JP2021031355A - Glass melting furnace and method for manufacturing glass - Google Patents

Glass melting furnace and method for manufacturing glass Download PDF

Info

Publication number
JP2021031355A
JP2021031355A JP2019155575A JP2019155575A JP2021031355A JP 2021031355 A JP2021031355 A JP 2021031355A JP 2019155575 A JP2019155575 A JP 2019155575A JP 2019155575 A JP2019155575 A JP 2019155575A JP 2021031355 A JP2021031355 A JP 2021031355A
Authority
JP
Japan
Prior art keywords
glass
melting
melting tank
tank
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019155575A
Other languages
Japanese (ja)
Other versions
JP7183994B2 (en
Inventor
俊明 松山
Toshiaki MATSUYAMA
俊明 松山
一樹 内田
Kazuki Uchida
一樹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2019155575A priority Critical patent/JP7183994B2/en
Priority to KR1020200106824A priority patent/KR20210027126A/en
Priority to CN202010862431.4A priority patent/CN112441722A/en
Priority to TW109129302A priority patent/TW202118742A/en
Publication of JP2021031355A publication Critical patent/JP2021031355A/en
Application granted granted Critical
Publication of JP7183994B2 publication Critical patent/JP7183994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces

Abstract

To provide a glass melting furnace capable of monitoring reduction in electrical resistance properties of an electrocast brick or an insulating member in the inside of a melting tank, and a method for manufacturing glass.SOLUTION: A glass melting furnace 10 comprises: a melting tank 20 for supplying a glass raw material to the inside; a plurality of energization electrodes 30 provided so as to separate to each other in a plan view in the inside of the melting tank 20 and for energizing and melting the glass raw material to obtain molten glass; a detection electrode 40 provided in a region on the outer side of an energization region 200 energized by the energization electrode 30 in a plan view in the inside of the melting tank 20 without supplying electric power from the outside of the melting tank 20; and a voltage detector 50 for detecting the voltage of the detection electrode 40.SELECTED DRAWING: Figure 2

Description

本発明は、ガラス溶解炉、及びガラス製造方法に関する。 The present invention relates to a glass melting furnace and a glass manufacturing method.

ガラス原料を溶解する方法の一つとして、溶解槽内に互いに対向する一対の電極を挿入して、通電する方法がある。電極間に交流電圧を加えて通電すると、ジュール熱が発生するため、ガラス原料は加熱されて温度が上昇し、ガラス原料を溶解できる。ガラス原料の電気加熱は、溶解槽内に電極を有するガラス溶解炉を用いて行われる。 As one of the methods for melting the glass raw material, there is a method in which a pair of electrodes facing each other are inserted into the melting tank to energize the glass. When an AC voltage is applied between the electrodes to energize the glass, Joule heat is generated, so that the glass raw material is heated and the temperature rises, so that the glass raw material can be melted. Electric heating of the glass raw material is performed using a glass melting furnace having an electrode in the melting tank.

たとえば特許文献1には、溶解槽の底部に設けた複数の通電電極に電圧を印加して通電することによって、ガラス原料を溶解するガラス溶解炉が開示されている。 For example, Patent Document 1 discloses a glass melting furnace that melts a glass raw material by applying a voltage to a plurality of energizing electrodes provided at the bottom of a melting tank to energize the glass raw material.

特開平7−300318号公報Japanese Unexamined Patent Publication No. 7-300318

しかし、たとえば、溶解槽内部の部材破損又は部材劣化等により、溶解槽内部の電鋳レンガ又は絶縁部材の電気抵抗特性が低下すると、溶解槽内部から溶解槽外部への漏れ電流が増加する。該漏れ電流により、漏れ電流が発生した周辺が発熱し、溶解槽内部の電鋳レンガ又は絶縁部材の浸食が促進される。その結果、ガラスに混入する不純物が増加するおそれがある。そのため、溶解槽内部の電鋳レンガ又は絶縁部材の電気抵抗特性を把握することが求められている。 However, if the electrical resistance characteristics of the electroformed brick or the insulating member inside the melting tank deteriorate due to, for example, damage to the members inside the melting tank or deterioration of the members, the leakage current from the inside of the melting tank to the outside of the melting tank increases. The leakage current generates heat in the vicinity where the leakage current is generated, and erosion of the electroformed brick or the insulating member inside the melting tank is promoted. As a result, impurities mixed in the glass may increase. Therefore, it is required to understand the electrical resistance characteristics of the electroformed brick or the insulating member inside the melting tank.

本発明は、溶解槽内部の電鋳レンガ又は絶縁部材の電気抵抗特性の低下を把握できるガラス溶解炉、及びガラス製造方法を提供することを目的とする。 An object of the present invention is to provide a glass melting furnace capable of grasping a decrease in electrical resistance characteristics of an electroformed brick or an insulating member inside a melting tank, and a glass manufacturing method.

本発明の一態様によるガラス溶解炉は、内部にガラス原料が供給される溶解槽と、該溶解槽の内部に平面視で互いに離間するように設けられて、前記ガラス原料を通電して溶解し、溶融ガラスを得る複数の通電電極と、前記溶解槽の内部における平面視にて前記通電電極によって通電される通電領域の外側の領域に設けられ、前記溶解槽の外部から電力が供給されない検出用電極と、前記検出用電極の電圧を検出する電圧検出部とを備える。 The glass melting furnace according to one aspect of the present invention is provided inside the melting tank to which the glass raw material is supplied so as to be separated from each other in a plan view, and the glass raw material is energized to melt the glass raw material. , A plurality of energizing electrodes for obtaining molten glass, and a region outside the energizing region energized by the energizing electrode in a plan view inside the melting tank, for detection in which electric power is not supplied from the outside of the melting tank. It includes an electrode and a voltage detection unit that detects the voltage of the detection electrode.

本発明のガラス溶解炉、及びガラス製造方法は、溶解槽内部の電鋳レンガ又は絶縁部材の電気抵抗特性の低下を把握できる。 The glass melting furnace and the glass manufacturing method of the present invention can grasp the decrease in the electrical resistance characteristics of the electroformed brick or the insulating member inside the melting tank.

