被覆する場合は、該被覆された遷移金属複合水酸化物粒子の全体としての組成が、目的とする組成と一致するように原料水溶液及び被覆用水溶液の各々の組成及びそれらの配合割合を適宜調整することが必要となる。また、この被覆工程は、後述する正極活物質の製造方法における乾燥工程の後に行ってもよい。 In this way, when the surface of the transition metal composite hydroxide particles is coated with the additive element M, the overall composition of the coated transition metal composite hydroxide particles is matched with the target composition. It is necessary to appropriately adjust the composition of each of the raw material aqueous solution and the coating aqueous solution and their blending ratios. Further, this coating step may be performed after the drying step in the method for producing a positive electrode active material described later.

2. 正極活物質の製造方法
次に、上記の遷移金属複合水酸化物粒子を中間原料とする本発明の実施形態の正極活物質の製造方法について説明する。この本発明の実施形態の正極活物質の製造方法は、上記の遷移金属複合水酸化物粒子を加熱して乾燥する乾燥工程S1と、該加熱乾燥された遷移金属複合水酸化物粒子にリチウム化合物を添加して混合する混合工程S2と、該混合工程S2で得たリチウム混合物を好適には850〜1050℃で焼成する焼成工程S3と、該焼成工程S3で生じた凝集体や焼結体を必要に応じて解砕する解砕工程S4とを有する。以下、各工程について詳細に説明する。
2. Method for Producing Positive Electrode Active Material Next, a method for producing the positive electrode active material according to the embodiment of the present invention using the above transition metal composite hydroxide particles as an intermediate raw material will be described. The method for producing the positive electrode active material according to the embodiment of the present invention includes a drying step S1 in which the transition metal composite hydroxide particles are heated and dried, and a lithium compound is added to the heat-dried transition metal composite hydroxide particles. The mixing step S2 in which the above is added and mixed, the firing step S3 in which the lithium mixture obtained in the mixing step S2 is preferably fired at 850 to 850 ° C., and the agglomerates and sintered bodies produced in the firing step S3 are combined. It has a crushing step S4 for crushing as needed. Hereinafter, each step will be described in detail.

2.1 乾燥工程
乾燥工程S1では、遷移金属複合水酸化物粒子を好適には105〜150℃に加熱して乾燥処理する。これにより、該遷移金属複合水酸化物粒子に含まれている余剰水分をある程度除去できるので、後工程の焼成工程S3による焼成処理後の正極活物質粒子に残留する水分を効果的に減らすことができ、その結果、正極活物質の組成のばらつきを抑えることができる。
2.1 Drying step In the drying step S1, the transition metal composite hydroxide particles are preferably heated to 105 to 150 ° C. and dried. As a result, excess water contained in the transition metal composite hydroxide particles can be removed to some extent, so that the water remaining in the positive electrode active material particles after the firing treatment in the firing step S3 in the subsequent step can be effectively reduced. As a result, variations in the composition of the positive electrode active material can be suppressed.

この加熱温度が105℃未満では、遷移金属複合水酸化物粒子に含まれる余剰水分の除去が不十分になり、最終的に得られる正極活物質の組成が大きくばらつくおそれがある。逆にこの加熱温度が150℃を超えても、それ以上の効果が期待できないばかりか、かえって生産コストが増加するので好ましくない。上記熱処理時の雰囲気は、非還元性雰囲気が好ましく、簡易的に行える空気気流中がより好ましい。また、乾燥処理の時間は、遷移金属複合水酸化物粒子中の余剰水分を十分に除去する観点から、少なくとも1時間が好ましく、5〜15時間がより好ましい。 If the heating temperature is less than 105 ° C., the removal of excess water contained in the transition metal composite hydroxide particles becomes insufficient, and the composition of the finally obtained positive electrode active material may vary greatly. On the contrary, even if the heating temperature exceeds 150 ° C., not only the further effect cannot be expected, but also the production cost increases, which is not preferable. The atmosphere during the heat treatment is preferably a non-reducing atmosphere, more preferably in an air stream that can be easily performed. The drying treatment time is preferably at least 1 hour, more preferably 5 to 15 hours, from the viewpoint of sufficiently removing excess water in the transition metal composite hydroxide particles.

2.2 混合工程
混合工程S2では、上記乾燥工程S1で加熱乾燥された遷移金属複合水酸化物粒子にリチウム化合物を添加して十分に混合することでリチウム混合物を得る。この遷移金属複合水酸化物粒子とリチウム化合物との混合では、該リチウム混合物中のリチウム以外の金属原子であるニッケル、コバルト、マンガン、及び添加元素Mの原子数の合計(Me)に対するリチウムの原子数(Li)の比(Li/Me)が、最終的に生成される正極活物質の所望のLi/Meに一致するように配合する。その理由は、後工程の焼成工程S3の前後でLi/Meは変化しないからである。具体的には、この混合工程S2において、Li/Meを好適には0.95〜1.5に、より好適には1.0〜1.5に、更に好適には1.0〜1.35に、最も好適には1.0〜1.2になるように配合する。
2.2 Mixing step In the mixing step S2, a lithium compound is added to the transition metal composite hydroxide particles heat-dried in the drying step S1 and sufficiently mixed to obtain a lithium mixture. In the mixing of the transition metal composite hydroxide particles and the lithium compound, lithium atoms relative to the total number of atoms (Me) of nickel, cobalt, manganese, and additive element M, which are metal atoms other than lithium in the lithium mixture. The compounding is performed so that the ratio (Li / Me) of the number (Li) matches the desired Li / Me of the positive electrode active material finally produced. The reason is that Li / Me does not change before and after the firing step S3 in the subsequent step. Specifically, in this mixing step S2, Li / Me is preferably 0.95 to 1.5, more preferably 1.0 to 1.5, and even more preferably 1.0 to 1. 35 is most preferably blended in an amount of 1.0 to 1.2.

この混合工程S2において遷移金属複合水酸化物に添加するするリチウム化合物には、入手の容易さの観点から、水酸化リチウム、硝酸リチウム、炭酸リチウム、又はこれらの混合物を用いることが好ましい。これらの中では、取り扱いの容易さ及び品質の安定性の観点から水酸化リチウム又は炭酸リチウムがより好ましく、炭酸リチウムが最も好ましい。 From the viewpoint of easy availability, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferably used as the lithium compound added to the transition metal composite hydroxide in the mixing step S2. Among these, lithium hydroxide or lithium carbonate is more preferable, and lithium carbonate is most preferable, from the viewpoint of ease of handling and stability of quality.

