JP2021033915A - Computer program, dam inflow prediction program, and dam inflow prediction system - Google Patents
Computer program, dam inflow prediction program, and dam inflow prediction system Download PDFInfo
- Publication number
- JP2021033915A JP2021033915A JP2019156573A JP2019156573A JP2021033915A JP 2021033915 A JP2021033915 A JP 2021033915A JP 2019156573 A JP2019156573 A JP 2019156573A JP 2019156573 A JP2019156573 A JP 2019156573A JP 2021033915 A JP2021033915 A JP 2021033915A
- Authority
- JP
- Japan
- Prior art keywords
- prediction
- model
- data
- dam inflow
- dam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004590 computer program Methods 0.000 title claims abstract description 8
- 230000006698 induction Effects 0.000 claims abstract description 45
- 238000010801 machine learning Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 238000007637 random forest analysis Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 54
- 238000006424 Flood reaction Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 6
- 238000013178 mathematical model Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/40—Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、コンピュータプログラムに関し、特に、ダム流入量を予測するプログラムおよびダム流入量予測システムに関する。 The present invention relates to a computer program, and more particularly to a program for predicting a dam inflow and a dam inflow prediction system.
ダム管理において、ダムからの放流量を決定することは重要な業務である。
例えば、洪水時には、下流河川に急激な水位上昇を起こさせないよう、かつ、下流河川の計画洪水流量を超えないよう、さらには、ダム貯水池の洪水時最高水位を超えないよう、ダムからの放流時系列を決定する。
In dam management, determining the discharge from the dam is an important task.
For example, during floods, when the water is discharged from the dam, it should not cause a sudden rise in the water level of the downstream river, should not exceed the planned flood flow of the downstream river, and should not exceed the maximum flood level of the dam reservoir. Determine the series.
一方、平水時(洪水でない時)には、洪水時とは違った目的の操作が必要である。例えば、発電用ダムであれば、ダム貯水池水位をできるだけ高く保ち発電効率を高めつつ、電力需要が多くなる時間帯に指定された量の電力を生産することが必要である。
これら洪水時および平水時の操作には、数時間先までのダム流入量を予測することが重要である。
On the other hand, during normal water (when not flooding), it is necessary to perform operations for a different purpose than during flooding. For example, in the case of a power generation dam, it is necessary to keep the water level of the dam reservoir as high as possible to improve the power generation efficiency and to produce a specified amount of power during the time when the power demand is high.
For these flood and flat water operations, it is important to predict the inflow of the dam up to several hours ahead.
このような用途のために、ダム流入量予測を実現する技術が開発されてきた。
先ず、特許文献1に開示された「水力発電所の水位管理システム」は、非定常時に必要な天気情報と河川の上流情報をデータ採取手段で入手してシミュレーションを行い、結果を運転員に分かり易くガイダンスして、運転員の負担の軽減を図り、非定常時に熟練運転員に頼らなくても運用することを可能にするシステムである。このシステムでは、河川の上流水位データに所定の着水遅れの時間処理をすることで、ダム流入量を算出する。
For such applications, techniques have been developed to predict dam inflow.
First, the "water level management system of a hydroelectric power plant" disclosed in Patent Document 1 obtains weather information and upstream information of a river required at unsteady state by a data collection means and performs a simulation, and the operator can understand the result. It is a system that provides easy guidance, reduces the burden on the operator, and enables operation without relying on a skilled operator during non-steady conditions. In this system, the inflow amount of the dam is calculated by processing the upstream water level data of the river for a predetermined time of landing delay.
また、特許文献2に開示された「水位予測方法、水位予測プログラムおよび水位予測装置」は、河川、ダムまたは下水等の水位を予測するために、ニューラルネットワークを利用する方法で、入力データを適切に抽出することにより、水位を十分に精度高く予測し、計算量を低減することを目的とした方法である。
Further, the "water level prediction method, water level prediction program and water level prediction device" disclosed in
この方法は、水位予測地点およびある時刻の水位の学習に必要な、水位予測地点および当該時刻の水位との相関が高い雨量並びに水位の訓練データを抽出する訓練データ抽出ステップと、ニューラルネットワークを用いて、水位予測地点および当該時刻の水位との相関が高い抽出された雨量並びに水位の訓練データを学習する訓練データ学習ステップとを順に備えることを特徴とする。 This method uses a training data extraction step and a neural network to extract training data of the water level and the rainfall and water level that are highly correlated with the water level prediction point and the water level at that time, which are necessary for learning the water level prediction point and the water level at a certain time. It is characterized by sequentially providing a water level prediction point, an extracted rainfall amount having a high correlation with the water level at the relevant time, and a training data learning step for learning the training data of the water level.
特許文献1に開示された発明では、洪水時にダム上流の河川で観測した流量時系列を基に、あらかじめ定めた遅れ時間だけずらした時系列を作成し、それをダム流入量とするモデルを用いる。このモデルは、物理法則に基づく数理モデルのひとつであるともいえる。以後、物理法則に基づく数理モデルを「演繹モデル」と呼ぶ。 In the invention disclosed in Patent Document 1, a model is used in which a time series shifted by a predetermined delay time is created based on the flow time series observed in the river upstream of the dam at the time of flood, and the time series is used as the inflow amount of the dam. .. This model can be said to be one of the mathematical models based on the laws of physics. Hereinafter, the mathematical model based on the laws of physics will be referred to as a "deductive model".