本発明に係る第一実施形態におけるガラス溶解炉の平面図である。It is a top view of the glass melting furnace in the 1st Embodiment which concerns on this invention. 図1におけるII−II線断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 本発明に係る実施形態におけるガラスの製造工程を示すフロー図である。It is a flow chart which shows the manufacturing process of the glass in embodiment which concerns on this invention. 本発明に係る実施形態における溶解工程中の電圧検出工程及び比較工程を示すフロー図である。It is a flow chart which shows the voltage detection process and comparison process in the melting process in embodiment which concerns on this invention. 本発明に係る実施形態における検出用電極で検出した電圧(対地電位)の時間変化を示すグラフである。It is a graph which shows the time change of the voltage (ground potential) detected by the detection electrode in the embodiment which concerns on this invention. 本発明に係る実施形態における溶解工程中の電圧検出工程及び接地切替工程を示すフロー図である。It is a flow chart which shows the voltage detection process and grounding switching process in the melting process in embodiment which concerns on this invention. 本発明に係る第二実施形態におけるガラス溶解炉の平面図である。It is a top view of the glass melting furnace in the 2nd Embodiment which concerns on this invention. 図7におけるVIII−VIII線断面図である。FIG. 7 is a sectional view taken along line VIII-VIII in FIG.

以下、本発明に係る各種実施形態について、図面を用いて説明する。 Hereinafter, various embodiments according to the present invention will be described with reference to the drawings.

「第一実施形態」
本発明に係るガラス溶解炉の第一実施形態について、図1〜図2を参照して説明する。
"First embodiment"
The first embodiment of the glass melting furnace according to the present invention will be described with reference to FIGS. 1 and 2.

まず、ガラス溶解炉の構造について説明する。 First, the structure of the glass melting furnace will be described.

図1及び図2に示すように、本実施形態のガラス溶解炉10は、内部にガラス原料が供給される溶解槽20と、複数の通電電極30と、検出用電極40と、電圧検出部50と、通常接地電極60と、接地切替部70と、溶解槽20の上方を覆う上部構造物80とを備える。図1は、上部構造物80を透視したガラス溶解炉10の平面図を示す。 As shown in FIGS. 1 and 2, the glass melting furnace 10 of the present embodiment includes a melting tank 20 in which a glass raw material is supplied, a plurality of energizing electrodes 30, a detection electrode 40, and a voltage detection unit 50. A normal ground electrode 60, a ground switching portion 70, and a superstructure 80 that covers the upper part of the melting tank 20 are provided. FIG. 1 shows a plan view of the glass melting furnace 10 through which the superstructure 80 is seen through.

ガラス溶解炉10は、上部構造物80にバーナー(不図示)を備えており、バーナー燃焼、及び通電電極30に電圧を印加することによって、溶解槽20内部に供給されたガラス原料を溶解する。溶解槽20は、底部21と側壁部22とを備え、内部に供給されたガラス原料を溶解して得られた溶融ガラスGを保持する。溶解槽20は、X軸方向上流側(図1及び図2の右側)に投入部23とX軸方向下流側(図1及び図2の左側)に取出部24を有する。溶解槽20において、ガラス原料は投入部23から投入され、溶解された溶融ガラスGは取出部24から取り出される。 The glass melting furnace 10 is provided with a burner (not shown) in the superstructure 80, and melts the glass raw material supplied to the inside of the melting tank 20 by burning the burner and applying a voltage to the energizing electrode 30. The melting tank 20 includes a bottom portion 21 and a side wall portion 22, and holds the molten glass G obtained by melting the glass raw material supplied to the inside. The melting tank 20 has a charging section 23 on the upstream side in the X-axis direction (right side in FIGS. 1 and 2) and an extraction section 24 on the downstream side in the X-axis direction (left side in FIGS. 1 and 2). In the melting tank 20, the glass raw material is charged from the charging unit 23, and the melted molten glass G is taken out from the extraction unit 24.

図1の平面視において、溶解槽20は、溶融ガラスGの流れ方向(X軸方向)に沿って配置される側壁部22の内壁22a、及びX軸方向に対して垂直なY軸方向に沿って配置される側壁部22の内壁22aで四方を囲むことによって、矩形の槽内領域25を形成する。該槽内領域25は、該平面視において、X軸方向を長辺、Y軸方向を短辺とする矩形を形成する。 In the plan view of FIG. 1, the melting tank 20 is arranged along the inner wall 22a of the side wall portion 22 arranged along the flow direction (X-axis direction) of the molten glass G, and along the Y-axis direction perpendicular to the X-axis direction. A rectangular in-tank region 25 is formed by surrounding all sides with an inner wall 22a of the side wall portion 22 arranged therein. The in-tank region 25 forms a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction in the plan view.

底部21又は側壁部22は、電鋳レンガと絶縁部材とを含み、底部21又は側壁部22の内側に電鋳レンガ、外側に絶縁部材が設けられてよい。また、底部21又は側壁部22は、絶縁部材を含み、底部21又は側壁部22の内側及び外側に絶縁部材が設けられてもよい。電鋳レンガ又は絶縁部材は、底部21及び側壁部22から溶解槽20外部への電流の漏れを防いでいる。電鋳レンガは、焼成レンガに比べて、高温で溶解した溶融ガラスGに対して耐食性を有するため、泡、砂利が発生しにくく、溶解した溶融ガラスGを汚染しにくい、という優れた特性を有する。電鋳レンガとしては、AZS系電鋳レンガ、ジルコニア系電鋳レンガ、又はアルミナ系電鋳レンガが挙げられる。絶縁部材は、デンスジルコンレンガ、ジルコン質レンガ、又はムライト質レンガ等の焼結レンガが用いられる。また、絶縁部材は、ヘミサル、雲母板等の電気抵抗が高い耐火材料が用いられてもよい。 The bottom portion 21 or the side wall portion 22 includes an electroformed brick and an insulating member, and the electroformed brick may be provided inside the bottom portion 21 or the side wall portion 22 and an insulating member may be provided on the outside. Further, the bottom portion 21 or the side wall portion 22 may include an insulating member, and the bottom portion 21 or the side wall portion 22 may be provided with the insulating member inside and outside. The electroformed brick or insulating member prevents current from leaking from the bottom portion 21 and the side wall portion 22 to the outside of the melting tank 20. Compared to fired bricks, electroformed bricks have corrosion resistance to molten glass G melted at a high temperature, so that they are less likely to generate bubbles and gravel and are less likely to contaminate the melted molten glass G. .. Examples of the electroformed brick include AZS-based electroformed brick, zirconia-based electroformed brick, and alumina-based electroformed brick. As the insulating member, sintered bricks such as dense zircon bricks, zircon bricks, and mullite bricks are used. Further, as the insulating member, a refractory material having high electrical resistance such as hemisal or mica plate may be used.

