JP2021030471A - Method for manufacturing substrate for liquid discharge head - Google Patents

Method for manufacturing substrate for liquid discharge head Download PDF

Info

Publication number
JP2021030471A
JP2021030471A JP2019149441A JP2019149441A JP2021030471A JP 2021030471 A JP2021030471 A JP 2021030471A JP 2019149441 A JP2019149441 A JP 2019149441A JP 2019149441 A JP2019149441 A JP 2019149441A JP 2021030471 A JP2021030471 A JP 2021030471A
Authority
JP
Japan
Prior art keywords
substrate
adhesive
adhesive layer
discharge head
liquid discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019149441A
Other languages
Japanese (ja)
Inventor
秀臣 熊野
Hideomi Kumano
秀臣 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019149441A priority Critical patent/JP2021030471A/en
Publication of JP2021030471A publication Critical patent/JP2021030471A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a substrate for a liquid discharge head which has high joint reliability between members using an adhesive.SOLUTION: A method for manufacturing a substrate for a liquid discharge head includes steps of: applying an adhesive to a protrusion of a first member having a recess and the protrusion; flattening the adhesive applied to the protrusion so as not to block the recess; joining a second member and the first member by interposing the flattened adhesive therebetween; and curing the adhesive.SELECTED DRAWING: Figure 2

Description

本発明は、液体吐出ヘッド用基板の製造方法に関する。 The present invention relates to a method for manufacturing a substrate for a liquid discharge head.

半導体基板を微細加工した構造体は、MEMS(Micro Electro Mechanical Systems)分野や電気機械の機能デバイスに幅広く用いられている。その一例として、吐出液滴を被記録媒体に着弾させて記録を行う液体吐出記録方式の液体吐出ヘッドがある。 Structures obtained by microfabrication of semiconductor substrates are widely used in the field of MEMS (Micro Electro Mechanical Systems) and functional devices of electromechanical machines. As an example, there is a liquid discharge head of a liquid discharge recording type that records by landing a discharged droplet on a recording medium.

液体吐出ヘッド用基板は、吐出用液体を流すための液体供給口や液体流路が形成された、シリコン等からなる基板から構成されている。このような微細な構造を有する基板の接合においては、接着剤を用いて基板同士を接合する方法が広く用いられている。 The liquid discharge head substrate is composed of a substrate made of silicon or the like, which is formed with a liquid supply port and a liquid flow path for flowing the discharge liquid. In joining substrates having such a fine structure, a method of joining substrates to each other using an adhesive is widely used.

特許文献1には、接着剤をフィルム上に平坦に塗布した後、接合させるべき部材に押圧して接着剤を転写し、接着剤を仮硬化した後に、接着剤を介して別の部材と接合し本硬化する方法が記載されている。 In Patent Document 1, an adhesive is applied flatly on a film, the adhesive is transferred by pressing against a member to be joined, the adhesive is temporarily cured, and then the adhesive is joined to another member via the adhesive. The method of main curing is described.

特開2015−166426号公報JP 2015-166426

上記の技術では、接合させるべき部材に押圧して接着剤を転写しているが、押圧のみでは接着剤の流動性が低く、接着剤の転写不良が懸念される。また、接着剤を部材に転写させる際、接着剤内部で泣き別れが起こり、転写された接着剤の膜厚にムラが生じる場合がある。接着剤が転写された部材を、接着剤の膜厚にムラがある状態で別の部材と接合されると、接着剤の膜厚ムラにより接合部材間で気泡の抱き込み等によるボイドが発生し、インクのリークが生じてしまうという問題があった。
本発明の目的は、上述した課題を解決することにあり、すなわち接合信頼性の高い液体吐出ヘッド用基板を製造できる方法を提供することにある。
In the above technique, the adhesive is transferred by pressing the member to be joined, but the fluidity of the adhesive is low only by pressing, and there is a concern that the adhesive may be poorly transferred. Further, when the adhesive is transferred to the member, crying may occur inside the adhesive, and the film thickness of the transferred adhesive may be uneven. When a member to which the adhesive is transferred is joined to another member in a state where the film thickness of the adhesive is uneven, voids are generated between the joined members due to the embedding of air bubbles between the joined members due to the uneven film thickness of the adhesive. , There was a problem that ink leaked.
An object of the present invention is to solve the above-mentioned problems, that is, to provide a method capable of manufacturing a substrate for a liquid discharge head having high bonding reliability.

本発明の一態様によれば、凹部と凸部を有する第1の部材の該凸部に接着剤を付与する工程と、該凸部に付与された接着剤を、前記凹部を閉塞しないように平坦化する工程と、第2の部材と前記第1の部材とを、前記平坦化された接着剤を介して接合する工程と、前記接着剤を硬化する工程と、を含む、液体吐出ヘッド用基板の製造方法が提供される。 According to one aspect of the present invention, the step of applying the adhesive to the convex portion of the first member having the concave portion and the convex portion and the adhesive applied to the convex portion do not block the concave portion. For a liquid discharge head, which includes a step of flattening, a step of joining the second member and the first member via the flattened adhesive, and a step of curing the adhesive. A method of manufacturing a substrate is provided.

本発明によれば、接合信頼性の高い液体吐出ヘッド用基板を製造することができる。 According to the present invention, it is possible to manufacture a substrate for a liquid discharge head having high joining reliability.

本発明の実施形態により製造される液体吐出ヘッド用基板の破断部分斜視図である。It is a cutaway part perspective view of the substrate for a liquid discharge head manufactured by embodiment of this invention. 本発明の実施形態(第1の実施形態)による液体吐出ヘッド用基板の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the substrate for a liquid discharge head by embodiment (1st Embodiment) of this invention. 本発明の実施形態(第1の実施形態)による液体吐出ヘッド用基板の製造方法を示す工程断面図(接着剤の転写工程の説明図)である。It is a process cross-sectional view (explanatory view of the adhesive transfer process) which shows the manufacturing method of the substrate for a liquid discharge head by embodiment (1st Embodiment) of this invention. 本発明の実施形態(第1の実施形態)による液体吐出ヘッド用基板の製造方法を示す工程断面図(平坦化工程の説明図)である。It is a process sectional view (the explanatory view of the flattening process) which shows the manufacturing method of the substrate for a liquid discharge head according to the Embodiment (1st Embodiment) of this invention. 本発明のその他の実施形態(第2の実施形態)による液体吐出ヘッド用基板の製造方法を示す工程断面図である。It is a process sectional view which shows the manufacturing method of the substrate for a liquid discharge head by another embodiment (second embodiment) of this invention.

以下、図面を参照して本発明の実施形態を説明するが、本発明はこれらに限定されるものではない。
(第1の実施形態)
図1は、本発明の実施形態により製造される液体吐出ヘッドの破断部分斜視図(断面を示す部分を含む)である。図1に示すように、基板1の表面にはインク等の液体を吐出するためのエネルギーを発生するエネルギー発生素子2、表面に連通するインク供給口4、インク供給口4に連通し裏面に開口する共通液室3、エネルギー発生素子2に接続された配線(不図示)が形成されている。基板1は、凹部と凸部を有する第1の部材に相当し、共通液室3を前記凹部とし、共通液室を除く前記基板の裏面を前記凸部とすることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
(First Embodiment)
FIG. 1 is a perspective view of a broken portion (including a portion showing a cross section) of a liquid discharge head manufactured according to an embodiment of the present invention. As shown in FIG. 1, the surface of the substrate 1 is an energy generating element 2 that generates energy for discharging a liquid such as ink, an ink supply port 4 that communicates with the front surface, and an opening on the back surface that communicates with the ink supply port 4. Wiring (not shown) connected to the common liquid chamber 3 and the energy generating element 2 is formed. The substrate 1 corresponds to a first member having a concave portion and a convex portion, and the common liquid chamber 3 can be the concave portion, and the back surface of the substrate excluding the common liquid chamber can be the convex portion.

また、エネルギー発生素子2が形成された基板1の表面側には、液体を吐出する複数の吐出口5とこれらの吐出口5にそれぞれ連通する流路(圧力室)を有する流路形成部材6が設けられている。また、基板1の裏面側には、第2の部材として、共通液室3へインク等の液体を供給する開口部9が設けられた蓋構造体7が設けられている。なお、本明細書において、「表」、「裏」とは、基板1において流路形成部材6が配される面を「表」とし、蓋構造体7が配される面を「裏」とする。 Further, on the surface side of the substrate 1 on which the energy generating element 2 is formed, a flow path forming member 6 has a plurality of discharge ports 5 for discharging liquid and a flow path (pressure chamber) communicating with each of these discharge ports 5. Is provided. Further, on the back surface side of the substrate 1, as a second member, a lid structure 7 provided with an opening 9 for supplying a liquid such as ink to the common liquid chamber 3 is provided. In the present specification, the terms "front" and "back" refer to the surface on which the flow path forming member 6 is arranged on the substrate 1 as the "front" and the surface on which the lid structure 7 is arranged as the "back". To do.

