JP2021031598A - Pyrene fluorochrome - Google Patents

Pyrene fluorochrome Download PDF

Info

Publication number
JP2021031598A
JP2021031598A JP2019153789A JP2019153789A JP2021031598A JP 2021031598 A JP2021031598 A JP 2021031598A JP 2019153789 A JP2019153789 A JP 2019153789A JP 2019153789 A JP2019153789 A JP 2019153789A JP 2021031598 A JP2021031598 A JP 2021031598A
Authority
JP
Japan
Prior art keywords
pyrene
group
fluorescent dye
alkyl group
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019153789A
Other languages
Japanese (ja)
Other versions
JP7470357B2 (en
Inventor
陽輔 仁子
Yosuke Niko
陽輔 仁子
慎悟 波多野
Shingo Hatano
慎悟 波多野
渡辺 茂
Shigeru Watanabe
茂 渡辺
真綺 磯江
Maki Isoe
真綺 磯江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Original Assignee
Kyushu University NUC
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC filed Critical Kyushu University NUC
Priority to JP2019153789A priority Critical patent/JP7470357B2/en
Publication of JP2021031598A publication Critical patent/JP2021031598A/en
Application granted granted Critical
Publication of JP7470357B2 publication Critical patent/JP7470357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

To provide a fluorochrome in which the maximum wavelengths of excitation light and fluorescence are relatively long wavelengths, and which is excellent in light stability.SOLUTION: A pyrene fluorochrome is represented by the formula (I) [where R1 is a C1-18 alkyl group or the like, X1 is >CR2R3 or the like (where R2 and R3 independently represent a C1-18 alkyl group), Y is a group having a specific polymethine structure].SELECTED DRAWING: None

Description

本発明は、最大吸収波長や最大蛍光波長が比較的長く、且つ光安定性に優れた蛍光色素に関するものである。 The present invention relates to a fluorescent dye having a relatively long maximum absorption wavelength and maximum fluorescence wavelength and excellent photostability.

蛍光色素は、高度にπ共役した構造を有する有機化合物であり、特定波長の光を吸収して励起されると、そのエネルギーは分子内での振動や回転運動などに費やされず、特定波長の光として放出される。蛍光発光は、このように吸収波長と発光波長が異なる他、レーザーに対する感受性や、光エネルギーと電気エネルギーを相互変換できる特性などから、光記録媒体用色素や光電変換色素などとして、銀塩写真、ディスプレイ、太陽電池など、様々な分野で応用が期待されている。また、高い視認性から、バイオ分野での蛍光標識色素としても利用されている。 A fluorescent dye is an organic compound having a highly π-conjugated structure, and when it is excited by absorbing light of a specific wavelength, its energy is not spent on vibration or rotational movement in the molecule, and light of a specific wavelength is used. Is released as. Fluorescence emission has different absorption wavelengths and emission wavelengths in this way, and because of its sensitivity to lasers and its ability to convert between light energy and electrical energy, it can be used as a dye for optical recording media or a photoelectric conversion dye. It is expected to be applied in various fields such as displays and solar cells. In addition, due to its high visibility, it is also used as a fluorescent labeling dye in the biotechnology field.

蛍光色素の吸収光としては、高いエネルギーを有する紫外光が利用されることがあるが、近年、安全性や高い透過性などから赤外光が注目されている。例えば特許文献1には、遠赤およびNIRスペクトルに該当するように選択された置換基を使用することにより十分に赤方偏移しているシラキサンテニウムコアベースの蛍光性化合物が開示されている。特許文献2には、ベンゾ[a]フェノキサチン5位置換イミノ基にピリジニウム構造を含む近赤外蛍光化合物が開示されている。特許文献3と特許文献4には、近赤外蛍光造影剤の造影成分として有用なシアニン系化合物が開示されている。しかし近年、蛍光色素は新規に開発されていない傾向がある。 Ultraviolet light having high energy may be used as the absorbed light of the fluorescent dye, but in recent years, infrared light has been attracting attention because of its safety and high transparency. For example, Patent Document 1 discloses a silaxanthenium core-based fluorescent compound that is sufficiently redshifted by using a substituent selected to correspond to the far-infrared and NIR spectra. .. Patent Document 2 discloses a near-infrared fluorescent compound containing a pyridinium structure in a benzo [a] phenoxatin 5-substituted imino group. Patent Documents 3 and 4 disclose cyanine compounds useful as contrast components of near-infrared fluorescence contrast agents. However, in recent years, fluorescent dyes tend not to be newly developed.

代表的な蛍光色素であるシアニン色素構造は、ポリメチン骨格の両末端に窒素を含む複素環を有する。このポリメチン骨格を長くすることで、吸収波長と蛍光波長を長波長側へシフトさせ得ることが知られている。即ち、メチン基(−CH=)の数を2個増やす毎にシアニン色素の吸収波長はおおよそ100nm長波長側へシフトする。 The cyanine pigment structure, which is a typical fluorescent dye, has a heterocycle containing nitrogen at both ends of the polymethine skeleton. It is known that the absorption wavelength and the fluorescence wavelength can be shifted to the longer wavelength side by lengthening the polymethine skeleton. That is, every time the number of methine groups (−CH =) is increased by two, the absorption wavelength of the cyanine dye shifts to the long wavelength side of about 100 nm.