各通電電極30は、Z軸方向に延びる形状を有し、底部21を貫通するように配置される。各通電電極30の先端部は、溶融ガラスGに挿入されるように溶解槽20内に延びている。各通電電極30は導電体で構成され、底部21とは電気的に絶縁されている一方で、溶融ガラスGとは電気的に導通するように構成されている。通電電極30は、図1の平面視において、X軸方向に沿って槽内領域25の各長辺寄りに3対ずつ、計6対配置される。通電電極30の各対は、X軸方向に対向するように配置される。通電電極30の各対に、交流電圧を印加する電源100が、溶解槽20外部においてそれぞれ接続される。通電電極30に印加された交流電圧は、通電電極30を通じて溶融ガラスGに印加されるため、溶融ガラスGに電気が流れて、ジュール熱が発生し、溶融ガラスGが加熱される。 Each energizing electrode 30 has a shape extending in the Z-axis direction and is arranged so as to penetrate the bottom portion 21. The tip of each current-carrying electrode 30 extends into the melting tank 20 so as to be inserted into the molten glass G. Each energizing electrode 30 is made of a conductor and is electrically insulated from the bottom 21 while being electrically conductive with the molten glass G. In the plan view of FIG. 1, three pairs of energizing electrodes 30 are arranged along the X-axis direction near each long side of the in-tank region 25, for a total of six pairs. Each pair of the energizing electrodes 30 is arranged so as to face each other in the X-axis direction. A power source 100 for applying an AC voltage is connected to each pair of the energizing electrodes 30 outside the melting tank 20. Since the AC voltage applied to the energizing electrode 30 is applied to the molten glass G through the energizing electrode 30, electricity flows through the molten glass G to generate Joule heat, and the molten glass G is heated.

複数の通電電極30は、溶解槽20の内部に互いに離間するように設けられており、通電領域200を画定する。図1に示すように、通電領域200は、隣り合う電極と共通接線を結んだ領域である。該通電領域200は、図1の平面視において、X軸方向を長辺、Y軸方向を短辺とする矩形の通電領域200を形成している。 The plurality of energizing electrodes 30 are provided inside the melting tank 20 so as to be separated from each other, and define the energizing region 200. As shown in FIG. 1, the energization region 200 is a region connecting adjacent electrodes and a common tangent. The energizing region 200 forms a rectangular energizing region 200 having a long side in the X-axis direction and a short side in the Y-axis direction in the plan view of FIG.

検出用電極40は、Z軸方向に延びる形状を有し、底部21を貫通するように配置される。検出用電極40の先端部は、溶融ガラスGに挿入されるように溶解槽20内に延びている。検出用電極40は導電体で構成され、底部21に対して電気的に絶縁されている一方で、溶融ガラスGとは導通するように構成されている。 The detection electrode 40 has a shape extending in the Z-axis direction and is arranged so as to penetrate the bottom portion 21. The tip of the detection electrode 40 extends into the melting tank 20 so as to be inserted into the molten glass G. The detection electrode 40 is made of a conductor and is electrically insulated from the bottom portion 21 while being electrically insulated from the molten glass G.

検出用電極40は、通電領域200の外側周辺であって、側壁部22の内側に8本設けられる。図1の平面視において、検出用電極40は、通電領域200のX軸方向上流側に2本、及びX軸方向に沿って槽内領域25の各長辺寄りに3本ずつ、計8本配置される。図1に示すように、各長辺側に沿って配置された3本の検出用電極40と3対の通電電極30とは、X軸方向に対して互いに同じピッチで配置される。 Eight detection electrodes 40 are provided around the outer side of the energized region 200 and inside the side wall portion 22. In the plan view of FIG. 1, there are a total of eight detection electrodes 40, two on the upstream side of the energization region 200 in the X-axis direction and three on each long side of the tank region 25 along the X-axis direction. Be placed. As shown in FIG. 1, the three detection electrodes 40 and the three pairs of energizing electrodes 30 arranged along each long side are arranged at the same pitch with respect to the X-axis direction.

検出用電極40と側壁部22との位置関係について説明する。図1に示すように、通電領域200の端と側壁部22の内壁22aとの距離がLaであるとき、検出用電極40は、側壁部22の内壁22aから距離がLbとなる位置に配置される。検出用電極40は、La>2Lbの関係を有する位置、すなわち通電領域200の端よりも内壁22aに近い位置に配置される。当該位置に検出用電極40を配置すれば、通電領域200の影響を受けずに、電鋳レンガ又は絶縁部材の電気抵抗特性の低下による対地電位の変化を高感度に検知できる。 The positional relationship between the detection electrode 40 and the side wall portion 22 will be described. As shown in FIG. 1, when the distance between the end of the energization region 200 and the inner wall 22a of the side wall portion 22 is La, the detection electrode 40 is arranged at a position where the distance from the inner wall 22a of the side wall portion 22 is Lb. To. The detection electrode 40 is arranged at a position having a relationship of La> 2Lb, that is, at a position closer to the inner wall 22a than the end of the energization region 200. If the detection electrode 40 is arranged at the position, the change in the ground potential due to the deterioration of the electric resistance characteristic of the electroformed brick or the insulating member can be detected with high sensitivity without being affected by the energized region 200.

検出用電極40は、溶解槽20外部において、電圧検出部50の第一端及び接地切替部70の第一端と接続されている。一方、溶解槽20外部において、電圧検出部50の第二端及び接地切替部70の第二端は、接地されている。したがって、検出用電極40には、電源100を含む外部からの電力が供給されないから、溶融ガラスGの対地電位を検出できる。 The detection electrode 40 is connected to the first end of the voltage detection unit 50 and the first end of the ground switching unit 70 outside the melting tank 20. On the other hand, outside the melting tank 20, the second end of the voltage detection unit 50 and the second end of the ground switching unit 70 are grounded. Therefore, since the detection electrode 40 is not supplied with electric power from the outside including the power source 100, the ground potential of the molten glass G can be detected.