このように、第1の部材は、第1の部材(基板)の第2の部材(蓋構造体)と接合する側の面(裏面)に凹部が形成され、凹部以外の部分を凸部とする部材である。この第1の部材は、第2の部材(蓋構造体)と接合する側の面(裏面)に複数の凸部を有し、該凸部の頂面は同一平面内にある部材であることが好ましい。 As described above, in the first member, a concave portion is formed on the surface (back surface) of the first member (board) on the side where the second member (lid structure) is joined, and the portion other than the concave portion is defined as a convex portion. It is a member to be used. The first member has a plurality of convex portions on the surface (back surface) on the side to be joined with the second member (lid structure), and the top surface of the convex portions is a member in the same plane. Is preferable.

以上に説明した図1に示す構成において、液体は共通液室3から流路形成部材6の流路に供給され、充填される。そして、記録信号に応じてエネルギー発生素子2が発生させるエネルギーにより、流路形成部材6の流路に充填されていた液体は吐出口5から吐出される。例えば、エネルギー発生素子が電気熱変換体である場合、液体内に気泡を瞬間的に発生させる。そして、この発生した気泡の成長によって生じる圧力変化を利用して、液体を液滴として吐出口5から吐出させ、記録媒体に記録する。 In the configuration shown in FIG. 1 described above, the liquid is supplied from the common liquid chamber 3 to the flow path of the flow path forming member 6 and is filled. Then, the liquid filled in the flow path of the flow path forming member 6 is discharged from the discharge port 5 by the energy generated by the energy generation element 2 in response to the recording signal. For example, when the energy generating element is an electrothermal converter, bubbles are instantaneously generated in the liquid. Then, utilizing the pressure change caused by the growth of the generated bubbles, the liquid is discharged as droplets from the discharge port 5 and recorded on a recording medium.

以下に、本発明の実施形態による液体吐出ヘッドの製造方法について図面を参照して説明する。 Hereinafter, a method for manufacturing a liquid discharge head according to an embodiment of the present invention will be described with reference to the drawings.

図2(a)〜(g)は、本実施形態による液体吐出ヘッドの製造方法の工程のフローを示す工程断面図である。図2(a)〜(g)は、図1のA−A’線に沿った断面(基板面と垂直な方向に切断した断面)に相応する各工程での模式的断面図を示している。 2 (a) to 2 (g) are process cross-sectional views showing a process flow of a method for manufacturing a liquid discharge head according to the present embodiment. 2 (a) to 2 (g) show schematic cross-sectional views in each step corresponding to the cross section along the AA'line of FIG. 1 (cross section cut in the direction perpendicular to the substrate surface). ..

まず、図2(a)に示すように、エネルギー発生素子2、共通液室3及びインク供給口4が形成された基板1を用意する。基板1の表面には、配線や層間絶縁膜などから構成される表面メンブレン層(不図示)が形成されている。 First, as shown in FIG. 2A, a substrate 1 on which an energy generating element 2, a common liquid chamber 3, and an ink supply port 4 are formed is prepared. A surface membrane layer (not shown) composed of wiring, an interlayer insulating film, and the like is formed on the surface of the substrate 1.

次いで、図2(b)に示すように、インク供給口4から吐出口5に至る流路(圧力室)を有する流路形成部材6を形成する。流路形成部材6の形成方法の一例としては、フィルム化された感光性樹脂をラミネートし、露光及び現像する工程を複数回(例えば2回)繰り返す方法が挙げられる。 Next, as shown in FIG. 2B, a flow path forming member 6 having a flow path (pressure chamber) from the ink supply port 4 to the discharge port 5 is formed. As an example of the method for forming the flow path forming member 6, there is a method in which the steps of laminating a film-formed photosensitive resin, exposing and developing the film are repeated a plurality of times (for example, twice).

次いで、図2(c)に示すように、基板1を反転し、基板1の裏面に接着剤層8を転写する。ここで、接着剤層8の転写工程の詳細を図3(a)〜(d)を参照して説明する。 Next, as shown in FIG. 2C, the substrate 1 is inverted and the adhesive layer 8 is transferred to the back surface of the substrate 1. Here, the details of the transfer process of the adhesive layer 8 will be described with reference to FIGS. 3 (a) to 3 (d).

まず、図3(a)に示すように、例えば、支持体10(基材)上に接着剤層8が形成された部材を準備する。 First, as shown in FIG. 3A, for example, a member in which the adhesive layer 8 is formed on the support 10 (base material) is prepared.

本実施形態に用いる接着剤層8は感光性樹脂で形成することができる。このような樹脂としては、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。エポキシ樹脂としてはビスフェノールA型やクレゾールノボラック型や脂環式のエポキシ樹脂が挙げられる。アクリル樹脂としてはポリメチルメタクリレート等のメタクリレート系樹脂が挙げられる。ウレタン樹脂としてはポリウレタン等が挙げられる。これらの樹脂を溶解する溶媒としては、PGMEA(プロピレングリコールメチルエーテルアセテート)、シクロヘキサノン、メチルエチルケトン、キシレン等の有機溶剤が挙げられる。感光性樹脂としてポジ型とネガ型があるが、接着剤層を形成する樹脂としては感光時の架橋反応により硬化が進行するネガ型樹脂を使用することが望ましい。また、このような感光性樹脂を含み、且つ加熱により硬化可能な接着剤を用いて接着剤層を形成することが好ましい。 The adhesive layer 8 used in this embodiment can be formed of a photosensitive resin. Examples of such a resin include epoxy resin, acrylic resin, urethane resin and the like. Examples of the epoxy resin include bisphenol A type, cresol novolac type, and alicyclic epoxy resin. Examples of the acrylic resin include methacrylate-based resins such as polymethylmethacrylate. Examples of the urethane resin include polyurethane and the like. Examples of the solvent for dissolving these resins include organic solvents such as PGMEA (propylene glycol methyl ether acetate), cyclohexanone, methyl ethyl ketone, and xylene. There are positive type and negative type as the photosensitive resin, and it is desirable to use the negative type resin which cures by the cross-linking reaction at the time of photosensitivity as the resin forming the adhesive layer. Further, it is preferable to form an adhesive layer using an adhesive containing such a photosensitive resin and curable by heating.

次いで、図3(b)に示すように、接着剤層8を基板1へ転写するために、支持体10の接着剤層8が形成された側を、基板1の裏面側(凸部)に押圧する。 Next, as shown in FIG. 3B, in order to transfer the adhesive layer 8 to the substrate 1, the side of the support 10 on which the adhesive layer 8 is formed is placed on the back surface side (convex portion) of the substrate 1. Press.

支持体10としては例えばフィルムを用いることができる。このフィルムとしては、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PI(ポリイミド)、COC(シクロオレフィンコポリマー)、COP(シクロオレフィンポリマー)等の樹脂製のフィルムが挙げられる。 As the support 10, for example, a film can be used. Examples of this film include resin films such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PI (polyimide), COC (cycloolefin copolymer), and COP (cycloolefin polymer).

押圧装置としては、ロール状の押圧部材を有する一般的なラミネータ装置や、平板状の押圧部材を有するプレス装置等を適宜選択して用いることができる。押圧時の圧力は、0.1MPa以上1.0MPa以下に設定することができ、好ましくは0.1MPa以上0.5MPa以下に設定することができる。 As the pressing device, a general laminator device having a roll-shaped pressing member, a pressing device having a flat plate-shaped pressing member, or the like can be appropriately selected and used. The pressure at the time of pressing can be set to 0.1 MPa or more and 1.0 MPa or less, preferably 0.1 MPa or more and 0.5 MPa or less.

基板1の裏面には、共通液室3の開口パターンが形成されている。そのため、接着剤層8の転写に際しては、接着剤層8で共通液室3の開口パターン(凹部)を塞ぐことなく、突起部(凸部)の頂面(基板1の裏面の非開口部)のみに接着剤層8を転写することが好ましい。 An opening pattern of the common liquid chamber 3 is formed on the back surface of the substrate 1. Therefore, when the adhesive layer 8 is transferred, the adhesive layer 8 does not block the opening pattern (recess) of the common liquid chamber 3, and the top surface of the protrusion (convex) (the non-opening on the back surface of the substrate 1). It is preferable to transfer the adhesive layer 8 only to the adhesive layer 8.