特表2016−521254号公報Special Table 2016-521254A 特開2014−166975号公報Japanese Unexamined Patent Publication No. 2014-166975 特開2011−46663号公報Japanese Unexamined Patent Publication No. 2011-46663 特開2011−46662号公報Japanese Unexamined Patent Publication No. 2011-46662

上述したように、吸収波長と蛍光波長がより長波長側にシフトした蛍光色素が開発されている。例えばシアニン色素のポリメチン骨格を長くすることで、吸収波長と蛍光波長を長波長側へシフトさせ得ることが知られている。しかしその一方で、ポリメチン骨格を長くすると光安定性が低下し、励起光に対する蛍光強度が経時的に低下してしまうことも知られている。
そこで本発明は、励起光と蛍光の最大波長が比較的長波長であり、且つ光安定性に優れる蛍光色素を提供することを目的とする。
As described above, fluorescent dyes in which the absorption wavelength and the fluorescence wavelength are shifted to the longer wavelength side have been developed. For example, it is known that the absorption wavelength and the fluorescence wavelength can be shifted to the longer wavelength side by lengthening the polymethine skeleton of the cyanine pigment. However, on the other hand, it is also known that when the polymethine skeleton is lengthened, the photostability decreases and the fluorescence intensity with respect to the excitation light decreases with time.
Therefore, an object of the present invention is to provide a fluorescent dye having a relatively long maximum wavelength of excitation light and fluorescence and excellent photostability.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、蛍光色素の構造中にピレン環を導入することにより、吸収波長と蛍光波長が長波長側にシフトするのみならず、驚くべきことに光安定性がかえって向上することを見出して、本発明を完成した。
以下、本発明を示す。
The present inventors have conducted intensive studies to solve the above problems. As a result, it was found that by introducing a pyrene ring into the structure of the fluorescent dye, not only the absorption wavelength and the fluorescence wavelength are shifted to the long wavelength side, but also the photostability is surprisingly improved. The invention was completed.
Hereinafter, the present invention will be shown.

[1] 下記式(I)で表されることを特徴とするピレン蛍光色素。

Figure 2021031598
[式中、
1は、カルボキシ基、スルホ基、アジド基、またはエチニル基で置換されていてもよいC1-18アルキル基を示し、
1は、>CR23(式中、R2とR3は独立してC1-18アルキル基を示す。)、−O−、または−S−を示し、
Yは、下記式(i)〜(iv)で表される基から選択されるいずれかの基を示す。
Figure 2021031598
(式中、
2とX3は、独立して、>CR1011(式中、R10とR11は独立してC1-18アルキル基を示す。)、−O−、または−S−を示し、
Zは=Oまたは=Sを示し、
4〜R9は、独立して、カルボキシ基、スルホ基、アジド基、またはエチニル基で置換されていてもよいC1-18アルキル基を示し、
lは、1以上、5以下の整数を示し、
mは、0以上、5以下の整数を示し、
nは、1以上、5以下の整数を示す。)] [1] A pyrene fluorescent dye represented by the following formula (I).
Figure 2021031598
[During the ceremony,
R 1 represents a C 1-18 alkyl group optionally substituted with a carboxy group, a sulfo group, an azide group, or an ethynyl group.
X 1 indicates> CR 2 R 3 (in the formula, R 2 and R 3 independently indicate a C 1-18 alkyl group), −O−, or −S−.
Y represents any group selected from the groups represented by the following formulas (i) to (iv).
Figure 2021031598
(During the ceremony,
X 2 and X 3 independently indicate> CR 10 R 11 (in the formula, R 10 and R 11 independently represent a C 1-18 alkyl group), -O-, or -S-. ,
Z indicates = O or = S,
R 4 to R 9 independently represent a C 1-18 alkyl group optionally substituted with a carboxy group, a sulfo group, an azide group, or an ethynyl group.
l indicates an integer of 1 or more and 5 or less,
m indicates an integer of 0 or more and 5 or less,
n represents an integer of 1 or more and 5 or less. )]

[2] Yが式(i)で表される基である上記[1]に記載のピレン蛍光色素。
[3] X2が>CR1011である上記[2]に記載のピレン蛍光色素。
[4] R4が無置換C1-18アルキル基である上記[2]または[3]に記載のピレン蛍光色素。
[5] X1が>CR23である上記[1]〜[4]のいずれかに記載のピレン蛍光色素。
[6] R1が無置換C1-18アルキル基である上記[1]〜[5]のいずれかに記載のピレン蛍光色素。
[2] The pyrene fluorescent dye according to the above [1], wherein Y is a group represented by the formula (i).
[3] The pyrene fluorescent dye according to the above [2], wherein X 2 is> CR 10 R 11.
[4] The pyrene fluorescent dye according to the above [2] or [3], wherein R 4 is an unsubstituted C 1-18 alkyl group.
[5] The pyrene fluorescent dye according to any one of the above [1] to [4], wherein X 1 is> CR 2 R 3.
[6] The pyrene fluorescent dye according to any one of the above [1] to [5], wherein R 1 is an unsubstituted C 1-18 alkyl group.