電圧検出部50は、電圧検出部50の第一端と第二端との間の電圧を検出することによって、検出用電極40の対地電位を検出する。本実施形態では、電源100と同期する交流電圧を電圧検出部50によって検出しているが、直流電圧、電源100と異なる周波数の交流電圧、又は電源100と異なる位相の交流電圧を検出してもよく、検出される電圧の大きさや環境ノイズを考慮して、検出する電圧を選択すればよい。後で詳細を説明するように、検出用電極40及び電圧検出部50によって、溶解槽20内部の電鋳レンガ又は絶縁部材の電気抵抗特性の低下をモニタリングできる。 The voltage detection unit 50 detects the ground potential of the detection electrode 40 by detecting the voltage between the first end and the second end of the voltage detection unit 50. In the present embodiment, the AC voltage synchronized with the power supply 100 is detected by the voltage detection unit 50, but even if the DC voltage, the AC voltage having a frequency different from that of the power supply 100, or the AC voltage having a phase different from that of the power supply 100 is detected. Often, the voltage to be detected may be selected in consideration of the magnitude of the detected voltage and the environmental noise. As will be described in detail later, the detection electrode 40 and the voltage detection unit 50 can monitor the deterioration of the electrical resistance characteristics of the electroformed brick or the insulating member inside the melting tank 20.

接地切替部70は、手動又は自動によって、接地切替部70自身の第一端と第二端との電気的な接続状態の切り替えができる。接地切替部70の切り替えによって、接地切替部70は、検出用電極40の電位を、非接地状態又は接地状態に切り替えができる。接地切替部70としては、スイッチ、ブレーカー、可変抵抗、又はクリップ付配線が適用できる。後で詳細を説明するように、接地切替部70を用いて、非接地状態又は接地状態に切り替えることよって、モニタリング作業とメンテナンス作業とを実施できる。 The ground switching unit 70 can manually or automatically switch the electrical connection state between the first end and the second end of the ground switching unit 70 itself. By switching the ground switching unit 70, the ground switching unit 70 can switch the potential of the detection electrode 40 to a non-grounded state or a grounded state. As the ground switching unit 70, a switch, a breaker, a variable resistor, or wiring with a clip can be applied. As will be described in detail later, the monitoring work and the maintenance work can be performed by switching to the non-grounded state or the grounded state by using the grounding switching unit 70.

通常接地電極60は、Z軸方向に延びる形状を有し、底部21を貫通するように配置される。通常接地電極60は導電体で構成され、底部21に対して電気的に絶縁されている一方で、溶融ガラスGとは導通するように構成されている。通常接地電極60は、通電領域200の外側であって、側壁部22の内側に1本設けられる。図1の平面視において、通常接地電極60は、通電領域200のX軸方向下流側に1本配置される。溶解槽20外部において、通常接地電極60は常時接地されている。通常接地電極60によって、X軸方向下流側の対地電位を下げることによって、取出部24より下流側の装置に電気が流れることを防止している。 Normally, the ground electrode 60 has a shape extending in the Z-axis direction and is arranged so as to penetrate the bottom portion 21. Normally, the ground electrode 60 is made of a conductor and is electrically insulated from the bottom 21 while being electrically insulated from the molten glass G. Normally, one ground electrode 60 is provided outside the energizing region 200 and inside the side wall portion 22. In the plan view of FIG. 1, one ground electrode 60 is usually arranged on the downstream side in the X-axis direction of the energization region 200. Outside the melting tank 20, the ground electrode 60 is usually always grounded. Normally, the ground electrode 60 lowers the ground potential on the downstream side in the X-axis direction to prevent electricity from flowing to the device downstream from the take-out portion 24.

本実施形態のガラス溶解炉10を用いたガラス製造方法について図3を参考に説明する。 The glass manufacturing method using the glass melting furnace 10 of the present embodiment will be described with reference to FIG.

ガラス原料を溶解槽20内に供給し、ガラス原料を加熱して溶解する(溶解工程:S1)。上部構造物80に貫通して設けられたバーナー(不図示)の火炎をガラス原料に向かって放射することによって、ガラス原料を上方から加熱する。バーナーの火炎によって加熱すると共に、複数の通電電極30に電圧を印加することによって通電し、ジュール熱を発生させ、ガラス原料を加熱する。 The glass raw material is supplied into the melting tank 20 and the glass raw material is heated and melted (melting step: S1). The glass raw material is heated from above by radiating a flame of a burner (not shown) provided through the superstructure 80 toward the glass raw material. It is heated by the flame of a burner and is energized by applying a voltage to a plurality of energizing electrodes 30 to generate Joule heat and heat the glass raw material.

ガラス原料を溶解して得られた溶融ガラスGは溶解槽20より下流において設けられた成形炉(不図示)で成形される(成形工程:S2)。成形されたガラスは、成形炉より下流に設けられた徐冷炉(不図示)で徐冷され(徐冷工程:S3)、ガラス製品となる。 The molten glass G obtained by melting the glass raw material is molded in a molding furnace (not shown) provided downstream from the melting tank 20 (molding step: S2). The molded glass is slowly cooled in a slow cooling furnace (not shown) provided downstream of the molding furnace (slow cooling step: S3) to become a glass product.

本実施形態のガラス溶解炉10における溶解槽20内部のモニタリング方法及びメンテナンス作業について詳しく説明する。 The monitoring method and maintenance work inside the melting tank 20 in the glass melting furnace 10 of the present embodiment will be described in detail.

モニタリング方法について、図4を参考に説明する。
溶解工程S1中において、各検出用電極40の電圧を検出する(電圧検出工程:S1a)。各接地切替部70を非接地状態に設定し、電圧検出部50によって、各検出用電極40の電圧が検出される。各検出用電極40と溶融ガラスGとは電気的に導通しているから、電圧検出部50が検出する電圧は、各検出用電極40が配置される位置の溶融ガラスGの対地電位に対応する。したがって、電圧検出部50をモニタリングすることによって、通電領域200の外側周辺の溶融ガラスGの電位状態をモニタリングできる。
The monitoring method will be described with reference to FIG.
In the melting step S1, the voltage of each detection electrode 40 is detected (voltage detection step: S1a). Each ground switching unit 70 is set to a non-grounded state, and the voltage of each detection electrode 40 is detected by the voltage detection unit 50. Since each detection electrode 40 and the molten glass G are electrically conductive, the voltage detected by the voltage detection unit 50 corresponds to the ground potential of the molten glass G at the position where each detection electrode 40 is arranged. .. Therefore, by monitoring the voltage detection unit 50, the potential state of the molten glass G around the outside of the energized region 200 can be monitored.