支持体10を押圧して接着剤層8を転写する際、接着剤層8の流動性が低いと、接着剤層8と基板1との密着不良が発生し、接着剤層8の転写不良が発生する場合がある。そのため、押圧の際は加熱しながら行うことが好ましい。接着剤層8の軟化温度をT0、接着剤層8の転写のための押圧時の加熱温度をT1とすると、加熱温度T1は接着剤層8の軟化温度T0より高くすることが好ましい。軟化温度T0より高い温度で加熱することで、接着剤層8の流動性が高くなるとともに、接着剤層8と基板1との密着性が向上し、密着不良に伴う転写不良が抑制できる。接着剤層の転写のための押圧時の加熱は、基板1の表面側を載置するステージ12又は/及び支持体10を押圧する押圧部材を、温度T1以上に加熱することで行うことができる。一方、押圧時の加熱温度T1が高すぎると、突起部の頂面(基板1の裏面の非開口部)のみに接着剤層8を転写することが困難になるため、接着剤層8が開口パターンの開口部内に入り込まないように温度範囲を設定することが好ましい。後の平坦化工程での押圧時の加熱温度T2より低いことが好ましい。 When the adhesive layer 8 is transferred by pressing the support 10, if the fluidity of the adhesive layer 8 is low, poor adhesion between the adhesive layer 8 and the substrate 1 occurs, resulting in poor transfer of the adhesive layer 8. It may occur. Therefore, it is preferable to press while heating. Assuming that the softening temperature of the adhesive layer 8 is T0 and the heating temperature at the time of pressing the adhesive layer 8 for transfer is T1, the heating temperature T1 is preferably higher than the softening temperature T0 of the adhesive layer 8. By heating at a temperature higher than the softening temperature T0, the fluidity of the adhesive layer 8 is increased, the adhesion between the adhesive layer 8 and the substrate 1 is improved, and transfer defects due to poor adhesion can be suppressed. The heating at the time of pressing for the transfer of the adhesive layer can be performed by heating the pressing member that presses the stage 12 and / and the support 10 on which the surface side of the substrate 1 is placed to a temperature T1 or higher. .. On the other hand, if the heating temperature T1 at the time of pressing is too high, it becomes difficult to transfer the adhesive layer 8 only to the top surface of the protrusion (the non-opening on the back surface of the substrate 1), so that the adhesive layer 8 opens. It is preferable to set the temperature range so that it does not enter the opening of the pattern. It is preferably lower than the heating temperature T2 at the time of pressing in the subsequent flattening step.

次に、図3(c)に示すように、支持体10(基材)を基板1から剥離し、接着剤層8を基板1へ転写する。支持体10(基材)を基板1から剥離する際も、接着剤層が過熱された状態で行うことが好ましい。その際、ステージ12を加熱したまま、接着剤層8の軟化温度T0より高い温度に加熱した状態で、支持体10を基板1から剥離することが好ましい。接着剤層8の流動性が高いまま剥離することで、基板1側と支持体10側に泣き別れさせることができ、基板1の目的とする部位のみに接着剤層8を凝集破壊転写することが可能となる。その結果、図3(c)及び図3(d)に示すように、基板1に転写された接着剤層8の表面には凹凸が形成され、膜厚のムラが生じる。
なお、本実施形態では、基板1に接着剤層8を付与する方法として転写法を用いたが、例えばスタンプ法、刷毛塗り等の各種方法を採用することができる。
Next, as shown in FIG. 3C, the support 10 (base material) is peeled off from the substrate 1 and the adhesive layer 8 is transferred to the substrate 1. When the support 10 (base material) is peeled off from the substrate 1, it is preferable that the adhesive layer is overheated. At that time, it is preferable to peel off the support 10 from the substrate 1 while the stage 12 is heated to a temperature higher than the softening temperature T0 of the adhesive layer 8. By peeling the adhesive layer 8 while maintaining high fluidity, the substrate 1 side and the support 10 side can be separated from each other, and the adhesive layer 8 can be coagulated, broken and transferred only to the target portion of the substrate 1. It will be possible. As a result, as shown in FIGS. 3 (c) and 3 (d), irregularities are formed on the surface of the adhesive layer 8 transferred to the substrate 1, resulting in uneven film thickness.
In the present embodiment, the transfer method is used as a method for applying the adhesive layer 8 to the substrate 1, but various methods such as a stamping method and a brush coating can be adopted.

以上に説明した工程により、図2(c)(図3(d)に対応)に示すように、接着剤層8が付与された基板1を得ることができる。 By the steps described above, as shown in FIG. 2C (corresponding to FIG. 3D), the substrate 1 to which the adhesive layer 8 is applied can be obtained.

次に、図2(d)に示すように、転写された接着剤層8の平坦化処理を行い、接着剤の膜厚のムラを改善する。ここで、平坦化処理の詳細を図4(a)〜(e)を参照して説明する。転写された接着剤層を平坦化する工程は、押圧補助部材を介して前記接着剤層を押圧することにより該接着剤層を平坦化する工程と、その後に前記押圧補助部材を剥離する工程を含む。 Next, as shown in FIG. 2D, the transferred adhesive layer 8 is flattened to improve the uneven film thickness of the adhesive. Here, the details of the flattening process will be described with reference to FIGS. 4A to 4E. The step of flattening the transferred adhesive layer includes a step of flattening the adhesive layer by pressing the adhesive layer via a pressing auxiliary member and a step of peeling off the pressing auxiliary member thereafter. Including.

まず、図4(a)に示すように、平坦化のための押圧補助部材11を準備する。押圧補助部材11としては例えばフィルム状部材(平面状部材)を用いることができる。 First, as shown in FIG. 4A, a pressing auxiliary member 11 for flattening is prepared. As the pressing auxiliary member 11, for example, a film-shaped member (planar-shaped member) can be used.

次いで、図4(b)及び図4(c)に示すように、基板1の接着剤層8が付与された側を押圧補助部材11越しに押圧し、接着剤層を平坦化する。 Next, as shown in FIGS. 4 (b) and 4 (c), the side of the substrate 1 to which the adhesive layer 8 is applied is pressed through the pressing auxiliary member 11 to flatten the adhesive layer.

押圧装置としては、ロール状の押圧部材を有する一般的なラミネータ装置や、平板状の押圧部材を有するプレス装置等を適宜選択して用いることができる。押圧時の圧力は、例えば0.1MPa以上0.5MPa以下に設定することができ、また0.1MPa以上0.3MPa以下に設定することができる。 As the pressing device, a general laminator device having a roll-shaped pressing member, a pressing device having a flat plate-shaped pressing member, or the like can be appropriately selected and used. The pressure at the time of pressing can be set, for example, 0.1 MPa or more and 0.5 MPa or less, and 0.1 MPa or more and 0.3 MPa or less.

平坦化のための押圧時は、接着剤層の流動性を高めるため、接着剤層の軟化温度T0より高い温度T2で加熱することが好ましい。接着剤層の平坦化のための押圧時の加熱は、基板1の表面側を載置するステージ12又は/及び押圧補助部材11を温度T2以上に加熱することで行うことができる。 At the time of pressing for flattening, it is preferable to heat at a temperature T2 higher than the softening temperature T0 of the adhesive layer in order to increase the fluidity of the adhesive layer. The heating at the time of pressing for flattening the adhesive layer can be performed by heating the stage 12 and / and the pressing auxiliary member 11 on which the surface side of the substrate 1 is placed to a temperature T2 or higher.

次に、図4(d)に示すように、平坦化用の押圧補助部材11を基板1から剥離する。押圧補助部材11を剥離するときは、冷却ステージ13に基板1を配置し、接着剤層8の軟化温度T0より低い温度T3まで接着剤層を冷却してから実施することが好ましい。接着剤層8の軟化温度T0より高い温度で押圧補助部材11を剥離すると、押圧補助部材11側にも接着剤層8が付着し、接着剤層の膜厚ムラを引き起こしてしまう場合がある。そのような高い温度下では接着剤層8の流動性が高く、かつ接着剤層8と押圧補助部材11との密着性が高まるためである。そのため、接着剤層8の軟化温度T0より低い温度T3まで冷却してから押圧補助部材11を剥離することが好ましい。これにより、押圧補助部材11側への接着剤層の付着を防止することができ、接着剤層の膜厚を減らすことなく、基板1上に平坦に形成された接着剤層8を得ることができる(図4(e))。 Next, as shown in FIG. 4D, the flattening auxiliary member 11 is peeled off from the substrate 1. When the pressing auxiliary member 11 is peeled off, it is preferable that the substrate 1 is arranged on the cooling stage 13 and the adhesive layer is cooled to a temperature T3 lower than the softening temperature T0 of the adhesive layer 8. If the pressing auxiliary member 11 is peeled off at a temperature higher than the softening temperature T0 of the adhesive layer 8, the adhesive layer 8 may also adhere to the pressing auxiliary member 11 side, causing uneven film thickness of the adhesive layer. This is because, under such a high temperature, the fluidity of the adhesive layer 8 is high, and the adhesion between the adhesive layer 8 and the pressing auxiliary member 11 is enhanced. Therefore, it is preferable to cool the adhesive layer 8 to a temperature T3 lower than the softening temperature T0 and then peel off the pressing auxiliary member 11. As a result, it is possible to prevent the adhesive layer from adhering to the pressing auxiliary member 11 side, and it is possible to obtain the adhesive layer 8 formed flat on the substrate 1 without reducing the film thickness of the adhesive layer. It can be done (Fig. 4 (e)).