本発明において「C1-18アルキル基」とは、炭素数1以上、18以下の直鎖状または分枝鎖状の一価飽和脂肪族炭化水素基をいう。例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル基、t−ブチル、n−ペンチル、n−ヘキシル、n−オクチル、n−デカン、n−ドデカン、n−テトラデカン、n−ヘキサデカン、n−オクタデカン等である。立体障害などを考慮する場合には、C1-10アルキル基が好ましく、C1-6アルキル基またはC1-4アルキル基がより好ましく、C1-2アルキル基がより更に好ましい。カルボキシ基などの置換基を有する場合には、C1-6アルキル基が好ましく、C2-4アルキル基がより好ましい。ピレン蛍光色素の脂溶性を高めたい場合には、C6-18アルキル基が好ましく、C8-18アルキル基がより好ましく、C10-16アルキル基がより更に好ましい。 In the present invention, the "C 1-18 alkyl group" refers to a linear or branched monovalent saturated aliphatic hydrocarbon group having 1 or more carbon atoms and 18 or less carbon atoms. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl group, t-butyl, n-pentyl, n-hexyl, n-octyl, n-decane, n-dodecane, n-tetradecane. , N-hexadecane, n-octadecane and the like. When steric hindrance is taken into consideration, a C 1-10 alkyl group is preferable, a C 1-6 alkyl group or a C 1-4 alkyl group is more preferable, and a C 1-2 alkyl group is even more preferable. When it has a substituent such as a carboxy group, a C 1-6 alkyl group is preferable, and a C 2-4 alkyl group is more preferable. When it is desired to increase the lipophilicity of the pyrene fluorescent dye, a C 6-18 alkyl group is preferable, a C 8-18 alkyl group is more preferable, and a C 10-16 alkyl group is even more preferable.

本発明に係るピレン蛍光色素は、最大吸収波長と最大蛍光波長が比較的長波長であり、且つ光安定性に優れている。例えば、後記の実施例によれば、ピレン環を有さない以外は同一の構造を有する従来のスクアレイン色素に対して、最大吸収波長と最大蛍光波長が約100nm長波長側にシフトしており、且つ光安定性が改善されている。よって本発明に係るピレン蛍光色素は、様々な分野で用いられている従来の蛍光色素に取って代わる可能性がある。 The pyrene fluorescent dye according to the present invention has a relatively long maximum absorption wavelength and a maximum fluorescence wavelength, and is excellent in light stability. For example, according to the examples described later, the maximum absorption wavelength and the maximum fluorescence wavelength are shifted to the long wavelength side of about 100 nm with respect to the conventional squalane dye having the same structure except that it does not have a pyrene ring. Moreover, the light stability is improved. Therefore, the pyrene fluorescent dye according to the present invention may replace the conventional fluorescent dye used in various fields.

図1は、本発明に係るピレン蛍光色素の一例の1H−NMRスペクトルである。 FIG. 1 is a 1 H-NMR spectrum of an example of a pyrene fluorescent dye according to the present invention. 図2は、本発明に係るピレン蛍光色素の一例と従来の蛍光色素の吸収波長スペクトルと蛍光波長スペクトルである。FIG. 2 shows an example of a pyrene fluorescent dye according to the present invention, and an absorption wavelength spectrum and a fluorescence wavelength spectrum of a conventional fluorescent dye. 図3は、本発明に係るピレン蛍光色素の一例と従来の蛍光色素の光安定性を示すグラフである。FIG. 3 is a graph showing an example of a pyrene fluorescent dye according to the present invention and the photostability of a conventional fluorescent dye.

本発明に係るピレン蛍光色素は、当業者であれば、従来公知のシアニン色素の製造方法に準じて製造することができる。例えば、Yが式(i)で表される基である式(I)で表されるピレン蛍光色素は、以下の合成スキームにより製造することができる。以下、式(P)で表されるQを「Q(P)」と略記する場合がある。 A person skilled in the art can produce the pyrene fluorescent dye according to the present invention according to a conventionally known method for producing a cyanine dye. For example, the pyrene fluorescent dye represented by the formula (I), in which Y is the group represented by the formula (i), can be produced by the following synthetic scheme. Hereinafter, Q represented by the formula (P) may be abbreviated as “Q (P)”.

Figure 2021031598
Figure 2021031598

上記反応は、溶媒中、塩基の存在下、ピレン化合物(II)とスクアリン酸誘導体(III)を反応させることにより、ピレン−スクアレイン色素(I1)を製造するものである。 In the above reaction, the pyrene-squaric acid dye (I 1 ) is produced by reacting the pyrene compound (II) with the squaric acid derivative (III) in the presence of a base in a solvent.

溶媒は、ピレン化合物(II)とスクアリン酸誘導体(III)に適度な溶解性を示し、且つ反応を阻害するものでなければ特に制限されないが、例えば、メタノール、エタノール、1−ブタノール等のC1-4アルコール;ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素溶媒;およびこれらの混合溶媒が挙げられる。 Solvents, pyrene compounds (II) and showed moderate solubility in squaric acid derivative (III), is not particularly as long as they do not and to inhibit a reaction limited, for example, methanol, ethanol, and 1-butanol C 1 -4 Alcohols; aromatic hydrocarbon solvents such as benzene, toluene, chlorobenzene; and mixed solvents thereof.