通常、底部21及び側壁部22は、電鋳レンガ又は絶縁部材によって、溶融ガラスGと溶解槽20外部とは電気的に絶縁されている。該絶縁によって、溶解槽20内で溶解している溶融ガラスGは、高い対地電位を有している。しかし、底部21及び側壁部22内側の電鋳レンガ又は絶縁部材の電気抵抗特性の低下が進むと、溶融ガラスGから溶解槽20外部へ向かって流れる漏れ電流が増加する。溶解槽20外部へ向う漏れ電流が増加すると、電気抵抗特性の低下した電鋳レンガ又は絶縁部材周辺の溶融ガラスGの対地電位が低くなる。したがって、電圧検出部50で各検出用電極40の電圧をモニタリングすれば、底部21及び側壁部22内側の電鋳レンガ又は絶縁部材の電気抵抗特性の低下をモニタリングできる。 Usually, the bottom portion 21 and the side wall portion 22 are electrically insulated from the molten glass G and the outside of the melting tank 20 by an electroformed brick or an insulating member. The molten glass G melted in the melting tank 20 by the insulation has a high ground potential. However, as the electrical resistance characteristics of the electroformed brick or the insulating member inside the bottom portion 21 and the side wall portion 22 continue to decrease, the leakage current flowing from the molten glass G to the outside of the melting tank 20 increases. When the leakage current toward the outside of the melting tank 20 increases, the ground potential of the molten glass G around the electroformed brick or the insulating member whose electrical resistance characteristics have deteriorated decreases. Therefore, if the voltage of each detection electrode 40 is monitored by the voltage detection unit 50, it is possible to monitor a decrease in the electrical resistance characteristics of the electroformed brick or the insulating member inside the bottom portion 21 and the side wall portion 22.

溶解工程S1中において、電圧検出工程S1aに続き、電圧検出部50で検出した各電圧を比較する(比較工程:S1b)。本実施形態の場合、溶解槽20内部の異なる位置に複数の検出用電極40を設けているから、溶解槽20内部の異なる位置の対地電位を検出できる。異なる位置の対地電位を検出することによって、互いの対地電位を比較できるから、異常な対地電位を検出できると共に、対地電位が異常を示す位置を特定できる。対地電位が異常を示す位置を特定できれば、電気抵抗特性の低下した電鋳レンガ又は絶縁部材を特定できる。 In the melting step S1, following the voltage detection step S1a, each voltage detected by the voltage detection unit 50 is compared (comparison step: S1b). In the case of the present embodiment, since the plurality of detection electrodes 40 are provided at different positions inside the melting tank 20, the ground potentials at different positions inside the melting tank 20 can be detected. By detecting the ground potentials at different positions, the ground potentials can be compared with each other, so that an abnormal ground potential can be detected and a position where the ground potential indicates an abnormality can be specified. If the position where the ground potential shows an abnormality can be specified, the electroformed brick or the insulating member having reduced electrical resistance characteristics can be specified.

8本の検出用電極40で検出される電圧のうち、通電領域200のX軸方向上流側に配置される2本の検出用電極40によって検出される電圧は、他の位置に比べて検出される電圧が高い。したがって、該2本の検出用電極40で検出される電圧が、電鋳レンガ又は絶縁部材の電気抵抗特性の低下をより感度良くモニタリングできる。 Of the voltages detected by the eight detection electrodes 40, the voltage detected by the two detection electrodes 40 arranged on the upstream side in the X-axis direction of the energization region 200 is detected as compared with the other positions. The voltage is high. Therefore, the voltage detected by the two detection electrodes 40 can more sensitively monitor the decrease in the electrical resistance characteristics of the electroformed brick or the insulating member.

図5には、電圧検出部50でモニタリングした検出用電極40の対地電位波形の例が示され、横軸にモニタリングの時間、縦軸に電圧検出部50によって検出した電圧(対地電位)が示される。通常の対地電位Voは高い値となるが、絶縁劣化後において、対地電位は低下し、低い値となっていることがわかる。したがって、通常の対地電位Voより低い値にしきい値Vsを設定し、検出された対地電位としきい値Vsを比較し、対地電位がしきい値Vs以下となったことを検出すれば、電鋳レンガ又は絶縁部材の絶縁劣化が起こった瞬間を検出したことになる。たとえば、図5の場合、通常の対地電位Voより15%低い値にしきい値Vsを設定している。 FIG. 5 shows an example of the ground potential waveform of the detection electrode 40 monitored by the voltage detection unit 50, and the horizontal axis shows the monitoring time and the vertical axis shows the voltage (ground potential) detected by the voltage detection unit 50. Is done. It can be seen that the normal ground potential Vo becomes a high value, but after the insulation deteriorates, the ground potential decreases and becomes a low value. Therefore, if the threshold value Vs is set to a value lower than the normal ground potential Vo, the detected ground potential is compared with the threshold value Vs, and it is detected that the ground potential is equal to or less than the threshold value Vs, electroforming is performed. It means that the moment when the insulation deterioration of the brick or the insulating member occurs is detected. For example, in the case of FIG. 5, the threshold value Vs is set to a value 15% lower than the normal ground potential Vo.

メンテナンス作業について、図6を参考に説明する。
溶解工程S1中において、検出用電極40の電圧を検出(電圧検出工程:S1c)し、電鋳レンガ又は絶縁部材の絶縁劣化を検出したら、対地電位が低下した位置の検出用電極40に接続される接地切替部70を接地状態に切り替えて、該検出用電極40周辺の対地電位を接地電位にする(接地切替工程:S1d)。対地電位を接地電位に落とせば、絶縁劣化した電鋳レンガ又は絶縁部材のさらなる浸食を抑制できる。さらに、対地電位を接地電位に落とせば、高電圧下でのメンテナンス作業を回避でき、簡便に側壁部22の修理を行うことができる。メンテナンス作業を行ったときは、作業終了後、接地切替部70を非接地状態に切り替えて、通常の溶解工程を実行する。
The maintenance work will be described with reference to FIG.
In the melting step S1, when the voltage of the detection electrode 40 is detected (voltage detection step: S1c) and the insulation deterioration of the electrocast brick or the insulating member is detected, it is connected to the detection electrode 40 at the position where the ground potential is lowered. The ground switching unit 70 is switched to the ground state, and the ground potential around the detection electrode 40 is set to the ground potential (ground switching step: S1d). If the ground potential is lowered to the ground potential, further erosion of the electroformed brick or the insulating member whose insulation has deteriorated can be suppressed. Further, if the ground potential is lowered to the ground potential, maintenance work under a high voltage can be avoided, and the side wall portion 22 can be easily repaired. When the maintenance work is performed, after the work is completed, the grounding switching unit 70 is switched to the non-grounded state, and the normal melting step is executed.