平坦化用の押圧補助部材11には、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PI(ポリイミド)、COC(シクロオレフィンコポリマー)、COP(シクロオレフィンポリマー)等の樹脂製のフィルムを用いることができる。これらのフィルムの表面に離型処理を施してもよい。ただし、押圧補助部材11と基板1との線膨張係数差が大きいと、次のような問題が起きる場合がある。すなわち、平坦化処理時の加熱、冷却時に、基板1と押圧補助部材11との線膨張係数差により接着剤層8が変形し、接着剤層8が基板1の裏面側の突起部の頂面から開口部(凹部)側へはみ出してしまう場合がある。そのため、押圧補助部材の線膨張係数は、基板1(第1の部材)と近いことが望ましく、基板1と押圧補助部材の線膨張係数差は20ppm/K以下とすることが望ましい。 As the pressing auxiliary member 11 for flattening, a resin film such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PI (polyimide), COC (cycloolefin copolymer), COP (cycloolefin polymer) is used. be able to. The surface of these films may be subjected to a mold release treatment. However, if the difference in linear expansion coefficient between the pressing auxiliary member 11 and the substrate 1 is large, the following problems may occur. That is, during heating and cooling during the flattening process, the adhesive layer 8 is deformed due to the difference in linear expansion coefficient between the substrate 1 and the pressing auxiliary member 11, and the adhesive layer 8 is the top surface of the protrusion on the back surface side of the substrate 1. May protrude toward the opening (recess) side. Therefore, the coefficient of linear expansion of the pressing auxiliary member is preferably close to that of the substrate 1 (first member), and the difference in linear expansion coefficient between the substrate 1 and the pressing auxiliary member is preferably 20 ppm / K or less.

平坦化処理(押圧)の効果を高めるためには、平坦化処理(押圧)時の温度T2は接着剤層転写時の温度T1より大きいことが望ましい。平坦化処理(押圧)時の温度T2が高すぎると、突起部の頂面(基板1の裏面の非開口部)のみに接着剤層8を維持することが困難になるため、接着剤層8が開口パターンの開口部内に入り込まないように温度範囲を設定することが好ましい。 In order to enhance the effect of the flattening treatment (pressing), it is desirable that the temperature T2 at the time of the flattening treatment (pressing) is larger than the temperature T1 at the time of transferring the adhesive layer. If the temperature T2 during the flattening process (pressing) is too high, it becomes difficult to maintain the adhesive layer 8 only on the top surface of the protrusion (the non-opening on the back surface of the substrate 1), so that the adhesive layer 8 It is preferable to set the temperature range so that the adhesive does not enter the opening of the opening pattern.

以上に説明した通り、接着剤層の軟化温度T0に対して、各工程の処理時の温度(接着剤層の付与のための押圧時の温度T1、平坦化のための押圧時の温度T2、フィルム状部材の剥離時の温度T3)は、以下の関係にあることが好ましい。
T3<T0<T1<T2
As described above, with respect to the softening temperature T0 of the adhesive layer, the temperature at the time of processing in each step (the temperature T1 at the time of pressing for applying the adhesive layer, the temperature T2 at the time of pressing for flattening, The temperature T3) at the time of peeling the film-like member preferably has the following relationship.
T3 <T0 <T1 <T2

以上のようにして、図2(d)(図4(e)に対応)に示すように、基板1の接着剤層8を平坦化することができる。 As described above, as shown in FIG. 2D (corresponding to FIG. 4E), the adhesive layer 8 of the substrate 1 can be flattened.

次いで、図2(e)に示すように、基板1上の平坦化された接着剤層8に対し、第1の硬化処理(仮硬化)を行うことが好ましい。
第1の硬化処理としては、例えば光照射や加熱処理等を行うことができる。接合前に第1の硬化処理を行うことで、架橋反応を進行させ、接合後の硬化不良を抑制することができる。ただし、完全に硬化させてしまうと、基板1(第1の部材)と蓋構造体(第2の部材)7との接合が困難となる場合がある。そのため、第1の硬化処理(仮硬化)は、接着剤層8の硬化度が10〜65%となるように行うことが望ましい。第1の硬化処理(仮硬化)を行う場合、感光性樹脂をベースとして含む感光性接着剤を用いて接着剤層を形成し、これに光照射を行って仮硬化することが好ましい。
Next, as shown in FIG. 2E, it is preferable to perform the first curing treatment (temporary curing) on the flattened adhesive layer 8 on the substrate 1.
As the first curing treatment, for example, light irradiation, heat treatment, or the like can be performed. By performing the first curing treatment before bonding, the cross-linking reaction can proceed and curing defects after bonding can be suppressed. However, if it is completely cured, it may be difficult to join the substrate 1 (first member) and the lid structure (second member) 7. Therefore, it is desirable that the first curing treatment (temporary curing) is performed so that the degree of curing of the adhesive layer 8 is 10 to 65%. When the first curing treatment (temporary curing) is performed, it is preferable that an adhesive layer is formed using a photosensitive adhesive containing a photosensitive resin as a base, and the adhesive layer is irradiated with light to be temporarily cured.

次いで、図2(f)に示すように、蓋構造体7を形成する。蓋構造体7は例えばシリコン等からなり、エッチングやレーザー加工により開口を形成する。 Next, as shown in FIG. 2 (f), the lid structure 7 is formed. The lid structure 7 is made of, for example, silicon or the like, and an opening is formed by etching or laser processing.

次いで、図2(g)に示すように、基板1と蓋構造体7を、接着剤層8を介して接合した後、第2の硬化処理(本硬化)を行う。第2の硬化処理は、例えば加熱処理であり、これにより接着剤層8の硬化度を高くし、基板1と蓋構造体7の接合強度を高めることができる。 Next, as shown in FIG. 2 (g), the substrate 1 and the lid structure 7 are joined to each other via the adhesive layer 8, and then a second curing treatment (main curing) is performed. The second curing treatment is, for example, a heat treatment, which can increase the degree of curing of the adhesive layer 8 and increase the bonding strength between the substrate 1 and the lid structure 7.

以上の工程によって、本発明の実施形態による液体吐出ヘッド用基板が製造される。本発明の実施形態による製造方法によれば、接着剤層の転写不良と接着剤層の膜厚ムラを改善することができる。これにより、接合部材間でのボイドが低減された、接合信頼性の高い良好な液体吐出ヘッド用基板を製造することができる。 Through the above steps, a substrate for a liquid discharge head according to an embodiment of the present invention is manufactured. According to the manufacturing method according to the embodiment of the present invention, it is possible to improve transfer failure of the adhesive layer and uneven film thickness of the adhesive layer. As a result, it is possible to manufacture a good substrate for a liquid discharge head having high bonding reliability and reduced voids between the bonding members.

(第2の実施形態)
以下に、第2の実施形態について図面を参照して説明する。第1の実施形態と同様の構成要素については同一の符号を付し、説明を省略し又は簡略にする。
(Second embodiment)
The second embodiment will be described below with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.

本実施形態に用いる接着剤層8は感光性樹脂で形成することができる。このような樹脂としては、前述の第1の実施形態に使用できる感光性樹脂を用いることができる。接着剤層8を形成する樹脂としては感光時の架橋反応により硬化が進行するネガ型樹脂を使用することが望ましい。また、このような感光性樹脂を含み、且つ加熱により硬化可能な接着剤を用いて接着剤層を形成することが好ましい。 The adhesive layer 8 used in this embodiment can be formed of a photosensitive resin. As such a resin, a photosensitive resin that can be used in the above-mentioned first embodiment can be used. As the resin forming the adhesive layer 8, it is desirable to use a negative type resin in which curing proceeds by a cross-linking reaction during photosensitization. Further, it is preferable to form an adhesive layer using an adhesive containing such a photosensitive resin and curable by heating.

第1の実施形態と同様に、流路形成部材6を形成した基板1を用意し(図5(a))、次いで、基板1へ接着剤層8を転写する(図5(b))。 Similar to the first embodiment, the substrate 1 on which the flow path forming member 6 is formed is prepared (FIG. 5 (a)), and then the adhesive layer 8 is transferred to the substrate 1 (FIG. 5 (b)).

次いで、接着剤層8の平坦化処理を行う。この平坦化処理も第1の実施形態と同様に行うことができる。 Next, the adhesive layer 8 is flattened. This flattening process can also be performed in the same manner as in the first embodiment.