塩基としては、キノリンやピリジン等の有機塩基や、酢酸ナトリウム等の無機塩基が挙げられる。 Examples of the base include organic bases such as quinoline and pyridine, and inorganic bases such as sodium acetate.

反応条件は、適宜調整すればよい。例えば、スクアリン酸誘導体(III)に対するピレン化合物(II)の量は、1.9倍モル以上、2.1倍モル以下とすればよい。反応液におけるピレン化合物(II)とスクアリン酸誘導体(III)の量は、溶解度などに応じて適宜調整すればよい。塩基の使用量は、過剰量とすることが好ましい。反応温度は常温から150℃以下とすることができ、加熱還流下で反応を行ってもよい。反応時間は、薄層クロマトグラフィ等で原料化合物が消費されるまでとしたり、予備実験などで決定すればよいが、例えば1時間以上、60時間以下とすることができる。 The reaction conditions may be adjusted as appropriate. For example, the amount of the pyrene compound (II) with respect to the aquaric acid derivative (III) may be 1.9 times mol or more and 2.1 times mol or less. The amounts of the pyrene compound (II) and the squaric acid derivative (III) in the reaction solution may be appropriately adjusted according to the solubility and the like. The amount of the base used is preferably an excess amount. The reaction temperature can be 150 ° C. or lower from room temperature, and the reaction may be carried out under heating and reflux. The reaction time may be until the raw material compound is consumed by thin layer chromatography or the like, or may be determined by a preliminary experiment or the like, and may be, for example, 1 hour or more and 60 hours or less.

Yが基(ii)〜(iv)であるピレン蛍光色素(I)は、以下の合成スキームにより製造することができる。以下では、Yが基(ii)であるピレン蛍光色素(I2)の合成スキームを代表的に示している。 The pyrene fluorescent dye (I) having Y as a group (ii) to (iv) can be produced by the following synthetic scheme. In the following, the synthetic scheme of the pyrene fluorescent dye (I 2 ) in which Y is the group (ii) is typically shown.

Figure 2021031598
Figure 2021031598

ピレン−シアニン蛍光色素(I2)は、スクアリン酸誘導体(III)の代わりにポリメチン化合物(IV)を用いる以外はピレン−スクアレイン蛍光色素(I1)と同様の条件で製造することができる。また、ピレン−メロシアニン蛍光色素(I3)とピレン−LDS蛍光色素(I4)は、ポリメチン化合物(IV)の代わりにポリメチン化合物(IV)の一端がそれぞれオキソピリミジン環またはアニリン環で置換されている化合物を用い、これら化合物とピレン化合物(II)を大凡1:1のモル比で用いる以外はピレン−シアニン蛍光色素(I2)と同様にして製造することができる。 The pyrene-cyanine fluorescent dye (I 2 ) can be produced under the same conditions as the pyrene-squarine fluorescent dye (I 1 ) except that the polymethine compound (IV) is used instead of the squaric acid derivative (III). Further, in the pyrene-merocyanine fluorescent dye (I 3 ) and the pyrene-LDS fluorescent dye (I 4 ), one end of the polymethine compound (IV) is replaced with an oxopyrimidine ring or an aniline ring, respectively, instead of the polymethine compound (IV). It can be produced in the same manner as the pyrene-cyanine fluorescent dye (I 2 ) except that these compounds and the pyrene compound (II) are used in a molar ratio of about 1: 1.

ピレン化合物(II)は、従来公知のインドール合成法、ベンゾオキサゾール合成法、またはベンゾチオキサゾール合成法を応用して製造することができる。但し、X1が>CR23である場合、金属触媒を用いる以下の方法(Matyas Tursky et al.,Organic & Biomolecular Chemistry,2010,8,5576−5582)が非常に効率的である。 The pyrene compound (II) can be produced by applying a conventionally known indole synthesis method, benzoxazole synthesis method, or benzothoxazole synthesis method. However, when X 1 is> CR 2 R 3 , the following method using a metal catalyst (Matyas Turkey et al., Organic & Biomolecular Chemistry, 2010, 8, 5576-5582) is very efficient.

Figure 2021031598
Figure 2021031598

1が−O−である場合、ヒドロキシピレンをアシル化し、得られたアシル化物からフリース転位反応によりアシルヒドロキシピレンを得、アシルヒドロキシピレンをオキシム化した後に転移環化反応に付すことによりオキサゾール環を形成する。X1が−S−である場合は、ヒドロキシピレンの代わりにピレンチオールを用いる。 When X 1 is −O—, hydroxypyrene is acylated, acylhydroxypyrene is obtained from the obtained acylated product by a Fries rearrangement reaction, and the acylhydroxypyrene is oxime-ized and then subjected to a transfer cyclization reaction to obtain an oxazole ring. To form. If X 1 is -S-, use pyrene thiol instead of hydroxypyrene.

ピレン蛍光色素(I)および中間体化合物は、公知方法により精製してもよいし、中間体化合物は純度によっては精製しないか或いは粗精製のみで次反応で用いてもよい。また、反応性官能基は、適宜保護および脱保護してもよい。 The pyrene fluorescent dye (I) and the intermediate compound may be purified by a known method, or the intermediate compound may be used in the next reaction only by crude purification or not by purification depending on the purity. In addition, the reactive functional group may be appropriately protected and deprotected.