上記の遷移金属複合水酸化物粒子とリチウム化合物との混合には、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどの一般的な混合機を用いることができるが、その際、微粉が生じない程度に十分に混合することが好ましい。この混合が不十分では、局所的に所望のLi/Me値からの大きく逸脱する部分が生じ、良好な電池特性が得られなくなるおそれがある。 For mixing the above transition metal composite hydroxide particles with the lithium compound, a general mixer such as a shaker mixer, a ladyge mixer, a julia mixer, or a V blender can be used, but at that time, fine powder is not generated. It is preferable to mix well with. If this mixing is insufficient, a portion that locally deviates greatly from the desired Li / Me value may occur, and good battery characteristics may not be obtained.

2.3 焼成工程
焼成工程S3では、上記混合工程S2で得たリチウム混合物を焼成炉に装入し、所定の条件下で焼成処理する。これにより、遷移金属複合水酸化物が分解及び酸化すると共に、該遷移金属複合水酸化物の粒子中にリチウムが拡散してリチウム遷移金属複合酸化物が生成し、更に酸化と原子の拡散によって欠陥が低減し、各粒子の結晶性が高められたリチウム遷移金属複合酸化物粒子が生成する。この焼成工程S3で使用する上記焼成炉には特に限定はなく、バッチ式でも連続式でもかまわないが、後述する炉内雰囲気の調整を容易に行えるように、ガス発生がない電気炉が好ましい。以下、この焼成処理の処理条件について具体的に説明する。
2.3 Firing step In the firing step S3, the lithium mixture obtained in the mixing step S2 is charged into a firing furnace and fired under predetermined conditions. As a result, the transition metal composite hydroxide is decomposed and oxidized, and lithium diffuses into the particles of the transition metal composite hydroxide to form a lithium transition metal composite oxide, which is further oxidized and diffused to cause defects. Is reduced, and lithium transition metal composite oxide particles in which the crystallinity of each particle is enhanced are produced. The firing furnace used in the firing step S3 is not particularly limited and may be a batch type or a continuous type, but an electric furnace that does not generate gas is preferable so that the atmosphere inside the furnace can be easily adjusted, which will be described later. Hereinafter, the processing conditions for this firing process will be specifically described.

(a)最高温度及びその温度での保持時間
焼成工程S3では、上記リチウム混合物を焼成炉に装入し、炉内温度(雰囲気温度とも称する)を徐々に昇温させ、炉内温度が好適には850℃以上1050℃以下、より好適には900℃以上1000℃以下の最高温度(焼成温度とも称する)に到達したときに該最高温度を所定の時間保持することで焼成処理を行う。この最高温度が850℃未満では、遷移金属複合水酸化物粒子中にリチウムが十分に拡散されない場合が生じ、余剰のリチウムや未反応の遷移金属複合水酸化物粒子が残存したり、最終的に得られるリチウム遷移金属複合酸化物粒子の結晶性が不十分になったりするおそれがある。逆に、この最高温度が1050℃を超えると、リチウム遷移金属複合酸化物の粒子同士の焼結が促進され、不定形な粗大粒子の含有割合が増加するおそれがある。
(A) Maximum temperature and holding time at that temperature In the firing step S3, the lithium mixture is charged into a firing furnace, the temperature inside the furnace (also referred to as atmospheric temperature) is gradually raised, and the temperature inside the furnace becomes preferable. When the maximum temperature (also referred to as firing temperature) of 850 ° C. or higher and 1050 ° C. or lower, more preferably 900 ° C. or higher and 1000 ° C. or lower is reached, the firing treatment is performed by holding the maximum temperature for a predetermined time. If this maximum temperature is less than 850 ° C., lithium may not be sufficiently diffused in the transition metal composite hydroxide particles, and excess lithium or unreacted transition metal composite hydroxide particles may remain, or finally, the transition metal composite hydroxide particles may remain. The crystallinity of the obtained lithium transition metal composite oxide particles may be insufficient. On the contrary, when the maximum temperature exceeds 1050 ° C., sintering of the lithium transition metal composite oxide particles is promoted, and the content ratio of the irregular coarse particles may increase.

上記の最高温度の保持時間は、2時間以上が好ましく、4時間以上24時間以下がより好ましい。この保持時間が2時間未満では、上記の場合と同様に遷移金属複合水酸化物粒子中にリチウムが十分に拡散されない場合が生じ、余剰のリチウムや未反応の遷移金属複合水酸化物粒子が残存したり、得られるリチウム遷移金属複合酸化物粒子の結晶性が不十分になったりするおそれがある。逆にこの保持時間が24時間を超えてもそれ以上の効果は期待できないので、生産性の観点から好ましくない。 The holding time of the maximum temperature is preferably 2 hours or more, more preferably 4 hours or more and 24 hours or less. If this holding time is less than 2 hours, lithium may not be sufficiently diffused in the transition metal composite hydroxide particles as in the above case, and excess lithium and unreacted transition metal composite hydroxide particles remain. Or, the crystallinity of the obtained lithium transition metal composite oxide particles may be insufficient. On the contrary, even if this holding time exceeds 24 hours, no further effect can be expected, which is not preferable from the viewpoint of productivity.

(b)昇温速度及び降温速度
上記最高温度に至るまでの昇温速度は、2〜10℃/分が好ましく、5〜10℃/分がより好ましい。これにより、遷移金属複合水酸化物粒子内での熱応力の発生を抑えることができるので、該遷移金属複合水酸化物粒子に割れ等の品質上の問題が生じるのを防ぐことができる。なお、上記昇温の際、リチウム化合物の融点付近の温度で、好ましくは1〜5時間程度、より好ましくは2〜5時間程度保持することが好ましい。これにより、遷移金属複合水酸化物粒子とリチウム化合物とをより均一に反応させることができる。上記最高温度での所定の保持時間の経過後は、該最高温度から200℃に到達するまでは、好ましくは2〜10℃/分、より好ましくは3〜7℃/分の降温速度で冷却することが好ましい。これにより、生産性を確保しつつ、匣鉢などの設備が急冷により破損することを防止することができる。
(B) Temperature rise rate and temperature decrease rate The temperature rise rate up to the above maximum temperature is preferably 2 to 10 ° C./min, more preferably 5 to 10 ° C./min. As a result, it is possible to suppress the generation of thermal stress in the transition metal composite hydroxide particles, so that it is possible to prevent quality problems such as cracks from occurring in the transition metal composite hydroxide particles. When the temperature is raised, it is preferably maintained at a temperature near the melting point of the lithium compound for preferably about 1 to 5 hours, more preferably about 2 to 5 hours. Thereby, the transition metal composite hydroxide particles and the lithium compound can be reacted more uniformly. After the elapse of the predetermined holding time at the maximum temperature, cooling is preferably performed at a temperature lowering rate of 2 to 10 ° C./min, more preferably 3 to 7 ° C./min until the maximum temperature reaches 200 ° C. Is preferable. As a result, it is possible to prevent equipment such as a saggar from being damaged by quenching while ensuring productivity.