第2の実施形態では、基板1(第1の部材)と蓋構造体7(第2の部材)とを接合して接着剤を硬化(本硬化)する工程の前に、凹部側にはみ出した接着剤を除去する工程を含む。
第2の実施形態においても、接着剤層8を基板1の突起部の頂面のみに転写させることができるが、平坦化時に押圧されたことで、図5(c)に示すように、わずかに、共通液室3に対応する開口パターンの開口部(凹部)側へのはみ出しが生じる場合がある。このようなはみ出しが生じると共通液室3が狭まり、インク吐出の安定性が低下するおそれがある。また、開口パターンが微細の場合、接着剤層のはみ出しにより、共通液室3を閉塞してしまう可能性もある。そのため、開口部(凹部)側へはみ出した接着剤層8を除去することが好ましい。第2の実施形態によれば、はみ出した接着剤層8を容易に除去することができる。本実施形態では、基板1(第1の部材)に接着剤層を転写し、押圧して平坦化した後、基板1(第1の部材)の接合面側の凸部の直上部分のみ選択的に光照射して仮硬化を行う。基板1(第1の部材)の凸部の頂面から凹部側へはみ出した接着剤層部分は未硬化であるため容易に除去することができる。
In the second embodiment, before the step of joining the substrate 1 (first member) and the lid structure 7 (second member) and curing (mainly curing) the adhesive, the adhesive protrudes to the concave side. Includes the step of removing the adhesive.
Also in the second embodiment, the adhesive layer 8 can be transferred only to the top surface of the protrusion of the substrate 1, but it is slightly pressed during flattening, as shown in FIG. 5 (c). In addition, the opening pattern corresponding to the common liquid chamber 3 may protrude toward the opening (recess) side. If such protrusion occurs, the common liquid chamber 3 may be narrowed and the stability of ink ejection may be reduced. Further, when the opening pattern is fine, the common liquid chamber 3 may be blocked due to the protrusion of the adhesive layer. Therefore, it is preferable to remove the adhesive layer 8 protruding toward the opening (recess) side. According to the second embodiment, the protruding adhesive layer 8 can be easily removed. In the present embodiment, the adhesive layer is transferred to the substrate 1 (first member), pressed and flattened, and then only the portion directly above the convex portion on the joint surface side of the substrate 1 (first member) is selectively selected. Is irradiated with light to perform temporary curing. Since the adhesive layer portion protruding from the top surface of the convex portion of the substrate 1 (first member) to the concave portion side is uncured, it can be easily removed.

次いで、図5(d)に示すように、第1の硬化処理(仮硬化)を行う。第1の硬化処理は光照射により実施し、接着剤層の基板1の突起部頂面の直上部分のみに、マスクを用いて露光を行う。その結果、接着剤としてネガ型樹脂を用いている場合、接着剤層の基板1の突起部頂面の直上部分のみが硬化する。 Next, as shown in FIG. 5D, the first curing treatment (temporary curing) is performed. The first curing treatment is carried out by light irradiation, and only the portion directly above the top surface of the protrusion of the substrate 1 of the adhesive layer is exposed using a mask. As a result, when a negative resin is used as the adhesive, only the portion of the adhesive layer directly above the top surface of the protrusion of the substrate 1 is cured.

次いで、図5(e)に示すように蓋構造体7を形成し、図5(f)に示すように基板1と蓋構造体7を、接着剤層8を介して接合する。 Next, the lid structure 7 is formed as shown in FIG. 5 (e), and the substrate 1 and the lid structure 7 are joined via the adhesive layer 8 as shown in FIG. 5 (f).

次いで、図5(g)に示すように現像処理を行い、突起部頂面上から開口部(凹部)側へはみ出した未硬化の接着剤層8を除去する。次いで、第2の硬化処理(本硬化)を行って、接着剤層の接合強度を高める。 Next, a developing process is performed as shown in FIG. 5 (g) to remove the uncured adhesive layer 8 protruding from the top surface of the protrusion toward the opening (recess) side. Next, a second curing treatment (main curing) is performed to increase the bonding strength of the adhesive layer.

以上の工程によって、本発明の実施形態による液体吐出ヘッド用基板が製造される。本発明の実施形態による製造方法によれば、接着剤層が所定の部位からはみ出すことなく、接着剤層の転写不良と接着剤層の膜厚ムラを改善することができる。これにより、接合部材間でのボイドが低減された、接合信頼性の高い良好な液体吐出ヘッドを製造することができる。 Through the above steps, a substrate for a liquid discharge head according to an embodiment of the present invention is manufactured. According to the manufacturing method according to the embodiment of the present invention, it is possible to improve transfer failure of the adhesive layer and uneven film thickness of the adhesive layer without the adhesive layer protruding from a predetermined portion. As a result, it is possible to manufacture a good liquid discharge head having high joint reliability and reduced voids between the joint members.

以下に、図面を参照して、本発明による液体吐出ヘッド用基板の製造方法について、実施例を挙げて具体的に説明する。 Hereinafter, the method for manufacturing a substrate for a liquid discharge head according to the present invention will be specifically described with reference to the drawings with reference to examples.

(実施例1)
前述の第1の実施形態について実施例1を挙げて具体的に説明する。
まず、図2(a)に示すように、エネルギー発生素子2、共通液室3及びインク供給口4を含むシリコン製の基板1を用意した。次いで、図2(b)に示すように、基板1に流路形成部材6を設けた。インク供給口4と、共通液室3の形成方法としては、RIE(リアクティブイオンエッチング)方式にてボッシュプロセスで形成した。
(Example 1)
The first embodiment described above will be specifically described with reference to Example 1.
First, as shown in FIG. 2A, a silicon substrate 1 including an energy generating element 2, a common liquid chamber 3, and an ink supply port 4 was prepared. Next, as shown in FIG. 2B, the flow path forming member 6 was provided on the substrate 1. The ink supply port 4 and the common liquid chamber 3 were formed by a Bosch process by a RIE (reactive ion etching) method.

次いで、次のようにして、接着剤層8が形成されたフィルムを作製した(図3(a))。まず、支持体10(PETフィルム)上に、感光性樹脂からなる接着剤をスピンコート法にて20μmの膜厚となるように塗布した。続いて、接着剤の塗布膜をオーブンによって70℃で乾燥させ、図3(a)に示すドライフィルムを得た。 Next, a film on which the adhesive layer 8 was formed was produced as follows (FIG. 3 (a)). First, an adhesive made of a photosensitive resin was applied onto the support 10 (PET film) by a spin coating method so as to have a film thickness of 20 μm. Subsequently, the adhesive coating film was dried in an oven at 70 ° C. to obtain the dry film shown in FIG. 3 (a).

次いで、図3(b)に示すように、基板1を反転し、押圧装置にてステージ温度70℃、ローラー圧力0.15MPaにて、支持体10に形成された接着剤層8を基板1の裏面側(接合面)に押圧した。本実施例で用いた接着剤の樹脂の軟化温度は65℃である。 Next, as shown in FIG. 3B, the substrate 1 is inverted, and the adhesive layer 8 formed on the support 10 is applied to the substrate 1 at a stage temperature of 70 ° C. and a roller pressure of 0.15 MPa by a pressing device. Pressed against the back surface side (joint surface). The softening temperature of the adhesive resin used in this example is 65 ° C.

次いで、図3(c)に示すように、支持体10(PETフィルム)を、ステージ温度70℃の状態で剥離し、基板1に接着剤層8を凝集破壊転写した(図3(d)、図2(c)。基板1に転写された接着剤層8の膜厚は平均で10μmであり、その表面の凹凸は白色干渉計にて測定したところ10μmであった。 Next, as shown in FIG. 3C, the support 10 (PET film) was peeled off at a stage temperature of 70 ° C., and the adhesive layer 8 was coagulated, fractured and transferred to the substrate 1 (FIG. 3D). FIG. 2C. The thickness of the adhesive layer 8 transferred to the substrate 1 was 10 μm on average, and the unevenness on the surface was 10 μm as measured by a white interferometer.

次に、図4(a)に示す押圧補助部材11を準備した。続いて、図4(b)及び図4(c)に示すように、接着剤層8の膜厚のムラを改善するため、基板1の接着剤層8が付与された側を押圧補助部材11越しに押圧し、接着剤層8の平坦化処理を行った。平坦化処理は、ラミネート装置を用いて、ローラー圧力0.2MPa、ローラー速度5mm/sで実施した。その際、平坦化処理時の温度は、接着剤層8の軟化温度以上となるように、ステージ温度75℃、ローラー温度75℃とした。押圧補助部材11には、線膨張係数が低いポリイミドフィルムを用いた。 Next, the pressing auxiliary member 11 shown in FIG. 4A was prepared. Subsequently, as shown in FIGS. 4 (b) and 4 (c), in order to improve the uneven film thickness of the adhesive layer 8, the side of the substrate 1 to which the adhesive layer 8 is applied is pressed by the auxiliary member 11. The adhesive layer 8 was flattened by pressing through the adhesive layer 8. The flattening treatment was carried out using a laminating apparatus at a roller pressure of 0.2 MPa and a roller speed of 5 mm / s. At that time, the temperature during the flattening treatment was set to a stage temperature of 75 ° C. and a roller temperature of 75 ° C. so as to be equal to or higher than the softening temperature of the adhesive layer 8. A polyimide film having a low coefficient of linear expansion was used for the pressing auxiliary member 11.

次に、図4(d)に示すように、冷却ステージ13に基板1を配置し、40℃以下まで基板1の接着剤層8を冷却し、押圧補助部材11を基板1から剥離した。平坦化処理後の接着剤層8の膜厚は平均で10μmであり、その表面の凹凸は白色干渉計にて測定したところ1μm以下であった。 Next, as shown in FIG. 4D, the substrate 1 was placed on the cooling stage 13, the adhesive layer 8 of the substrate 1 was cooled to 40 ° C. or lower, and the pressing auxiliary member 11 was peeled off from the substrate 1. The film thickness of the adhesive layer 8 after the flattening treatment was 10 μm on average, and the unevenness on the surface was 1 μm or less as measured by a white interferometer.

以上のようにして、図2(d)(図4(e)に対応)に示すように、基板1の接着剤層8の平坦化を行った。 As described above, as shown in FIG. 2 (d) (corresponding to FIG. 4 (e)), the adhesive layer 8 of the substrate 1 was flattened.