一般的に、この演繹モデルは、物理法則を微分方程式で表現し、さらにそれをコンピュータプログラムで記述することにより時間発展するモデルを構築する。予測する場合、構築した演繹モデルに、予測対象の現象の原因となる現象のデータを入力し、予測対象の現象の予測データを出力する。 In general, this deductive model builds a time-evolving model by expressing the laws of physics with differential equations and then describing them in a computer program. When predicting, the data of the phenomenon that causes the phenomenon of the prediction target is input to the constructed deduction model, and the prediction data of the phenomenon of the prediction target is output.
一方、特許文献2に開示された発明では、ニューラルネットワークモデルを用いる。このモデルは、過去の事例データや統計に基づく数理モデルの一つであるともいえる。教師あり学習の人工知能(AI)もこの数理モデルの一つである。以後、これらの数理モデルを「帰納モデル」と呼ぶ。
On the other hand, in the invention disclosed in
この帰納モデルは、予測対象の現象のデータ、およびその現象と相関があるデータを機械学習させ、モデルを構築する。予測する場合、構築した帰納モデルに、予測対象の現象と相関がある現象のデータを入力し、予測対象の現象の予測データを出力する。 This induction model builds a model by machine learning the data of the phenomenon to be predicted and the data that correlates with the phenomenon. When predicting, the data of the phenomenon that correlates with the phenomenon of the prediction target is input to the constructed induction model, and the prediction data of the phenomenon of the prediction target is output.
以上のように、ダム流入量の予測手法には、演繹モデルと帰納モデルの2つがある。
ここにおいて、帰納モデルの長所は、予測対象の現象の原因が分からない場合であっても、予測対象の現象と相関の高いデータがあれば、このモデルを適用できることである。ただし、相関を知るためには、十分な量の過去のデータが必要である。また、短所は、予測対象の現象が、ごく稀に発生する状態、あるいは過去に観測されたことのない状態となった場合、予測が困難となることである。例えば、既往最大を超える洪水に対して、信頼できる予測を出すことが難しい。
As described above, there are two methods for predicting the inflow of dams: the deduction model and the induction model.
Here, the advantage of the induction model is that even if the cause of the phenomenon to be predicted is unknown, this model can be applied if there is data having a high correlation with the phenomenon to be predicted. However, a sufficient amount of historical data is needed to know the correlation. The disadvantage is that it is difficult to predict when the phenomenon to be predicted occurs very rarely or has never been observed in the past. For example, it is difficult to make reliable predictions for floods that exceed the maximum history.
一方で、演繹モデルの長所および短所は、先の帰納モデルの長所および短所と逆である。例えば、洪水でない状態(平水の状態)では、非人為的な要因(融雪、湧水など)、および人為的な要因(発電用水、農業用水など)の影響で流量が変動する。これらの影響は、流量が大きい洪水時には無視できる程度の影響であるが、流量の少ない平水時には無視できない影響を与える。したがって、演繹モデルでは、特定できない原因に起因する現象に対し、平水時に誤差の小さい予測を出すことが難しい。 On the other hand, the strengths and weaknesses of the deduction model are the opposite of the strengths and weaknesses of the induction model above. For example, in a non-flood state (flat water state), the flow rate fluctuates due to the influence of inhuman factors (snow melting, spring water, etc.) and human factors (power generation water, agricultural water, etc.). These effects are negligible during floods with high flow rates, but cannot be ignored during flat water with low flow rates. Therefore, in the deduction model, it is difficult to make a prediction with a small error in normal water for a phenomenon caused by an unidentifiable cause.
以上のように、帰納モデルでは、洪水時の予測に困難があり、演繹モデルでは、平水時の予測に困難があった。
本発明は、上述した課題に鑑みてなされたものであり、上述した課題を解決するために、平水時であっても洪水時であっても、誤差の小さい予測を出力することを可能にするダム流入量予測プログラムを提供する。
As described above, the induction model had difficulty in predicting the flood time, and the deduction model had difficulty in predicting the time of flat water.
The present invention has been made in view of the above-mentioned problems, and in order to solve the above-mentioned problems, it is possible to output a prediction with a small error regardless of whether the water is flat or flood. Provides a dam inflow forecasting program.
本発明に係る、例えばダム流入量のような予測対象とする現象を予測するコンピュータプログラムとして、現象に関連する入力データを取得する第1のステップと、入力データと所定の閾値とを比較して、演繹モデルを使用するか否かおよび帰納モデルを使用するか否かを判定する第2のステップと、演繹モデルを使用すると判定した場合に、演繹モデルを使って現象に関連する第1の予測データを出力する第3のステップと、帰納モデルを使用すると判定した場合に、帰納モデルを使って現象に関連する第2の予測データを出力する第4のステップと、第1の予測データおよび第2の予測データの少なくともどちらかを表示出力する第5のステップとを有することを特徴とする。 As a computer program for predicting a phenomenon to be predicted, such as a dam inflow, according to the present invention, the first step of acquiring input data related to the phenomenon is compared with the input data and a predetermined threshold. The second step of determining whether to use the deduction model and the induction model, and the first prediction related to the phenomenon using the deduction model when it is determined to use the deduction model. The third step of outputting data, the fourth step of outputting the second prediction data related to the phenomenon using the induction model when it is determined to use the induction model, the first prediction data and the first It is characterized by having a fifth step of displaying and outputting at least one of the prediction data of 2.