スクアレイン色素は、スクアリリウム色素とも呼ばれ、シアニン色素に分類されるものの、ポリメチン共役系の中央部にスクアリン酸(四角酸)部位を有し、且つ一分子内にカチオン性基とアニオン性基が共存した双性イオン構造という特異な構造を有する。スクアレイン色素は、電子写真感光体の電荷発生剤や、有機太陽電池の増感色素などとして利用されている。 Squaric acid pigments, also called squarylium pigments, are classified as cyanine pigments, but they have a squaric acid (square acid) moiety in the central part of the polymethine conjugated system, and a cationic group and an anionic group coexist in one molecule. It has a unique structure called a zwitterionic structure. Squalane dyes are used as charge generators for electrophotographic photosensitive members, sensitizing dyes for organic solar cells, and the like.

インドシアニン色素は、ポリメチン骨格の両末端に窒素を含む複素環を有する構造を有する。一方の窒素はカチオン構造のアンモニウムであり電子受容体としての役割を有し、他方の窒素は三級アミンであり電子供与体としての役割を有する。通常は、アニオンとの塩として存在する。アニオンとしては、ハロゲン化物イオン、スルホン酸イオン、過塩素酸イオン、テトラフルオロボレート、ヘキサフルオロアンチモネート等が挙げられる。インドシアニン色素は、光記録媒体用色素などとして利用されている。 The indocyanine pigment has a structure having a heterocycle containing nitrogen at both ends of the polymethine skeleton. One nitrogen is ammonium with a cationic structure and has a role as an electron acceptor, and the other nitrogen is a tertiary amine and has a role as an electron donor. It usually exists as a salt with anions. Examples of the anion include halide ion, sulfonic acid ion, perchlorate ion, tetrafluoroborate, hexafluoroantimonate and the like. Indocyanine pigments are used as pigments for optical recording media and the like.

メロシアニン色素は、大きな吸光係数を示し、光吸収剤、増感剤、染料などとして、ディスプレイや光学レンズに用いられる光学フィルタ、感光写真材料、染物、塗料、インク、電子写真感光体、トナー、感熱記録紙、転写リボン、光学記録色素、太陽電池、光電変換素子、半導体材料、臨床検査試薬、レーザー治療用色素、染色などに広く用いられている。 The merocyanine dye exhibits a large absorption coefficient and is used as a light absorber, sensitizer, dye, etc. for optical filters, photosensitive photographic materials, dyes, paints, inks, electrophotographic photosensitive members, toners, heat sensitive materials, etc. It is widely used in recording papers, transfer ribbons, optical recording dyes, solar cells, photoelectric conversion elements, semiconductor materials, clinical test reagents, dyes for laser treatment, dyeing, and the like.

LDS色素は寿命が比較的長く、Ti:Sapphireとの置換が容易であるので、LDS色素レーザーはDIALシステムの光源として有望である。 The LDS dye laser is promising as a light source for the DIAL system because the LDS dye has a relatively long life and can be easily replaced with Ti: Sapphire.

更に本発明に係るピレン−スクアレイン色素(I1)、ピレン−シアニン蛍光色素(I2)、ピレン−メロシアニン蛍光色素(I3)、およびピレン−LDS蛍光色素(I4)は、最大吸収波長と最大蛍光波長が長波長側にシフトしており、且つ優れた光安定性を示す。また、C1-18アルキル基にカルボキシ基やスルホ基が置換している等して水溶性の高い本発明のピレン蛍光色素は、バイオイメージングや光線力学治療など、生体での使用も可能であり得る。 Further, the pyrene-squarine dye (I 1 ), the pyrene-cyanine fluorescent dye (I 2 ), the pyrene-merocyanine fluorescent dye (I 3 ), and the pyrene-LDS fluorescent dye (I 4 ) according to the present invention have maximum absorption wavelengths. The maximum fluorescence wavelength is shifted to the long wavelength side, and excellent photostability is exhibited. In addition, the pyrene fluorescent dye of the present invention, which is highly water-soluble by substituting a carboxy group or a sulfo group with a C 1-18 alkyl group, can be used in a living body for bioimaging and photodynamic treatment. obtain.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the above and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.

実施例1: ピレン−スクアレイン色素の合成

Figure 2021031598
Example 1: Synthesis of Pyrene-Squareine Dye
Figure 2021031598

(1)化合物1の合成
ナスフラスコに1−アミノピレン(3g,13.8mmol)、RuCl3・H2O(28.6mg,0.138mmol)、およびキサントホス(239.6mg,0.414mmol)を入れ、フラスコ内の気相をアルゴン置換した後、2,3−ブタンジオール(1.27mL,13.8mmol)を加え、110℃で1時間加熱し、更に180℃まで昇温し2日間加熱した。反応物の温度を室温に戻した後、クロロホルムに溶解させ、不溶分を濾別した。濾液を減圧濃縮した後、シリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)にて黄色固体である目的物を単離した(収量:2.62g,収率:70%)。目的物の生成は、1H−NMRにより確認した。
(1) Synthesis of Compound 1 1-aminopyrene (3 g, 13.8 mmol), RuCl 3 · H 2 O (28.6 mg, 0.138 mmol), and xantphos (239.6 mg, 0.414 mmol) were placed in an eggplant flask. After replacing the gas phase in the flask with argon, 2,3-butanediol (1.27 mL, 13.8 mmol) was added, and the mixture was heated at 110 ° C. for 1 hour, further heated to 180 ° C., and heated for 2 days. After returning the temperature of the reaction product to room temperature, it was dissolved in chloroform and the insoluble matter was filtered off. After concentrating the filtrate under reduced pressure, the target product as a yellow solid was isolated by silica gel column chromatography (eluent: chloroform) (yield: 2.62 g, yield: 70%). The formation of the target product was confirmed by 1 1 H-NMR.