次いで、図2(e)に示すように、基板1上の平坦化された接着剤層8に対し、第1の硬化処理工程(仮硬化)を行った。第1の硬化処理は、光照射により行い、一括全面露光機を用いてウエハ全面を露光した。露光波長は365nm、露光量を320mJ/cm2で実施した。接合前に第1の硬化処理を行うことで、架橋反応を進行させ、接合後の硬化不良を抑制することができる。なお、接着剤層8の硬化度は、ビッカース硬さ(HV)で40%となっていた。ここで接着剤層の硬化度とは、本硬化後のビッカース硬さに対する仮硬化後(本硬化前)のビッカース硬さの百分率である。ビッカース硬さ(HV)は、JIS Z 2244:2009に準拠した試験方法て求めることができる。 Next, as shown in FIG. 2 (e), the flattened adhesive layer 8 on the substrate 1 was subjected to a first curing treatment step (temporary curing). The first curing treatment was performed by light irradiation, and the entire surface of the wafer was exposed using a batch full-face exposure machine. The exposure wavelength was 365 nm and the exposure amount was 320 mJ / cm 2 . By performing the first curing treatment before bonding, the cross-linking reaction can proceed and curing defects after bonding can be suppressed. The degree of curing of the adhesive layer 8 was 40% in Vickers hardness (HV). Here, the degree of curing of the adhesive layer is a percentage of the Vickers hardness after the temporary curing (before the main curing) with respect to the Vickers hardness after the main curing. Vickers hardness (HV) can be determined by a test method conforming to JIS Z 2244: 2009.

次いで、図2(f)に示すように、蓋構造体7を形成した。蓋構造体7はシリコン基板をRIE(リアクティブイオンエッチング)方式にてボッシュプロセスで形成した。 Next, as shown in FIG. 2 (f), the lid structure 7 was formed. The lid structure 7 was formed by forming a silicon substrate by a Bosch process by a RIE (reactive ion etching) method.

次いで、図2(g)に示すように基板1と蓋構造体7を、接着剤層8を介して接合装置にて25℃、4KNで加圧して接合した。 Next, as shown in FIG. 2 (g), the substrate 1 and the lid structure 7 were joined by applying pressure at 25 ° C. and 4 KN with a joining device via the adhesive layer 8.

次いで、100℃で3時間加熱し、接着剤層8の第2の硬化処理(本硬化)を行った。これにより接着剤層8の硬化度を高くし、基板1と蓋構造体7の接合強度を高めた。 Then, the adhesive layer 8 was heated at 100 ° C. for 3 hours to perform a second curing treatment (main curing) of the adhesive layer 8. As a result, the degree of curing of the adhesive layer 8 was increased, and the bonding strength between the substrate 1 and the lid structure 7 was increased.

以上の工程を経て作製された液滴吐出ヘッド用基板は、接着剤層の転写不良と接着剤層の膜厚ムラが抑えられ、接合信頼性を向上することができた。 In the substrate for the droplet ejection head produced through the above steps, transfer defects in the adhesive layer and uneven film thickness of the adhesive layer were suppressed, and bonding reliability could be improved.

(実施例2)
本例では、基板1に転写された接着剤層の平坦化工程において、接着剤層の軟化温度以下で平坦化を行った以外は、実施例1と同様にして液体吐出ヘッド用基板を作製した。
(Example 2)
In this example, in the flattening step of the adhesive layer transferred to the substrate 1, a substrate for a liquid discharge head was produced in the same manner as in Example 1 except that the adhesive layer was flattened at a temperature equal to or lower than the softening temperature of the adhesive layer. ..

まず、実施例1と同様にして、流路形成部材7を設けた基板1を用意した。次いで、実施例1と同様にして、押圧装置にてステージ温度70℃、ローラー圧力0.15MPaにて、支持体10に形成された接着剤層8を基板1の裏面側(接合面)に押圧した。基板1に転写された接着剤層8の膜厚は平均で10μmであり、その表面の凹凸は10μmであった。 First, in the same manner as in Example 1, a substrate 1 provided with a flow path forming member 7 was prepared. Next, in the same manner as in Example 1, the adhesive layer 8 formed on the support 10 is pressed against the back surface side (joining surface) of the substrate 1 with a pressing device at a stage temperature of 70 ° C. and a roller pressure of 0.15 MPa. did. The film thickness of the adhesive layer 8 transferred to the substrate 1 was 10 μm on average, and the unevenness of the surface thereof was 10 μm.

次いで、温度の条件以外は、実施例1と同様にして、図4(b)及び図4(c)に示すように、基板1の接着剤層8が付与された側を押圧補助部材11越しに押圧し、接着剤層8の平坦化処理を行った。すなわち、ラミネート装置を用いて、ローラー圧力0.2MPa、ローラー速度5mm/sで平坦化処理を実施した。その際、平坦化処理時の温度は、接着剤層8の軟化温度より低い温度で実施し、ステージ温度50℃、ローラー温度50℃とした。押圧補助部材11には、線膨張係数が低いポリイミドフィルムを用いた。 Next, as shown in FIGS. 4 (b) and 4 (c), the side of the substrate 1 to which the adhesive layer 8 is applied is pushed through the pressing auxiliary member 11 in the same manner as in the first embodiment except for the temperature condition. The adhesive layer 8 was flattened. That is, the flattening treatment was carried out at a roller pressure of 0.2 MPa and a roller speed of 5 mm / s using a laminating apparatus. At that time, the temperature during the flattening treatment was lower than the softening temperature of the adhesive layer 8, and the stage temperature was 50 ° C. and the roller temperature was 50 ° C. A polyimide film having a low coefficient of linear expansion was used for the pressing auxiliary member 11.

次に、図4(d)に示すように、冷却ステージ13に基板1を配置し、40℃以下まで基板1を冷却し、押圧補助部材11を基板1から剥離した。平坦化処理後の接着剤層8の膜厚は平均で10μmであった。表面の凹凸は白色干渉計にて測定したところ、平坦化前より低減したものの実施例1より平坦化効果が低く、6.5μmであった。 Next, as shown in FIG. 4D, the substrate 1 was placed on the cooling stage 13, the substrate 1 was cooled to 40 ° C. or lower, and the pressing auxiliary member 11 was peeled off from the substrate 1. The film thickness of the adhesive layer 8 after the flattening treatment was 10 μm on average. When the unevenness of the surface was measured with a white interferometer, the flattening effect was lower than that of Example 1 and was 6.5 μm, although it was reduced as compared with that before flattening.

次いで、実施例1と同様にして、接着剤層8の第1の硬化処理工程(仮硬化)を行い、準備した蓋構造体7と接合し、続いて第2の硬化処理(本硬化)を行って液滴吐出ヘッド用基板を得た。しかしながら、加圧して接合した時点で、接合部材間の一部にボイドが発生した。後述の比較例1に対してはボイドの発生が一部に抑えられていた。 Next, in the same manner as in Example 1, the first curing treatment step (temporary curing) of the adhesive layer 8 is performed, the adhesive layer 8 is joined to the prepared lid structure 7, and then the second curing treatment (main curing) is performed. A substrate for a droplet ejection head was obtained. However, at the time of pressurizing and joining, voids were generated in a part between the joining members. The generation of voids was partially suppressed with respect to Comparative Example 1 described later.

(比較例1)
本例では、基板1に転写された接着剤層の平坦化工程を行わなかった以外は、実施例1と同様にして液体吐出ヘッド用基板を作製した。
(Comparative Example 1)
In this example, a substrate for a liquid discharge head was produced in the same manner as in Example 1 except that the step of flattening the adhesive layer transferred to the substrate 1 was not performed.

まず、実施例1と同様にして、流路形成部材7を設けた基板1を用意した。次いで、実施例1と同様にして、押圧装置にてステージ温度70℃、ローラー圧力0.15MPaにて、支持体10に塗布された接着剤層8を基板1の接合面に押圧した。基板1に転写された接着剤層8の膜厚は平均で10μmであり、その表面の凹凸は10μmであった。 First, in the same manner as in Example 1, a substrate 1 provided with a flow path forming member 7 was prepared. Next, in the same manner as in Example 1, the adhesive layer 8 applied to the support 10 was pressed against the joint surface of the substrate 1 with a pressing device at a stage temperature of 70 ° C. and a roller pressure of 0.15 MPa. The film thickness of the adhesive layer 8 transferred to the substrate 1 was 10 μm on average, and the unevenness of the surface thereof was 10 μm.

次いで、実施例1と同様にして、基板1に転写された接着剤層8に対して第1の硬化処理工程(仮硬化)を行い、準備した蓋構造体7と接合し、続いて第2の硬化処理(本硬化)を行って液滴吐出ヘッド用基板を得た。しかしながら、加圧して接合した時点で、接着剤層8の凹凸をつぶし切れず、接合部材間でボイドが発生した。 Next, in the same manner as in Example 1, the adhesive layer 8 transferred to the substrate 1 is subjected to a first curing treatment step (temporary curing), joined to the prepared lid structure 7, and then second. The curing treatment (main curing) of the above was performed to obtain a substrate for a droplet ejection head. However, at the time of pressurizing and joining, the unevenness of the adhesive layer 8 could not be completely crushed, and voids were generated between the joining members.