本発明によれば、平水と洪水との別を自動的に判定し、平水の場合は帰納モデルを使い、洪水の場合は演繹モデルを使うことで、平水時であっても洪水時であっても、誤差の小さい予測を出力することを可能にするダム流入量予測プログラムを提供することができる。 According to the present invention, the distinction between flat water and flood is automatically determined, and in the case of flat water, the induction model is used, and in the case of flood, the deduction model is used. Also, it is possible to provide a dam inflow prediction program that makes it possible to output a prediction with a small error.
以下、本発明を実施するための形態として、実施例を添付図面に基づいて説明する。 Hereinafter, examples for carrying out the present invention will be described with reference to the accompanying drawings.
図1は、本発明に係る実施例を実現するためのコンピュータシステムの構成を示す概略ブロック図である。
本実施例のコンピュータシステムは、インターネット160に接続される、予測サーバ110、データサーバ180およびクライアント端末170によって構成される。
FIG. 1 is a schematic block diagram showing a configuration of a computer system for realizing an embodiment of the present invention.
The computer system of this embodiment is composed of a
予測サーバ110は、メモリ120、CPU(Central Processing Unit)130およびHDD(Hard Disk Drive)140を備える。
The
メモリ120には、ダム流入量予測プログラム121が展開される。このダム流入量予測プログラム121は、CPU130への命令によって構成される。
A dam
CPU130は、ダム流入量予測プログラム121の命令に従った計算、データサーバ180へのアクセス、クライアント端末170からのリクエストへの応答などの処理を行う。ダム流入量予測プログラム121が実行する処理は、実際には、ダム流入量予測プログラム121に記述された命令に従うCPU130によって実行される。
HDD140は、ダム流入量予測プログラム121の処理結果を格納する。
The
The
クライアント端末170は、例えば、PC(Personal Computer)のように、ウェブブラウザを動作させる機能を有するコンピュータである。
The
データサーバ180は、気象データ181、河川観測データ182および地図データ183を格納し、予測サーバ110およびクライアント端末170からのリクエストに応じてそれぞれのデータを配信する。
The data server 180
次に、データサーバ180に格納する各種のデータについて説明する。
気象データ181は、過去の気象観測時系列、あるいは未来の気象予測時系列のデータであり、時系列のメッシュデータとして格納される。すなわち、時空間を時間、高度、緯度および経度の4軸で定義し、それぞれの軸ごとに、開始点、終了点および解像度が定義され、それに基づいて時空間がセルに分割され、各セルに値が格納される。
Next, various types of data stored in the data server 180 will be described.
The
ユーザは、時間、高度、緯度および経度を指定すると、それに相当する値を取得することができる。ただし、定義する軸は4つに限定されない。例えば、地表面のみに定義されるデータであれば、時間、緯度および経度の3軸から構成される。あるいは、予報であれば、初期時刻軸が追加で用いられる。 The user can specify the time, altitude, latitude and longitude and get the corresponding values. However, the defined axes are not limited to four. For example, if the data is defined only on the ground surface, it is composed of three axes of time, latitude, and longitude. Alternatively, if it is a forecast, the initial time axis is additionally used.
河川観測データ182は、過去の河川観測時系列、あるいは未来の河川予測時系列のデータである。これには、観測地点における河川水位、河川流量、ダム流入量、ダム放流量およびダム貯水位置水位などが含まれる。また、河川観測データ182は、観測要素を列、日付および時刻を行とする表形式として格納される。ここで、未来の河川予測時系列とは、例えば、上流にあるダムの予定放流時系列である。 The river observation data 182 is data of a past river observation time series or a future river prediction time series. This includes river water level, river flow rate, dam inflow, dam discharge and dam storage position water level at the observation point. In addition, the river observation data 182 is stored in a tabular format in which the observation elements are columns, dates, and times. Here, the future river prediction time series is, for example, the planned release time series of the dam located upstream.
地図データ183は、地図画像のデータであり、例えば、WMTS(Web Map Tile Service)に準拠して実装すればよい。さらに、地図データ183として、河道横断図や河道縦断図などのデータが含まれる。 The map data 183 is map image data, and may be implemented in accordance with, for example, WMTS (Web Map Tile Service). Further, as the map data 183, data such as a river channel crossing map and a river channel longitudinal map are included.
図2は、本発明に係る実施例を実現するためのコンピュータシステムによって実行される処理を示すシーケンス図である。
ステップ201(S201)で、予測サーバ110は、データサーバ180にリクエストを送り、気象データ181および河川観測データ182を取得する。
FIG. 2 is a sequence diagram showing a process executed by a computer system for realizing the embodiment according to the present invention.