「第二実施形態」
本発明に係るガラス溶解炉の第二実施形態について、図7及び図8を参照して説明する。以下、第一実施形態と異なる点のみ説明する。
"Second embodiment"
A second embodiment of the glass melting furnace according to the present invention will be described with reference to FIGS. 7 and 8. Hereinafter, only the points different from the first embodiment will be described.

本実施形態のガラス溶解炉10Aは、複数の通電電極31を備えている。通電電極31は、図7の平面視において、X軸方向に沿って槽内領域25の各長辺に3個ずつ、計6個配置される。各通電電極31は、第1の板面31a及び第2の板面31bを一対の板面とする板形状を有する。各通電電極31は導電体で構成される。各通電電極31は、第1の板面31aを、溶解槽20の側壁部22の内壁22aに合わせるように、溶解槽20内部に配置される。図7に示すように、槽内領域25の各長辺にそれぞれ配置された一対の通電電極31は、互いの第2の板面31bがY軸方向に対向するように配置される。なお、図8では、便宜上、一対の通電電極31は、X軸方向及びZ軸方向で互いにずらして配置されている。該一対の通電電極31は、X軸方向に沿って3対配置される。各通電電極31は、溶解槽20内部から溶解槽20外部に通ずる配線によって、電源100に接続される。通電電極31の各対に対し、該電源100がそれぞれ接続される。 The glass melting furnace 10A of the present embodiment includes a plurality of energizing electrodes 31. In the plan view of FIG. 7, three current-carrying electrodes 31 are arranged on each long side of the in-tank region 25 along the X-axis direction, for a total of six. Each energizing electrode 31 has a plate shape in which the first plate surface 31a and the second plate surface 31b are a pair of plate surfaces. Each energizing electrode 31 is composed of a conductor. Each energizing electrode 31 is arranged inside the melting tank 20 so that the first plate surface 31a is aligned with the inner wall 22a of the side wall portion 22 of the melting tank 20. As shown in FIG. 7, the pair of energizing electrodes 31 arranged on each long side of the in-tank region 25 are arranged so that their second plate surfaces 31b face each other in the Y-axis direction. In FIG. 8, for convenience, the pair of energizing electrodes 31 are arranged so as to be offset from each other in the X-axis direction and the Z-axis direction. The pair of energizing electrodes 31 are arranged in three pairs along the X-axis direction. Each energizing electrode 31 is connected to the power supply 100 by a wiring leading from the inside of the melting tank 20 to the outside of the melting tank 20. The power supply 100 is connected to each pair of the energizing electrodes 31.

複数の通電電極31は、溶解槽20の内部に平面視で互いに離間するように設けられており、通電領域201を画定する。本構成の通電電極31の通電により、溶解槽20の広い範囲を加熱できる。図7に示すように、通電領域201は、X軸方向で最上流の一対の通電電極31の上流側における共通接線と、X軸方向で最下流の一対の通電電極31の下流側における共通接線と、側壁部22の内壁22aとを結んだ領域である。該通電領域201は、図7の平面視において、矩形の通電領域201を形成している。 The plurality of energizing electrodes 31 are provided inside the melting tank 20 so as to be separated from each other in a plan view, and define the energizing region 201. A wide range of the melting tank 20 can be heated by energizing the energizing electrode 31 having this configuration. As shown in FIG. 7, the energization region 201 has a common tangent on the upstream side of the pair of energizing electrodes 31 that is the most upstream in the X-axis direction and a common tangent on the downstream side of the pair of energizing electrodes 31 that is the most downstream in the X-axis direction. And the area connecting the inner wall 22a of the side wall portion 22. The energized region 201 forms a rectangular energized region 201 in the plan view of FIG. 7.

図7の平面視において、検出用電極41は、通電領域201のX軸方向上流側に2本配置される。 In the plan view of FIG. 7, two detection electrodes 41 are arranged on the upstream side in the X-axis direction of the energization region 201.

以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成は前記実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the above embodiments, and design changes within a range not deviating from the gist of the present invention are also included.

本実施形態では、通常接地電極60を設置したが、取出部24より下流側の装置に流れる電気が問題にならなければ、通常接地電極60を設置しなくてもよい。また、通常接地電極60に代えて、通常接地電極60の位置に検出用電極40、41を設けてよい。 In the present embodiment, the ground electrode 60 is usually installed, but if the electricity flowing to the device downstream from the take-out portion 24 does not matter, the ground electrode 60 may not be installed normally. Further, instead of the normal ground electrode 60, the detection electrodes 40 and 41 may be provided at the position of the normal ground electrode 60.

本実施形態では、バーナー加熱及び電気加熱により、ガラス原料の溶解を行っているが、該電気加熱単独でガラス原料の溶解を行ってもよい。 In the present embodiment, the glass raw material is melted by the burner heating and the electric heating, but the glass raw material may be melted by the electric heating alone.

本実施形態では、平面視において矩形の槽内領域25又は矩形の通電領域200、201を構成するものとしたが、X軸方向又はY軸方向どちらが長辺となってもよいし、正方形であってもよい。矩形以外の形状であってもよい。 In the present embodiment, the rectangular in-tank region 25 or the rectangular energizing regions 200 and 201 are configured in a plan view, but either the X-axis direction or the Y-axis direction may be the long side, and the side is square. You may. It may have a shape other than a rectangle.

本実施形態では、通電電極、検出用電極及び通常接地電極について、特定の個数又は配置について説明したが、溶解工程を実行できるものであれば、どのような個数又は配置であってもよい。 In the present embodiment, a specific number or arrangement of the current-carrying electrode, the detection electrode, and the normal ground electrode has been described, but any number or arrangement may be used as long as the melting step can be performed.

検出用電極40の径は、溶解工程に影響を与えないように構成するならより細く構成すればよいし、接地時に多くの電流を流すならより太く構成すればよい。 The diameter of the detection electrode 40 may be made smaller if it is configured so as not to affect the melting process, or may be configured to be larger if a large amount of current is passed at the time of grounding.

本実施形態では、第一実施形態と第二実施形態とで違う通電電極を用いた形態を説明したが、一つの形態に通電電極30と通電電極31とを組み合わせて設置してもよい。なお、各通電電極30,31は、溶解槽20下部又は側部の空間を有効利用できるものであれば、どのような組み合わせで配置されていてもよい。 In this embodiment, a mode in which different current-carrying electrodes are used in the first embodiment and the second embodiment has been described, but the current-carrying electrode 30 and the current-carrying electrode 31 may be installed in combination in one embodiment. The energizing electrodes 30 and 31 may be arranged in any combination as long as the space in the lower part or the side portion of the melting tank 20 can be effectively used.