(c)焼成雰囲気
上記焼成処理では、上記炉内温度が昇温を開始してから所定の閾値温度に到達するまでの低温域と、該閾値温度を超えてから上記最高温度での所定の保持時間が経過するまでの高温域とで焼成炉内の雰囲気を切り替える。具体的には、前述したように、リチウム混合物を焼成炉に装入して所定の温度プロフィールに沿って熱処理する焼成処理において、炉内温度が昇温を開始してから上記最高温度以下の所定の閾値温度に到達するまでの低温域においては酸素濃度20容量%以上30容量%以下の低酸化性ガス雰囲気で熱処理し、該閾値温度を超えてから上記最高温度での所定の保持時間が経過するまでの高温域においては酸素濃度40容量%以上の高酸化性ガス雰囲気で熱処理する。上記の閾値温度は700℃以上900℃以下の範囲内にあることが好ましい。
(C) Firing atmosphere In the firing process, the low temperature range from the start of the temperature rise in the furnace to the arrival at the predetermined threshold temperature and the predetermined holding at the maximum temperature after the threshold temperature is exceeded. The atmosphere inside the firing furnace is switched between the high temperature range and the high temperature range until the passage of time. Specifically, as described above, in the firing process in which the lithium mixture is charged into the firing furnace and heat-treated according to a predetermined temperature profile, the temperature inside the furnace starts to rise and then the predetermined temperature is equal to or lower than the maximum temperature. In the low temperature range until the threshold temperature is reached, heat treatment is performed in a low oxidizing gas atmosphere having an oxygen concentration of 20% by volume or more and 30% by volume or less, and a predetermined holding time at the maximum temperature elapses after the threshold temperature is exceeded. In the high temperature region until the heat treatment is performed, the heat treatment is performed in a highly oxidizing gas atmosphere having an oxygen concentration of 40% by volume or more. The above threshold temperature is preferably in the range of 700 ° C. or higher and 900 ° C. or lower.

上記のように閾値温度の前後で焼成雰囲気を切り替えることで、上記最高温度を高めたり該最高温度での保持時間を延長したりすることなく遷移金属複合酸化物粒子の結晶性を高めることができるので、結晶性の高い正極活物質を凝集体や焼結体の含有割合を増やすことなく生成することができる。特に前駆体である遷移金属複合水酸化物にタングステン(W)が含まれる場合は、従来は結晶性を高めるために高い熱処理温度で処理が行われていたが、本発明の実施形態の方法により熱処理温度を従来に比べて下げることができるので効果的である。 By switching the firing atmosphere before and after the threshold temperature as described above, the crystallinity of the transition metal composite oxide particles can be enhanced without increasing the maximum temperature or extending the holding time at the maximum temperature. Therefore, a positive electrode active material having high crystallinity can be produced without increasing the content ratio of the aggregate or the sintered body. In particular, when tungsten (W) is contained in the transition metal composite hydroxide which is a precursor, the treatment has conventionally been performed at a high heat treatment temperature in order to improve the crystallinity, but according to the method of the embodiment of the present invention. It is effective because the heat treatment temperature can be lowered as compared with the conventional case.

すなわち、従来、正極活物質の結晶性を高めるためには、その前駆体の焼成処理の際、熱処理温度を高めたり熱処理時間を延長したりすることが行われていたが、これら処理法ではいずれも遷移金属複合水酸化物粒子やその酸化物粒子が粒子同士焼結しやすくなるため、得られた正極活物質は流動性の低下などの取り扱い上の問題が生じたり、正極材として用いたときに品質が大きくばらつく問題が生じたりしていた。この場合、酸素雰囲気で焼成処理することで、酸素欠陥部を低減させて遷移金属の拡散速度を低下させ、これにより上記粒子同士の焼結を抑えることが考えられるが、この処理条件では結晶性を十分に高くすることができなかった。 That is, conventionally, in order to increase the crystallinity of the positive electrode active material, the heat treatment temperature is raised or the heat treatment time is extended during the firing treatment of the precursor. However, since the transition metal composite hydroxide particles and their oxide particles are easily sintered with each other, the obtained positive electrode active material has problems in handling such as a decrease in fluidity, or when it is used as a positive electrode material. There was a problem that the quality varied greatly. In this case, it is conceivable to reduce the oxygen defect portion and reduce the diffusion rate of the transition metal by performing the firing treatment in an oxygen atmosphere, thereby suppressing the sintering of the particles, but under these treatment conditions, the crystals are crystalline. Could not be high enough.

これに対して、上記のように本発明の実施形態の製造方法では、上記閾値温度以下の低温域においては、酸素濃度20容量%以上30容量%以下の低酸化性ガス雰囲気でリチウム混合物に熱処理を施すことにより、遷移金属複合水酸化物粒子及び結晶性が高まる前のリチウム遷移金属複合酸化物粒子の結晶構造内に適度な酸素欠陥部が導入されるので、結晶成長を促進することが可能になる。他方、遷移金属の拡散速度が顕著に速くなる上記閾値温度を超えた後の高温域においては、酸素濃度40容量%以上の高酸化性ガス雰囲気でリチウム混合物に熱処理を施すので、遷移金属複合水酸化物粒子及び/又はその酸化物粒子の表面部の酸素欠陥部が減少するので、遷移金属の拡散が抑制され、その結果、リチウム遷移金属複合酸化物粒子が粒子同士焼結するのを抑えることができる。なお、上記高温域の酸素濃度の上限については特に限定はないが、100容量%が好ましい。 On the other hand, as described above, in the production method of the embodiment of the present invention, in the low temperature region below the threshold temperature, the lithium mixture is heat-treated in a low oxidizing gas atmosphere having an oxygen concentration of 20% by volume or more and 30% by volume or less. By applying the above, an appropriate oxygen defect portion is introduced into the crystal structure of the transition metal composite hydroxide particles and the lithium transition metal composite oxide particles before the crystallinity is enhanced, so that it is possible to promote crystal growth. become. On the other hand, in the high temperature region after the above threshold temperature at which the diffusion rate of the transition metal becomes remarkably high is exceeded, the lithium mixture is heat-treated in a highly oxidizing gas atmosphere having an oxygen concentration of 40% by volume or more. Since the oxygen defects on the surface of the oxide particles and / or the oxide particles are reduced, the diffusion of the transition metal is suppressed, and as a result, the lithium transition metal composite oxide particles are suppressed from sintering with each other. Can be done. The upper limit of the oxygen concentration in the high temperature region is not particularly limited, but 100% by volume is preferable.