In step 201 (S201), the
ステップ202(S202)で、予測サーバ110は、ダム流入量予測プログラム121を実行する。この処理結果として出力されたダム流入量予測結果データが、HDD140に格納される。
In step 202 (S202), the
ステップ203(S203)で、クライアント端末170は、任意のタイミングで、予測サーバ110に予測結果を提供するようリクエストを送る。このリクエストに対し、予測サーバ110は、HDD140に格納された最新のダム流入量予測結果データをクライアント端末170に返す。
In step 203 (S203), the
ステップ204(S204)で、クライアント端末170は、データサーバ180にリクエストを送り、地図データ183を取得する。
In step 204 (S204), the
ステップ205(S205)で、クライアント端末170は、ステップ203(203)で取得した予測結果データおよびステップ204(S204)で取得した地図データに基づき、ウェブブラウザ上にGUI(Graphical User Interface)を描画表示する。このGUIについては、図5および図6を用いて後述する。
In step 205 (S205), the
ステップ206(S206)で、クライアント端末170上で、GUIに備えられたラジオボタン(図5に示す、540)により、演繹モデルか帰納モデルかの選択をユーザが操作した場合、その操作結果が予測サーバ110に送られる。
In step 206 (S206), when the user operates the selection of the deduction model or the induction model by the radio button (540 shown in FIG. 5) provided in the GUI on the
ステップ207(S207)で、予測サーバ110は、ダム流入量予測プログラム121を実行し、ダム流入量予測結果データを更新する。
In step 207 (S207), the
ステップ208(S208)で、クライアント端末170は、任意のタイミングで予測サーバ110にリクエストを送り、更新されたダム流入量予測結果データを取得する。
In step 208 (S208), the
ステップ209(S209)で、クライアント端末170は、ステップ209(S209)で取得した更新データや先に取得した地図データに基づき、ウェブブラウザ上にGUIを描画表示する。
In step 209 (S209), the
図3は、ダム流入量予測プログラム121のソフトウェア構成を示す概略ブロック図である。
ダム流入量予測プログラム121は、制御モジュール310、帰納モデルモジュール320、演繹モデルモジュール330、前判定モジュール340、後判定モジュール350およびデータアクセスモジュール360から構成される。各モジュール間のやり取りは、関数呼び出しにより実現される。
FIG. 3 is a schematic block diagram showing a software configuration of the dam
The dam
制御モジュール310は、データアクセスモジュール360から、気象データ181および河川観測データ182を取得する。また、制御モジュール310は、帰納モデルモジュール320、演繹モデルモジュール330、前判定モジュール340および後判定モジュール350に指示を出して、ダム流入量予測結果データを作成する。作成したダム流入量予測結果データは、HDD140に格納されることになる。
The
帰納モデルモジュール320は、気象データ181および河川観測データ182を入力としてダム流入量予測結果データを出力する。ここで、帰納モデルモジュール320は、過去の観測データ(気象データ181および河川観測データ182)に基づいて、ダム流入量予測結果を作成する。帰納モデルモジュールのロジックとしては、例えば、ニューラルネットワークモデル、ランダムフォレスト、重回帰モデルなどの機械学習モデル、またはそれら機械学習モデルを組み合わせたアンサンブルモデルを利用すればよい。
The induction model module 320 inputs the
また、機械学習に使う過去の観測データについては、平水時のデータのみに限定してもよい。例えば、特定の地点の河川流量があらかじめ決めた閾値(洪水流量)以下の場合を「平水」と定義し、その時のデータのみを使って学習させてもよい。この限定により、作成された帰納モデルの精度が高くなることが期待できる。 Further, the past observation data used for machine learning may be limited to the data at the time of normal water. For example, a case where the river flow rate at a specific point is equal to or less than a predetermined threshold value (flood flow rate) may be defined as "flat water", and learning may be performed using only the data at that time. Due to this limitation, it can be expected that the accuracy of the created induction model will be improved.
演繹モデルモジュール330は、気象データ181および河川観測データ182を入力としてダム流入量予測結果データを出力する。ここで、演繹モデルモジュール330としては、流出および河川流れに関する物理法則を記述したコンピュータプログラムを用いる。具体的には、貯留関数などの集中型流出モデル、あるいは分布型流出モデルおよび1次元河道モデルの結合モデルを用いることができる。
The deduction model module 330 inputs the
また、上流のダムの放流量の予定があらかじめ分かっている場合は、その予定放流量の時系列を1次元河道モデルの横流入量または上流端流量として与えてもよい。分布型流出モデルのパラメータ(土層厚、粗度など)は、過去の観測データ(気象データ181および河川観測データ182)の内、洪水の期間を精度よく再現できるよう調整する。ただし、特定の地点の河川流量があらかじめ決めた閾値(洪水流量)を超過する場合を、「洪水」と定義する。また、平水から洪水になり平水に戻るまでの一連の期間を、一つの「洪水イベント」と定義する。複数の洪水イベントのデータを使って、先のパラメータの調整を行う。
If the planned discharge of the upstream dam is known in advance, the time series of the planned discharge may be given as the lateral inflow amount or the upstream end flow rate of the one-dimensional river channel model. The parameters of the distributed runoff model (soil layer thickness, roughness, etc.) are adjusted so that the flood period can be accurately reproduced from the past observation data (
前判定モジュール340および後判定モジュール350それぞれは、判定のための閾値を有し、閾値以下の場合は平水、閾値を超える場合は洪水、と判定する。ここで、閾値とは、例えば、ある地点の水位、ある地点の流量あるいはそれらを組み合わせた条件である。 Each of the pre-determination module 340 and the post-determination module 350 has a threshold value for determination, and if it is below the threshold value, it is determined to be flat water, and if it exceeds the threshold value, it is determined to be flood. Here, the threshold value is, for example, a water level at a certain point, a flow rate at a certain point, or a combination of these conditions.