以上のように平坦化工程を行わないで作製された液体吐出ヘッド用基板は、接着剤の膜厚ムラにより接合部材間で気泡の抱き込み等によるボイドが発生した。インクジェット記録装置に用いて動作させたところ、インクのリークが生じてしまった。 In the liquid discharge head substrate manufactured without performing the flattening step as described above, voids were generated due to embracing air bubbles between the joining members due to the uneven film thickness of the adhesive. When it was used in an inkjet recording device and operated, an ink leak occurred.

(実施例3)
前述の第2の実施形態について実施例3を挙げて具体的に説明する。
まず、図5(a)に示すように、エネルギー発生素子2、共通液室3及びインク供給口4を含み、流路形成部材7が設けられたシリコン製の基板1を用意した。インク供給口4と、共通液室3の形成方法としては、RIE(リアクティブイオンエッチング)方式にてボッシュプロセスで形成した。
(Example 3)
The second embodiment described above will be specifically described with reference to Example 3.
First, as shown in FIG. 5A, a silicon substrate 1 including an energy generating element 2, a common liquid chamber 3, and an ink supply port 4 and provided with a flow path forming member 7 was prepared. The ink supply port 4 and the common liquid chamber 3 were formed by a Bosch process by a RIE (reactive ion etching) method.

次いで、次のようにして、接着剤層8が形成されたフィルムを作製した(図3(a))。まず、支持体10(PETフィルム)上に、感光性樹脂からなる接着剤をスピンコート法にて20μmの膜厚となるように塗布した。続いて、接着剤の塗布膜をオーブンによって70℃で乾燥させ、図3(a)に示すドライフィルムを得た。 Next, a film on which the adhesive layer 8 was formed was produced as follows (FIG. 3 (a)). First, an adhesive made of a photosensitive resin was applied onto the support 10 (PET film) by a spin coating method so as to have a film thickness of 20 μm. Subsequently, the adhesive coating film was dried in an oven at 70 ° C. to obtain the dry film shown in FIG. 3 (a).

次いで、図3(b)に示すように、基板1を反転し、押圧装置にてステージ温度70℃、ローラー圧力0.15MPaにて、支持体10に形成された接着剤層8を基板1の裏面側(接合面)に押圧した。本実施例で用いた接着剤の樹脂の軟化温度は65℃である。 Next, as shown in FIG. 3B, the substrate 1 is inverted, and the adhesive layer 8 formed on the support 10 is applied to the substrate 1 at a stage temperature of 70 ° C. and a roller pressure of 0.15 MPa by a pressing device. Pressed against the back surface side (joint surface). The softening temperature of the adhesive resin used in this example is 65 ° C.

次いで、図3(c)に示すように、支持体10(PETフィルム)を、ステージ温度70℃の状態で剥離し、基板1に接着剤層8を凝集破壊転写した(図3(d)、図5(b))。基板1に転写された接着剤層8の膜厚は平均で10μmであり、その表面の凹凸は白色干渉計にて測定したところ10μmであった。 Next, as shown in FIG. 3C, the support 10 (PET film) was peeled off at a stage temperature of 70 ° C., and the adhesive layer 8 was coagulated, fractured and transferred to the substrate 1 (FIG. 3D). FIG. 5 (b). The film thickness of the adhesive layer 8 transferred to the substrate 1 was 10 μm on average, and the unevenness on the surface was 10 μm as measured by a white interferometer.

次に、図4(a)に示す押圧補助部材11を準備した。続いて、図4(b)に示すように、接着剤層8の膜厚のムラを改善するため、基板1の接着剤層8が付与された側を押圧補助部材11越しに押圧し、接着剤層8の平坦化処理を行った。平坦化処理は、ラミネート装置を用いて、ローラー圧力0.2MPa,ローラー速度5mm/sで実施した。その際、平坦化処理時の温度は、接着剤層8の軟化温度以上となるように、ステージ温度100℃、ローラー温度100℃とした。押圧補助部材11には、表面に離型処理が施されたPETフィルムを用いた。 Next, the pressing auxiliary member 11 shown in FIG. 4A was prepared. Subsequently, as shown in FIG. 4B, in order to improve the unevenness of the film thickness of the adhesive layer 8, the side of the substrate 1 to which the adhesive layer 8 is applied is pressed through the pressing auxiliary member 11 to adhere. The agent layer 8 was flattened. The flattening treatment was carried out using a laminating apparatus at a roller pressure of 0.2 MPa and a roller speed of 5 mm / s. At that time, the temperature during the flattening treatment was set to a stage temperature of 100 ° C. and a roller temperature of 100 ° C. so as to be equal to or higher than the softening temperature of the adhesive layer 8. As the pressing auxiliary member 11, a PET film whose surface was subjected to a mold release treatment was used.

次に、冷却ステージに基板1を配置し、40℃以下まで基板1上の接着剤層8を冷却し、押圧補助部材11を基板1から剥離した(図5(c))。平坦化処理後の接着剤層8の膜厚は平均で10μmであり、その表面の凹凸は白色干渉計にて測定したところ1μm以下であった。 Next, the substrate 1 was placed on the cooling stage, the adhesive layer 8 on the substrate 1 was cooled to 40 ° C. or lower, and the pressing auxiliary member 11 was peeled off from the substrate 1 (FIG. 5 (c)). The film thickness of the adhesive layer 8 after the flattening treatment was 10 μm on average, and the unevenness on the surface was 1 μm or less as measured by a white interferometer.

平坦化時に押圧されたことと、押圧補助部材として用いたPETフィルムの線膨張の影響により、図5(c)に示すように、接着剤層8が最大30μm程度、共通液室に対応する開口パターンの開口部(凹部)側へのはみ出しが生じた。 As shown in FIG. 5 (c), the adhesive layer 8 has a maximum opening of about 30 μm, which corresponds to the common liquid chamber, due to the fact that it was pressed during flattening and the influence of the linear expansion of the PET film used as the pressing auxiliary member. The pattern protruded toward the opening (recess) side.

次いで、図5(d)に示すように、基板1上の平坦化された接着剤層に対し、第1の硬化処理工程(仮硬化)を行った。第1の硬化処理は光照射により行い、接着剤層の基板1の突起部頂面の直上部分のみ硬化するようにマスク14を用いて露光した。露光波長は365nm、露光量を320mJ/cm2で実施した。 Next, as shown in FIG. 5D, a first curing treatment step (temporary curing) was performed on the flattened adhesive layer on the substrate 1. The first curing treatment was performed by light irradiation, and was exposed using a mask 14 so that only the portion directly above the top surface of the protrusion of the substrate 1 of the adhesive layer was cured. The exposure wavelength was 365 nm and the exposure amount was 320 mJ / cm 2 .

次いで、図5(e)に示すように、蓋構造体7を形成した。蓋構造体7はシリコン基板をRIE(リアクティブイオンエッチング)方式にてボッシュプロセスで形成した。 Next, as shown in FIG. 5 (e), the lid structure 7 was formed. The lid structure 7 was formed by forming a silicon substrate by a Bosch process by a RIE (reactive ion etching) method.

次いで、図5(f)に示すように基板1と蓋構造体7を、接着剤層8を介して接合装置にて25℃、4KNで加圧して接合した。 Next, as shown in FIG. 5 (f), the substrate 1 and the lid structure 7 were joined by applying pressure at 25 ° C. and 4 KN with a joining device via the adhesive layer 8.

次いで、図5(g)に示すように、現像装置にて、基板1の突起部頂面上から開口部(凹部)側へはみ出した未硬化の接着剤層を除去した。溶剤にはPGMEAを用い、回転数は2000rpm、処理時間は5秒とした。 Next, as shown in FIG. 5 (g), the uncured adhesive layer protruding from the top surface of the protrusion of the substrate 1 toward the opening (recess) side was removed by a developing device. PGMEA was used as the solvent, the rotation speed was 2000 rpm, and the treatment time was 5 seconds.

次いで、100℃で3時間加熱し、接着剤層8の第2の硬化処理(本硬化)を行った。 Then, the adhesive layer 8 was heated at 100 ° C. for 3 hours to perform a second curing treatment (main curing) of the adhesive layer 8.

以上の工程を経て作製された液滴吐出ヘッド用基板は、接着剤層が所定の位置からはみ出すことなく、接着剤層の転写不良と接着剤層の膜厚ムラが改善され、接合信頼性を向上することができた。 The substrate for the droplet ejection head produced through the above steps has improved bonding reliability by improving transfer defects of the adhesive layer and uneven film thickness of the adhesive layer without the adhesive layer protruding from a predetermined position. I was able to improve.