2.4 解砕工程
上記したように焼成工程S3では焼結しにくい条件で熱処理を行うものの、二次粒子同士の焼結ネッキングなどにより、焼成処理後のリチウム遷移金属複合酸化物粒子には凝集体や軽度に焼結した焼結体が含まれる場合がある。そこで、必要に応じて解砕工程S6を経ることで、このリチウム遷移金属複合酸化物粒子の凝集体や焼結体に対して機械的エネルギーを働かせて解砕することが好ましい。これにより、最終的に得られる正極活物質の平均粒径や粒度分布を好適な範囲内に調整することができる。
2.4 Crushing step As described above, in the firing step S3, heat treatment is performed under conditions that are difficult to sinter, but due to sintering necking between secondary particles, the lithium transition metal composite oxide particles after the firing process are coagulated. May include aggregates and lightly sintered sintered bodies. Therefore, it is preferable to apply mechanical energy to the agglomerates and sintered bodies of the lithium transition metal composite oxide particles to crush them by going through the crushing step S6 as necessary. Thereby, the average particle size and the particle size distribution of the finally obtained positive electrode active material can be adjusted within a suitable range.

この解砕を行う装置としては、二次粒子自体をほとんど破壊することなく上記凝集体や焼結体をほぐすことができるものであれば特に限定はなく、例えば、ピンミルやハンマーミルなどを好適に使用することができる。これら装置を用いて解砕処理を行う場合は、予めサンプリングしたリチウム遷移金属複合酸化物粒子を用いて、例えば解砕装置の回転数等の条件を様々に変えたときの解砕状態を調べ、これにより二次粒子を破壊しない程度の適度な解砕力が作用する回転数等の条件を求めておき、その条件で解砕処理を行うことが好ましい。 The device for performing this crushing is not particularly limited as long as it can loosen the agglomerates and sintered bodies without destroying the secondary particles themselves, and for example, a pin mill or a hammer mill is preferable. Can be used. When crushing using these devices, pre-sampled lithium transition metal composite oxide particles are used to investigate the crushing state when conditions such as the rotation speed of the crushing device are changed. As a result, it is preferable to obtain conditions such as the number of rotations at which an appropriate crushing force that does not destroy the secondary particles acts, and to perform the crushing treatment under those conditions.

3.リチウムイオン二次電池用正極活物質
上記の本発明の実施形態のリチウム遷移金属複合酸化物の製造方法で作製した正極活物質は、例えば必須元素としてのリチウム、ニッケル及びマンガンと、任意元素としてのコバルト及び添加元素Mとを含むリチウムニッケルマンガン複合酸化物であり、その組成式Bは、Li1+uNiMnCo2+β(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、−0.2≦β≦0.2、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で示される。この複合酸化物は、六方晶系の層状結晶構造を有している。
3. 3. Positive Active Material for Lithium Ion Secondary Battery The positive positive active material produced by the above method for producing a lithium transition metal composite oxide according to the embodiment of the present invention includes, for example, lithium, nickel and manganese as essential elements, and optional elements. a lithium-nickel-manganese composite oxide containing cobalt and additive element M, the formula B is, Li 1 + u Ni x Mn y Co z M t O 2 + β (-0.05 ≦ u ≦ 0.50, x + y + z + t = 1 , 0.3 ≤ x ≤ 0.95, 0.05 ≤ y ≤ 0.55, 0 ≤ z ≤ 0.4, 0 ≤ t ≤ 0.1, -0.2 ≤ β ≤ 0.2, M , Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W). This composite oxide has a hexagonal layered crystal structure.

(a)体積平均粒径比
上記の本発明の実施形態の製造方法で作製した正極活物質は、該正極活物質のメジアン径D50を、該正極活物質の前駆体である遷移金属複合水酸化物粒子のメジアン径D50で除して求めたD50の比「以降、D50(正極材)/D50(前駆体)とも称する」を1.05未満にすることができる。すなわち、上記焼成工程S3における焼成処理の前後で粒子径が大きく増大することがないので品質のばらつきを抑えることができる。
(A) Volume average particle size ratio In the positive electrode active material produced by the production method of the above embodiment of the present invention, the median diameter D50 of the positive electrode active material is used as a precursor of the positive electrode active material, which is a transition metal composite hydroxylation. The ratio of D50 obtained by dividing by the median diameter D50 of the particles "hereinafter, also referred to as D50 (positive electrode material) / D50 (precursor)" can be less than 1.05. That is, since the particle size does not increase significantly before and after the firing process in the firing step S3, variations in quality can be suppressed.

上記の焼成処理前後の粒子のメジアン径D50の比である「D50(正極材)/D50(前駆体)」が1.05以上の場合、正極活物質に凝集体や焼結体が含まれる割合が高くなるので、この正極活物質を正極材料に用いたリチウムイオン二次電池の電池特性が低下するおそれがある。なお、正極活物質や遷移金属複合水酸化物粒子のメジアン径D50は、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。 When "D50 (positive electrode material) / D50 (precursor)", which is the ratio of the median diameter D50 of the particles before and after the firing treatment, is 1.05 or more, the ratio of aggregates and sintered bodies contained in the positive electrode active material. Therefore, the battery characteristics of the lithium ion secondary battery using this positive electrode active material as the positive electrode material may deteriorate. The median diameter D50 of the positive electrode active material and the transition metal composite hydroxide particles can be obtained from, for example, a volume integrated value measured by a laser light diffraction / scattering type particle size analyzer.

(b)結晶子径
上記の本発明の実施形態の製造方法で作製した正極活物質は、X線回折法(XRD)により(003)面回折ピークを測定し、そのピーク幅をシェラー式に代入することで求められる結晶子径(以下、(003)面結晶子径)を好適には1000Å(100nm)以上に、より好適には1200Å(120nm)以上にすることができる。この(003)面結晶子径が1000Å以上の高い結晶性を有する正極活物質を正極材料に用いた二次電池は、正極抵抗が低くなるため出力特性が向上し、熱安定性も向上する。一方、(003)面結晶子径が1000Å未満である場合、結晶性が十分でない場合や、二次電池の熱安定性が低下する場合が生じ得る。なお、上記の(003)面結晶子径は、上記の焼成工程S3における焼成温度や保持時間を適宜変えることで調整することができる。
(B) Crystallet diameter In the positive electrode active material produced by the above-mentioned production method of the embodiment of the present invention, the (003) plane diffraction peak is measured by the X-ray diffraction method (XRD), and the peak width is substituted into the Scheller equation. The crystallite diameter (hereinafter, (003) plane crystallite diameter) obtained by the above can be preferably 1000 Å (100 nm) or more, and more preferably 1200 Å (120 nm) or more. In a secondary battery using a positive electrode active material having a high crystalline (003) planar crystallite diameter of 1000 Å or more as a positive electrode material, the positive electrode resistance is lowered, so that the output characteristics are improved and the thermal stability is also improved. On the other hand, when the (003) plane crystallite diameter is less than 1000 Å, the crystallinity may be insufficient or the thermal stability of the secondary battery may be lowered. The (003) plane crystallite diameter can be adjusted by appropriately changing the firing temperature and holding time in the firing step S3.