本実施形態では、電圧検出部50又は接地切替部70を用いているが、ガラス溶解炉10に常時備え付けられてもよいし、必要な時だけ備え付けるものであってもよい。 In the present embodiment, the voltage detection unit 50 or the ground switching unit 70 is used, but it may be installed in the glass melting furnace 10 at all times or only when necessary.

本実施形態で用いられるガラス原料の組成には特に制約がなく、ソーダライムガラス、無アルカリガラス、混合アルカリ系ガラス、ホウケイ酸ガラス、又はその他のガラスのいずれであってもよい。また、製造されるガラス製品の用途は、建築用、車両用、フラットパネルディスプレイ用、又はその他の各種用途が挙げられる。 The composition of the glass raw material used in the present embodiment is not particularly limited, and may be any of soda lime glass, non-alkali glass, mixed alkaline glass, borosilicate glass, or other glass. In addition, the manufactured glass products are used for construction, vehicles, flat panel displays, and various other uses.

10、10A:ガラス溶解炉
20:溶解槽
21:底部
22:側壁部
22a:内壁
23:投入部
24:取出部
25:槽内領域
30:通電電極
31:通電電極
31a:第1の板面
31b:第2の板面
40:検出用電極
41:検出用電極
50:電圧検出部
60:通常接地電極
70:接地切替部
80:上部構造物
100:電源
200:通電領域
201:通電領域
G:溶融ガラス
10, 10A: Glass melting furnace 20: Melting tank 21: Bottom 22: Side wall 22a: Inner wall 23: Input section 24: Extraction section 25: Tank inner region 30: Energizing electrode 31: Energizing electrode 31a: First plate surface 31b : Second plate surface 40: Detection electrode 41: Detection electrode 50: Voltage detection unit 60: Normal ground electrode 70: Ground switching unit 80: Superstructure 100: Power supply 200: Energizing region 201: Energizing region G: Melting Glass

Claims (12)

内部にガラス原料が供給される溶解槽と、
該溶解槽の内部に平面視で互いに離間するように設けられて、前記ガラス原料を通電して溶解し、溶融ガラスを得る複数の通電電極と、
前記溶解槽の内部における平面視にて前記通電電極によって通電される通電領域の外側の領域に設けられ、前記溶解槽の外部から電力が供給されない検出用電極と、
前記検出用電極の電圧を検出する電圧検出部と
を備えるガラス溶解炉。
A melting tank in which the glass raw material is supplied inside,
A plurality of energizing electrodes provided inside the melting tank so as to be separated from each other in a plan view and energize and melt the glass raw material to obtain molten glass.
A detection electrode provided in a region outside the energization region energized by the energization electrode in a plan view inside the dissolution tank, and power is not supplied from the outside of the dissolution tank.
A glass melting furnace including a voltage detection unit that detects the voltage of the detection electrode.
前記検出用電極を非接地状態と接地状態とに切り替える接地切替部を備える、請求項1に記載のガラス溶解炉。 The glass melting furnace according to claim 1, further comprising a grounding switching unit for switching the detection electrode between a non-grounded state and a grounded state. 前記溶解槽が平面視にて槽内領域を形成する内壁を備え、
前記検出用電極が、平面視にて前記通電領域より前記内壁に近い位置に設置されている請求項1又は2に記載のガラス溶解炉。
The melting tank is provided with an inner wall that forms a tank inner region in a plan view.
The glass melting furnace according to claim 1 or 2, wherein the detection electrode is installed at a position closer to the inner wall than the energized region in a plan view.
前記溶解槽が、前記ガラス原料が投入される投入部を前記内壁に備え、
前記検出用電極が、前記通電領域より前記投入部に近い位置に設置されている
請求項3に記載のガラス溶解炉。
The melting tank is provided with a charging portion on the inner wall into which the glass raw material is charged.
The glass melting furnace according to claim 3, wherein the detection electrode is installed at a position closer to the charging portion than the energized region.
前記検出用電極が互いに異なる位置に複数設けられている請求項1から4のいずれか一項に記載のガラス溶解炉。 The glass melting furnace according to any one of claims 1 to 4, wherein a plurality of detection electrodes are provided at different positions from each other. 前記溶解槽が底部と側壁部とを備え、
前記複数の通電電極が前記底部に配置されている
請求項1から5のいずれか一項に記載のガラス溶解炉。
The melting tank has a bottom and a side wall.
The glass melting furnace according to any one of claims 1 to 5, wherein the plurality of energizing electrodes are arranged on the bottom.
前記溶解槽が底部と側壁部とを備え、
前記複数の通電電極が前記側壁部に配置されている
請求項1から5のいずれか一項に記載のガラス溶解炉。
The melting tank has a bottom and a side wall.
The glass melting furnace according to any one of claims 1 to 5, wherein the plurality of energizing electrodes are arranged on the side wall portion.
前記溶解槽が底部と側壁部とを備え、
前記複数の通電電極が、前記底部と前記側壁部の双方に配置されている
請求項1から5のいずれか一項に記載のガラス溶解炉。
The melting tank has a bottom and a side wall.
The glass melting furnace according to any one of claims 1 to 5, wherein the plurality of energizing electrodes are arranged on both the bottom portion and the side wall portion.
前記溶解槽が、前記溶融ガラスを取り出す取出部を備え、
該溶解槽の内部に常時接地される通常接地電極を備え、
前記通常接地電極が、平面視において、前記通電領域の外側の領域であって前記通電領域より前記取出部に近い位置に配置されている
請求項1から8のいずれか一項に記載のガラス溶解炉。
The melting tank comprises a take-out portion for taking out the molten glass.
A normal grounding electrode that is always grounded is provided inside the melting tank.
The glass melting according to any one of claims 1 to 8, wherein the normal ground electrode is arranged in a region outside the energized region and closer to the take-out portion than the energized region in a plan view. Furnace.
請求項1から9のいずれか一項に記載のガラス溶解炉を用いたガラス製造方法であって、
前記溶解槽に前記ガラス原料を供給し、前記複数の通電電極に電流を流して前記ガラス原料を溶解する溶解工程と、
前記溶解槽より下流に設けられた成形炉で、前記溶融ガラスを成形する成形工程と、
前記成形炉より下流に設けられた徐冷炉で、成形されたガラスを徐冷する徐冷工程と
を含み、
前記溶解工程中に、
前記検出用電極の電圧を検出する電圧検出工程と、
を含むガラス製造方法。
The glass manufacturing method using the glass melting furnace according to any one of claims 1 to 9.
A melting step of supplying the glass raw material to the melting tank and passing an electric current through the plurality of energizing electrodes to melt the glass raw material.
A molding step of molding the molten glass in a molding furnace provided downstream from the melting tank, and
Including a slow cooling step of slowly cooling the molded glass in a slow cooling furnace provided downstream of the molding furnace.
During the melting step,
A voltage detection step for detecting the voltage of the detection electrode and
Glass manufacturing method including.
前記溶解工程中に、前記検出した電圧が低下したら前記検出用電極を接地する接地切替工程を含む、請求項10に記載のガラス製造方法。 The glass manufacturing method according to claim 10, further comprising a grounding switching step of grounding the detection electrode when the detected voltage drops during the melting step. 前記溶解工程中に、前記電圧検出工程が検出した各電圧を比較する比較工程を含む、請求項10又は11に記載のガラス製造方法。 The glass manufacturing method according to claim 10 or 11, further comprising a comparison step of comparing each voltage detected by the voltage detection step during the melting step.
JP2019155575A 2019-08-28 2019-08-28 Glass melting furnace and glass manufacturing method Active JP7183994B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019155575A JP7183994B2 (en) 2019-08-28 2019-08-28 Glass melting furnace and glass manufacturing method
KR1020200106824A KR20210027126A (en) 2019-08-28 2020-08-25 Glass melting furnace and method for producing glass
CN202010862431.4A CN112441722A (en) 2019-08-28 2020-08-25 Glass melting furnace and glass manufacturing method
TW109129302A TW202118742A (en) 2019-08-28 2020-08-27 Glass melting furnace and glass manufacturing method wherein the glass melting furnace includes a melting tank, a plurality of powered electrodes, a detecting electrode and a voltage detecting electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155575A JP7183994B2 (en) 2019-08-28 2019-08-28 Glass melting furnace and glass manufacturing method