データアクセスモジュール360は、データサーバ180にリクエストを送り、データサーバ180から気象データ181および河川観測データ182を取得する。
The
図4は、ダム流入量予測プログラム121の処理を示すシーケンス図である。この処理シーケンスを、一定周期毎に実行することで運用することができる。
ステップ401(S401)で、制御モジュール310は、データアクセスモジュール360に対してデータのリクエストを出して、データアクセスモジュール360から気象データ181および河川観測データ182を取得する。
FIG. 4 is a sequence diagram showing the processing of the dam
In step 401 (S401), the
ステップ402(S402)で、制御モジュール310は、前判定モジュール340に対して気象データ181および河川観測データ182を渡し、前判定モジュール340に帰納モデルモジュール320を使用するか否かおよび演繹モデルモジュール330を使用するか否かの判定をさせる。
In step 402 (S402), the
次のa)〜c)の場合には、帰納モデルモジュール320を使用する。
a)最新の河川観測データ182において、特定の地点の河川流量があらかじめ決めた閾値(洪水流量)以下となる場合
b)前回のダム流入量予測結果データにおいて、特定の地点の河川流量があらかじめ決めた閾値(洪水流量)以下となる場合
c)GUIに備えられたラジオボタン(図5に示す、540)により、ユーザが演繹モデルか帰納モデルかの選択から帰納モデルの選択操作を行った場合
In the following cases a) to c), the induction model module 320 is used.
a) In the latest river observation data 182, when the river flow rate at a specific point is less than or equal to a predetermined threshold (flood flow rate) b) In the previous dam inflow prediction result data, the river flow rate at a specific point is predetermined. When it becomes less than or equal to the threshold (flood flow rate) c) When the user performs the deduction model selection operation from the selection of the deduction model or the deduction model by the radio button (540 shown in FIG. 5) provided in the GUI.
次のd)〜f)の場合には、演繹モデルモジュール320を使用する。
d)最新の河川観測データ182において、特定の地点の河川流量があらかじめ決めた閾値(洪水流量)を超える場合
e)前回のダム流入量予測結果データにおいて、特定の地点の河川流量があらかじめ決めた閾値(洪水流量)を超える場合
f)GUIに備えられたラジオボタン(図5に示す、540)により、ユーザが演繹モデルか帰納モデルかの選択から演繹モデルの選択操作を行った場合
In the following cases d) to f), the deduction model module 320 is used.
d) In the latest river observation data 182, when the river flow rate at a specific point exceeds a predetermined threshold (flood flow rate) e) In the previous dam inflow prediction result data, the river flow rate at a specific point is predetermined. When the threshold (flood flow rate) is exceeded f) When the user selects the deduction model from the selection of the deduction model or the deduction model by using the radio button (540 shown in FIG. 5) provided in the GUI.
ステップ403(S403)で、制御モジュール310は、帰納モデルモジュール320に対してダム流入量予測を行わせる。帰納モデルモジュール320に、気象データ181および河川観測データ182が入力されると、帰納モデルに従ったダム流入量予測結果データが出力される。
In step 403 (S403), the
ステップ404(S404)で、制御モジュール310は、演繹モデルモジュール330に対してダム流入量予測を行わせる。演繹モデルモジュール330に、気象データ181および河川観測データ182が入力されると、演繹モデルに従ったダム流入量予測結果データが出力される。
In step 404 (S404), the
ステップ405(S405)で、制御モジュール310は、後判定モジュール350に対して、帰納モデルモジュール320が出力した予測結果または演繹モデルモジュール330が出力した予測結果のいずれか一方を選択させる。
前判定モジュール340が、ステップ402でいずれか一方のモデルモジュールのみ使用すると判定していた場合には、使用すると判定されたモデルモジュールの予測結果が選択される。
In step 405 (S405), the
If the pre-determination module 340 determines in step 402 that only one of the model modules will be used, the prediction result of the model module determined to be used is selected.
一方で、前判定モジュール340が、ステップ402で2つのモデルモジュールの両方を使用すると判定していた場合には、後判定モジュール350は次の判定を行う。すなわち、前回の予測した時刻T0に行った予測における現在時刻T1におけるダム流入量と、河川観測データ182に格納された時刻T1におけるダム流入量との差の絶対値を求め、この値を「前回の予報誤差」とし、それが小さい方のモデルモジュールの予測結果を採用する。
制御モジュール310は、採用した予測結果データをHDD140に格納する。
On the other hand, if the pre-determination module 340 determines in step 402 that both of the two model modules will be used, the post-determination module 350 makes the following determination. That is, the absolute value of the difference between the dam inflow amount at the current time T1 in the prediction made at the previously predicted time T0 and the dam inflow amount at the time T1 stored in the river observation data 182 is obtained, and this value is set to "previous time". The prediction result of the model module with the smaller one is adopted.