4.リチウムイオン二次電池
4.1 非水系電解質二次電池
上記した本発明の実施形態の製造方法で作製した正極活物質は、正極、負極、セパレータ、及び非水系電解液から主に構成される一般的なリチウムイオン二次電池である非水系電解質二次電池の該正極の材料として好適に用いることができる。この非水系電解質二次電池の形状には特に限定はなく、円筒形や積層形など様々な形状にすることができる。いずれの形状を採る場合であっても、セパレータを介して配置した正極及び負極からなる電極体に非水系電解液を含浸させ、該正極の集電体と外部に通ずる正極端子との間、及び該負極の集電体と外部に通ずる負極端子との間を、集電用リードなどを用いてそれぞれ接続し、電池ケースに収容して密閉することで、非水系電解質二次電池を作製することができる。以下、各構成要素ごとに説明する。
4. Lithium-ion secondary battery 4.1 Non-aqueous electrolyte secondary battery The positive electrode active material produced by the production method of the above-described embodiment of the present invention is generally composed mainly of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. It can be suitably used as a material for the positive electrode of a non-aqueous electrolyte secondary battery, which is a typical lithium ion secondary battery. The shape of this non-aqueous electrolyte secondary battery is not particularly limited, and can be various shapes such as a cylindrical shape and a laminated shape. Regardless of the shape, the electrode body consisting of the positive electrode and the negative electrode arranged via the separator is impregnated with the non-aqueous electrolyte solution, and between the current collector of the positive electrode and the positive electrode terminal leading to the outside, and A non-aqueous electrolyte secondary battery is manufactured by connecting the current collector of the negative electrode and the negative electrode terminal leading to the outside by using a current collecting lead or the like, and housing the battery in a battery case to seal the battery. Can be done. Hereinafter, each component will be described.

(a)正極
先ず、上記した本発明の実施形態の製造方法で作製した粉末状の正極活物質に、導電材及び結着剤を混合し、更に必要に応じて、電気二重層容量を増加させるための活性炭及び粘度調整等のための溶剤を添加し、これらを混練して正極合剤ペーストを作製する。この正極合剤ペーストを構成する材料の配合比は、非水系電解質二次電池の性能を左右するので適切な配合比となるようにする。例えば、溶剤を除いた正極合剤の固形分を100質量部とした場合、一般的な非水系電解質二次電池の正極と同様に、正極活物質の含有量を60〜95質量部、導電材の含有量を1〜20質量部、及び結着剤の含有量を1〜20質量部とするのが好ましい。
(A) Positive electrode First, a conductive material and a binder are mixed with the powdered positive electrode active material produced by the production method of the above-described embodiment of the present invention, and the electric double layer capacity is further increased if necessary. Activated carbon for this purpose and a solvent for adjusting the viscosity are added, and these are kneaded to prepare a positive electrode mixture paste. The blending ratio of the materials constituting the positive electrode mixture paste affects the performance of the non-aqueous electrolyte secondary battery, so the blending ratio should be appropriate. For example, when the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass and the conductive material is similar to the positive electrode of a general non-aqueous electrolyte secondary battery. The content of the binder is preferably 1 to 20 parts by mass, and the content of the binder is preferably 1 to 20 parts by mass.

得られた正極合剤ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥により溶剤を蒸発させる。電極密度を高めるため、必要に応じてロールプレスなどにより加圧してもよい。これにより、シート状の正極を作製した後、目的とする電池形状に応じて適当な大きさに裁断することで、正極を作製することができる。なお、正極の作製方法は、これに限定されるものではなく、他の方法で作製してもよい。 The obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and the solvent is evaporated by drying. In order to increase the electrode density, pressurization may be performed by a roll press or the like, if necessary. Thereby, after producing the sheet-shaped positive electrode, the positive electrode can be produced by cutting the positive electrode into an appropriate size according to the target battery shape. The method for producing the positive electrode is not limited to this, and other methods may be used for producing the positive electrode.

上記正極合合剤ペーストの原料に用いる導電材としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、又はポリアクリル酸等を用いることができる。また、上記の正極活物質、導電材及び必要に応じて添加する活性炭を分散させると共に、結着剤を溶解する役割を担う溶剤を正極合剤に添加してもよい。この溶剤には、例えばN−メチル−2−ピロリドンなどの有機溶媒を用いることができる。 As the conductive material used as the raw material of the positive electrode mixture paste, for example, graphite such as natural graphite, artificial graphite, expanded graphite, or carbon black material such as acetylene black or Ketjen black can be used. The binder plays a role of binding the active material particles, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, or poly. Acrylic acid or the like can be used. Further, the above-mentioned positive electrode active material, the conductive material and the activated carbon to be added as needed may be dispersed, and a solvent having a role of dissolving the binder may be added to the positive electrode mixture. As this solvent, for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.

(b)負極
負極には、金属リチウムやリチウム合金など、又はリチウムイオンを吸蔵及び脱離できる負極活物質を用意し、これに結着剤と適当な溶剤とを加えて混練することでペースト状の負極合剤を作製する。この負極合剤ペーストを銅などの金属箔集電体の表面に塗布した後、乾燥し、電極密度を高めるため必要に応じて圧縮する。これにより、負極を作製することができる。
(B) Negative electrode For the negative electrode, prepare a negative electrode active material that can occlude and desorb lithium ions, such as metallic lithium or lithium alloy, and add a binder and an appropriate solvent to the negative electrode and knead it to form a paste. To prepare a negative electrode mixture of. This negative electrode mixture paste is applied to the surface of a metal leaf current collector such as copper, dried, and compressed as necessary to increase the electrode density. Thereby, the negative electrode can be manufactured.

上記のように、負極には金属リチウムやリチウム合金などのリチウムを含有する物質を用いてもよいし、リチウムイオンを吸蔵・脱離できる天然黒鉛、人造黒鉛及びフェノール樹脂などの有機化合物焼成体、又はコークスなどの炭素物質の粉状体を用いてもよい。また、負極の結着剤には、上記正極と同様に、PVDFなどの含フッ素樹脂を用いることができ、これら活物質及び結着剤を分散させる溶剤には、N−メチル−2−ピロリドンなどの有機溶媒を用いることができる。 As described above, a substance containing lithium such as metallic lithium or a lithium alloy may be used for the negative electrode, or an organic compound calcined body such as natural graphite, artificial graphite or phenol resin capable of occluding / desorbing lithium ions. Alternatively, a powder of a carbon substance such as coke may be used. As with the positive electrode, a fluororesin such as PVDF can be used as the binder for the negative electrode, and N-methyl-2-pyrrolidone or the like can be used as the solvent for dispersing these active substances and the binder. Organic solvent can be used.