(2)化合物2の合成
二口ナスフラスコにPd2(dba)3(170.3mg,0.186mmol)、およびP(2−furyl)3(85.9mg,0.37mmol)を入れ、フラスコ内の気相をアルゴン置換した。更にアリルメチルカーボネート(1.69mL,14.9mmol)、および脱水ジクロロメタン(18.6mL)を加え、室温で10分間撹拌した。この溶液を、別途用意していた化合物1(2g,7.43mmol)の脱水ジクロロメタン(18.6mL)溶液に加え、室温で3時間撹拌した。エバポレーターにて溶媒を除去した後、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン=1/3)にて、オレンジ色〜茶色の粘性液体である目的物を単離した(収量:1.25g,収率:55%)。目的物の生成は、1H−NMRにより確認した。
(2) Synthesis of Compound 2 Pd 2 (dba) 3 (170.3 mg, 0.186 mmol) and P (2-furyl) 3 (85.9 mg, 0.37 mmol) were placed in a two-necked eggplant flask and inside the flask. The gas phase of the flask was substituted with argon. Further, allyl methyl carbonate (1.69 mL, 14.9 mmol) and dehydrated dichloromethane (18.6 mL) were added, and the mixture was stirred at room temperature for 10 minutes. This solution was added to a separately prepared solution of compound 1 (2 g, 7.43 mmol) in dehydrated dichloromethane (18.6 mL), and the mixture was stirred at room temperature for 3 hours. After removing the solvent with an evaporator, the target product, which is an orange to brown viscous liquid, was isolated by silica gel column chromatography (eluent: ethyl acetate / hexane = 1/3) (yield: 1.25 g). , Yield: 55%). The formation of the target product was confirmed by 1 1 H-NMR.

(3)化合物3の合成
二口ナスフラスコに化合物2(1.2g,3.88mmol)、およびPd/C(120mg,10w%)を入れ、フラスコ内の気相を水素置換した後、メタノール(19.4mL)を加えた。更に同溶液に水素ガスをバブリングし、室温で4時間撹拌した。ひだ折り濾紙で不溶物を除去した後、濾液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=5/1)にてオレンジ色固体である目的物を単離した(収量:954mg,収率:79%)。目的物の生成は、1H−NMRにより確認した。
(3) Synthesis of Compound 3 Compound 2 (1.2 g, 3.88 mmol) and Pd / C (120 mg, 10 w%) were placed in a two-necked eggplant flask, the gas phase in the flask was replaced with hydrogen, and then methanol (1.2 g, 3.88 mmol) was placed. 19.4 mL) was added. Further, hydrogen gas was bubbled into the same solution, and the mixture was stirred at room temperature for 4 hours. After removing the insoluble matter with a fold-folded filter paper, the filtrate was concentrated under reduced pressure, and the target product as an orange solid was isolated by silica gel column chromatography (eluent: hexane / ethyl acetate = 5/1) (yield: 954 mg, yield: 79%). The formation of the target product was confirmed by 1 1 H-NMR.

(4)化合物4の合成
ナスフラスコに化合物3(694mg,2.23mmol)、ヨードメタン(2mL)、およびアセトニトリル(11.2mL)を入れ、80℃で24時間加熱した。析出物を濾取することにより、黄色粉末固体である目的物を得た(収量:512mg,収率:51%)。目的物の生成は、1H−NMRにより確認した。
(4) Synthesis of Compound 4 Compound 3 (694 mg, 2.23 mmol), iodomethane (2 mL), and acetonitrile (11.2 mL) were placed in an eggplant flask and heated at 80 ° C. for 24 hours. The precipitate was collected by filtration to obtain the desired product as a solid yellow powder (yield: 512 mg, yield: 51%). The formation of the target product was confirmed by 1 1 H-NMR.

(5)ピレン−スクアレイン色素(PYSQ)の合成
ナスフラスコに化合物4(200mg,0.44mmol)、3,4−ジエトキシ−3−シクロブテン−1,2−ジオン(32μL,0.22mmol)、および1−ブタノール/ピリジン=1/1の混合物(1.1mL/1.1mL)を入れ、120℃で21時間加熱還流した。反応液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン/メタノール=99/1)により単離した。更に熱メタノールで洗浄することにより、緑色粉末固体である目的物を得た(収量:40.6mg,収率:13%)。得られたPYSQの1H−NMRスペクトルを図1に示す。
(5) Synthesis of Pyrene-Squareine Dye (PYSQ) Compound 4 (200 mg, 0.44 mmol), 3,4-diethoxy-3-cyclobutene-1,2-dione (32 μL, 0.22 mmol), and 1 in an eggplant flask. A mixture of −butanol / pyridine = 1/1 (1.1 mL / 1.1 mL) was added, and the mixture was heated under reflux at 120 ° C. for 21 hours. The reaction mixture was concentrated under reduced pressure and isolated by silica gel column chromatography (eluent: dichloromethane / methanol = 99/1). Further washing with hot methanol gave the desired product as a green powder solid (yield: 40.6 mg, yield: 13%). The 1 H-NMR spectrum of the obtained PYSQ is shown in FIG.