1:基板
2:エネルギー発生素子
3:共通液室
4:インク供給口
5:吐出口
6:流路形成部材
7:蓋構造体
8:接着剤層
9:開口部
10:支持体
11:押圧補助部材(フィルム状部材)
12、13:ステージ
14:マスク
1: Substrate 2: Energy generating element 3: Common liquid chamber 4: Ink supply port 5: Discharge port 6: Flow path forming member 7: Lid structure 8: Adhesive layer 9: Opening 10: Support 11: Pressing assist Member (film-like member)
12, 13: Stage 14: Mask

Claims (13)

凹部と凸部を有する第1の部材の該凸部に接着剤を付与する工程と、
該凸部に付与された接着剤を、前記凹部を閉塞しないように平坦化する工程と、
第2の部材と前記第1の部材とを、前記平坦化された接着剤を介して接合する工程と、
前記接着剤を硬化する工程と、を含む、液体吐出ヘッド用基板の製造方法。
A step of applying an adhesive to the convex portion of the first member having a concave portion and a convex portion, and
A step of flattening the adhesive applied to the convex portion so as not to block the concave portion, and
A step of joining the second member and the first member via the flattened adhesive, and
A method for manufacturing a substrate for a liquid discharge head, which comprises a step of curing the adhesive.
前記第1の部材と前記第2の部材とを接合する工程の後、前記接着剤を硬化する工程の前に、前記凹部側にはみ出した前記接着剤を除去する工程を含む、請求項1に記載の液体吐出ヘッド用基板の製造方法。 The first aspect of the present invention includes a step of removing the adhesive protruding to the recess side after the step of joining the first member and the second member and before the step of curing the adhesive. The method for manufacturing a substrate for a liquid discharge head according to the description. 前記接着剤を平坦化する工程は、押圧補助部材を介して前記接着剤を押圧することにより前記接着剤を平坦化する工程と、その後に前記押圧補助部材を剥離する工程を含み、
前記押圧補助部材を介した押圧は、前記接着剤の軟化温度(T0)より高い温度(T2)で行い、
前記押圧補助部材の剥離は、前記接着剤の軟化温度(T0)より低い温度(T3)で行う、請求項1又は2記載の液体吐出ヘッド用基板の製造方法。
The step of flattening the adhesive includes a step of flattening the adhesive by pressing the adhesive via a pressing auxiliary member and a step of peeling off the pressing auxiliary member thereafter.
The pressing through the pressing auxiliary member is performed at a temperature (T2) higher than the softening temperature (T0) of the adhesive.
The method for manufacturing a substrate for a liquid discharge head according to claim 1 or 2, wherein the pressing auxiliary member is peeled off at a temperature (T3) lower than the softening temperature (T0) of the adhesive.
前記接着剤を付与する工程は、前記接着剤の軟化温度(T0)より高く、前記押圧補助部材を介した押圧時の温度(T2)より低い温度(T1)で行う、請求項3記載の液体吐出ヘッド用基板の製造方法。 The liquid according to claim 3, wherein the step of applying the adhesive is performed at a temperature (T1) higher than the softening temperature (T0) of the adhesive and lower than the temperature (T2) at the time of pressing through the pressing auxiliary member. A method for manufacturing a substrate for a discharge head. 前記押圧補助部材と前記第1の基材の線膨張係数差は20ppm/K以下である、請求項3又は4記載の液体吐出ヘッド用基板の製造方法。 The method for manufacturing a substrate for a liquid discharge head according to claim 3 or 4, wherein the difference in linear expansion coefficient between the pressing auxiliary member and the first base material is 20 ppm / K or less. 前記押圧補助部材がフィルム状部材である、請求項3から5のいずれか一項に記載の液体吐出ヘッド用基板の製造方法。 The method for manufacturing a substrate for a liquid discharge head according to any one of claims 3 to 5, wherein the pressing auxiliary member is a film-like member. 前記接着剤を平坦化する工程の後、前記第1の部材と前記第2の部材とを接合する工程の前に、前記接着剤を仮硬化する工程を含む、請求項1から6のいずれか一項に記載の液体吐出ヘッド用基板の製造方法。 Any of claims 1 to 6, comprising a step of pre-curing the adhesive after the step of flattening the adhesive and before the step of joining the first member and the second member. The method for manufacturing a substrate for a liquid discharge head according to item 1. 前記接着剤の仮硬化は、前記接着剤の硬化度が10〜65%となるように行う、請求項7記載の液体吐出ヘッド用基板の製造方法。 The method for manufacturing a substrate for a liquid discharge head according to claim 7, wherein the temporary curing of the adhesive is performed so that the degree of curing of the adhesive is 10 to 65%. 前記接着剤の仮硬化は、光照射により行う、請求項7又は8記載の液体吐出ヘッド用基板の製造方法。 The method for manufacturing a substrate for a liquid discharge head according to claim 7 or 8, wherein the temporary curing of the adhesive is performed by irradiation with light. 前記接着剤は、感光性樹脂である、請求項1から9のいずれか一項に記載の液体吐出ヘッド用基板の製造方法。 The method for manufacturing a substrate for a liquid discharge head according to any one of claims 1 to 9, wherein the adhesive is a photosensitive resin. 前記接着剤を付与する工程は、基材に接着剤層の形成された部材の該接着剤層を前記凸部に押圧して、該接着剤を転写する工程を含む、請求項1から10のいずれか一項に記載の液体吐出ヘッド用基板の製造方法。 The steps of applying the adhesive include the steps of pressing the adhesive layer of the member on which the adhesive layer is formed on the base material against the convex portion and transferring the adhesive, according to claims 1 to 10. The method for manufacturing a substrate for a liquid discharge head according to any one of the items. 前記第1の部材は、表面に液体を吐出するエネルギーを発生するエネルギー発生素子と、該表面に連通する供給口と、該供給口に連通し裏面に開口する共通液室を有する基板であって、前記共通液室を前記凹部とし、前記共通液室を除く前記基板の裏面を前記凸部とする、請求項1から11のいずれか一項に記載の液体吐出ヘッド用基板の製造方法。 The first member is a substrate having an energy generating element that generates energy for discharging a liquid on the front surface, a supply port communicating with the front surface, and a common liquid chamber communicating with the supply port and opening on the back surface. The method for manufacturing a substrate for a liquid discharge head according to any one of claims 1 to 11, wherein the common liquid chamber is the concave portion and the back surface of the substrate excluding the common liquid chamber is the convex portion. 前記第2の部材は、前記共通液室へ液体を供給する開口部が設けられた蓋構造体である、請求項12に記載の液体吐出ヘッド用基板の製造方法。 The method for manufacturing a substrate for a liquid discharge head according to claim 12, wherein the second member is a lid structure provided with an opening for supplying a liquid to the common liquid chamber.
JP2019149441A 2019-08-16 2019-08-16 Method for manufacturing substrate for liquid discharge head Pending JP2021030471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149441A JP2021030471A (en) 2019-08-16 2019-08-16 Method for manufacturing substrate for liquid discharge head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149441A JP2021030471A (en) 2019-08-16 2019-08-16 Method for manufacturing substrate for liquid discharge head

Publications (1)

Publication Number Publication Date
JP2021030471A true JP2021030471A (en) 2021-03-01

Family

ID=74676968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149441A Pending JP2021030471A (en) 2019-08-16 2019-08-16 Method for manufacturing substrate for liquid discharge head

Country Status (1)

Country Link
JP (1) JP2021030471A (en)

Similar Documents

Publication Publication Date Title
CN104838485B (en) Detachable substrate on support plate
JP6598497B2 (en) Liquid discharge head and manufacturing method thereof
JP5902114B2 (en) Semiconductor device and manufacturing method thereof
JP2011233711A (en) Method of manufacturing semiconductor device
US10894409B2 (en) Method of manufacturing a liquid ejection head
JP2019514199A (en) Method and apparatus for bonding two substrates
JP2015195240A (en) Semiconductor device, multilayer semiconductor device, post-package multilayer semiconductor device and manufacturing methods thereof
US10279589B2 (en) Method for manufacturing structure
JP2016221866A (en) Production method of liquid discharge head
WO2005036633A1 (en) Process for producing electronic member, and ic chip with adhesive
JP2018202826A (en) Method for manufacturing substrate joint, method for manufacturing liquid discharge head, substrate joint, and liquid discharge head
US20190255852A1 (en) Manufacturing method of liquid ejection head
JP2021030471A (en) Method for manufacturing substrate for liquid discharge head
JP2019142153A (en) Bonding method of resin film and manufacturing method of liquid discharge head
JP7187199B2 (en) METHOD FOR TRANSFERRING MEMBER AND METHOD FOR MANUFACTURING LIQUID EJECTION HEAD
JP2022025197A (en) Method for manufacturing thin film and method for manufacturing substrate
US20230055886A1 (en) Flow path member and liquid discharge head
JPH05109838A (en) Repair method for bare chip
JP2020049752A (en) Manufacturing method of substrate with resin layer, and manufacturing method of liquid discharge head
JP2000160107A (en) Production of substrate covered with thin plate
JP2018020481A (en) Method for forming space
JP2021079625A (en) Manufacturing method for liquid discharge head
JP6541499B2 (en) Method of manufacturing micro device
JP2001246716A (en) Apparatus for manufacturing laminate
JP2024035074A (en) Method for manufacturing channel members