(c)セパレータ
セパレータは、上記した正極と負極との間に介在してこれら正極と負極とを分離すると共に、電解質を保持する役割を担う。そのため、このセパレータの材料には、限定するものではないが、無数の微細な孔を有する例えばポリエチレンやポリプロピレンなどからなる薄膜が好適に用いられる。
(C) Separator The separator plays a role of separating the positive electrode and the negative electrode by interposing between the positive electrode and the negative electrode and holding an electrolyte. Therefore, the material of this separator is preferably, but not limited to, a thin film made of, for example, polyethylene or polypropylene having innumerable fine pores.

(d)非水系電解液
非水系電解液には、支持塩としてのリチウム塩を有機溶媒に溶解したものが好適に用いられるが、イオン液体にリチウム塩が溶解したものを用いてもよい。なお、イオン液体とは、リチウムイオン以外のカチオン及びアニオンから構成され、常温でも液体状を示す塩をいう。また、非水系電解液には、電池特性の改善のため、ラジカル捕捉剤、界面活性剤、難燃剤などが含まれる場合がある。
(D) Non-aqueous electrolyte solution As the non-aqueous electrolyte solution, a solution in which a lithium salt as a supporting salt is dissolved in an organic solvent is preferably used, but a solution in which a lithium salt is dissolved in an ionic liquid may also be used. The ionic liquid is a salt composed of cations and anions other than lithium ions and showing a liquid state even at room temperature. In addition, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, or the like in order to improve the battery characteristics.

上記支持塩には、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO)、及びそれらの複合塩などを用いることができる。一方、上記有機溶媒には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などからなる群から選択した1種を単独で用いてもよいし、これら群から2種類以上を混合して用いてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and a composite salt thereof can be used. On the other hand, the organic solvent includes cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, tetrahydrofuran and 2-methyl. One selected from the group consisting of ether compounds such as tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesulton, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate may be used alone, or these groups may be used alone. 2 or more types may be mixed and used.

4.2 全固体二次電池
上記した本発明の実施形態の製造方法で作製した正極活物質は、次世代のリチウムイオン二次電池として期待されている全固体二次電池の正極材料としても好適に用いることができる。この全固体二次電池に用いる固体電解質には、高電圧に耐えうる性質を有するものを用いるのが好ましい。このような固体電解質としては、無機固体電解質、有機固体電解質を挙げることができる。前者の無機固体電解質としては、酸化物系固体電解質や硫化物系固体電解質が好適に用いられる。
4.2 All-solid-state secondary battery The positive electrode active material produced by the manufacturing method of the embodiment of the present invention described above is also suitable as a positive electrode material for an all-solid-state secondary battery, which is expected as a next-generation lithium-ion secondary battery. Can be used for. As the solid electrolyte used in this all-solid secondary battery, it is preferable to use one having a property of being able to withstand a high voltage. Examples of such a solid electrolyte include an inorganic solid electrolyte and an organic solid electrolyte. As the former inorganic solid electrolyte, an oxide-based solid electrolyte or a sulfide-based solid electrolyte is preferably used.

上記酸化物系固体電解質には、限定するものではないが、酸素(O)を含有し、且つリチウムイオン伝導性及び電子絶縁性を有するものが好適に用いられる。具体的には、リン酸リチウム(LiPO)、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO−LiPO、LiSiO−LiVO、LiO−B−P、LiO−SiO、LiO−B−ZnO、Li1+xAlTi2−x(PO)(0≦x≦1)、Li1+xAlGe2−x(PO)(0≦x≦1)、LiTi(PO)、Li3xLa2/3−xTiO(0≦x≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等を挙げることができる。 The oxide-based solid electrolyte is not limited, but preferably contains oxygen (O) and has lithium ion conductivity and electronic insulation. Specifically, lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N x , LiBO 2 N x , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , Li 4 SiO 4- Li 3 PO 4 , Li 4 SiO 4 -Li 3 VO 4 , Li 2 O-B 2 O 3- P 2 O 5 , Li 2 O-SiO 2 , Li 2 O-B 2 O 3- ZnO, Li 1 + x Al x Ti 2-x (PO) 4 ) 3 (0 ≦ x ≦ 1), Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 1), LiTi 2 (PO 4 ) 3 , Li 3x La 2 / 3-x TiO 3 (0 ≦ x ≦ 2/3), Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3.6 Si 0.6 P 0.4 O 4th grade can be mentioned.

また、硫化物系固体電解質には、限定するものではないが、硫黄(S)を含有し、且つリチウムイオン伝導性及び電子絶縁性を有するものが好適に用いられる。具体的には、LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P等を挙げることができる。 Further, as the sulfide-based solid electrolyte, those containing sulfur (S) and having lithium ion conductivity and electron insulating property are preferably used, although not limited to the above. Specifically, Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SB 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4- P 2 S 5 and the like can be mentioned.

更に、上記以外の無機固体電解質を用いてもよく、例えば、LiN、LiI、LiN−LiI−LiOH等を挙げることができる。一方、後者の有機固体電解質としては、イオン伝導性を示す高分子化合物であれば特に限定はなく、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。なお、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。 Further, may be used an inorganic solid electrolyte other than the above, for example, can be cited Li 3 N, LiI, and Li 3 N-LiI-LiOH and the like. On the other hand, the latter organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, copolymers thereof and the like can be used. The organic solid electrolyte may contain a supporting salt (lithium salt).

以上、本発明の実施形態に係る正極活物質及びその製造方法、並びに該正極活物質を用いたリチウムイオン二次電池の製造方法について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更例、代替例を含むものである。すなわち、本発明の権利範囲は特許請求の範囲及びその均等の範囲に及ぶものである。次に、本発明を実施例を挙げて説明するが、本発明は以下の実施例に何ら限定されるものではない。 The positive electrode active material and the method for producing the same, and the method for producing a lithium ion secondary battery using the positive electrode active material have been described above, but the present invention is limited to the above embodiment. However, it includes various modified examples and alternative examples. That is, the scope of rights of the present invention extends to the scope of claims and the equivalent scope thereof. Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

先ず、正極活物質の前駆体を一般的な湿式法により作製するため、遷移金属の化合物を含んだ原料水溶液、錯化剤の役割を担うアンモニウムイオン供給体を含む水溶液、及びアルカリ水溶液を用意し、これらを反応槽に供給して晶析させることで、前駆体としてのニッケルマンガンコバルト複合水酸化物を生成した。なお、上記原料水溶液の調製の際、金属元素の化合物の配合割合を、モル基準で、ニッケル:コバルト:マンガン:タングステン=0.375:0.319:0.299:0.007に調整した。 First, in order to prepare a precursor of the positive electrode active material by a general wet method, an aqueous solution of a raw material containing a transition metal compound, an aqueous solution containing an ammonium ion feeder acting as a complexing agent, and an alkaline aqueous solution are prepared. By supplying these to a reaction vessel and crystallizing them, a nickel-manganese-cobalt composite hydroxide as a precursor was produced. When preparing the raw material aqueous solution, the blending ratio of the compound of the metal element was adjusted to nickel: cobalt: manganese: tungsten = 0.375: 0.319: 0.299: 0.007 on a molar basis.