試験例1: 蛍光特性
実施例1で合成したピレン−スクアレイン色素(PYSQ)の蛍光特性を評価した。比較のために、従来公知のスクアレイン色素(SQ)の蛍光特性も同様に評価した。結果を表1と図2に示す。
Test Example 1: Fluorescence characteristics The fluorescence characteristics of the pyrene-squareine dye (PYSQ) synthesized in Example 1 were evaluated. For comparison, the fluorescence characteristics of the conventionally known squalane dye (SQ) were also evaluated in the same manner. The results are shown in Table 1 and FIG.

Figure 2021031598
Figure 2021031598

表1および図2に示される結果の通り、PYSQは、SQと比べて100nm近く長波長化した光吸収・蛍光波長を示した。また、その輝度(モル吸光係数と蛍光量子収率の積)は、高輝度性色素と呼ばれるSQとほぼ同程度であった。 As shown in the results shown in Table 1 and FIG. 2, PYSQ showed a light absorption / fluorescence wavelength that was nearly 100 nm longer than that of SQ. The brightness (product of molar extinction coefficient and fluorescence quantum yield) was about the same as that of SQ, which is called a high-luminance dye.

試験例2: 光安定性試験
実施例1で合成したピレン−スクアレイン色素(PYSQ)をトルエンに溶解させ、657nmの励起光を照射し、蛍光強度の時間変化をモニターした。また、比較のために、従来公知のスクアレイン色素(SQ)についても、657nmにおける吸光度が一致するよう溶液の濃度調整した上で、同様に蛍光強度の時間変化をモニターした。結果を図3に示す。
図3に示される結果の通り、3時間の光照射後、SQの蛍光強度は初期状態に対して83%程度まで減衰した一方で、PYSQでは90%以上が維持された。したがって、PYSQの光安定性はSQよりも優れていることが判明した。なお、SQは、市販色素のNile Redなどと比べて遥かに光安定性に優れた色素である。
Test Example 2: Photostability test The pyrene-squareine dye (PYSQ) synthesized in Example 1 was dissolved in toluene, irradiated with excitation light of 657 nm, and the time change of fluorescence intensity was monitored. Further, for comparison, the concentration of the solution of the conventionally known squalane dye (SQ) was adjusted so that the absorbance at 657 nm was the same, and then the change in fluorescence intensity over time was similarly monitored. The results are shown in FIG.
As shown in the results shown in FIG. 3, after 3 hours of light irradiation, the fluorescence intensity of SQ was attenuated to about 83% with respect to the initial state, while it was maintained at 90% or more in PYSQ. Therefore, it was found that the photostability of PYSQ is superior to that of SQ. SQ is a dye having far superior light stability as compared with commercially available dyes such as Nile Red.

Claims (6)

下記式(I)で表されることを特徴とするピレン蛍光色素。
Figure 2021031598
[式中、
1は、カルボキシ基、スルホ基、アジド基、またはエチニル基で置換されていてもよいC1-18アルキル基を示し、
1は、>CR23(式中、R2とR3は独立してC1-18アルキル基を示す。)、−O−、または−S−を示し、
Yは、下記式(i)〜(iv)で表される基から選択されるいずれかの基を示す。
Figure 2021031598
(式中、
2とX3は、独立して、>CR1011(式中、R10とR11は独立してC1-18アルキル基を示す。)、−O−、または−S−を示し、
Zは=Oまたは=Sを示し、
4〜R9は、独立して、カルボキシ基、スルホ基、アジド基、またはエチニル基で置換されていてもよいC1-18アルキル基を示し、
lは、1以上、5以下の整数を示し、
mは、0以上、5以下の整数を示し、
nは、1以上、5以下の整数を示す。)]
A pyrene fluorescent dye represented by the following formula (I).
Figure 2021031598
[During the ceremony,
R 1 represents a C 1-18 alkyl group optionally substituted with a carboxy group, a sulfo group, an azide group, or an ethynyl group.
X 1 indicates> CR 2 R 3 (in the formula, R 2 and R 3 independently indicate a C 1-18 alkyl group), −O−, or −S−.
Y represents any group selected from the groups represented by the following formulas (i) to (iv).
Figure 2021031598
(During the ceremony,
X 2 and X 3 independently indicate> CR 10 R 11 (in the formula, R 10 and R 11 independently represent a C 1-18 alkyl group), -O-, or -S-. ,
Z indicates = O or = S,
R 4 to R 9 independently represent a C 1-18 alkyl group optionally substituted with a carboxy group, a sulfo group, an azide group, or an ethynyl group.
l indicates an integer of 1 or more and 5 or less,
m indicates an integer of 0 or more and 5 or less,
n represents an integer of 1 or more and 5 or less. )]
Yが式(i)で表される基である請求項1に記載のピレン蛍光色素。 The pyrene fluorescent dye according to claim 1, wherein Y is a group represented by the formula (i). 2が>CR1011である請求項2に記載のピレン蛍光色素。 The pyrene fluorescent dye according to claim 2, wherein X 2 is> CR 10 R 11. 4が無置換C1-18アルキル基である請求項2または3に記載のピレン蛍光色素。 The pyrene fluorescent dye according to claim 2 or 3, wherein R 4 is an unsubstituted C 1-18 alkyl group. 1が>CR23である請求項1〜4のいずれかに記載のピレン蛍光色素。 The pyrene fluorescent dye according to any one of claims 1 to 4, wherein X 1 is> CR 2 R 3. 1が無置換C1-18アルキル基である請求項1〜5のいずれかに記載のピレン蛍光色素。 The pyrene fluorescent dye according to any one of claims 1 to 5, wherein R 1 is an unsubstituted C 1-18 alkyl group.
JP2019153789A 2019-08-26 2019-08-26 Pyrene fluorescent dye Active JP7470357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019153789A JP7470357B2 (en) 2019-08-26 2019-08-26 Pyrene fluorescent dye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019153789A JP7470357B2 (en) 2019-08-26 2019-08-26 Pyrene fluorescent dye