The
図5は、ダム流入量予測プログラム121による第1のGUIを示す図である。
第1のGUIは、ウェブページ500から構成される。このウェブページ500は、クライアント端末170のウェブブラウザに表示される。また、このウェブページ500は、後述する第2のGUIによるウェブページ600と同時に表示され、ユーザはどちらの画面を操作することもできる。
FIG. 5 is a diagram showing a first GUI by the dam
The first GUI is composed of 500 web pages. The
ウェブページ500には、実績および予測の降水量時系列グラフ510、実績および予測のダム流入量、ダム放流量およびダム貯水池水位の時系列グラフ520が表示される。これら2つのグラフの横軸は共通で、日付と時刻とが示される。
また、横軸上には、最新の予報の初期時刻を示すアイコン530(逆三角印)が示される。このアイコン530が示す時刻より、前の時刻のグラフが観測結果を示し、後の時刻のグラフが予測結果を示す。
The
Further, on the horizontal axis, an icon 530 (inverted triangle mark) indicating the initial time of the latest forecast is shown. The graph at the time before the time indicated by the
実績および予測の降水量時系列グラフ510には、降雨強度511が棒グラフで、積算降水量512が線グラフで、それぞれ示される。慣例にならい、グラフの縦軸は下向きとする。また、グラフ右側の縦軸に降雨強度を、グラフ左側の縦軸に積算降水量を示す。
In the actual and predicted precipitation
一方、実績および予測のダム流入量、ダム放流量およびダム貯水池水位の時系列グラフ520には、ダム流入量521、ダム放流量522およびダム貯水池水位523が、それぞれ線グラフで示される。慣例にならい、グラフの縦軸は上向きとする。また、グラフ左側の縦軸に流量を、グラフ右側の縦軸に水位を示す。
On the other hand, in the
また、ウェブページ500には、演繹モデルと帰納モデルとの選択状態を示すラジオボタン540が表示される(図5では、画面右上)。既定値(デフォルト)として、「自動選択」を示すチェックボックス543をオンにする。
Further, on the
既定値(デフォルト)の場合において、もし、前判定モジュール340が選択したモデルモジュールが帰納モデルモジュール320であるときは、ラベル「帰納モデル」541が自動的にオンの表示となり、ラベル「演繹モデル」542が自動的にオフの表示となる。一方、前判定モジュール340が選択したモデルモジュールが演繹モデルモジュール330であるときは、ラベル「帰納モデル」541が自動的にオフの表示となり、ラベル「演繹モデル」542が自動的にオンの表示となる。 In the case of the default value (default), if the model module selected by the pre-judgment module 340 is the induction model module 320, the label "induction model" 541 is automatically displayed on and the label "deduction model" is displayed. 542 is automatically displayed as off. On the other hand, when the model module selected by the pre-judgment module 340 is the deduction model module 330, the label "induction model" 541 is automatically displayed as off, and the label "deduction model" 542 is automatically displayed as on. Become.
ユーザは、任意のタイミングで「自動選択」を示すチェックボックス543のオンとオフとを切り替えることができる。オフにした場合、ユーザはさらに、ラベル「帰納モデル」541またはラベル「演繹モデル」542のいずれか一つを選択できる。
The user can switch the
図6は、ダム流入量予測プログラム121による第2のGUIを示す図である。
第2のGUIは、ウェブページ600から構成される。先のウェブページ500と同様に、このウェブページ600は、クライアント端末170のウェブブラウザに表示される。
FIG. 6 is a diagram showing a second GUI by the dam
The second GUI consists of a
ウェブページ600には、地図610、河川横断図620、河川縦断図630および時刻ペイン640が表示される。
まず、時刻ペイン640には、現在時刻641が表示されると共に、コントロールバー642が表示される。ユーザがコントロールバー642を操作すると、データがある期間の任意の時刻に移動させることができる。
On the
First, the
地図610には、ダムを示すアイコン611および水位計を示すアイコン614が、河川612に重ねて表示される。地図データ183は、データサーバ180から取得される。
On the map 610, the
河川横断図620には、ある地点の河道横断図が表示される。画面中の、左側が左岸、右側が右岸であり、河床622と共に河川水位621が表示される。また、表示する地点を変更するためのユーザインタフェースを備える。
The
河川縦断図630には、ある地点の河道縦断図が表示される。画面中の、左側が上流、右側が下流であり、河床632と共に河川水位631が表示される。ただし、この縦断図は、帰納モデルモジュール320の結果を表示する場合には無効になり、演繹モデルモジュール330の結果を表示する場合に有効になる。なぜなら、帰納モデルモジュール320はあらかじめ定めた地点の水位しか予測しないのに対し、演繹モデルモジュール330は河川全体の水位と流量とを一次元不定流として求めるためである。
A river channel profile at a certain point is displayed on the river profile 630. In the screen, the left side is upstream and the right side is downstream, and the
以上のとおり、本発明に係る実施例によれば、平水と洪水の別を自動的に判定し、平水の場合は帰納モデルを使い、洪水の場合は演繹モデルを使うことで、平水時であっても洪水時であっても、ダム流入量予測プログラムが誤差の小さい予測を出力することを可能にする。 As described above, according to the embodiment of the present invention, the distinction between flat water and flood is automatically determined, and in the case of flat water, the induction model is used, and in the case of flood, the deduction model is used. It enables the dam inflow prediction program to output small error predictions, even during floods.