この複合水酸化物をアルミナ製の匣鉢に入れてローラーハースキルンシミュレーター炉(株式会社ノリタケカンパニー製)に装入し、105℃の大気雰囲気で3時間かけて乾燥処理した後、別途用意した水酸化リチウムを添加し、これをシェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)に装入して混合することでリチウム混合物を得た。なお、上記水酸化リチウムは、該リチウム混合物のLi/Me比が1.1となるように配合した。 This composite hydroxide is placed in an alumina saggar, charged into a roller hersquithium simulator furnace (manufactured by Noritake Company, Ltd.), dried in an air atmosphere of 105 ° C for 3 hours, and then separately prepared water. Lithium oxide was added, and this was charged into a shaker mixer device (TURBULA Type T2C manufactured by Willy et Bacoffen (WAB)) and mixed to obtain a lithium mixture. The lithium hydroxide was blended so that the Li / Me ratio of the lithium mixture was 1.1.

上記にて得たリチウム混合物を、アルミナ製の匣鉢に入れてローラーハースキルンシミュレーター炉(株式会社ノリタケカンパニー製)に装入し、図1に示す温度プロフィールに沿って焼成処理を行った。この焼成処理の際、炉内温度が室温から850℃までの低温域では炉内雰囲気を酸素濃度21容量%の低酸化性ガス雰囲気(即ち大気雰囲気)とし、850℃を超える高温域では炉内雰囲気を酸素濃度75容量%の高酸化性ガス雰囲気とした。このようにして、組成式がLiNi0.375Co0.319Mn0.2990.007からなる試料1のリチウムニッケルマンガンコバルト複合酸化物を作製した。 The lithium mixture obtained above was placed in an alumina saggar and charged into a roller herskill simulator furnace (manufactured by Noritake Company, Inc.), and firing treatment was performed according to the temperature profile shown in FIG. During this firing process, the atmosphere inside the furnace is set to a low oxidizing gas atmosphere with an oxygen concentration of 21% by volume (that is, the atmosphere) in the low temperature range from room temperature to 850 ° C. The atmosphere was a highly oxidizing gas atmosphere having an oxygen concentration of 75% by volume. In this way, a lithium nickel-manganese-cobalt composite oxide of Sample 1 having a composition formula of LiNi 0.375 Co 0.319 Mn 0.299 W 0.007 O 2 was prepared.

上記焼成処理の際の処理条件を様々に変更した以外は上記試料1の場合と同様にして、試料2〜8のリチウムニッケルマンガンコバルト複合酸化物を作製した。特に、試料6においては図2に示す温度プロフィール及び炉内雰囲気に基づいて焼成処理を行った。これら試料1〜8のリチウムニッケルマンガンコバルト複合酸化物の正極活物質のD50(正極材)を、レーザー光回折散乱式粒度分布計で測定した体積分布から求め、これをその前駆体である遷移金属複合水酸化物粒子に対して同様の方法で測定したD50(前駆体)で除して焼成処理による粒度の変化を調べた。また、正極活物質の結晶子径[Å]をXRD法により測定した(003)面回折ピーク幅をシェラー式に代入して求めた。その結果を、焼成処理の処理条件と共に下記表1に示す。 Lithium nickel-manganese-cobalt composite oxides of Samples 2 to 8 were prepared in the same manner as in Sample 1 except that the treatment conditions during the firing treatment were variously changed. In particular, sample 6 was fired based on the temperature profile shown in FIG. 2 and the atmosphere inside the furnace. The D50 (positive electrode material) of the positive electrode active material of the lithium nickel manganese cobalt composite oxide of these samples 1 to 8 was obtained from the volume distribution measured by the laser light diffraction scattering type particle size distribution meter, and this was obtained from the volume distribution, which is the precursor of the transition metal. The composite hydroxide particles were divided by D50 (precursor) measured by the same method, and the change in particle size due to the firing treatment was examined. Further, the crystallite diameter [Å] of the positive electrode active material was determined by substituting the (003) plane diffraction peak width measured by the XRD method into the Scheller equation. The results are shown in Table 1 below together with the processing conditions for the firing process.

Figure 2021034357
Figure 2021034357

上記表1の結果から、本発明の要件を満たす製造方法で作製した試料1〜4のリチウムニッケルマンガンコバルト複合酸化物は、いずれも上記の「D50(正極材)/D50(前駆体)」の値が1.05未満となり、結晶子径は1300Åを超えた。これに対して、本発明の要件を満たさない製造方法で作製した試料5〜8のリチウムニッケルマンガンコバルト複合酸化物は、「D50(正極材)/D50(前駆体)」の値が1.05以上となるか、又は結晶子径が1200Å未満になった。 From the results in Table 1 above, the lithium nickel-manganese-cobalt composite oxides of Samples 1 to 4 produced by the production method satisfying the requirements of the present invention are all of the above-mentioned "D50 (positive electrode material) / D50 (precursor)". The value was less than 1.05 and the crystallite diameter exceeded 1300 Å. On the other hand, the lithium nickel-manganese-cobalt composite oxide of Samples 5 to 8 produced by the production method not satisfying the requirements of the present invention has a value of "D50 (positive electrode material) / D50 (precursor)" of 1.05. The above, or the crystallite diameter became less than 1200 Å.

本発明は、リチウムイオン二次電池用の正極活物質の製造方法、及び製造方法で製造された正極活物質を用いたリチウムイオン二次電池の製造方法に関する。 The present invention includes a positive electrode active substance manufacturing method, and a method for manufacturing a lithium ion secondary battery using the positive electrode active material produced in the production method for the lithium ion secondary battery.