Publications (2)

Publication Number Publication Date
JP2021031598A true JP2021031598A (en) 2021-03-01
JP7470357B2 JP7470357B2 (en) 2024-04-18

Family

ID=74678646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153789A Active JP7470357B2 (en) 2019-08-26 2019-08-26 Pyrene fluorescent dye

Country Status (1)

Country Link
JP (1) JP7470357B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063285A (en) * 2006-10-23 2007-03-15 Canon Inc Fluorene compound and organic light-emitting element using the same
JP2011046662A (en) * 2009-08-28 2011-03-10 Fujifilm Corp Near infrared fluorescent imaging agent
JP2011051969A (en) * 2009-09-03 2011-03-17 Samsung Mobile Display Co Ltd Heterocyclic compound, and organic light-emitting element employing the same
WO2015136583A1 (en) * 2014-03-11 2015-09-17 国立大学法人山口大学 Two-photon-absorbing compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063285A (en) * 2006-10-23 2007-03-15 Canon Inc Fluorene compound and organic light-emitting element using the same
JP2011046662A (en) * 2009-08-28 2011-03-10 Fujifilm Corp Near infrared fluorescent imaging agent
JP2011051969A (en) * 2009-09-03 2011-03-17 Samsung Mobile Display Co Ltd Heterocyclic compound, and organic light-emitting element employing the same
WO2015136583A1 (en) * 2014-03-11 2015-09-17 国立大学法人山口大学 Two-photon-absorbing compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthesis and sensitization behavior of pyrenothiazole- and pyrenothiazinecarbocyanines. I.Pyreno[4'", JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 647, JPN6023018367, 28 April 1961 (1961-04-28), pages 101 - 108, ISSN: 0005051445 *

Also Published As

Publication number Publication date
JP7470357B2 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
Chunikhin et al. Novel chromophores of cyanopyridine series with strong solvatochromism and near-infrared solid-state fluorescence
CN109054428B (en) Preparation method of near-infrared cyanine dye
Murali et al. Photochemical and DFT/TD-DFT study of trifluoroethoxy substituted asymmetric metal-free and copper (II) phthalocyanines
JP2012514063A (en) Copper phthalocyanine compound and near infrared absorption filter using the same
JPH0657235A (en) Production of binary sensitive color
JPH0745509B2 (en) Nickel complex
Kim et al. Syntheses and properties of functional aminosquarylium dyes
Reis et al. The synthesis and characterization of novel, aza-substituted squarylium cyanine dyes
WO2005078024A1 (en) Heteropolycyclic compound and dye
CN107090190B (en) A kind of acridine salt dyestuff and its preparation method and application
JP7470357B2 (en) Pyrene fluorescent dye
Lin et al. Synthesis and spectral characteristics of some highly soluble squarylium cyanine dyes
Xie et al. Construction and photoswitching properties of fluorescent diarylethenes
Meier et al. NIR absorbing squaraines by extension of the conjugation with (aminothiazolyl) ethenyl groups
JPS61215663A (en) Naphthalocyanine compound
Deligeorgiev et al. An improved method for tricyanovinilation of aromatic amines under ultrasound irradiation
Manav et al. Ferrocene and triphenylamine appended boranils
Fei et al. Synthesis and spectra of a kind of novel longer-wavelength benzoxazole indole styryl cyanine dye with a carbazole-bridged chain
Zhan et al. The synthesis and characterization of novel coumarin-containing cyanine dyes via “Click” chemistry
Yagi et al. Synthesis of near-infrared absorbing bisquarylium dyes bearing unsymmetrically extended π-conjugation structures
Shandura et al. Substituted xanthylocyanines. II. Pyroninocyanines
Ershova et al. Tunable full-color emission of stilbazoles containing a 2-halo-3, 4-dicyanopyridine acceptor
Niu et al. Novel azobenzene-phthalocyanine dyads—design of photo-modulated J-aggregation
Deligeorgiev et al. Synthesis, structure and spectral properties of pyrylium salts and their derivatives. I. 5, 6-Dihydro-benzo (c) xanthylium salts
Corns Novel near-infrared absorbing dyes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401

R150 Certificate of patent or registration of utility model

Ref document number: 7470357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150