110 予測サーバ
120 メモリ
121 ダム流入量予測プログラム
130 CPU
140 HDD
160 インターネット
170 クライアント端末
180 データサーバ
181 気象データ
182 河川観測データ
183 地図データ
310 制御モジュール
320 帰納モデルモジュール
330 演繹モデルモジュール
340 前判定モジュール
350 後判定モジュール
360 データアクセスモジュール
500,600 ウェブページ
510 実績および予測の降水量時系列グラフ
511 降雨強度の棒グラフ
512 積算降水量の線グラフ
520 実績および予測のダム流入量、ダム放流量およびダム貯水池水位の時系列グラフ
521 ダム流入量の線グラフ
522 ダム放流量の線グラフ
523 ダム貯水池水位の線グラフ
530 アイコン
540 ラジオボタン
610 地図
620 河川横断図
630 河川縦断図
640 時刻ペイン
110 Prediction server 120
140 HDD
160
Claims (7)
前記現象に関連する入力データを取得する第1のステップと、
前記入力データと所定の閾値とを比較して、演繹モデルを使用するか否かおよび帰納モデルを使用するか否かを判定する第2のステップと、
前記演繹モデルを使用すると判定した場合に、前記演繹モデルを使って前記現象に関連する第1の予測データを出力する第3のステップと、
前記帰納モデルを使用すると判定した場合に、前記帰納モデルを使って前記現象に関連する第2の予測データを出力する第4のステップと、
前記第1の予測データおよび前記第2の予測データの少なくともどちらかを表示出力する第5のステップと
を有するコンピュータプログラム。 A computer program that predicts phenomena
The first step of acquiring the input data related to the phenomenon, and
A second step of comparing the input data with a predetermined threshold to determine whether to use the deduction model and the induction model.
When it is determined that the deduction model is used, the third step of outputting the first prediction data related to the phenomenon using the deduction model, and
When it is determined that the induction model is used, the fourth step of outputting the second prediction data related to the phenomenon using the induction model, and
A computer program having a fifth step of displaying and outputting at least one of the first prediction data and the second prediction data.
前記入力値に対してダム流入量を予測して第1の予測結果を出力する演繹モデル部と、
前記入力値に対してダム流入量を予測して第2の予測結果を出力する帰納モデル部と、
前記第1の予測結果および前記第2の予測結果の少なくともいずれかを表示する表示部と
を備えるダム流入量予測システム。 An input section that uses observation data related to rivers and weather as input values,
A deduction model unit that predicts the amount of dam inflow with respect to the input value and outputs the first prediction result.
An induction model unit that predicts the amount of dam inflow with respect to the input value and outputs the second prediction result.
A dam inflow prediction system including a display unit that displays at least one of the first prediction result and the second prediction result.
前記入力値と所定の閾値との比較判定をする第1の判定部を備え、
前記第1の判定部は、前記比較判定の結果に応じて前記演繹モデル部および前記帰納モデル部それぞれを使用するか否かを決定する
ことを特徴とするダム流入量予測システム。 The dam inflow prediction system according to claim 2.
A first determination unit for making a comparison determination between the input value and a predetermined threshold value is provided.
The first determination unit is a dam inflow prediction system, characterized in that it determines whether or not to use each of the deduction model unit and the induction model unit according to the result of the comparison determination.
前記第1の予測結果と前記観測データとの偏差および前記第2の予測結果と前記観測データとの偏差を比較判定する第2の判定部を備え、
前記第2の判定部は、前記偏差が小さい方の前記予測結果を採用する
ことを特徴とするダム流入量予測システム。 The dam inflow prediction system according to claim 3.
It is provided with a second determination unit for comparing and determining the deviation between the first prediction result and the observation data and the deviation between the second prediction result and the observation data.
The second determination unit is a dam inflow prediction system characterized in that the prediction result having the smaller deviation is adopted.
前記演繹モデル部は、貯留関数といった集中型流出モデル、あるいは分布型流出モデルおよび1次元河道モデルの結合モデルを用い、
前記帰納モデル部は、ニューラルネットワーク、ランダムフォレスト、または重回帰モデルといった機械学習モデル、あるいは当該機械学習モデルそれぞれを組み合わせたアンサンブルモデルを用いる
ことを特徴とするダム流入量予測システム。 The dam inflow prediction system according to any one of claims 2 to 4.
The deduction model part uses a centralized outflow model such as a storage function, or a combined model of a distributed outflow model and a one-dimensional river channel model.
The induction model unit is a dam inflow prediction system characterized by using a machine learning model such as a neural network, a random forest, or a multiple regression model, or an ensemble model in which the machine learning models are combined.
河川および気象に関する観測データを取得する入力ステップと、
前記観測データと所定の閾値とを比較して、演繹モデルを使用するか否かおよび帰納モデルを使用するか否かを判定する判定ステップと、
前記演繹モデルを使用すると判定した場合に、前記演繹モデルを使ってダム流入量の第1の予測データを出力する第1の予測ステップと、
前記帰納モデルを使用すると判定した場合に、前記帰納モデルを使ってダム流入量の第2の予測データを出力する第2の予測ステップと、
前記第1の予測データおよび前記第2の予測データの少なくともどちらかを表示する表示ステップと
を有するダム流入量予測プログラム。 A computer-run dam inflow prediction program
Input steps to acquire observational data on rivers and meteorology,
A determination step of comparing the observed data with a predetermined threshold value to determine whether or not to use the deduction model and whether or not to use the induction model.
When it is determined that the deduction model is used, the first prediction step of outputting the first prediction data of the dam inflow amount using the deduction model, and the first prediction step.
When it is determined that the induction model is used, the second prediction step of outputting the second prediction data of the dam inflow amount using the induction model and the second prediction step.
A dam inflow prediction program having a display step for displaying at least one of the first prediction data and the second prediction data.