Claims (6)

前駆体としての遷移金属複合水酸化物とリチウム化合物との混合物を熱処理することで製造するリチウム遷移金属複合酸化物からなる正極活物質の製造方法であって、前記熱処理は、所定の閾値温度以下の低温域では酸素濃度20容量%以上30容量%以下の低酸化性ガス雰囲気で行い、該所定の閾値温度を超えた高温域では酸素濃度40容量%以上の高酸化性ガス雰囲気で行うことを特徴とする正極活物質の製造方法。 A method for producing a positive electrode active material composed of a lithium transition metal composite oxide produced by heat-treating a mixture of a transition metal composite hydroxide as a precursor and a lithium compound, wherein the heat treatment is below a predetermined threshold temperature. In the low temperature range of the above, perform in a low oxidizing gas atmosphere having an oxygen concentration of 20% by volume or more and 30% by volume or less, and in a high temperature range exceeding the predetermined threshold temperature, perform in a highly oxidizing gas atmosphere having an oxygen concentration of 40% by volume or more. A characteristic method for producing a positive electrode active material. 前記閾値温度が700℃以上900℃以下の範囲内にあることを特徴とする、請求項1に記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 1, wherein the threshold temperature is in the range of 700 ° C. or higher and 900 ° C. or lower. 前記遷移金属複合水酸化物は、組成式がNiMnCo(OH)2+α(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、−0.20≦α≦0.20、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、及びWからなる群から選択される1種以上の添加元素)で示されること特徴とする、請求項1又は2に記載の正極活物質の製造方法。 The transition metal complex hydroxide is a composition formula Ni x Mn y Co z M t (OH) 2 + α (x + y + z + t = 1,0.3 ≦ x ≦ 0.95,0.05 ≦ y ≦ 0.55,0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, −0.20 ≦ α ≦ 0.20, M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta The method for producing a positive electrode active material according to claim 1 or 2, wherein the method is represented by one or more additive elements selected from the group consisting of, and W. 前記リチウム遷移金属複合酸化物は、組成式がLi1+uNiMnCo2+β(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、−0.20≦β≦0.20、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、及びWからなる群から選択される1種以上の添加元素)で示されることを特徴とする、請求項3に記載の正極活物質の製造方法。 The lithium transition metal composite oxide, a composition formula Li 1 + u Ni x Mn y Co z M t O 2 + β (-0.05 ≦ u ≦ 0.50, x + y + z + t = 1,0.3 ≦ x ≦ 0.95, 0.05 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, −0.20 ≦ β ≦ 0.20, M is Mg, Ca, Al, Ti, V, The method for producing a positive electrode active material according to claim 3, wherein the method is represented by one or more additive elements selected from the group consisting of Cr, Zr, Nb, Mo, Hf, Ta, and W). 前記リチウム化合物が、炭酸リチウム、水酸化リチウム、又はこれら両者の混合物であることを特徴とする、請求項1〜4のいずれか1項に記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to any one of claims 1 to 4, wherein the lithium compound is lithium carbonate, lithium hydroxide, or a mixture thereof. 少なくとも正極、負極、及び電解質から構成されるリチウムイオン二次電池であって、該正極の正極材料に請求項1〜5のいずれか1項に記載の製造方法により製造された正極活物質を用いることを特徴とするリチウムイオン二次電池の製造方法。 A lithium ion secondary battery composed of at least a positive electrode, a negative electrode, and an electrolyte, and a positive electrode active material produced by the production method according to any one of claims 1 to 5 is used as the positive electrode material of the positive electrode. A method for manufacturing a lithium ion secondary battery.
JP2019157313A 2019-08-29 2019-08-29 Method for manufacturing positive electrode active material Pending JP2021034357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157313A JP2021034357A (en) 2019-08-29 2019-08-29 Method for manufacturing positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157313A JP2021034357A (en) 2019-08-29 2019-08-29 Method for manufacturing positive electrode active material

Publications (1)

Publication Number Publication Date
JP2021034357A true JP2021034357A (en) 2021-03-01

Family

ID=74676732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157313A Pending JP2021034357A (en) 2019-08-29 2019-08-29 Method for manufacturing positive electrode active material

Country Status (1)

Country Link
JP (1) JP2021034357A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048380A1 (en) * 2003-11-17 2005-05-26 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2007257890A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this
KR20140087319A (en) * 2012-12-28 2014-07-09 주식회사 에코프로 Manufacturing method of lithium complex oxide, and lithium complex oxide made by the same
WO2016060105A1 (en) * 2014-10-15 2016-04-21 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US20180026266A1 (en) * 2015-01-30 2018-01-25 L&F Co., Ltd. Positive Active Material For Lithium Secondary Battery, Method For Producing Same, And Lithium Secondary Battery Comprising Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048380A1 (en) * 2003-11-17 2005-05-26 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2007257890A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous lithium ion battery and battery using this
KR20140087319A (en) * 2012-12-28 2014-07-09 주식회사 에코프로 Manufacturing method of lithium complex oxide, and lithium complex oxide made by the same
WO2016060105A1 (en) * 2014-10-15 2016-04-21 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US20180026266A1 (en) * 2015-01-30 2018-01-25 L&F Co., Ltd. Positive Active Material For Lithium Secondary Battery, Method For Producing Same, And Lithium Secondary Battery Comprising Same

Similar Documents

Publication Publication Date Title
JP6888297B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP2020177860A (en) Composite hydroxide containing nickel, manganese and cobalt and production method thereof, composite oxide containing lithium, nickel, manganese and cobalt and production method thereof, positive electrode active material for lithium ion secondary battery and production method thereof, and lithium ion secondary battery
WO2019039567A1 (en) Positive-electrode active material for non-aqueous-electrolyte secondary cell and method for manufacturing said positive-electrode active material, positive-electrode mixture paste for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
WO2019194150A1 (en) Positive electrode active substance for lithium ion secondary battery and method for producing same
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP2024012441A (en) Lithium ion secondary battery cathode active material and lithium ion secondary battery
JP2023040082A (en) Metal complex hydroxide and production method therefor, cathode active material for lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery using the same
JP7371364B2 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method, positive electrode for lithium ion secondary batteries, and lithium ion secondary batteries
JP7183813B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7183812B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7206819B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
CN111094188B (en) Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery using same
JP2020119787A (en) Nickel, manganese, cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2021147314A (en) Transition metal composite hydroxide particle, manufacturing method of transition metal composite hydroxide particle, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2020021684A5 (en)
WO2020085283A1 (en) Metal composite hydroxide and method for producing same, positive electrode active material for lithium ion secondary batteries and method for producing same, and lithium ion secondary battery using same
JP7183814B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP7205114B2 (en) Method for producing transition metal composite hydroxide and method for producing positive electrode active material for lithium ion secondary battery
JP2021012807A (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
US20230135908A1 (en) Metal composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode active material
WO2020218592A1 (en) Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2021034357A (en) Method for manufacturing positive electrode active material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240430