Publications (2)

Publication Number Publication Date
JP2021031355A true JP2021031355A (en) 2021-03-01
JP7183994B2 JP7183994B2 (en) 2022-12-06

Family

ID=74678406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155575A Active JP7183994B2 (en) 2019-08-28 2019-08-28 Glass melting furnace and glass manufacturing method

Country Status (4)

Country Link
JP (1) JP7183994B2 (en)
KR (1) KR20210027126A (en)
CN (1) CN112441722A (en)
TW (1) TW202118742A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028014A (en) * 2004-07-13 2006-02-02 Schott Ag Electric earthing device of float glass manufacturing apparatus
JP2011063503A (en) * 2009-08-18 2011-03-31 Hoya Corp Method for manufacturing glass, glass melting furnace, glass manufacturing device, method for manufacturing glass blank, method for manufacturing substrate for information recording medium, method for manufacturing information recording medium, method for manufacturing substrate for display, and method for manufacturing optical component
JP2011068556A (en) * 2009-09-15 2011-04-07 Schott Ag Method and apparatus for producing glass from glass melt while reducing bubble formation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632359A (en) * 1968-11-29 1972-01-04 Corhart Refractories Co ZrO{11 {13 Al{11 O{11 {13 SiO{11 {0 FUSION-CAST REFRACTORY
CN1010228B (en) * 1985-05-06 1990-10-31 肖特玻璃制造厂 Arrangment of electrodes
JPH07300318A (en) 1994-05-02 1995-11-14 Nippon Electric Glass Co Ltd Glass melting furnace
KR20030044607A (en) * 2001-11-30 2003-06-09 삼성코닝 주식회사 Electric-potential control device for glass melting furnace melter
CN102503078A (en) * 2011-11-01 2012-06-20 河南国控宇飞电子玻璃有限公司 Two-slot type glass tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028014A (en) * 2004-07-13 2006-02-02 Schott Ag Electric earthing device of float glass manufacturing apparatus
JP2011063503A (en) * 2009-08-18 2011-03-31 Hoya Corp Method for manufacturing glass, glass melting furnace, glass manufacturing device, method for manufacturing glass blank, method for manufacturing substrate for information recording medium, method for manufacturing information recording medium, method for manufacturing substrate for display, and method for manufacturing optical component
JP2011068556A (en) * 2009-09-15 2011-04-07 Schott Ag Method and apparatus for producing glass from glass melt while reducing bubble formation

Also Published As

Publication number Publication date
KR20210027126A (en) 2021-03-10
JP7183994B2 (en) 2022-12-06
TW202118742A (en) 2021-05-16
CN112441722A (en) 2021-03-05

Similar Documents

Publication Publication Date Title
KR101605161B1 (en) Vehicle heater and method for monitoring a vehicle heater
JP7183994B2 (en) Glass melting furnace and glass manufacturing method
KR101760172B1 (en) Method of manufacturing glass
US10555378B2 (en) Vehicle heater and method for producing a vehicle heater
RU2382739C1 (en) Method and device for tapping molten glass from discharge channels
CN111032584B (en) Method for producing glass article and melting furnace
JPWO2019004434A1 (en) Glass article manufacturing method, melting furnace, and glass article manufacturing apparatus
CN112479561B (en) Glass melting furnace and glass manufacturing method
US20070064763A1 (en) Glass melt electrode and method for melting glass or glass ceramic
JP4751329B2 (en) Conductive heating and melting unit
CN202063819U (en) Electric melting furnace for special glass
JP4913102B2 (en) Textile manufacturing equipment
US6246712B1 (en) Arc furnace protection
JP2018003063A (en) Operation method of electric furnace
CN107316782B (en) Fuse process for making
CN117813268A (en) Method for producing glass article and glass melting furnace
JP7388143B2 (en) Heating device condition monitoring method and condition monitoring system
CN102910799B (en) Heating electrode and there are the silicate glass containing boron and aluminium without alkali melting furnaces of this heating electrode
CN220502895U (en) Electrode cooling device and kiln
CN214115358U (en) Kiln structure suitable for basalt fiber production
KR102172552B1 (en) Direct heating type melting device using heat exchange system
JP7196917B2 (en) Method for manufacturing glass article
KR20230112123A (en) Glass melting furnace monitoring method, and glass article manufacturing method
CN102810365A (en) Insulating bush for vacuum crystal growing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7183994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150