前記第1および前記第2の予測ステップと前記表示ステップとの間に、
前記第1の予測データと前記観測データとの偏差および前記第2の予測データと前記観測データとの偏差を比較判定し、前記偏差の小さい方の前記予測データを採用する第2の判定ステップ
を有するダム流入量予測プログラム。 The dam inflow prediction program according to claim 6.
Between the first and second prediction steps and the display step,
A second determination step is performed in which the deviation between the first prediction data and the observation data and the deviation between the second prediction data and the observation data are compared and determined, and the prediction data having the smaller deviation is adopted. Dam inflow prediction program to have.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156573A JP7254004B2 (en) | 2019-08-29 | 2019-08-29 | Computer program, dam inflow prediction program and dam inflow prediction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156573A JP7254004B2 (en) | 2019-08-29 | 2019-08-29 | Computer program, dam inflow prediction program and dam inflow prediction system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021033915A true JP2021033915A (en) | 2021-03-01 |
JP7254004B2 JP7254004B2 (en) | 2023-04-07 |
Family
ID=74678693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019156573A Active JP7254004B2 (en) | 2019-08-29 | 2019-08-29 | Computer program, dam inflow prediction program and dam inflow prediction system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7254004B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7473524B2 (en) | 2021-12-24 | 2024-04-23 | 八千代エンジニヤリング株式会社 | Model generation method, water level prediction system, inflow prediction system, and downstream river water level prediction system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11194803A (en) * | 1998-01-07 | 1999-07-21 | Fuji Electric Co Ltd | Dam discharging flow rate prediction model constructing method and dam discharging flow rate predicting method |
JP2000055703A (en) * | 1998-08-04 | 2000-02-25 | Fuji Electric Co Ltd | Estimation method for flow rate in dam |
JP2003030621A (en) * | 2001-07-13 | 2003-01-31 | Fuji Electric Co Ltd | Generated hydraulic power prediction method for run-of- river type dam and neural network therefor |
JP2008184838A (en) * | 2007-01-30 | 2008-08-14 | Hokkaido River Disaster Prevention Research Center | Dam inflow amount predicting device, dam inflow amount predicting method, and dam inflow amount predicting program |
-
2019
- 2019-08-29 JP JP2019156573A patent/JP7254004B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11194803A (en) * | 1998-01-07 | 1999-07-21 | Fuji Electric Co Ltd | Dam discharging flow rate prediction model constructing method and dam discharging flow rate predicting method |
JP2000055703A (en) * | 1998-08-04 | 2000-02-25 | Fuji Electric Co Ltd | Estimation method for flow rate in dam |
JP2003030621A (en) * | 2001-07-13 | 2003-01-31 | Fuji Electric Co Ltd | Generated hydraulic power prediction method for run-of- river type dam and neural network therefor |
JP2008184838A (en) * | 2007-01-30 | 2008-08-14 | Hokkaido River Disaster Prevention Research Center | Dam inflow amount predicting device, dam inflow amount predicting method, and dam inflow amount predicting program |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7473524B2 (en) | 2021-12-24 | 2024-04-23 | 八千代エンジニヤリング株式会社 | Model generation method, water level prediction system, inflow prediction system, and downstream river water level prediction system |
Also Published As
Publication number | Publication date |
---|---|
JP7254004B2 (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7104175B2 (en) | Flood monitoring and management system | |
Henonin et al. | Real-time urban flood forecasting and modelling–a state of the art | |
Xu et al. | Uncertainty analysis in statistical modeling of extreme hydrological events | |
KR102009574B1 (en) | Support method for responding to stream disaster, and support system for responding to stream disaster | |
WO2021129680A1 (en) | Snowmelt flood prediction method and apparatus, electronic device, and storage medium | |
KR101761707B1 (en) | Typhoon surge automatic forecasting method using active data collection type script and numerical model | |
JP6716328B2 (en) | Inundation risk diagnostic device, inundation risk diagnostic method, control device, and computer program | |
WO2020108319A1 (en) | Reservoir water seepage prediction method and device, computer device and storage medium | |
KR101138098B1 (en) | A coordinated operation system and method for flood control in multi-reservoirs | |
JP4818079B2 (en) | Weather forecast data analysis apparatus and weather forecast data analysis method | |
JP2016164493A (en) | Information processing device, information processing system, information processing method, and program | |
JP6038011B2 (en) | Downstream river dam prediction system | |
JP2008008772A (en) | Weather forecasting system | |
JP2007226450A (en) | Apparatus, method and program for predicting flow rate | |
JP2019148058A (en) | Flooding prediction evaluation device | |
JP7254004B2 (en) | Computer program, dam inflow prediction program and dam inflow prediction system | |
CN116739385B (en) | Urban traffic evaluation method and device based on spatial superposition analysis | |
Ruslan et al. | 7 hours flood prediction modelling using NNARX structure: Case study Terengganu | |
JP2008015916A (en) | Monitoring system | |
JP7220276B1 (en) | Inundation simulation device, inundation simulation method and program | |
Isaac et al. | Numerical and physical model studies for hydraulic flushing of sediment from Chamera-II reservoir, Himachal Pradesh, India | |
KR20130030605A (en) | K-water precipitation prediction system in multi-reservoirs | |
TW201727590A (en) | Dynamic flood forecasting and warning system | |
JP7090298B2 (en) | Evacuation judgment support method and evacuation judgment support device | |
Vaghefi et al. | Validation of CLIGEN parameter adjustment methods for Southeastern Australia and Southwestern Western Australia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7254004 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |