JP2021029980A - Deglutition simulation device and deglutition simulation method - Google Patents

Deglutition simulation device and deglutition simulation method Download PDF

Info

Publication number
JP2021029980A
JP2021029980A JP2019157449A JP2019157449A JP2021029980A JP 2021029980 A JP2021029980 A JP 2021029980A JP 2019157449 A JP2019157449 A JP 2019157449A JP 2019157449 A JP2019157449 A JP 2019157449A JP 2021029980 A JP2021029980 A JP 2021029980A
Authority
JP
Japan
Prior art keywords
muscle
neck
particles
head
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157449A
Other languages
Japanese (ja)
Other versions
JP7401225B2 (en
Inventor
幸博 道脇
Yukihiro Michiwaki
幸博 道脇
貴博 菊地
Takahiro Kikuchi
貴博 菊地
元幹 井上
Motoki Inoue
元幹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2019157449A priority Critical patent/JP7401225B2/en
Publication of JP2021029980A publication Critical patent/JP2021029980A/en
Application granted granted Critical
Publication of JP7401225B2 publication Critical patent/JP7401225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide a deglutition simulation device and a deglutition simulation method, capable of more accurately reproducing movement of a head and neck organ, behavior of a pseudo oral ingestion product, and the like at the time of deglutition of the pseudo oral ingestion product.SOLUTION: A deglutition simulation device 1 includes a head and neck organ made using particles, the particles being set to forcible movement particles and muscle particles to which contraction stress based on a predetermined muscle fiber direction is set to be given for each muscle type of a contraction muscle. Thereby, movement of the head and neck organ, behavior of a pseudo oral ingestion product 100, and the like at the time of deglutition of the pseudo oral ingestion product 100 can be more accurately reproduced than before.SELECTED DRAWING: Figure 10

Description

本発明は、嚥下シミュレーション装置及び嚥下シミュレーション方法に関する。 The present invention relates to a swallowing simulation apparatus and a swallowing simulation method.

嚥下時の食品物性と頭頸部器官の運動との関係は複雑であり、現象そのものを正確に把握することは非常に困難である。ここで、嚥下とは、口腔内に取り込まれた食品(飲料を含む)を、咽頭・食道を経て胃に送り込む運動である。嚥下時には、口腔、咽頭、喉頭、食道の筋が、短時間のうちに決められた順序で活動し、複雑な運動を遂行している。 The relationship between the physical characteristics of food during swallowing and the movement of the head and neck organs is complicated, and it is very difficult to accurately grasp the phenomenon itself. Here, swallowing is an exercise in which food (including beverages) taken into the oral cavity is sent to the stomach via the pharynx and esophagus. When swallowing, the muscles of the oral cavity, pharynx, larynx, and esophagus are active in a predetermined order in a short period of time, performing complex movements.

従来、嚥下時の食塊の挙動を模擬するために、コンピュータを用いた嚥下シミュレーション装置が知られている(例えば、特許文献1参照)。この嚥下シミュレーション装置では、口腔器官の運動や、飲食品等の物性値を設定し、三次元画像において、粒子法を用いて飲食品の挙動を解析することができる。このような嚥下シミュレーション装置は、嚥下に関する実現象を近似的に再現でき、嚥下現象を可視化することが可能であり、例えば、誤嚥を抑制し得る食品や医薬品、飲料等の経口摂取品を開発する際に役立てることができると考えられている。 Conventionally, a swallowing simulation device using a computer has been known for simulating the behavior of a bolus during swallowing (see, for example, Patent Document 1). In this swallowing simulation device, the movement of oral organs and the physical property values of foods and drinks can be set, and the behavior of foods and drinks can be analyzed by using the particle method in a three-dimensional image. Such a swallowing simulation device can approximately reproduce the actual phenomenon related to swallowing and visualize the swallowing phenomenon. For example, we have developed an orally ingested product such as a food, a medicine, or a beverage that can suppress aspiration. It is believed that it can be useful in doing so.

特許第6022789号公報Japanese Patent No. 6022789

しかしながら、誤嚥を抑制し得る経口摂取品の開発や、誤嚥のメカニズム解明による効果的な診断、治療法の確立を目指すには、特許文献1に示すような嚥下現象の単なる可視化では不十分であり、擬似経口摂取品の嚥下時における頭頸部器官の運動や、擬似経口摂取品の挙動などを従来よりも一段と正確に再現することが望まれている。 However, in order to develop an oral ingested product that can suppress aspiration, and to establish an effective diagnosis and treatment method by elucidating the mechanism of aspiration, mere visualization of the swallowing phenomenon as shown in Patent Document 1 is not sufficient. Therefore, it is desired to more accurately reproduce the movement of the head and neck organs during swallowing of the pseudo-oral intake product and the behavior of the pseudo-oral intake product than before.

本発明は以上の点を考慮してなされたもので、擬似経口摂取品の嚥下時における頭頸部器官の運動や擬似経口摂取品の挙動などを従来よりも一段と正確に再現することができる嚥下シミュレーション装置及び嚥下シミュレーション方法を提供することを目的とする。 The present invention has been made in consideration of the above points, and is a swallowing simulation capable of more accurately reproducing the movement of the head and neck organs and the behavior of the pseudo-oral intake product during swallowing of the pseudo-oral intake product. It is an object of the present invention to provide an apparatus and a swallowing simulation method.

本発明に係る嚥下シミュレーション装置は、複数の粒子によって三次元画像でモデル化した複数の頭頸部器官を作製し、前記複数の頭頸部器官からなる動的三次元頭頸部粒子モデルを前記三次元画像により作製する頭頸部モデリング部と、前記動的三次元頭頸部粒子モデルにおける前記複数の頭頸部器官の運動を設定する器官運動設定部と、経口摂取品を複数の粒子によって前記三次元画像でモデル化した擬似経口摂取品を、前記動的三次元頭頸部粒子モデルで嚥下させたときの前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動と、を粒子法に基づいて前記三次元画像で解析する運動解析部と、前記運動解析部により前記三次元画像で解析された、前記擬似経口摂取品の嚥下時の前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動との解析結果を、動画像で表示する表示部と、を備え、前記器官運動設定部は、前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記擬似経口摂取品の嚥下時に前記頭頸部器官で強制的に移動する粒子を強制移動粒子とし、前記嚥下時における前記強制移動粒子の運動を設定する強制運動設定部と、前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記頭頸部器官の収縮筋ごとに前記三次元画像内で筋線維方向が特定され、かつ前記筋線維方向に基づく収縮応力が与えられる粒子を筋粒子とし、前記嚥下時における前記筋粒子の運動を設定する筋収縮運動設定部と、を備える。 The swallowing simulation apparatus according to the present invention prepares a plurality of head and neck organs modeled by a three-dimensional image from a plurality of particles, and creates a dynamic three-dimensional head and neck particle model composed of the plurality of head and neck organs in the three-dimensional image. A head and neck modeling unit created by the above, an organ movement setting unit that sets the movement of the plurality of head and neck organs in the dynamic three-dimensional head and neck particle model, and an orally ingested product modeled by the three-dimensional image with a plurality of particles. The movement of the head and neck organs when the simulated oral ingested product was swallowed by the dynamic three-dimensional head and neck particle model, and the behavior of the simulated oral ingested product during swallowing were described based on the particle method. The motion analysis unit analyzed by the three-dimensional image, the movement of the head and neck organs at the time of swallowing the pseudo-oral intake product analyzed by the motion analysis unit with the three-dimensional image, and the swallowing of the pseudo-oral intake product. The organ movement setting unit is provided with a display unit that displays the analysis result with the behavior of the above in a moving image, and the organ movement setting unit is the pseudo-oral intake product among the plurality of particles of the dynamic three-dimensional head and neck particle model. The particles that are forcibly moved by the head and neck organ during swallowing are defined as forced moving particles, and the forced movement setting unit that sets the movement of the forced moving particles during swallowing and the plurality of the dynamic three-dimensional head and neck particle model. Of the particles, the particles in which the muscle fiber direction is specified in the three-dimensional image for each contractile muscle of the head and neck organ and the contraction stress based on the muscle fiber direction is applied are defined as muscle particles, and the particles at the time of swallowing are described. It is provided with a muscle contraction movement setting unit for setting the movement of muscle particles.

また、本発明に係る嚥下シミュレーション方法は、複数の粒子によって三次元画像でモデル化した複数の頭頸部器官を作製し、前記複数の頭頸部器官からなる動的三次元頭頸部粒子モデルを前記三次元画像により作製する頭頸部モデリングステップと、前記動的三次元頭頸部粒子モデルにおける前記複数の頭頸部器官の運動を設定する器官運動設定ステップと、経口摂取品を複数の粒子によって前記三次元画像でモデル化した擬似経口摂取品を、前記動的三次元頭頸部粒子モデルで嚥下させたときの前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動と、を粒子法に基づいて前記三次元画像で解析する運動解析ステップと、前記運動解析ステップにより前記三次元画像で解析された、前記擬似経口摂取品の嚥下時の前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動との解析結果を、動画像で表示する表示ステップと、を備え、前記器官運動設定ステップは、前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記擬似経口摂取品の嚥下時に前記頭頸部器官で強制的に移動する粒子を強制移動粒子とし、前記嚥下時における前記強制移動粒子の運動を設定する強制運動設定ステップと、前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記頭頸部器官の収縮筋ごとに前記三次元画像内で筋線維方向が特定され、かつ前記筋線維方向に基づく収縮応力が与えられる粒子を筋粒子とし、前記嚥下時における前記筋粒子の運動を設定する筋収縮運動設定ステップと、を備える。 Further, in the swallowing simulation method according to the present invention, a plurality of head and neck organs modeled by a three-dimensional image are produced from a plurality of particles, and a dynamic three-dimensional head and neck particle model composed of the plurality of head and neck organs is used as the tertiary. The head and neck modeling step created from the original image, the organ movement setting step to set the movement of the plurality of head and neck organs in the dynamic three-dimensional head and neck particle model, and the three-dimensional image of the oral intake product by the plurality of particles. Based on the particle method, the movement of the head and neck organs when the pseudo-oral ingestion product modeled in the above model was swallowed by the dynamic three-dimensional head and neck particle model and the behavior of the pseudo-oral ingestion product during swallowing. The motion analysis step analyzed by the three-dimensional image, the movement of the head and neck organs at the time of swallowing the pseudo-oral intake product analyzed by the three-dimensional image by the motion analysis step, and the pseudo-oral intake product. The organ movement setting step includes a display step for displaying the analysis result of the behavior at the time of swallowing as a moving image, and the organ movement setting step is the pseudo-oral ingestion of the plurality of particles of the dynamic three-dimensional head and neck particle model. The particles that are forcibly moved by the head and neck organs when the product is swallowed are used as the forced moving particles, and the forced movement setting step for setting the movement of the forced moving particles during the swallowing and the dynamic three-dimensional head and neck particle model Among the plurality of particles, particles in which the muscle fiber direction is specified in the three-dimensional image for each contractile muscle of the head and neck organ and contraction stress is applied based on the muscle fiber direction are defined as muscle particles during swallowing. The muscle contraction movement setting step for setting the movement of the muscle particles in the above.

本発明の方法によれば、頭頸部器官を粒子で作製し、所定の粒子を強制移動粒子と筋粒子とし、収縮筋ごとに筋線維方向に基づく収縮応力が筋粒子に与えられるように設定したことで、擬似経口摂取品の嚥下時における頭頸部器官の運動や、擬似経口摂取品の挙動などを従来よりも一段と正確に再現することができる嚥下シミュレーション装置及び嚥下シミュレーション方法を実現できる。 According to the method of the present invention, the head and neck organs are made of particles, predetermined particles are forced moving particles and muscle particles, and contraction stress based on the muscle fiber direction is applied to the muscle particles for each contraction muscle. This makes it possible to realize a swallowing simulation device and a swallowing simulation method that can more accurately reproduce the movement of the head and neck organs during swallowing of the pseudo-oral intake product and the behavior of the pseudo-oral intake product.

嚥下シミュレーション装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the swallowing simulation apparatus. 動的三次元頭頸部モデルの構成を示す概略図である。It is a schematic diagram which shows the structure of the dynamic three-dimensional head and neck model. CT画像及びVF画像に基づいて作製した静的三次元頭頸部モデルの構成を示す概略図である。It is a schematic diagram which shows the structure of the static three-dimensional head and neck model prepared based on CT image and VF image. 動的三次元頭頸部粒子モデルの構成を示す概略図である。It is a schematic diagram which shows the structure of the dynamic three-dimensional head and neck particle model. 図4に示した動的三次元頭頸部粒子モデルの正中面における断面構成を示した断面図である。It is sectional drawing which showed the cross-sectional structure in the median plane of the dynamic three-dimensional head and neck particle model shown in FIG. 動的三次元頭頸部粒子モデルの舌と、擬似経口摂取品との構成を簡略化して示した概略図である。It is the schematic which simplified the composition of the tongue of the dynamic three-dimensional head and neck particle model, and the pseudo-oral ingestion product. 嚥下時に強制移動粒子が移動するときの軌跡の一部を移動軌跡線で表した概略図である。It is the schematic which represented a part of the locus when the forced moving particle moves at the time of swallowing by the moving locus line. 移動軌跡線に従って強制移動粒子を移動させたときの動的三次元頭頸部粒子モデルの状態変化を示した概略図である。It is a schematic diagram which showed the state change of the dynamic three-dimensional head and neck particle model when the forced displacement particle was moved according to the movement locus line. 筋粒子について説明するための概略図である。It is the schematic for demonstrating the muscle particle. 筋粒子の筋線維方向を説明するための概略図である。It is the schematic for demonstrating the muscle fiber direction of a muscle particle. 上咽頭収縮筋舌咽頭部において収縮筋が走行する方向を示す概略図である。Superior Pharyngeal Constriction Muscle It is a schematic diagram which shows the direction in which a contraction muscle runs in a lingual pharynx. 上咽頭収縮筋舌咽頭部において筋粒子ごとに設定する筋線維方向を説明するための側面図である。It is a side view for demonstrating the muscle fiber direction set for each muscle particle in a superior pharyngeal constriction muscle tongue pharynx. 上咽頭収縮筋舌咽頭部において筋粒子ごとに設定する筋線維方向を説明するための背面図である。It is a back view for demonstrating the muscle fiber direction set for each muscle particle in a superior pharyngeal constriction muscle tongue pharynx. 中咽頭収縮筋小角咽頭上部及び中咽頭収縮筋小角咽頭下部において収縮筋が走行する方向を示す概略図である。It is a schematic diagram which shows the direction in which a contraction muscle runs in the upper part of the middle pharyngeal constrictor small angle pharynx and the lower part of the middle pharyngeal contractor small angle pharynx. 中咽頭収縮筋小角咽頭上部及び中咽頭収縮筋小角咽頭下部において筋粒子ごとに設定する筋線維方向を説明するための側面図である。It is a side view for demonstrating the muscle fiber direction set for each muscle particle in the upper part of the middle pharyngeal constrictor small angle pharynx and the lower part of the middle pharyngeal constrictor small angle pharynx. 中咽頭収縮筋小角咽頭上部及び中咽頭収縮筋小角咽頭下部において筋粒子ごとに設定する筋線維方向を説明するための背面図である。It is a back view for demonstrating the muscle fiber direction set for each muscle particle in the upper part of the middle pharyngeal constrictor small angle pharynx and the lower part of the middle pharyngeal constrictor small angle pharynx. 中咽頭収縮筋大角咽頭上部及び中咽頭収縮筋大角咽頭下部の筋粒子において収縮筋が走行する方向を示す概略図である。It is a schematic diagram which shows the direction in which a contraction muscle runs in the muscle particles of the middle pharyngeal constrictor upper part of the large pharynx and the middle pharyngeal constrictor part of the large angle pharynx. 中咽頭収縮筋大角咽頭上部及び中咽頭収縮筋大角咽頭下部において筋粒子ごとに設定する筋線維方向を説明するための側面図である。It is a side view for demonstrating the muscle fiber direction set for each muscle particle in the upper pharyngeal constrictor large angle pharynx and the lower part of the middle pharyngeal constrictor large angle pharynx. 中咽頭収縮筋大角咽頭上部及び中咽頭収縮筋大角咽頭下部において筋粒子ごとに設定する筋線維方向を説明するための背面図である。It is a back view for demonstrating the muscle fiber direction set for each muscle particle in the upper pharyngeal constrictor large angle pharynx and the lower part of the middle pharyngeal constrictor large angle pharynx. 下咽頭収縮筋甲状咽頭上部、下咽頭収縮筋甲状咽頭下部及び下咽頭収縮筋輪状咽頭部において収縮筋が走行する方向を示す概略図である。It is the schematic which shows the direction in which the contraction muscle runs in the upper part of the hypopharyngeal contractile muscle thyroid pharynx, the lower part of the hypopharyngeal contractor muscle thyroid pharynx, and the hypopharyngeal contractor muscle cricopharynx. 下咽頭収縮筋甲状咽頭上部、下咽頭収縮筋甲状咽頭下部及び下咽頭収縮筋輪状咽頭部において筋粒子ごとに設定する筋線維方向を説明するための側面図である。It is a side view for demonstrating the muscle fiber direction set for each muscle particle in the upper part of the hypopharyngeal contraction muscle thyroid pharynx, the lower part of the hypopharyngeal contraction muscle thyroid pharynx, and the hypopharyngeal contraction muscle cricopharynx. 下咽頭収縮筋甲状咽頭上部、下咽頭収縮筋甲状咽頭下部及び下咽頭収縮筋輪状咽頭部において筋粒子ごとに設定する筋線維方向を説明するための背面図である。It is a back view for demonstrating the muscle fiber direction set for each muscle particle in the upper part of the hypopharyngeal contraction muscle thyroid pharynx, the lower part of the hypopharyngeal contraction muscle thyroid pharynx, and the hypopharyngeal contraction muscle cricopharynx. 上咽頭収縮筋舌咽頭部、中咽頭収縮筋小角咽頭上部、中咽頭収縮筋小角咽頭下部、中咽頭収縮筋大角咽頭上部、中咽頭収縮筋大角咽頭下部、下咽頭収縮筋甲状咽頭上部、下咽頭収縮筋甲状咽頭下部及び下咽頭収縮筋輪状咽頭部における嚥下時の各活性化レベルの時間的変化を示したグラフである。Nasopharyngeal contractile lingual pharynx, mesopharyngeal contractile muscle small horn pharynx, mesopharyngeal contractile muscle small horn pharynx, mesopharyngeal contractile muscle large horn pharynx, mesopharyngeal contractile muscle large horn pharynx, hypopharyngeal contractile muscle thyroid upper pharynx, hypopharynx It is a graph which showed the temporal change of each activation level at the time of swallowing in the contractile thyroid lower pharynx and the hypopharyngeal contractile muscular ring pharynx. 動的三次元頭頸部粒子モデルにおける筋粒子に加わる接触力を説明するための概略図である。It is a schematic diagram for demonstrating the contact force applied to a muscle particle in a dynamic three-dimensional head and neck particle model. ハミルトニアン粒子法(Hamiltonian MPS法)を用いて動的三次元頭頸部粒子モデルで嚥下シミュレーションを行う際の演算処理手順を示すフローチャートである。It is a flowchart which shows the arithmetic processing procedure at the time of performing the swallowing simulation with the dynamic three-dimensional head and neck particle model using the Hamiltonian particle method (Hamiltonian MPS method). 本発明による動的三次元頭頸部モデルと、比較例である強制変移のみの動的三次元頭頸部モデルとについて、それぞれシミュレーションを行ったときの結果を対比した概略図である。It is a schematic diagram comparing the results of simulations of the dynamic three-dimensional head and neck model according to the present invention and the dynamic three-dimensional head and neck model having only forced transition, which is a comparative example. 本発明による動的三次元頭頸部モデルと、比較例の動的三次元頭頸部モデルとについて、それぞれシミュレーションを行った際の上咽頭収縮筋舌咽頭部の中間辺りにおける水平断面構成(1)を示した概略図である。The horizontal cross-sectional configuration (1) in the middle of the superior pharyngeal constrictor tongue and pharynx when the dynamic three-dimensional head and neck model according to the present invention and the dynamic three-dimensional head and neck model of the comparative example were simulated respectively. It is a schematic diagram shown. 本発明による動的三次元頭頸部モデルと、比較例の動的三次元頭頸部モデルとについて、それぞれシミュレーションを行った際の上咽頭収縮筋舌咽頭部の中間辺りにおける水平断面構成(2)を示した概略図である。The horizontal cross-sectional configuration (2) in the middle of the superior pharyngeal constrictor tongue and pharynx when the dynamic three-dimensional head and neck model according to the present invention and the dynamic three-dimensional head and neck model of the comparative example were simulated respectively. It is a schematic diagram shown. 本発明による動的三次元頭頸部モデルと、比較例の動的三次元頭頸部モデルとについて、それぞれシミュレーションを行った際の上咽頭収縮筋舌咽頭部の中間辺りにおける水平断面構成(3)を示した概略図である。The horizontal cross-sectional configuration (3) in the middle of the superior pharyngeal constrictor tongue and pharynx when the dynamic three-dimensional head and neck model according to the present invention and the dynamic three-dimensional head and neck model of the comparative example were simulated respectively. It is a schematic diagram shown. 本発明による動的三次元頭頸部モデルについてシミュレーションを行った際の下咽頭収縮筋甲状咽頭下部辺りにおける水平断面構成(1)を示した概略図である。It is the schematic which showed the horizontal cross-sectional structure (1) around the lower part of the hypopharyngeal contraction muscle thyroid pharynx when the dynamic three-dimensional head and neck model by this invention was simulated. 本発明による動的三次元頭頸部モデルについてシミュレーションを行った際の下咽頭収縮筋甲状咽頭下部辺りにおける水平断面構成(2)を示した概略図である。It is the schematic which showed the horizontal cross-sectional structure (2) around the lower part of the hypopharyngeal contraction muscle thyroid pharynx when the dynamic three-dimensional head and neck model by this invention was simulated. 嚥下時におけるVF画像と、嚥下時における表面表示の動的三次元頭頸部モデルと、嚥下時における粒子表示の動的三次元頭頸部粒子モデルとについて比較した比較結果(1)を示す概略図である。The schematic diagram showing the comparison result (1) comparing the VF image at the time of swallowing, the dynamic three-dimensional head and neck model of the surface display at the time of swallowing, and the dynamic three-dimensional head and neck particle model of the particle display at the time of swallowing. is there. 嚥下時におけるVF画像と、嚥下時における表面表示の動的三次元頭頸部モデルと、嚥下時における粒子表示の動的三次元頭頸部粒子モデルとについて比較した比較結果(2)を示す概略図である。The schematic diagram showing the comparison result (2) comparing the VF image at the time of swallowing, the dynamic three-dimensional head and neck model of the surface display at the time of swallowing, and the dynamic three-dimensional head and neck particle model of the particle display at the time of swallowing. is there.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

(1)<本発明の概略について>
図1は本発明の嚥下シミュレーション装置1の全体構成を示したブロック図である。嚥下シミュレーション装置1は、パーソナルコンピュータ(PCとも称する)2と、入力部81と、表示部4と、記憶部83とを備えている。入力部81は、マウス、キーボード等の入力機器であり、開発者からの操作命令をパーソナルコンピュータ2に出力し、パーソナルコンピュータ2において操作命令に応じた各種演算処理を実行させる。記憶部83は、パーソナルコンピュータ2にて形成した粒子表示の動的三次元頭頸部粒子モデル(後述する)や、この動的三次元頭頸部粒子モデルから作製した表面表示の動的三次元頭頸部モデル(後述する)、設定条件、解析結果等を記憶する。
(1) <Overview of the present invention>
FIG. 1 is a block diagram showing the overall configuration of the swallowing simulation device 1 of the present invention. The swallowing simulation device 1 includes a personal computer (also referred to as a PC) 2, an input unit 81, a display unit 4, and a storage unit 83. The input unit 81 is an input device such as a mouse and a keyboard, outputs operation commands from the developer to the personal computer 2, and causes the personal computer 2 to execute various arithmetic processes according to the operation commands. The storage unit 83 is a particle display dynamic three-dimensional head and neck particle model (described later) formed by the personal computer 2 and a surface display dynamic three-dimensional head and neck particle model created from the dynamic three-dimensional head and neck particle model. The model (described later), setting conditions, analysis results, etc. are stored.

パーソナルコンピュータ2は、例えば、頭頸部器官からなる動的三次元頭頸部モデル(図2において後述する)を三次元画像により形成し、経口摂取品を三次元画像内で擬似経口摂取品(図2において後述する)としてモデル化する。パーソナルコンピュータ2は、動的三次元頭頸部モデルにおける各頭頸部器官の運動と、擬似経口摂取品の嚥下時の挙動とを、粒子法を用いて三次元画像内で解析することができる。 The personal computer 2 forms, for example, a dynamic three-dimensional head and neck model (described later in FIG. 2) composed of head and neck organs by a three-dimensional image, and creates a pseudo-oral intake product in the three-dimensional image (FIG. 2). Will be described later). The personal computer 2 can analyze the movement of each head and neck organ in the dynamic three-dimensional head and neck model and the behavior of the pseudo-oral ingested product during swallowing in a three-dimensional image using the particle method.

このような動的三次元頭頸部モデルは、例えば、誤嚥をし易い嚥下障害者の頭頸部、又は、誤嚥をし難い健常者の頭頸部等を模倣して形成する。例えば、誤嚥をし易い嚥下障害者の頭頸部をモデル化した動的三次元頭頸部モデルでは、嚥下障害者の嚥下時における各頭頸部器官の運動や、擬似経口摂取品の嚥下時の挙動を解析することができる。一方、誤嚥をし難い健常者の頭頸部をモデル化した動的三次元頭頸部モデルでは、健常者の嚥下時における各頭頸部器官の運動や、擬似経口摂取品の嚥下時の挙動を解析することができる。 Such a dynamic three-dimensional head and neck model is formed by imitating, for example, the head and neck of a person with dysphagia who is likely to swallow, or the head and neck of a healthy person who is difficult to swallow. For example, in a dynamic three-dimensional head and neck model that models the head and neck of a person with dysphagia who is prone to aspiration, the movement of each head and neck organ during swallowing by the person with dysphagia and the behavior of a simulated oral intake product during swallowing. Can be analyzed. On the other hand, in the dynamic three-dimensional head and neck model that models the head and neck of a healthy person who is difficult to swallow, the movement of each head and neck organ during swallowing of a healthy person and the behavior of a simulated oral ingested product during swallowing are analyzed. can do.

パーソナルコンピュータ2で得られた解析結果は、表示部4に出力され、表示部4の表示画面に表示される。表示部4は、例えばディスプレイ等であり、パーソナルコンピュータ2から出力された動的三次元頭頸部モデルの三次元画像や、擬似経口摂取品、解析結果等を表示画面に表示する。これにより、表示部4は、動的三次元頭頸部モデルにおける各頭頸部器官の運動や、擬似経口摂取品の嚥下時の挙動、解析結果等を、開発者に対し視認させることができる。 The analysis result obtained by the personal computer 2 is output to the display unit 4 and displayed on the display screen of the display unit 4. The display unit 4 is, for example, a display or the like, and displays a three-dimensional image of a dynamic three-dimensional head and neck model output from the personal computer 2, a pseudo-oral intake product, an analysis result, and the like on a display screen. As a result, the display unit 4 allows the developer to visually recognize the movement of each head and neck organ in the dynamic three-dimensional head and neck model, the behavior of the simulated oral ingested product at the time of swallowing, the analysis result, and the like.

このようにして、嚥下シミュレーション装置1において、擬似経口摂取品の食塊量や粘度、比重等の物性値を変えて、動的三次元頭頸部モデルによる嚥下シミュレーションを行うことができ、動的三次元頭頸部モデルによる誤嚥の有無等も確認することができる。 In this way, in the swallowing simulation device 1, the swallowing simulation by the dynamic three-dimensional head and neck model can be performed by changing the physical property values such as the amount of bolus, viscosity, and specific gravity of the simulated oral ingested product, and the dynamic tertiary can be performed. It is also possible to confirm the presence or absence of aspiration by the former head and neck model.

本実施形態では、液面の変形や飛沫等の表現が可能な解析方法として、解析対象の液体や固体を粒子として扱う粒子法を用い、この粒子法によって、動的三次元頭頸部モデルにおける頭頸部器官の動作や、経口摂取品の挙動を、三次元画像内に表して嚥下シミュレーションを行なう。粒子法としては、特にMPS(Moving Particle Semi-implicit)法(Koshizuka et al,Comput.Fluid Dynamics J,4,29-46,1995)を適用することが望ましい。嚥下シミュレーションによって嚥下時における擬似経口摂取品100の挙動を解析する際の粒子法としては、MPS法又はハミルトニアン粒子法(Hamiltonian MPS法:HMPS法)を適用することが望ましい。また、嚥下シミュレーションによって動的三次元頭頸部粒子モデル10cにおける各粒子の運動を解析する際の粒子法としては、ハミルトニアン粒子法(Hamiltonian MPS法)を適用することが望ましい。本実施形態では、嚥下シミュレーションによって動的三次元頭頸部粒子モデル10cにおける各粒子の運動を解析する粒子法として、ハミルトニアン粒子法(Hamiltonian MPS法)を適用した場合について以下説明する。 In the present embodiment, as an analysis method capable of expressing deformation of the liquid surface, droplets, etc., a particle method in which the liquid or solid to be analyzed is treated as particles is used, and the head and neck in a dynamic three-dimensional head and neck model are used by this particle method. Swallowing simulation is performed by showing the movements of parts and organs and the behavior of oral intake products in a three-dimensional image. As the particle method, it is particularly desirable to apply the MPS (Moving Particle Semi-implicit) method (Koshizuka et al, Comput. Fluid Dynamics J, 4, 29-46, 1995). It is desirable to apply the MPS method or the Hamiltonian particle method (Hamiltonian MPS method: HMPS method) as the particle method for analyzing the behavior of the pseudo-oral ingestion product 100 during swallowing by a swallowing simulation. In addition, it is desirable to apply the Hamiltonian particle method (Hamiltonian MPS method) as the particle method when analyzing the movement of each particle in the dynamic three-dimensional head and neck particle model 10c by swallowing simulation. In this embodiment, a case where the Hamiltonian particle method (Hamiltonian MPS method) is applied as a particle method for analyzing the motion of each particle in the dynamic three-dimensional head and neck particle model 10c by swallowing simulation will be described below.

本実施形態の粒子法では、擬似経口摂取品を粒子に置き換えるだけでなく、動的三次元頭頸部モデルにおける頭頸部器官についても粒子に置き換え、粒子ごとに物理量を計算する。その結果、動的三次元頭頸部モデルにおける頭頸部器官や、擬似経口摂取品の嚥下時における微妙な変化の解析が可能となる。 In the particle method of the present embodiment, not only the pseudo-oral ingestion product is replaced with particles, but also the head and neck organs in the dynamic three-dimensional head and neck model are replaced with particles, and the physical quantity is calculated for each particle. As a result, it becomes possible to analyze the head and neck organs in the dynamic three-dimensional head and neck model and the subtle changes during swallowing of the pseudo-oral ingestion product.

本実施形態における嚥下シミュレーション装置1では、動的三次元頭頸部モデルにおける頭頸部器官についても粒子に置き換えるだけでなく、さらに、医学的知見に基づいて、口腔、咽頭部、喉頭部等の頭頸部器官における収縮筋の正確な構造や、嚥下時における当該収縮筋の挙動(筋線維方向及び収縮応力)を再現している。これにより、嚥下シミュレーション装置1では、擬似経口摂取品の嚥下時における頭頸部器官の運動や、擬似経口摂取品の挙動を、従来よりも一段と正確に再現することができる。 In the swallowing simulation device 1 of the present embodiment, not only the head and neck organs in the dynamic three-dimensional head and neck model are replaced with particles, but also the head and neck such as the oral cavity, pharynx, and larynx are based on medical knowledge. The exact structure of the contractile muscle in the organ and the behavior of the contractile muscle during swallowing (muscle fiber direction and contractile stress) are reproduced. As a result, the swallowing simulation device 1 can reproduce the movement of the head and neck organs during swallowing of the pseudo-oral intake product and the behavior of the pseudo-oral intake product more accurately than before.

(2)<嚥下シミュレーション装置におけるパーソナルコンピュータの回路構成>
図1に示すように、パーソナルコンピュータ2は、頭頸部モデリング部10、器官運動設定部30、経口摂取品物性設定部40、運動解析部50、物性特定部70及び制御部90を備えている。頭頸部モデリング部10は、図2に示すような頭頸部器官からなる動的三次元頭頸部モデル10a(後述する)や、図4に示すような動的三次元頭頸部粒子モデル10cを三次元画像により形成する。
(2) <Circuit configuration of personal computer in swallowing simulation device>
As shown in FIG. 1, the personal computer 2 includes a head and neck modeling unit 10, an organ movement setting unit 30, an oral intake physical property setting unit 40, a movement analysis unit 50, a physical property identification unit 70, and a control unit 90. The head and neck modeling unit 10 three-dimensionally displays a dynamic three-dimensional head and neck model 10a (described later) composed of head and neck organs as shown in FIG. 2 and a dynamic three-dimensional head and neck particle model 10c as shown in FIG. Formed by an image.

なお、動的三次元頭頸部モデル10aは、図4に示すような粒子表示の動的三次元頭頸部粒子モデル10cからマーチングキューブ法などを用いて作製され、動的三次元頭頸部粒子モデル10cの粒子1つ1つを表示せずに、単に頭頸部器官の表面を表示したものである。動的三次元頭頸部粒子モデル10c及び擬似経口摂取品100を構成する粒子1つ1つを全て表示させた状態で嚥下シミュレーションの解析結果を提示した場合、粒子1つ1つが描画されていることで表示形態が複雑化し、各頭頸部器官の運動や、擬似経口摂取品100の挙動等の確認が難しい。 The dynamic three-dimensional head and neck model 10a is produced from the dynamic three-dimensional head and neck particle model 10c of the particle display as shown in FIG. 4 by using the marching cube method or the like, and the dynamic three-dimensional head and neck particle model 10c. The surface of the head and neck organ is simply displayed without displaying each particle of. When the analysis result of the swallowing simulation is presented with all the particles constituting the dynamic three-dimensional head and neck particle model 10c and the pseudo-oral ingestion product 100 displayed, each particle is drawn. The display form becomes complicated, and it is difficult to confirm the movement of each head and neck organ and the behavior of the pseudo-oral ingestion product 100.

そこで、各頭頸部器官の運動や、擬似経口摂取品100の挙動等が目視により確認し易いように、嚥下シミュレーションの解析結果を提示する際には、粒子1つ1つを表示させずに頭頸部器官の表面のみを表示した動的三次元頭頸部モデル10aを用いている。なお、擬似経口摂取品100についても、表示部4に表示させる際、擬似経口摂取品100を形成している粒子1つ1つは表示させずに、マーチングキューブ法などにより擬似経口摂取品100の表面形状が生成され表示される。なお、ここでは、後述する動的三次元頭頸部粒子モデル10cに着目して以下説明する。 Therefore, in order to make it easy to visually confirm the movement of each head and neck organ and the behavior of the pseudo-oral ingestion product 100, when presenting the analysis result of the swallowing simulation, the head and neck are not displayed one by one. A dynamic three-dimensional head and neck model 10a showing only the surface of a part organ is used. As for the pseudo-oral intake product 100, when the display unit 4 displays the pseudo-oral intake product 100, the pseudo-oral intake product 100 is displayed by the marching cube method or the like without displaying each particle forming the pseudo-oral intake product 100. The surface shape is generated and displayed. Here, the dynamic three-dimensional head and neck particle model 10c, which will be described later, will be focused on and described below.

器官運動設定部30は、動的三次元頭頸部粒子モデル10cにおける各頭頸部器官の運動を設定する。本実施形態における器官運動設定部30は、強制運動設定部31と、筋収縮運動設定部32とを備える。強制運動設定部31は、動的三次元頭頸部粒子モデル10cによる擬似経口摂取品100の嚥下時に、頭頸部器官で強制的に移動する粒子を強制移動粒子(後述する)として設定し、これら複数の強制移動粒子の運動を設定する。筋収縮運動設定部32は、医学的知見に基づき頭頸部器官の収縮筋ごとに三次元画像内で筋線維方向が特定され、かつ筋線維方向に基づく収縮応力が与えられる粒子を筋粒子(後述する)として設定し、擬似経口摂取品100の嚥下時における当該収縮応力に基づいて筋粒子の運動を設定する。これにより、動的三次元頭頸部粒子モデル10cを形成する粒子は、強制移動粒子と、筋粒子と、これら強制移動粒子及び筋粒子以外の粒子と、の3種類のいずれかに定義される。動的三次元頭頸部粒子モデル10cは、器官運動設定部30による設定状態を基に、各頭頸部器官が動いた嚥下シミュレーションを実行することができる。なお、強制移動粒子と、筋粒子と、これら強制移動粒子及び筋粒子以外の粒子とについて、特に区別する必要がない場合には、以下、強制移動粒子と、筋粒子と、これら強制移動粒子及び筋粒子以外の粒子とをまとめて、単に粒子と称する。 The organ movement setting unit 30 sets the movement of each head and neck organ in the dynamic three-dimensional head and neck particle model 10c. The organ movement setting unit 30 in the present embodiment includes a forced movement setting unit 31 and a muscle contraction movement setting unit 32. The forced movement setting unit 31 sets particles that are forcibly moved by the head and neck organs when swallowing the pseudo-oral ingested product 100 by the dynamic three-dimensional head and neck particle model 10c as forced moving particles (described later), and a plurality of these. Set the motion of forced moving particles. The muscle contraction movement setting unit 32 specifies particles whose muscle fiber direction is specified in a three-dimensional image for each contraction muscle of the head and neck organ based on medical knowledge, and a contraction stress based on the muscle fiber direction is applied to the muscle particles (described later). The movement of muscle particles is set based on the contraction stress at the time of swallowing of the pseudo-oral intake product 100. Thereby, the particles forming the dynamic three-dimensional head and neck particle model 10c are defined as one of three types: forced moving particles, muscle particles, and particles other than these forced moving particles and muscle particles. The dynamic three-dimensional head and neck particle model 10c can execute a swallowing simulation in which each head and neck organ moves based on the setting state by the organ movement setting unit 30. When it is not necessary to distinguish between the forced moving particles, the muscle particles, and the particles other than the forced moving particles and the muscle particles, the forced moving particles, the muscle particles, the forced moving particles, and the like are described below. Particles other than muscle particles are collectively referred to as particles.

経口摂取品物性設定部40は、解析対象としての飲食品、医薬品又は医薬部外品等の経口摂取品の物性値を設定し、経口摂取品をモデル化した擬似経口摂取品を三次元画像内に形成する。なお、経口摂取品物性設定部40は、解析対象として異なる物性の液体、半固体又は固体の複数の擬似経口摂取品を設定することができる。なお、半固体としては例えばゼリー等を含み、固体としては例えば錠剤等も含む。 The oral ingestion product property setting unit 40 sets the physical property values of the oral ingestion product such as food and drink, pharmaceuticals, or quasi-drugs to be analyzed, and plots the pseudo-oral ingestion product modeled by the oral ingestion product in a three-dimensional image. To form. The oral ingestion product property setting unit 40 can set a plurality of pseudo-oral ingestion products having different physical properties as liquids, semi-solids, or solids as analysis targets. The semi-solid includes, for example, jelly and the like, and the solid includes, for example, tablets and the like.

本実施形態の場合、経口摂取品物性設定部40は、経口摂取品の物性値として、例えば、経口摂取品となる食塊の密度[g/mL]と、動的三次元頭頸部粒子モデル10cに嚥下させる食塊量[mL]と、表面張力[N/m]と、各頭頸部器官における接触角と、各頭頸部器官におけるスリップ係数と、を設定する。なお、ここでスリップ係数とは、生体表面と食塊(経口摂取品)の表面の濡れ性、撥水性を制御するパラメータであり、接触面における見かけの粘度として考えることができる。スリップ係数が大きい場合は界面での摩擦が大きくなり、結果的に食塊の動きにブレーキをかける効果がる。スリップ係数が小さい場合は界面での摩擦が小さくなり、0の場合は鏡面のような状態となる。スリップ係数1は流体の粘度と同等程度の摩擦効果を界面に与えることを意味する。スリップ係数は、想定する経口摂取品が有する濡れ性や撥水性等を解析して決定する。 In the case of the present embodiment, the orally ingested product property setting unit 40 determines, for example, the density [g / mL] of the bolus to be the orally ingested product and the dynamic three-dimensional head and neck particle model 10c as the physical property values of the orally ingested product. The amount of bolus [mL] to be swallowed, the surface tension [N / m], the contact angle in each head and neck organ, and the slip coefficient in each head and neck organ are set. Here, the slip coefficient is a parameter that controls the wettability and water repellency of the surface of the living body and the surface of the bolus (orally ingested product), and can be considered as the apparent viscosity on the contact surface. When the slip coefficient is large, the friction at the interface becomes large, and as a result, the movement of the bolus is braked. When the slip coefficient is small, the friction at the interface is small, and when it is 0, the state is like a mirror surface. A slip coefficient of 1 means that a frictional effect equivalent to the viscosity of the fluid is given to the interface. The slip coefficient is determined by analyzing the wettability, water repellency, etc. of the assumed oral intake product.

この場合、経口摂取品物性設定部40は、各頭頸部器官における接触角として、動的三次元頭頸部粒子モデル10cにおける咽頭、喉頭、舌、軟口蓋での接触角をそれぞれ設定する。また、経口摂取品物性設定部40は、各頭頸部器官におけるスリップ係数として、動的三次元頭頸部粒子モデル10cの咽頭、喉頭、舌、軟口蓋でのスリップ係数をそれぞれ設定する。 In this case, the oral intake product property setting unit 40 sets the contact angles of the pharynx, larynx, tongue, and soft palate in the dynamic three-dimensional head and neck particle model 10c as the contact angles of each head and neck organ. In addition, the oral ingestion product property setting unit 40 sets the slip coefficient in the pharynx, larynx, tongue, and soft palate of the dynamic three-dimensional head and neck particle model 10c as the slip coefficient in each head and neck organ.

なお、本実施形態においては、経口摂取品の物性値として上述した物性値のみだけでなく、例えば、経口摂取品が液体のときは、液量・粘度・表面張力・比重・熱伝導率・比熱等の物性値を設定するようにしてもよい。また、経口摂取品が固体のときには、形状・寸法・弾性係数・引っ張り強さ・降伏点・降伏応力・粘度のずり速度依存性・動的粘弾性・静的粘弾性・圧縮応力・破断応力・破断ひずみ・硬度・付着性・凝集性・熱伝導率・比熱等の物性値を設定するようにしてもよい。さらに、経口摂取品が半固体(可塑性があるが、流動性はない)であるときには、量・粘度・比重・降伏点・降伏点応力・粘度のずり速度依存性・動的粘弾性・静的粘弾性・圧縮応力・付着性・凝集性等の物性値を設定するようにしてもよい。 In this embodiment, not only the above-mentioned physical characteristics as the physical characteristics of the orally ingested product, but also, for example, when the orally ingested product is a liquid, the liquid amount, viscosity, surface tension, specific gravity, thermal conductivity, and specific heat You may set the physical property value such as. When the orally ingested product is a solid, the shape, dimensions, elastic coefficient, tensile strength, yield point, yield stress, viscosity dependence on shear rate, dynamic viscoelasticity, static viscoelasticity, compressive stress, breaking stress, etc. Physical property values such as breaking strain, hardness, adhesiveness, cohesiveness, thermal conductivity, and specific heat may be set. Furthermore, when the orally ingested product is semi-solid (plastic but not fluid), the amount, viscosity, specific gravity, yield point, yield point stress, viscosity dependence on shear rate, dynamic viscoelasticity, and static Physical property values such as viscoelasticity, compressive stress, adhesiveness, and cohesiveness may be set.

運動解析部50では、動的三次元頭頸部粒子モデル10cで擬似経口摂取品100を嚥下させたときの頭頸部器官の運動と、頭頸部器官の運動に伴う擬似経口摂取品100の嚥下時の挙動と、を解析する。図4に示す動的三次元頭頸部粒子モデル10cにおいて、粒子法による解析によって、舌12の進行波的波動運動、喉頭蓋15aの回転運動、喉頭15の往復運動、咽頭部14の筋収縮運動等の動きが再現され、頭頸部内部に投入された擬似経口摂取品100を動かす。擬似経口摂取品100の動きも粒子法により解析される。擬似経口摂取品100は固体・半固体・液体のいずれでも粒子として取り扱われる。 In the motion analysis unit 50, the movement of the head and neck organs when the pseudo-oral intake product 100 is swallowed by the dynamic three-dimensional head and neck particle model 10c, and the movement of the pseudo-oral intake product 100 accompanying the movement of the head and neck organs during swallowing. Analyze the behavior. In the dynamic three-dimensional head and neck particle model 10c shown in FIG. 4, by analysis by the particle method, the traveling wave motion of the tongue 12, the rotational motion of the larynx 15a, the reciprocating motion of the larynx 15, the muscle contraction motion of the pharynx 14, etc. The movement of is reproduced, and the pseudo-oral ingestion product 100 put into the inside of the head and neck is moved. The movement of the pseudo-oral ingestion product 100 is also analyzed by the particle method. The pseudo-oral ingestion product 100 is treated as particles in any of solid, semi-solid and liquid.

運動解析部50は、経口摂取品物性設定部40により擬似経口摂取品100の物性値が変更されることで、当該物性値の影響により、舌12の進行波的波動運動、軟口蓋13bの挙上運動、喉頭蓋15aの反転運動、喉頭15の挙上運動、声帯15cの内転運動、披裂部15bの前方運動、咽頭部14の収縮と挙上運動等により、擬似経口摂取品100が嚥下される際の経路を変化させる。 The motion analysis unit 50 changes the physical property value of the pseudo-oral intake product 100 by the oral intake product property setting unit 40, and due to the influence of the physical property value, the tongue 12 has a progressive wave motion and the soft palate 13b is lifted. Pseudo-oral ingestion product 100 is swallowed by exercise, epiglottis 15a inversion, laryngeal 15 elevation, vocal cord 15c adduction, rupture 15b anterior movement, pharyngeal 14 contraction and elevation movement, etc. Change the path of ingestion.

物性特定部70は、運動解析部50の解析結果を基に、誤嚥を回避できる擬似経口摂取品100の食塊量、粘度及びせん断速度を推測する。このうち擬似経口摂取品100の食塊量及び粘度は、経口摂取品物性設定部40により設定される物性値である。 The physical characteristic identification unit 70 estimates the bolus amount, viscosity, and shear rate of the pseudo-oral ingestion product 100 that can avoid aspiration based on the analysis result of the motion analysis unit 50. Of these, the bolus amount and viscosity of the pseudo-oral intake product 100 are physical property values set by the oral intake product property setting unit 40.

制御部90は、パーソナルコンピュータ2の各部を制御して、嚥下シミュレーション装置1の諸機能を実行させる。制御部90は内蔵メモリに嚥下シミュレーター(解析用ソフトウェア)を保有する。 The control unit 90 controls each unit of the personal computer 2 to execute various functions of the swallowing simulation device 1. The control unit 90 has a swallowing simulator (analysis software) in the built-in memory.

(3)<動的三次元頭頸部モデル(動的三次元頭頸部粒子モデル)の構成>
次に、頭頸部モデリング部10により形成される動的三次元頭頸部モデル10a及び動的三次元頭頸部粒子モデル10cについて説明する。図2は、頭頸部モデリング部10により形成された動的三次元頭頸部モデル10aの構成を示した概略図である。
(3) <Structure of dynamic 3D head and neck model (dynamic 3D head and neck particle model)>
Next, the dynamic three-dimensional head and neck model 10a and the dynamic three-dimensional head and neck particle model 10c formed by the head and neck modeling unit 10 will be described. FIG. 2 is a schematic view showing the configuration of a dynamic three-dimensional head and neck model 10a formed by the head and neck modeling unit 10.

上述したように、表示部4には、例えば、図2に示すような表面表示の動的三次元頭頸部モデル10a及び擬似経口摂取品100が表示され、運動解析部50による解析結果として、動的三次元頭頸部モデル10aにおいて擬似経口摂取品100を嚥下したときの頭頸部器官の運動と、擬似経口摂取品100の挙動と、が動画像により表示される。 As described above, for example, the dynamic three-dimensional head and neck model 10a and the pseudo-oral ingestion product 100 having a surface display as shown in FIG. 2 are displayed on the display unit 4, and as an analysis result by the motion analysis unit 50, the motion is as a result. In the three-dimensional head and neck model 10a, the movement of the head and neck organs when the pseudo-oral intake product 100 is swallowed and the behavior of the pseudo-oral intake product 100 are displayed by moving images.

なお、本実施形態においては、表面表示の動的三次元頭頸部モデル10a及び擬似経口摂取品100を用いて、頭頸部器官の運動と、擬似経口摂取品100の挙動と、を動画像により提示する場合について説明するが、本発明はこれに限らず、粒子1つ1つが表示された粒子表示の動的三次元頭頸部粒子モデル10c及び擬似経口摂取品100を用いて、頭頸部器官の運動と、擬似経口摂取品100の挙動と、を動画像により提示するようにしてもよい。 In this embodiment, the movement of the head and neck organs and the behavior of the pseudo-oral ingestion product 100 are presented by moving images using the dynamic three-dimensional head and neck model 10a and the pseudo-oral ingestion product 100 on the surface. However, the present invention is not limited to this, and the movement of the head and neck organs is performed by using the dynamic three-dimensional head and neck particle model 10c of the particle display in which each particle is displayed and the pseudo-oral ingestion product 100. And the behavior of the pseudo-oral ingestion product 100 may be presented by moving images.

表面表示の動的三次元頭頸部モデル10aと、粒子表示の動的三次元頭頸部粒子モデル10cとは、表示形態が異なるだけで、頭頸部器官の構成(頭頸部器官の粒子によるモデル化、強制移動粒子の設定、及び、筋粒子の設定)は同じであるため、ここでは、図2に示した表面表示の動的三次元頭頸部モデル10aを用いて、その構成を説明する。なお、図2では、喉頭15等を説明するため軟骨等は図示していない。嚥下シミュレーションの解析結果を動画像で提示する際には、図2に示すように、軟骨等を有しない表面表示の動的三次元頭頸部モデル10aであってもよく、また、軟骨等その他の生体部位を有する動的三次元頭頸部モデルを適用してもよい。また、粒子表示の動的三次元頭頸部粒子モデル10cで嚥下シミュレーションの解析結果を動画像で提示する場合も同様に、軟骨等その他の生体部位についての有無は問わない。 The surface display dynamic three-dimensional head and neck model 10a and the particle display dynamic three-dimensional head and neck particle model 10c differ only in the display form, and the composition of the head and neck organs (modeling by particles of the head and neck organs, Since the setting of the forced moving particles and the setting of the muscle particles) are the same, the configuration will be described here using the dynamic three-dimensional head and neck model 10a of the surface display shown in FIG. In FIG. 2, cartilage and the like are not shown for explaining the larynx 15 and the like. When presenting the analysis result of the swallowing simulation as a moving image, as shown in FIG. 2, a surface-displayed dynamic three-dimensional head and neck model 10a having no cartilage or the like may be used, or other cartilage or the like may be used. A dynamic three-dimensional head and neck model with a biological site may be applied. Further, when the analysis result of the swallowing simulation is presented as a moving image by the dynamic three-dimensional head and neck particle model 10c of the particle display, the presence or absence of other biological parts such as cartilage does not matter.

ここで、図2において、X軸は、動的三次元頭頸部モデル10aの正中面と直交する身体左右方向(正中面の面法線方向)を示し、Y軸は、X軸と直交し、かつ動的三次元頭頸部モデル10aの正中面と平行な身体前後方向を示し、Z軸は、X軸及びY軸と直交する身体上下方向を示す。 Here, in FIG. 2, the X-axis shows the body left-right direction (the plane normal direction of the mid-plane) orthogonal to the mid-plane of the dynamic three-dimensional head and neck model 10a, and the Y-axis is orthogonal to the X-axis. Moreover, the body anterior-posterior direction parallel to the midline of the dynamic three-dimensional head and neck model 10a is shown, and the Z axis indicates the body up-down direction orthogonal to the X-axis and the Y-axis.

動的三次元頭頸部モデル10aは、頭頸部器官として、オトガイ舌筋を含む舌12と、喉頭15と、声帯15cと、披裂部15bと、喉頭蓋15aと、気管16と、咽頭部14(咽頭の管壁18a、咽頭の粘膜18bを含む)と、口蓋13(硬口蓋13a及び軟口蓋13bを含む)と、食道17(食道入口部17a、食道の管壁17bを含む)とを有している。本実施形態では、主に、上述した舌12、喉頭15、声帯15c、披裂部15b、喉頭蓋15a、気管16、咽頭部14、口蓋13及び食道17等をまとめて頭頸部器官と称するが、これら1つ1つについても単に頭頸部器官とも称する。なお、図2では、擬似経口摂取品100の一例として流体状の食塊を示す。 The dynamic three-dimensional head and neck model 10a has head and neck organs such as the tongue 12 including the otogai tongue muscle, the larynx 15, the vocal band 15c, the fissure 15b, the epiglottis 15a, the trachea 16, and the pharynx 14 (pharynx). (Including the tracheal wall 18a and the mucous membrane of the pharynx 18b), the epiglottis 13 (including the epiglottis 13a and the soft epiglottis 13b), and the esophagus 17 (including the esophageal entrance 17a and the epiglottis 17b). .. In the present embodiment, the tongue 12, the larynx 15, the vocal cords 15c, the fissure 15b, the epiglottis 15a, the trachea 16, the pharynx 14, the palate 13, the esophagus 17, and the like are collectively referred to as head and neck organs. Each one is also simply referred to as an epiglottis organ. Note that FIG. 2 shows a fluid bolus as an example of the pseudo-oral ingestion product 100.

本実施形態では、擬似経口摂取品100を粒子により表現するとともに、動的三次元頭頸部モデル10aにおける頭頸部器官(本実施形態では、舌12、喉頭15、声帯15c、披裂部15b、喉頭蓋15a、気管16、咽頭部14、口蓋13及び食道17)を粒子により表現する。 In this embodiment, the pseudo-oral ingestion product 100 is represented by particles, and the head and neck organs in the dynamic three-dimensional head and neck model 10a (in this embodiment, the tongue 12, the larynx 15, the vocal cords 15c, the fissure 15b, and the epiglottis 15a). , Trachea 16, pharynx 14, palate 13 and esophagus 17) are represented by particles.

ただし、上述したように、動的三次元頭頸部モデル10aによる擬似経口摂取品100の嚥下シミュレーションの解析結果を、動画像により開発者等に視認させる際には、動的三次元頭頸部モデル10aの頭頸部器官と、擬似経口摂取品100との表面形状を表示させることが望ましい。これにより、頭頸部器官及び擬似経口摂取品100を形成している粒子1つ1つを表示させる場合に比して、頭頸部器官及び擬似経口摂取品100の表示形態を簡略化でき、開発者等に対して、頭頸部器官の運動や、擬似経口摂取品100の挙動を容易に確認させることができる。 However, as described above, when the analysis result of the swallowing simulation of the pseudo-oral ingestion product 100 by the dynamic three-dimensional head and neck model 10a is visually recognized by the developer or the like by the moving image, the dynamic three-dimensional head and neck model 10a is used. It is desirable to display the surface shape of the head and neck organ of the above and the pseudo-oral ingestion product 100. As a result, the display form of the head and neck organ and the pseudo-oral ingestion product 100 can be simplified as compared with the case where each particle forming the head and neck organ and the pseudo-oral ingestion product 100 is displayed. The movement of the head and neck organs and the behavior of the pseudo-oral ingestion product 100 can be easily confirmed.

(4)<動的三次元頭頸部粒子モデルの作製>
(4−1)<静的三次元頭頸部モデルの作製>
ここで、粒子表示の動的三次元頭頸部粒子モデル10cの作製方法について以下説明する。まずは、医学的知見により理解されている頭頸部の構造、及び、CT(コンピュータ断層撮影:Computed Tomography)画像により大まかに読み取ることのできる口蓋13、舌12、気管16の形態から、咽頭部14と食道入口部17aの位置を推定する。舌12、口蓋13、咽頭部14、喉頭蓋15a、喉頭15、食道17の構造を、CG(コンピュータグラフィックス:Computer Graphics)用ソフトウェア(Autodesk 3ds Max等)を用いてモデリングし、嚥下に関わる頭頸部器官を三次元(立体構造)で表した静的初期形状モデル(図示せず)を作製する。
(4) <Preparation of dynamic three-dimensional head and neck particle model>
(4-1) <Preparation of static 3D head and neck model>
Here, a method for producing a dynamic three-dimensional head and neck particle model 10c for particle display will be described below. First, from the structure of the head and neck that is understood by medical knowledge, and the morphology of the palate 13, tongue 12, and trachea 16 that can be roughly read by CT (Computed Tomography) images, the pharynx 14 The position of the esophageal entrance 17a is estimated. The structures of the tongue 12, the palate 13, the pharynx 14, the epiglottis 15a, the larynx 15, and the esophagus 17 are modeled using CG (Computer Graphics) software (Autodesk 3ds Max, etc.), and the head and neck involved in swallowing. Create a static initial shape model (not shown) that represents the organ in three dimensions (three-dimensional structure).

得られた静的初期形状モデルに対して、VF(嚥下造影検査:Videofluoroscopic examination of swallowing)による嚥下時の造影画像(正面及び側面図)を重ね合わせて、立体構造を修正し、図3に示すように、被験者の安静時における頭頸部器官の立体的形状をCGによって描画した静的三次元頭頸部モデル10bを作製する。または、嚥下中の4次元CT(Computed Tomography)画像(4DCT画像)をもとにして静的三次元頭頸部モデルを作成することもできる。なお、図3に示す11aは舌骨であり、11bは甲状軟骨である。このような静的三次元頭頸部モデル10bは、頭頸部モデリング部10により作製される。 The obtained static initial shape model is superposed with contrast images (front and side views) at the time of swallowing by VF (Videofluoroscopic examination of swallowing) to correct the three-dimensional structure, and is shown in FIG. As described above, a static three-dimensional head and neck model 10b in which the three-dimensional shape of the head and neck organ at rest of the subject is drawn by CG is prepared. Alternatively, a static three-dimensional head and neck model can be created based on a four-dimensional CT (Computed Tomography) image (4DCT image) during swallowing. In addition, 11a shown in FIG. 3 is a hyoid bone, and 11b is a thyroid cartilage. Such a static three-dimensional head and neck model 10b is produced by the head and neck modeling unit 10.

(4−2)<静的三次元頭頸部モデルの粒子によるモデル化>
次に、この静的三次元頭頸部モデル10bに基づいて、図4及び図5に示すような動的三次元頭頸部粒子モデル10cを作製する。図5は、図4に示した動的三次元頭頸部粒子モデル10cの正中面における断面構成を示した断面図である。以下、動的三次元頭頸部粒子モデル10cの作製方法について説明する。
(4-2) <Modeling of static 3D head and neck model with particles>
Next, based on this static three-dimensional head and neck model 10b, a dynamic three-dimensional head and neck particle model 10c as shown in FIGS. 4 and 5 is prepared. FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the dynamic three-dimensional head and neck particle model 10c shown in FIG. 4 on the median plane. Hereinafter, a method for producing the dynamic three-dimensional head and neck particle model 10c will be described.

この場合、CGで作製した静的三次元頭頸部モデル10b(図3)における頭頸部器官(舌12、口蓋13、咽頭部14、喉頭蓋15a、喉頭15、食道17)の表面を特定し、図4及び図5に示すように、頭頸部器官の表面を境界として、頭頸部器官ごとにそれぞれの領域内に粒子を配置する。 In this case, the surfaces of the head and neck organs (tongue 12, palate 13, pharynx 14, larynx 15a, larynx 15, esophagus 17) in the static three-dimensional head and neck model 10b (FIG. 3) prepared by CG are identified and shown in FIG. As shown in 4 and FIG. 5, particles are arranged in each region of each head and neck organ with the surface of the head and neck organ as a boundary.

本実施形態における粒子は、三次元画像内で立体的形状を有した、三次元の球状粒子(本実施形態では単に粒子と称する)であり、例えば、乳児又は成人男性の平均的な大きさの頭頸部の原寸大モデルを三次元画像で作製する際には粒子の直径を0.1mm〜3.0mm程度とすることが望ましく、そのうち、より好ましくは直径が0.6mm〜1.5mm程度であることが望ましい。また、三次元画像内において作製した静的三次元頭頸部モデル10bにおいて、喉頭蓋の厚さ(例えば、成人では約3.0mm程度の厚さであり、乳児では約1.5mm程度の厚さである)方向に対して粒子が、少なくとも2個以上形成されることが望ましい。粒子の直径が小さすぎるとパーソナルコンピュータ2の計算処理負担が大きくなりすぎるため好ましくなく、一方、粒子の直径が大きすぎると、頭頸部器官について細かな運動を再現できないため、粒子の直径は上記の範囲とすることが望ましい。本実施形態においては、頭頸部器官を形成する粒子として、三次元の球状粒子を適用した場合について述べるが、本発明はこれに限らず、直方体形状の粒子、多角形状の粒子等その他種々の形状でなる粒子により頭頸部器官を形成するようにしてもよい。 The particles in this embodiment are three-dimensional spherical particles (simply referred to as particles in this embodiment) having a three-dimensional shape in a three-dimensional image, and are, for example, of the average size of an infant or an adult male. When creating a full-scale model of the head and neck with a three-dimensional image, it is desirable that the particle diameter is about 0.1 mm to 3.0 mm, and more preferably the diameter is about 0.6 mm to 1.5 mm. .. Further, in the static three-dimensional head and neck model 10b created in the three-dimensional image, the thickness of the epiglottis (for example, the thickness is about 3.0 mm for an adult and about 1.5 mm for an infant). It is desirable that at least two particles are formed in the direction. If the diameter of the particles is too small, the calculation processing load of the personal computer 2 becomes too large, which is not preferable. On the other hand, if the diameter of the particles is too large, fine movements of the head and neck organs cannot be reproduced. It is desirable to set it to the range. In the present embodiment, the case where three-dimensional spherical particles are applied as the particles forming the head and neck organs will be described, but the present invention is not limited to this, and the present invention is not limited to this, and various shapes such as rectangular parallelepiped particles and polygonal particles are described. The head and neck organs may be formed by particles consisting of.

ここで、図6は、動的三次元頭頸部粒子モデル10cの舌12と擬似経口摂取品100との構成を簡略化して示した概略図である。図6に示すように、動的三次元頭頸部粒子モデル10cの舌12は、CT画像及びVF画像に基づいてCGにより作製した静的三次元頭頸部モデル10b(図3)の舌12の表面12aが特定された後に、当該表面12aに囲まれた領域内に、隣接する粒子20a同士が接するように粒子20aが隙間なく配置されることで、粒子によるモデル化が行われている。 Here, FIG. 6 is a schematic view showing a simplified configuration of the tongue 12 and the pseudo-oral ingestion product 100 of the dynamic three-dimensional head and neck particle model 10c. As shown in FIG. 6, the tongue 12 of the dynamic three-dimensional head and neck particle model 10c is the surface of the tongue 12 of the static three-dimensional head and neck model 10b (FIG. 3) prepared by CG based on the CT image and the VF image. After the 12a is specified, the particles 20a are arranged without gaps so that the adjacent particles 20a are in contact with each other in the region surrounded by the surface 12a, so that the modeling by the particles is performed.

また、動的三次元頭頸部粒子モデル10cで使用する擬似経口摂取品100についても、CGにより作製した擬似経口摂取品100の表面100aが特定された後に、当該表面100aに囲まれた領域内に、隣接する粒子100b同士が接するように粒子100bが隙間なく配置されることで、粒子によるモデル化が行われている。 Further, also for the pseudo-oral ingestion product 100 used in the dynamic three-dimensional head and neck particle model 10c, after the surface 100a of the pseudo-oral ingestion product 100 produced by CG is specified, it is within the region surrounded by the surface 100a. By arranging the particles 100b so that the adjacent particles 100b are in contact with each other without a gap, modeling by the particles is performed.

動的三次元頭頸部粒子モデル10cでは、上述した舌12と同様に、口蓋13も複数の粒子20bで形成され、咽頭部14も複数の粒子20cで形成され、喉頭蓋15a及び喉頭15も複数の粒子20dで形成され、食道17も複数の粒子20eで形成されている。このように、静的三次元頭頸部モデル10bの各頭頸部器官をそれぞれ粒子により作製する処理は、頭頸部モデリング部10により行われる。 In the dynamic three-dimensional head and neck particle model 10c, the palate 13 is also formed of a plurality of particles 20b, the pharynx 14 is also formed of a plurality of particles 20c, and the epiglottis 15a and the larynx 15 are also formed of a plurality of particles, similarly to the tongue 12 described above. It is formed of particles 20d, and the esophagus 17 is also formed of a plurality of particles 20e. As described above, the process of producing each head and neck organ of the static three-dimensional head and neck model 10b from particles is performed by the head and neck modeling unit 10.

ここで、本実施形態における動的三次元頭頸部粒子モデル10cでは、複数の粒子のうち、所定領域にある粒子を、擬似経口摂取品100の嚥下時に頭頸部器官で強制的に移動する強制移動粒子として設定している。また、本実施形態における動的三次元頭頸部粒子モデル10cでは、複数の粒子のうち、強制移動粒子とした粒子以外で所定領域にある粒子を、筋線維方向に基づく収縮応力が与えられる筋粒子として設定している。 Here, in the dynamic three-dimensional head and neck particle model 10c in the present embodiment, among the plurality of particles, the particles in a predetermined region are forcibly moved by the head and neck organ when the pseudo-oral ingestion product 100 is swallowed. It is set as a particle. Further, in the dynamic three-dimensional head and neck particle model 10c in the present embodiment, among a plurality of particles, particles in a predetermined region other than the particles as forced moving particles are given contraction stress based on the muscle fiber direction. It is set as.

なお、強制移動粒子及び筋粒子以外の粒子は、嚥下時に頭頸部器官で強制的に移動する位置(すなわち、嚥下時に三次元画像内で移動する座標)が規定されておらず、かつ、筋粒子のような筋線維方向への収縮応力についても規定されていない粒子である。このような強制移動粒子及び筋粒子以外の粒子は、動的三次元頭頸部粒子モデル10cで擬似経口摂取品100を嚥下させるシミュレーションを行う際、従来の粒子法により移動位置等の解析が行われる。なお、強制移動粒子及び筋粒子以外の粒子の従来の嚥下シミュレーションの詳細については、文献「Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., and Toyama Y., “Numerical simulation of interaction between organs and food bolus during swallowing and aspiration,” Computers in Biology and Medicine, 80, (2017), pp. 114‐123.」に開示されていることから、ここではその説明は省略し、以下、強制移動粒子と筋粒子とに着目して以下説明する。なお、次に説明する強制移動粒子に関し、粒子法を用いたシミュレーションについては、文献「Kikuchi, T., Michiwaki, Y., Kamiya, T. et al. Comp. Part. Mech. (2015) 2: 247. “Human swallowing simulation based on videofluorography images using Hamiltonian MPS method”」にも開示されている。 In addition, the forced movement particles and particles other than muscle particles do not specify the position where they are forcibly moved by the head and neck organs during swallowing (that is, the coordinates at which they move in the three-dimensional image during swallowing), and the muscle particles. It is a particle for which the contraction stress in the muscle fiber direction is not specified. For such particles other than forced moving particles and muscle particles, the moving position and the like are analyzed by the conventional particle method when simulating the swallowing of the pseudo-oral ingestion product 100 with the dynamic three-dimensional head and neck particle model 10c. .. For details of the conventional swallowing simulation of particles other than forced-moving particles and muscle particles, refer to the literature "Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., and Toyama Y.," Numerical. Since it is disclosed in simulation of interaction between organs and food bolus during swallowing and aspiration, "Computers in Biology and Medicine, 80, (2017), pp. 114-123." , The following description will be given focusing on the forced moving particles and the muscle particles. For the simulation using the particle method for the forced displacement particles described below, refer to the document "Kikuchi, T., Michiwaki, Y., Kamiya, T. et al. Comp. Part. Mech. (2015) 2: 247. It is also disclosed in “Human swallowing simulation based on videofluorography images using Hamiltonian MPS method”.

(4−3)<動的三次元頭頸部粒子モデルにおける強制移動粒子の設定>
動的三次元頭頸部粒子モデル10cは、頭頸部器官を形成する粒子の中に、強制移動粒子と筋粒子とを有している。まずは、動的三次元頭頸部粒子モデルにおける強制移動粒子の設定について説明する。
(4-3) <Setting of forced displacement particles in dynamic three-dimensional head and neck particle model>
The dynamic three-dimensional head and neck particle model 10c has forced displacement particles and muscle particles among the particles forming the head and neck organs. First, the setting of the forced displacement particles in the dynamic three-dimensional head and neck particle model will be described.

動的三次元頭頸部粒子モデル10cは、頭頸部器官の一部の粒子を強制移動粒子として設定し、この強制移動粒子によって、嚥下時に主活動筋と考えられる筋の運動をモデル化している。この場合、動的三次元頭頸部粒子モデル10cで擬似経口摂取品100を嚥下した際における舌12、口蓋13、咽頭部14、喉頭蓋15a、喉頭15及び食道17等を形成している粒子の中から、擬似経口摂取品100の嚥下時に、剛体的な強制変位を与える粒子を選定してこれを強制移動粒子19として設定する。 The dynamic three-dimensional head and neck particle model 10c sets some particles of the head and neck organ as forced moving particles, and the forced moving particles model the movement of muscles considered to be the main active muscles during swallowing. In this case, among the particles forming the tongue 12, the palate 13, the pharynx 14, the epiglottis 15a, the larynx 15, the esophagus 17 and the like when the pseudo-oral ingestion product 100 is swallowed by the dynamic three-dimensional head and neck particle model 10c. Therefore, a particle that gives a rigid forced displacement when swallowing the pseudo-oral ingestion product 100 is selected and set as the forced moving particle 19.

強制移動粒子19は、実際に被験者が経口摂取品を嚥下する際における頭頸部器官の筋の運動が反映されるように、解剖学的知見や、医用画像の分析研究の知見から選定する。本実施形態では、所定の経口摂取品を被験者に嚥下させたときに得られたVF画像や4DCT画像において頭頸部器官をトレースし、動的三次元頭頸部粒子モデル10c内で強制的に移動させる強制移動粒子19を選定している。 The forced moving particles 19 are selected from anatomical findings and medical image analysis studies so that the movement of the muscles of the head and neck organs when the subject actually swallows the ingested product is reflected. In the present embodiment, the head and neck organs are traced in a VF image or a 4DCT image obtained when a subject swallows a predetermined oral ingested product, and the head and neck organs are forcibly moved in the dynamic three-dimensional head and neck particle model 10c. The forced moving particles 19 are selected.

また、所定の経口摂取品を被験者に嚥下させたときに得られたVF画像や4DCT画像に基づいて、嚥下開始から嚥下終了までの間、所定時間(例えば、0.1S)ごとに各強制移動粒子19が三次元画像内で移動する位置を決定し、各強制移動粒子19について、嚥下時における時間と位置とを設定する。 In addition, based on the VF image and 4DCT image obtained when the subject swallows the predetermined oral intake product, each forced movement is performed every predetermined time (for example, 0.1S) from the start of swallowing to the end of swallowing. The position where the particle 19 moves in the three-dimensional image is determined, and the time and position at the time of swallowing are set for each forced moving particle 19.

すなわち、動的三次元頭頸部粒子モデル10cにおいて、例えば、嚥下開始時である0.0Sのとき、三次元画像内のX軸、Y軸及びZ軸での座標が(0.0、0.2、−0.2)にある強制移動粒子19について、嚥下開始時から0.1Sのとき座標(0.0、0.2、0.0)に移動し、0.2Sのとき座標(0.0、0.3、0.3)に移動することを設定する。 That is, in the dynamic three-dimensional head and neck particle model 10c, for example, at 0.0S at the start of swallowing, the coordinates on the X-axis, Y-axis, and Z-axis in the three-dimensional image are (0.0, 0. Regarding the forced moving particle 19 at 2, -0.2), it moves to the coordinates (0.0, 0.2, 0.0) at 0.1S from the start of swallowing, and at 0.2S, the coordinates (0). Set to move to .0, 0.3, 0.3).

ここで、図4及び図5において黒丸で示した粒子は、本実施形態における強制移動粒子19を示しており、例えば、舌12、口蓋13及び喉頭15等の一部に設定されている。本実施形態の舌12では、図5に示すように、複数の強制移動粒子19が集まった島状の粒子群19aが、下縦舌筋に沿って所定間隔で設定されている。口蓋13では、軟口蓋の口腔側に位置する箇所に、複数の強制移動粒子19が集まった島状の粒子群19bが設定されている。 Here, the particles shown by black circles in FIGS. 4 and 5 indicate the forced displacement particles 19 in the present embodiment, and are set in a part of, for example, the tongue 12, the palate 13, and the larynx 15. In the tongue 12 of the present embodiment, as shown in FIG. 5, island-shaped particle swarms 19a in which a plurality of forced moving particles 19 are gathered are set at predetermined intervals along the lower longitudinal tongue muscle. In the palate 13, an island-shaped particle group 19b in which a plurality of forced displacement particles 19 are gathered is set at a position located on the oral side of the soft palate.

また、本実施形態の喉頭15では、喉頭蓋谷付近に位置する箇所に、複数の強制移動粒子19が集まった島状の粒子群19cが設定され、喉頭隆起付近に位置する箇所にも、複数の強制移動粒子19が集まった島状の粒子群19dが設定され、後輪状披裂筋付近にも、複数の強制移動粒子19が集まった粒子群19eが設定されている。さらに、食道17にも、複数の強制移動粒子19が集まった島状の粒子群19fが、気道側の管壁に沿って所定間隔に設定されている。 Further, in the larynx 15 of the present embodiment, an island-shaped particle group 19c in which a plurality of forced moving particles 19 are gathered is set at a position located near the epiglottis valley, and a plurality of particles are also set near the adam's apple. An island-shaped particle group 19d in which the forced moving particles 19 are gathered is set, and a particle group 19e in which a plurality of forced moving particles 19 are gathered is also set in the vicinity of the posterior cricoarytenoid muscle. Further, in the esophagus 17, island-shaped particle groups 19f in which a plurality of forced displacement particles 19 are gathered are set at predetermined intervals along the tube wall on the airway side.

ここで、図7は、図5に示した動的三次元頭頸部粒子モデル10cにおいて、嚥下時に強制移動粒子19が移動するときの軌跡の一部を、移動軌跡線22a,22b,22c,22dで表した概略図である。例えば、22aは、舌12に設定した強制移動粒子19の移動軌跡線を示し、22bは、口蓋13の軟口蓋に設定した強制移動粒子19の移動軌跡線を示し、22cは、喉頭15に設定した強制移動粒子19の移動軌跡線を示し、22dは、食道17の菅壁に設定した強制移動粒子19の移動軌跡線を示す。 Here, FIG. 7 shows, in the dynamic three-dimensional head and neck particle model 10c shown in FIG. 5, a part of the locus when the forced moving particle 19 moves during swallowing, the moving locus lines 22a, 22b, 22c, 22d. It is a schematic diagram represented by. For example, 22a shows the movement locus line of the forced moving particle 19 set on the tongue 12, 22b shows the moving locus line of the forced moving particle 19 set on the soft palate of the palate 13, and 22c is set on the larynx 15. The movement locus line of the forced moving particle 19 is shown, and 22d shows the moving locus line of the forced moving particle 19 set on the tube wall of the esophagus 17.

図8は、移動軌跡線22a,22b,22c,22d(以下、これらをまとめて移動軌跡線22とする)に従って、強制移動粒子19を移動させたときの動的三次元頭頸部粒子モデル10c1,10c2,10c3,10c4の状態変化を示した概略図である。図8では、約12Sで所定の擬似経口摂取品100を嚥下する動的三次元頭頸部粒子モデル10cを一例とし、嚥下開始時である0Sの動的三次元頭頸部粒子モデル10c1と、嚥下開始から約7S後の動的三次元頭頸部粒子モデル10c2と、嚥下開始から約9S後の動的三次元頭頸部粒子モデル10c3と、嚥下開始から約11S後の動的三次元頭頸部粒子モデル10c4とを示す。 FIG. 8 shows the dynamic three-dimensional head and neck particle model 10c1 when the forced moving particle 19 is moved according to the moving locus lines 22a, 22b, 22c, 22d (hereinafter, these are collectively referred to as the moving locus line 22). It is the schematic which showed the state change of 10c2, 10c3, 10c4. In FIG. 8, a dynamic three-dimensional head and neck particle model 10c that swallows a predetermined pseudo-oral intake product 100 at about 12S is taken as an example, and a dynamic three-dimensional head and neck particle model 10c1 of 0S at the start of swallowing and a swallowing start. Dynamic three-dimensional head and neck particle model 10c2 about 7S after the start of swallowing, dynamic three-dimensional head and neck particle model 10c3 about 9S after the start of swallowing, and dynamic three-dimensional head and neck particle model 10c4 about 11S after the start of swallowing. And.

このように、動的三次元頭頸部粒子モデル10cでは、頭頸部器官の所定位置に強制移動粒子19を設け、各強制移動粒子19が嚥下時に移動する位置と時間とを予め設定することで、嚥下時における頭頸部器官の基本的な運動(進行波的波動運動、回転運動、上下運動、前後運動、収縮運動等)を再現させている。なお、このような動的三次元頭頸部粒子モデル10cの強制移動粒子19の運動は、器官運動設定部30の強制運動設定部31で設定する。 As described above, in the dynamic three-dimensional head and neck particle model 10c, the forced moving particles 19 are provided at predetermined positions of the head and neck organs, and the positions and times at which the forced moving particles 19 move during swallowing are set in advance. It reproduces the basic movements of the head and neck organs during swallowing (progressive wave movement, rotational movement, vertical movement, back-and-forth movement, contraction movement, etc.). The movement of the forced moving particles 19 of the dynamic three-dimensional head and neck particle model 10c is set by the forced movement setting unit 31 of the organ movement setting unit 30.

(4−4)<動的三次元頭頸部粒子モデルにおける筋粒子の設定>
動的三次元頭頸部粒子モデル10cにおいて嚥下時の咽頭部14等の挙動を精度よく再現するためには、嚥下時に咽頭部14等の壁面の長さが短縮する運動を再現することが望ましい。そこで、本実施形態における動的三次元頭頸部粒子モデル10cでは、咽頭部14等の粒子に対して単に剛体的な強制変位を与えるだけでなく、咽頭部14等の筋種ごとに三次元画像内で各筋粒子に筋線維方向を設定し、かつ筋線維方向に基づく最適な収縮応力を筋粒子に与え、動的三次元頭頸部粒子モデル10cにおける嚥下時の挙動を精度よく再現している。なお、動的三次元頭頸部粒子モデル10cにおいて筋線維方向に基づく収縮応力を与える粒子を筋粒子と称する。
(4-4) <Setting of muscle particles in dynamic 3D head and neck particle model>
In order to accurately reproduce the behavior of the pharynx 14 and the like during swallowing in the dynamic three-dimensional head and neck particle model 10c, it is desirable to reproduce the movement in which the length of the wall surface of the pharynx 14 and the like is shortened during swallowing. Therefore, in the dynamic three-dimensional head and neck particle model 10c in the present embodiment, not only a rigid forced displacement is given to the particles such as the pharynx 14, but also a three-dimensional image is obtained for each muscle type such as the pharynx 14. The muscle fiber direction is set for each muscle particle inside, and the optimum contraction stress based on the muscle fiber direction is given to the muscle particle, and the behavior during swallowing in the dynamic three-dimensional head and neck particle model 10c is accurately reproduced. .. In the dynamic three-dimensional head and neck particle model 10c, particles that give contractile stress based on the muscle fiber direction are referred to as muscle particles.

動的三次元頭頸部粒子モデル10cにおいて、例えば、舌12を形成する粒子20aの中から筋粒子を設定する場合、図9に示すように、解剖学的知見やVF画像、4DCT画像等に基づき、嚥下時に舌12が短縮する筋体領域ER,ER等を三次元画像内で特定し、各筋体領域ER,ER内に存在している粒子20aを探索する。例えば、筋体領域ER内にある粒子20aを、舌12の筋粒子とし、三次元画像の仮想空間内において、筋粒子ごとに筋線維方向を定義する。 In the dynamic three-dimensional head and neck particle model 10c, for example, when setting muscle particles from the particles 20a forming the tongue 12, as shown in FIG. 9, based on anatomical findings, VF images, 4DCT images, and the like. , The muscle body regions ER 1 , ER 2, etc. that the tongue 12 shortens when swallowing are specified in the three-dimensional image, and the particles 20a existing in each muscle body region ER 1 , ER 2 are searched. For example, the particles 20a in the muscle body region ER 1, the muscle particles tongue 12, in the virtual space of the three-dimensional image, defining the muscle fiber direction for each muscle particles.

筋粒子に設定する筋線維方向の詳細については後述するが、解剖学的知見やVF画像、4DCT画像等に基づき、舌12の筋体領域ER内の空間内に、嚥下時に筋収縮が生じている方向を線分Aとして複数設定し、筋粒子ごとに、近傍にある各線分Aの方向の重み付け平均を筋線維方向としている。本実施形態においては、例えば、筋粒子から最も近い第1線分と、筋粒子に対して2番目に近い第2線分との2つの線分を特定し、筋粒子から第1線分までの距離と、筋粒子から第2線分までの距離とについて、筋粒子からの距離の近さに応じた重みを付けて第1線分の方向と第2線分の方向とを平均して筋線維方向を求めている。ただし、筋線維方向の求め方は、この手法である必要はなく、例えば、筋体領域ER内に定義した全線分を用いて、放射基底関数(Radial Basis Function)補間を行うことでも、より滑らかに空間分布する、筋線維方向を得ることができる。 The details of the muscle fiber direction set for the muscle particles will be described later, but based on anatomical findings, VF images, 4DCT images, etc., muscle contraction occurs during swallowing in the space in the muscle body region ER 1 of the tongue 12. A plurality of directions are set as line segments A, and the weighted average of the directions of each line segment A in the vicinity is set as the muscle fiber direction for each muscle particle. In the present embodiment, for example, two line segments, a first line segment closest to the muscle particle and a second line segment closest to the muscle particle, are specified, and from the muscle particle to the first line segment. And the distance from the muscle particle to the second line segment, weighted according to the closeness of the distance from the muscle particle, and average the direction of the first line segment and the direction of the second line segment. The muscle fiber direction is sought. However, Determination of the muscle fiber direction, need not be this technique, for example, using all line segments defined muscular body region ER 1, also by performing a radial basis function (Radial Basis Function) interpolation, and more It is possible to obtain muscle fiber directions that are smoothly spatially distributed.

また、動的三次元頭頸部粒子モデル10cにおいて、擬似経口摂取品100を嚥下させたときに、頭頸部器官の収縮筋の筋種ごとに生じる、筋粒子の収縮応力の時間的変化を、活性化レベルとして設定し、活性化レベルにより嚥下時の収縮応力の大きさを設定している。なお、この活性化レベルについては後述する。 Further, in the dynamic three-dimensional head and neck particle model 10c, when the pseudo-oral ingestion product 100 is swallowed, the temporal change of the contractile stress of the muscle particles generated for each muscle type of the contractile muscle of the head and neck organ is activated. It is set as the activation level, and the magnitude of contraction stress during swallowing is set according to the activation level. The activation level will be described later.

ここでは、始めに、動的三次元頭頸部粒子モデル10cにおける咽頭部14に着目し、咽頭部14における収縮筋ごとに設定する筋線維方向について以下説明する。図10の左図は、図3に示した静的三次元頭頸部モデル10bに、咽頭部14の収縮筋が走行する方向Aa,Ab,Ac,Ad,Ae,Af,Ag,Ahを示した筋線維モデル10dの概略図である。図10の右図は、左図の筋線維モデル10dに示した咽頭収縮筋が走行する方向Aa,Ab,Ac,Ad,Ae,Af,Ag,Ahを基に、動的三次元頭頸部粒子モデル10cにおける咽頭部14において筋粒子1つ1つの筋線維方向を示した動的三次元頭頸部粒子モデル10eの概略図である。 Here, first, focusing on the pharynx 14 in the dynamic three-dimensional head and neck particle model 10c, the muscle fiber direction set for each contraction muscle in the pharynx 14 will be described below. The left figure of FIG. 10 shows the directions Aa, Ab, Ac, Ad, Ae, Af, Ag, and Ah in which the contractile muscles of the pharynx 14 travel in the static three-dimensional head and neck model 10b shown in FIG. It is a schematic diagram of the muscle fiber model 10d. The right figure of FIG. 10 shows dynamic three-dimensional head and neck particles based on the directions Aa, Ab, Ac, Ad, Ae, Af, Ag, and Ah in which the pharyngeal contractile muscle shown in the muscle fiber model 10d of the left figure travels. It is a schematic diagram of the dynamic three-dimensional head and neck particle model 10e which showed the muscle fiber direction of each muscle particle in the pharynx 14 in the model 10c.

本実施形態では、筋線維モデル10d及び動的三次元頭頸部粒子モデル10eに示すように、解剖学的知見に基づき、上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとに、咽頭部14を区分けしている。 In this embodiment, as shown in the muscle fiber model 10d and the dynamic three-dimensional head and neck particle model 10e, based on anatomical findings, the nasopharyngeal contractile muscle lingual pharynx 14a and the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b , The mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, the mesopharyngeal contractor muscle large horn pharyngeal upper part 14d, the mesopharyngeal contractile muscle large horny pharyngeal lower part 14e, the hypopharyngeal contractile muscle thyroid upper part 14f, and the hypopharyngeal contraction muscle thyroid lower part 14g. The pharynx 14 is divided into a hypopharyngeal contractile muscle ring-shaped pharynx 14h.

上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとについては、それぞれの領域内に筋粒子となる粒子が隙間なく配置され、粒子によるモデル化が行われている。 Nasopharyngeal contractile muscle tongue pharyngeal 14a, mesopharyngeal contractile muscle small horn pharyngeal upper part 14b, mesopharyngeal contractor muscle small horn pharyngeal lower part 14c, mesopharyngeal contractor muscle large horn pharyngeal upper part 14d, mesopharyngeal contractor muscle large horn pharyngeal lower part 14e, In the hypopharyngeal contraction muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g, and the hypopharyngeal contraction muscle ring-shaped pharynx 14h, particles to be muscle particles are arranged without gaps in each region, and are dependent on the particles. Modeling is being done.

そして、これら上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとについて、それぞれ収縮筋が走行する方向Aa,Ab,Ac,Ad,Ae,Af,Ag,Ahは、図6で説明したように、解剖学的知見やVF画像等に基づき、嚥下時に、各筋収縮筋の部位ごとにそれぞれ生じる細かな筋収縮方向を線分として設定した後、筋粒子ごとに、近傍にある各線分の方向の重み付け平均をして求めたものである。なお、図10の左側に示した、収縮筋が走行する方向Aa,Ab,Ac,Ad,Ae,Af,Ag,Ahは、説明の便宜上、筋線維方向のおおよその方向を示したものである。咽頭部14の各筋粒子1つ1つは、このような収縮筋が走行する方向Aa,Ab,Ac,Ad,Ae,Af,Ag,Ahに従って筋線維方向を定義している。 Then, these nasopharyngeal contractile muscle tongue pharyngeal 14a, inferior pharyngeal contractor muscle small horn pharyngeal upper part 14b, inferior pharyngeal contractor muscle small horn pharyngeal lower part 14c, inferior pharyngeal contractor muscle large horn pharyngeal upper part 14d, and mesopharyngeal contractor muscle large horn pharyngeal lower part. 14e, inferior pharyngeal contractile thyroid upper pharyngeal upper part 14f, inferior pharyngeal contractor muscular thyroid lower pharyngeal lower part 14 g, and inferior pharyngeal contractor muscle ring-shaped pharyngeal 14h, respectively, directions Aa, Ab, Ac, Ad, Ae , Af, Ag, Ah are set as line segments in the fine muscle contraction directions generated for each muscle contraction muscle site during swallowing, based on anatomical findings, VF images, etc., as described in FIG. After that, it was obtained by weighting averaging the directions of each line segment in the vicinity for each muscle particle. The directions Aa, Ab, Ac, Ad, Ae, Af, Ag, and Ah shown on the left side of FIG. 10 indicate the approximate directions of the muscle fiber directions for convenience of explanation. .. Each muscle particle of the pharynx 14 defines the muscle fiber direction according to the directions in which such contractile muscles travel, Aa, Ab, Ac, Ad, Ae, Af, Ag, and Ah.

以下、上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとについてそれぞれ順番に説明する。 Hereinafter, the nasopharyngeal contractile muscle tongue pharyngeal 14a, the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b, the mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, the mesopharyngeal contractile muscle large horn pharyngeal upper part 14d, and the mesopharyngeal contractile muscle large horn pharyngeal lower part 14e , The hypopharyngeal contraction muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g, and the hypopharyngeal contraction muscle ring-shaped pharynx 14h will be described in order.

なお、最終的に作製された動的三次元頭頸部粒子モデル10cは、マーチングキューブ法などにより頭頸部器官の表面形状が形成され、図2に示すように、頭頸部器官の粒子1つ1つは表示しないで頭頸部器官の表面形状を表示した動的三次元頭頸部モデル10aが作製される。 In the finally produced dynamic three-dimensional head and neck particle model 10c, the surface shape of the head and neck organ is formed by the marching cube method or the like, and as shown in FIG. 2, each particle of the head and neck organ is formed. A dynamic three-dimensional head and neck model 10a is produced in which the surface shape of the head and neck organ is displayed without displaying.

<上咽頭収縮筋舌咽頭部>
上咽頭収縮筋舌咽頭部14aは、咽頭部14の最上部に位置する。図11は、上咽頭収縮筋舌咽頭部14aに設定された筋粒子の全体的な筋線維方向の概略を方向Aaとして示した概略図である。図12は、筋粒子ごとに筋線維方向を定義した上咽頭収縮筋舌咽頭部14aの側面構成を示した概略図であり、図13は、筋粒子ごとに筋線維方向を定義した上咽頭収縮筋舌咽頭部14aの背面構成を示した概略図である。なお、ここで、図12及び図13は、上咽頭収縮筋舌咽頭部14aを細かな円柱で図示しており、各円柱1つ1つは、筋線維方向を示した筋粒子を表している。
<Superior pharyngeal constrictor lingual pharynx>
The superior pharyngeal constrictor lingual pharynx 14a is located at the top of the pharynx 14. FIG. 11 is a schematic view showing the outline of the overall muscle fiber direction of the muscle particles set in the superior pharyngeal constrictor lingual pharyngeal 14a as the direction Aa. FIG. 12 is a schematic view showing the lateral configuration of the superior pharyngeal constriction muscle tongue pharyngeal 14a in which the muscle fiber direction is defined for each muscle particle, and FIG. 13 is a nasopharyngeal constriction in which the muscle fiber direction is defined for each muscle particle. It is the schematic which showed the dorsal structure of the musculosopharynx 14a. Here, FIGS. 12 and 13 show the superior pharyngeal constrictor lingual pharynx 14a as fine cylinders, and each cylinder represents a muscle particle indicating the muscle fiber direction. ..

上咽頭収縮筋舌咽頭部14aは、嚥下時に上から順に収縮して、擬似経口摂取品100を下方に移動させる方向Aaに沿って筋線維方向が規定されている。また、上咽頭収縮筋舌咽頭部14aの上部は、咽頭後壁を上方に引き上げて、軟口蓋とともに咽頭鼻部を口腔から遮断する方向Aaに筋線維方向が規定されている。 The superior pharyngeal constrictor lingual pharyngeal 14a contracts in order from the top when swallowing, and the muscle fiber direction is defined along the direction Aa for moving the pseudo-oral ingestion product 100 downward. Further, in the upper part of the superior pharyngeal constrictor lingual pharynx 14a, the muscle fiber direction is defined in the direction Aa in which the posterior wall of the pharynx is pulled upward and the pharyngeal nose is blocked from the oral cavity together with the soft palate.

<中咽頭収縮筋小角咽頭上部と中咽頭収縮筋小角咽頭下部>
中咽頭収縮筋小角咽頭上部14b及び中咽頭収縮筋小角咽頭下部14cは、咽頭部14の中間に位置している。図14は、中咽頭収縮筋小角咽頭上部14bに設定された筋粒子の全体的な筋線維方向の概略を方向Abとして示し、中咽頭収縮筋小角咽頭下部14cに設定された筋粒子の全体的な筋線維方向の概略を方向Acとして示した概略図である。
<Upper pharyngeal constrictor small horn pharynx and lower middle pharyngeal constrictor small horn pharynx>
The middle pharyngeal constrictor small horn pharyngeal upper part 14b and the middle pharyngeal constrictor small horn pharyngeal lower part 14c are located in the middle of the pharynx 14. FIG. 14 shows an outline of the overall muscle fiber direction of the muscle particles set in the upper part 14b of the middle pharyngeal constrictor small angle pharynx as a direction Ab, and the entire direction of the muscle particles set in the lower part 14c of the middle pharyngeal constrictor muscle small angle. It is the schematic which showed the outline of the muscle fiber direction as a direction Ac.

図15は、筋粒子ごとに筋線維方向を定義した中咽頭収縮筋小角咽頭上部14b及び中咽頭収縮筋小角咽頭下部14cの側面構成を示した概略図であり、図16は、筋粒子ごとに筋線維方向を定義した中咽頭収縮筋小角咽頭上部14b及び中咽頭収縮筋小角咽頭下部14cの背面構成を示した概略図である。なお、ここでも、図15及び図16は、中咽頭収縮筋小角咽頭上部14b及び中咽頭収縮筋小角咽頭下部14cをそれぞれ細かな円柱で図示しており、各円柱1つ1つは、筋線維方向を示した筋粒子を表している。 FIG. 15 is a schematic view showing the lateral configurations of the middle pharyngeal constrictor small horn pharyngeal upper part 14b and the middle pharyngeal constrictor muscle small horn pharyngeal lower part 14c in which the muscle fiber direction is defined for each muscle particle, and FIG. 16 is a schematic view showing each muscle particle. It is the schematic which showed the dorsal composition of the middle pharyngeal constrictor small horn pharyngeal upper part 14b and the middle pharyngeal constrictive muscle small horn pharyngeal lower part 14c which defined the muscle fiber direction. Again, FIGS. 15 and 16 show the middle pharyngeal constrictor small horn pharyngeal upper part 14b and the middle pharyngeal constrictor small horn pharyngeal lower part 14c as fine cylinders, and each cylinder is a muscle fiber. Represents a directional muscle particle.

中咽頭収縮筋小角咽頭上部14b及び中咽頭収縮筋小角咽頭下部14cは、舌骨の小角(小角咽頭部)から設けられており、上咽頭収縮筋舌咽頭部14aの下部を下方から覆いながら内側上方に進み咽頭縫線に向かう方向Ab,Acに沿って筋線維方向が設定されており、嚥下時に上から順に収縮して、擬似経口摂取品100を下方に移動させる。 The superior pharyngeal constrictor small horn pharynx 14b and the mesopharyngeal constrictor small horn pharyngeal lower part 14c are provided from the small angle of the hyoid bone (small horn pharynx), and are inside while covering the lower part of the superior pharyngeal constrictor lingual pharynx 14a from below. The muscle fiber direction is set along the directions Ab and Ac that proceed upward and toward the pharyngeal sewing line, and contract in order from the top when swallowing to move the pseudo-oral ingestion product 100 downward.

<中咽頭収縮筋大角咽頭上部と中咽頭収縮筋大角咽頭下部>
中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eは、咽頭部14の中間に位置している。図17は、中咽頭収縮筋大角咽頭上部14dに設定された筋粒子の全体的な筋線維方向の概略を方向Adとして示し、中咽頭収縮筋大角咽頭下部14eに設定された筋粒子の全体的な筋線維方向の概略を方向Aeとして示した概略図である。
<Upper pharyngeal constrictor large angle pharynx and lower middle pharyngeal constrictor large angle pharynx>
The upper pharyngeal constrictor large angle pharynx 14d and the lower middle pharyngeal constrictor large angle pharynx 14e are located in the middle of the pharynx 14. FIG. 17 shows an outline of the overall muscle fiber direction of the muscle particles set in the upper pharyngeal constrictor large angle pharyngeal 14d as the direction Ad, and shows the overall muscle particles set in the lower pharyngeal constrictor large angle pharynx 14e. It is the schematic which showed the outline of the muscle fiber direction as direction Ae.

図18は、筋粒子ごとに筋線維方向を定義した中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eの側面構成を示した概略図であり、図19は、筋粒子ごとに筋線維方向を定義した中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eの背面構成を示した概略図である。なお、ここでも、図18及び図19は、中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eをそれぞれ細かな円柱で図示しており、各円柱1つ1つは、筋線維方向を示した筋粒子を表している。 FIG. 18 is a schematic view showing the lateral configurations of the middle pharyngeal constrictor large angle pharyngeal upper part 14d and the middle pharyngeal constrictor muscle large angle pharyngeal lower part 14e in which the muscle fiber direction is defined for each muscle particle, and FIG. 19 is a schematic view showing each muscle particle. It is the schematic which showed the dorsal composition of the middle pharyngeal constrictor large angle upper part 14d and the middle pharyngeal constriction muscle large angle lower part 14e which defined the muscle fiber direction. Again, FIGS. 18 and 19 show the middle pharyngeal constrictor large angle upper part 14d and the middle pharyngeal constrictor muscle large angle lower part 14e as fine cylinders, and each column is a muscle fiber. Represents a directional muscle particle.

中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eは、舌骨の大角(大角咽頭部)から設けられており、上咽頭収縮筋舌咽頭部14a、中咽頭収縮筋小角咽頭上部14b及び中咽頭収縮筋小角咽頭下部14cを下方から覆いながら内側上方に進み咽頭縫線に向かう方向Ad,Aeに沿って筋線維方向が設定されており、嚥下時に上から順に収縮して、擬似経口摂取品100を下方に移動させる。 The mesopharyngeal contractile muscle large horn pharyngeal upper part 14d and the mesopharyngeal contractor muscle large horn pharyngeal lower part 14e are provided from the large angle of the tongue bone (large horn pharynx), and the nasopharyngeal contractile muscle lingual pharynx 14a and the mesopharyngeal contractor muscle small horn pharynx upper part. 14b and the mesopharyngeal contractile muscle small angle The lower pharyngeal part 14c is covered from below, and the muscle fiber direction is set along the directions Ad and Ae that proceed inward and upward toward the pharyngeal sewing line. Move the orally ingested product 100 downward.

<下咽頭収縮筋甲状咽頭上部と下咽頭収縮筋甲状咽頭下部と下咽頭収縮筋輪状咽頭部>
下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hは、咽頭部14の最下部に位置している。図20は、下咽頭収縮筋甲状咽頭上部14fに設定された筋粒子の全体的な筋線維方向の概略を方向Afとして示し、下咽頭収縮筋甲状咽頭下部14gに設定された筋粒子の全体的な筋線維方向の概略を方向Agとして示し、下咽頭収縮筋輪状咽頭部14hに設定された筋粒子の全体的な筋線維方向の概略を方向Ahとして示した概略図である。
<Inferior pharyngeal contraction muscle thyroid upper part and hypopharyngeal contraction muscle thyroid lower part and hypopharyngeal contraction muscle cricopharynx>
The inferior pharyngeal contraction muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g, and the hypopharyngeal contraction muscle ring-shaped pharynx 14h are located at the lowermost part of the pharynx 14. FIG. 20 shows an outline of the overall muscle fiber direction of the muscle particles set in the inferior pharyngeal contraction muscular thyroid upper part 14f as the direction Af, and shows the whole muscle particles set in the hypopharyngeal contraction muscular thyroid lower part 14g. It is the schematic which showed the outline of the muscle fiber direction as direction Ag, and showed the outline of the whole muscle fiber direction of the muscle particle set in the hypopharyngeal contraction muscle ring-shaped pharynx 14h as direction Ah.

図21は、筋粒子ごとに筋線維方向を定義した下咽頭収縮筋甲状咽頭上部14fと下咽頭収縮筋甲状咽頭下部14gと下咽頭収縮筋輪状咽頭部14hの側面構成を示した概略図であり、図22は、筋粒子ごとに筋線維方向を定義した下咽頭収縮筋甲状咽頭上部14fと下咽頭収縮筋甲状咽頭下部14gと下咽頭収縮筋輪状咽頭部14hの背面構成を示した概略図である。なお、ここでも、図21及び図22は、下咽頭収縮筋甲状咽頭上部14fと下咽頭収縮筋甲状咽頭下部14gと下咽頭収縮筋輪状咽頭部14hをそれぞれ細かな円柱で図示しており、各円柱1つ1つは、筋線維方向を示した筋粒子を表している。 FIG. 21 is a schematic view showing the lateral configurations of the inferior pharyngeal contraction muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g, and the hypopharyngeal contraction muscle ring-shaped pharynx 14h in which the muscle fiber direction is defined for each muscle particle. FIG. 22 is a schematic view showing the dorsal configuration of the inferior pharyngeal contraction muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g, and the hypopharyngeal contraction muscle ring-shaped pharynx 14h in which the muscle fiber direction is defined for each muscle particle. is there. Again, FIGS. 21 and 22 show the inferior pharyngeal contraction muscular thyroid upper part 14f, the inferior pharyngeal contraction muscular thyroid lower part 14g, and the inferior pharyngeal contraction muscle ring-shaped pharynx 14h with fine cylinders, respectively. Each cylinder represents a muscle particle indicating the direction of the muscle fiber.

下咽頭収縮筋甲状咽頭上部14fと下咽頭収縮筋甲状咽頭下部14gは、甲状軟骨の斜線から咽頭縫線にかけて設けられており、中咽頭収縮筋小角咽頭下部14cを下方から覆いながら内側上方に進み咽頭縫線に向かう方向Af,Agに沿って筋線維方向が設定されており、嚥下時に上から順に収縮して、擬似経口摂取品100を下方に移動させる。 The inferior pharyngeal contraction muscle thyroid upper part 14f and the hypopharyngeal contraction muscle thyroid lower part 14g are provided from the diagonal line of the thyroid cartilage to the pharyngeal stitch line, and proceed inward and upward while covering the mesopharyngeal contraction muscle small horn pharyngeal lower part 14c from below. The muscle fiber direction is set along the directions Af and Ag toward the pharyngeal sewing line, and contracts in order from the top when swallowing to move the pseudo-oral ingestion product 100 downward.

下咽頭収縮筋輪状咽頭部14hは、食道入口部括約筋として機能するものであり、食道入口部17aを下方から覆いながら内側上方に進み咽頭縫線に向かう方向Ahに沿って筋線維方向が設定されており、嚥下時に擬似経口摂取品100を咽頭部14から食道17に移動させる。 The inferior pharyngeal contraction muscle ring-shaped pharynx 14h functions as an esophageal entrance sphincter muscle, and the muscle fiber direction is set along the direction Ah that advances medially upward while covering the esophageal entrance 17a from below. When swallowing, the pseudo-oral intake product 100 is moved from the pharynx 14 to the esophagus 17.

(5)<動的三次元頭頸部粒子モデルにおける構造解析手法>
ここで、嚥下シミュレーション装置1では、擬似経口摂取品100を動的三次元頭頸部粒子モデル10cで嚥下させたときの各頭頸部器官の運動と、擬似経口摂取品100の嚥下時の挙動と、を粒子法に基づいて三次元画像でシミュレーション解析する。
(5) <Structural analysis method in dynamic 3D head and neck particle model>
Here, in the swallowing simulation device 1, the movement of each head and neck organ when the pseudo-oral ingestion product 100 is swallowed by the dynamic three-dimensional head and neck particle model 10c, the behavior of the pseudo-oral ingestion product 100 during swallowing, and Is simulated and analyzed with a three-dimensional image based on the particle method.

なお、このような嚥下シミュレーションの解析結果を表示部4に表示させる際は、上述したように、動的三次元頭頸部粒子モデル10cを形成している粒子1つ1つは表示せずに、頭頸部器官の表面のみを表示して構成を簡略化し、見易くした動的三次元頭頸部モデル10aが用いられる。なお、擬似経口摂取品100も同様に、表示部4には、擬似経口摂取品100の表面形状のみが表示される。ここでは、粒子1つ1つを表記した動的三次元頭頸部粒子モデル10cに着目して、嚥下シミュレーションについて以下説明する。 When displaying the analysis result of such a swallowing simulation on the display unit 4, as described above, each particle forming the dynamic three-dimensional head and neck particle model 10c is not displayed. A dynamic three-dimensional head and neck model 10a is used, which displays only the surface of the head and neck organs to simplify the configuration and make it easier to see. Similarly, in the pseudo-oral intake product 100, only the surface shape of the pseudo-oral intake product 100 is displayed on the display unit 4. Here, the swallowing simulation will be described below, focusing on the dynamic three-dimensional head and neck particle model 10c in which each particle is described.

本実施形態では、動的三次元頭頸部粒子モデル10cにおける頭頸部器官の動作や、擬似経口摂取品100の挙動を三次元画像内に表して嚥下シミュレーションを行なう際、動的三次元頭頸部粒子モデル10cにおける頭頸部器官の筋粒子を、ムーニー・リブリン(Mooney‐Rivlin)体として粒子法(例えば、ハミルトニアン粒子法:Hamiltonian MPS法)により運動解析部50で解析する。なお、ここでは、動的三次元頭頸部粒子モデル10cを形成する粒子のうち、主に筋粒子に着目して以下説明する。 In the present embodiment, when performing a swallowing simulation by expressing the movement of the head and neck organs in the dynamic three-dimensional head and neck particle model 10c and the behavior of the pseudo-oral intake product 100 in a three-dimensional image, the dynamic three-dimensional head and neck particles The muscle particles of the head and neck organs in the model 10c are analyzed by the motion analysis unit 50 as a Mooney-Rivlin body by the particle method (for example, Hamiltonian particle method: Hamiltonian MPS method). Here, among the particles forming the dynamic three-dimensional head and neck particle model 10c, mainly muscle particles will be described below.

この際、動的三次元頭頸部粒子モデル10cにおける各筋粒子の運動を決定する支配方程式は次の(4)式となる。
At this time, the governing equation for determining the movement of each muscle particle in the dynamic three-dimensional head and neck particle model 10c is the following equation (4).

ρは、筋粒子iの密度、vは、筋粒子iの速度ベクトル、添え字のiは、筋粒子iを識別するための識別子、tは時間、∂v/∂tは、現在時刻における筋粒子iの加速度である。 ρ is the density of the muscle particles i, v i is the velocity vector of muscle particles i, the i subscript, identifier for identifying the muscle particles i, t is time, ∂v i / ∂t is the current time Is the acceleration of the muscle particle i in.

i,elasticは、粒子法により筋粒子iに加わる弾性力である。fi,artificialは、筋粒子iに加わる人工ポテンシャル力である。fi,viscousは、筋粒子iに加わる粘性力である。fi,contactは、筋粒子iが他の筋粒子と接触した際に筋粒子iに加わる接触力である。fi,interactionは、筋粒子iに加わる擬似経口摂取品からの流体力である。以下、これらについて順番に説明する。なお、動的三次元頭頸部粒子モデル10cの各筋粒子は、嚥下シミュレーション時、上記の(4)式から、各筋粒子の三次元画像内の位置や速度が求められ、得られた位置や速度に基づいて移動する。すなわち、各筋粒子は、嚥下シミュレーション時、単に筋線維方向に移動するわけではなく、上記の(4)式に基づいて求められた位置や速度に従って三次元画像内を移動する。 fi, elastic is an elastic force applied to the muscle particles i by the particle method. fi, artificial is an artificial potential force applied to the muscle particle i. fi, viscous is a viscous force applied to the muscle particles i. fi, contact is a contact force applied to the muscle particle i when the muscle particle i comes into contact with another muscle particle. fi , interaction is the fluid force from the pseudo-oral ingestion that is applied to the muscle particles i. Hereinafter, these will be described in order. For each muscle particle of the dynamic three-dimensional head and neck particle model 10c, the position and velocity of each muscle particle in the three-dimensional image were obtained from the above equation (4) at the time of swallowing simulation, and the obtained position and the obtained position and Move based on speed. That is, each muscle particle does not simply move in the direction of the muscle fiber during the swallowing simulation, but moves in the three-dimensional image according to the position and speed obtained based on the above equation (4).

<筋粒子iに加わる弾性力fi,elastic
ここで、ハミルトニアン粒子法(Hamiltonian MPS法)では、筋粒子i及び他の筋粒子j間の現在時刻における相対位置ベクトルをrijとし、筋粒子i及び筋粒子j間の初期時刻0における相対位置ベクトルをr i,jとした場合、相対位置ベクトルをrij,r i,jを用いて、筋粒子iの変形勾配テンソルFを次の(5)式で求めることができる。なお、初期時刻0とは嚥下シミュレーションの開始時である0Sを示す。
<Elastic force applied to muscle particles i , elastic >
Here, in the Hamiltonian particle method (Hamiltonian MPS method), the relative position vector between the muscle particle i and the other muscle particles j at the current time is rid, and the relative position between the muscle particle i and the muscle particle j at the initial time 0 is set. when the vector r 0 i, and j, the relative position vector using the r ij, r 0 i, j , it is possible to determine the deformation gradient tensor F i of muscle particles i by the following equation (5). The initial time 0 indicates 0S at the start of the swallowing simulation.

上記の円の中に×を設けた記号はテンソル積を示し、w ijは、筋粒子i及び筋粒子j間の初期時刻0における重み関数である。Aは、下記の(6)式で表される。
The symbol with x in the above circle indicates the tensor product, and w 0 ij is a weighting function between the muscle particles i and the muscle particles j at the initial time 0. Ai is represented by the following equation (6).

また、筋粒子iに加わる弾性力fi,elasticは、弾性ひずみポテンシャルエネルギーの総和W=Π:Fを微分することで求めることができ、下記の(7)式で表される。
Further, the elastic force fi, elastic applied to the muscle particle i can be obtained by differentiating the total elastic strain potential energy W = Π: F, and is expressed by the following equation (7).

すなわち、筋粒子iに加わる弾性力fi,elasticは下記の(8)式で表される。
That is, the elastic force fi, elastic applied to the muscle particles i is expressed by the following equation (8).

上記の(7)式のΠは、筋粒子jにおける第1ピオラ-キルヒホッフ(Piola‐Kirchhoff)応力テンソルである。Fは、筋粒子jの変形勾配テンソルである。Aは、筋粒子jに関する上記の(6)式である。 Π j in the above equation (7) is the first Piola-Kirchhoff stress tensor in the muscle particle j. F j is a deformation gradient tensor of the muscle particle j. A j is the above equation (6) relating to the muscle particle j.

は、筋粒子iにおける第2ピオラ-キルヒホッフ(Piola‐Kirchhoff)応力テンソルであり、筋粒子iに与えられる、筋収縮方向に基づく収縮応力を示す。なお、Sは、筋粒子jにおける第2ピオラ‐キルヒホッフ(Piola‐Kirchhoff)応力テンソルである。ここで、第2ピオラ‐キルヒホッフ応力テンソルSは下記の(9)式で表される。
S i is a second Piola-Kirchhoff stress tensor in the muscle particle i, and indicates the contraction stress applied to the muscle particle i based on the muscle contraction direction. Note that S j is a second Piola-Kirchhoff stress tensor in the muscle particle j. Here, the second Piora-Kirchhoff stress tensor S is expressed by the following equation (9).

passiveは、他の筋粒子及び強制移動粒子の移動により受ける受動的な応力である受動的応力を表し、Sactiveは、筋線維方向に基づく能動的な収縮応力である能動的収縮応力を表す。 Spasive represents a passive stress that is a passive stress received by the movement of other muscle particles and forced displacement particles, and Sactive represents an active contraction stress that is an active contraction stress based on the muscle fiber direction. ..

i,activeは、筋粒子iにおける能動的収縮応力Sactiveを示しており、下記の(10)式で表される。
Si and active indicate the active contraction stress Sactive in the muscle particle i, and are represented by the following equation (10).

i,mは、下記の(11)式の演算式で表される。添え字のiは、筋粒子iを識別する識別子、添え字のmは、頭頸部器官の収縮筋の筋種ごとに規定された識別子である。本実施形態における頭頸部器官の収縮筋の筋種とは、咽頭部14における筋種であり、添え字のmは、上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとのうちいずれかを示す。
S i and m are represented by the arithmetic expression of the following equation (11). The subscript i is an identifier that identifies the muscle particle i, and the subscript m is an identifier defined for each muscle type of the contractile muscle of the head and neck organ. The muscle type of the contractile muscle of the head and neck organ in the present embodiment is the muscle type in the pharynx 14, and the subscript m is the nasopharyngeal contractile muscle lingual pharynx 14a and the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b. , The mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, the mesopharyngeal contractor muscle large horn pharyngeal upper part 14d, the mesopharyngeal contractile muscle large horny pharyngeal lower part 14e, the hypopharyngeal contractile muscle thyroid upper part 14f, and the hypopharyngeal contraction muscle thyroid lower part 14g. , Hypopharyngeal contraction muscle cricopharyngeal 14h.

αは、動的三次元頭頸部粒子モデル10cによる擬似経口摂取品100の嚥下時に、頭頸部器官の筋種mにおける筋粒子の活性化レベルの時間的変化を示すものである。 α m indicates a temporal change in the activation level of muscle particles in the muscle type m of the head and neck organs when the pseudo-oral ingestion product 100 is swallowed by the dynamic three-dimensional head and neck particle model 10c.

活性化レベルαは、解剖学的知見やVF画像等に基づき、咽頭部14の筋種mごとに予め設定される。本実施形態では、図23に示すように、上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとについて、それぞれ嚥下時の時間経過に合わせて活性化レベルαが設定されている。 The activation level α m is preset for each muscle type m of the pharynx 14 based on anatomical findings, VF images, and the like. In this embodiment, as shown in FIG. 23, the nasopharyngeal contractile muscle lingual pharynx 14a, the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b, the mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, and the mesopharyngeal contractor muscle large horn pharyngeal upper part 14d , The mesopharyngeal contractile muscle large horn pharyngeal lower part 14e, the hypopharyngeal contraction muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g, and the hypopharyngeal contraction muscle ring-shaped pharynx 14h, respectively, with the passage of time at the time of swallowing. In addition, the activation level α m is set.

なお、本実施形態では、図23に示すように、上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとにおける、嚥下時の活性化レベルαの最大値が、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eとにおける、嚥下時の活性化レベルαの最大値よりも、大きく選定されている。 In the present embodiment, as shown in FIG. 23, the nasopharyngeal contractile muscle lingual pharynx 14a, the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b, the hypopharyngeal contraction muscle thyroid upper part 14f, and the hypopharyngeal contraction muscle thyroid pharynx The maximum value of activation level α m during swallowing in the lower part 14 g and the hypopharyngeal contractile muscle ring-shaped pharynx 14h is the mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, the mesopharyngeal contractile muscle large horn pharyngeal upper part 14d, and the mesopharynx. It is selected to be larger than the maximum value of the activation level α m at the time of swallowing in the contractile muscle large angle lower pharynx 14e.

また、本実施形態では、図23に示すように、嚥下時、まず、上咽頭収縮筋舌咽頭部14aの活性化レベルαが最大となった後、次に、中咽頭収縮筋小角咽頭上部14bの活性化レベルαが最大となり、その後、下咽頭収縮筋甲状咽頭上部14f及び下咽頭収縮筋甲状咽頭下部14gの活性化レベルαが最大となり、最後に、下咽頭収縮筋輪状咽頭部14hの活性化レベルαが最大となっている。 Further, in the present embodiment, as shown in FIG. 23, when swallowing, the activation level α m of the nasopharyngeal contractile muscle lingual pharynx 14a is first maximized, and then the mesopharyngeal contractile muscle small horn pharyngeal upper part. activation level alpha m of 14b is maximized, then, the activation level alpha m hypopharyngeal contraction muscle thyroid pharyngeal upper 14f and hypopharyngeal contraction muscle thyroid pharyngeal bottom 14g is maximized, finally, hypopharynx contraction muscle cricopharyngeal unit The activation level α m at 14 h is the maximum.

また、本実施形態では、図23に示すように、嚥下時、中咽頭収縮筋小角咽頭上部14bの活性化レベルαが立ち上がった後に、中咽頭収縮筋小角咽頭下部14c、中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eの順に活性化レベルαが順次立ち上がり、下咽頭収縮筋甲状咽頭上部14f及び下咽頭収縮筋甲状咽頭下部14gの活性化レベルαが最大値になる前に、中咽頭収縮筋小角咽頭下部14c、中咽頭収縮筋大角咽頭上部14d及び中咽頭収縮筋大角咽頭下部14eの活性化レベルαが最大となっている。 Further, in the present embodiment, as shown in FIG. 23, after the activation level α m of the upper pharyngeal contractile muscle small horn pharynx rises during swallowing, the mesopharyngeal contractile muscle small horn pharyngeal lower part 14c and the mesopharyngeal contractile muscle large angle rising pharynx upper 14d and oropharynx contractile muscle large angle activation level alpha m in the order of the pharynx bottom 14e are sequentially activation level alpha m hypopharyngeal contraction muscle thyroid pharyngeal upper 14f and hypopharyngeal contraction muscle thyroid pharyngeal bottom 14g is the maximum value The activation level α m of the mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, the mesopharyngeal contractor muscle large horn pharyngeal upper part 14d, and the mesopharyngeal contractor muscle large horn pharyngeal lower part 14e is maximized.

maxは、活性化レベルαが最大値のときの最大の能動的収縮応力であり、fは、現在時刻における筋線維長に基づく能動的収縮応力の補正係数である。a i,mは、筋種mの筋粒子iに設定した初期時刻0の筋線維方向を示す。 f max is the maximum active contraction stress when the activation level α m is the maximum value, and f l is a correction coefficient of the active contraction stress based on the muscle fiber length at the current time. a 0 i and m indicate the muscle fiber direction at the initial time 0 set in the muscle particle i of the muscle type m.

本実施形態では、活性化レベルαが0≦α≦1とし、最大の能動的収縮応力fmaxは、α=1のときfmax=700kPaとしている。補正係数fは下記の(12)式により表される。
In the present embodiment, the activation level α m is 0 ≦ α m ≦ 1, and the maximum active contraction stress f max is f max = 700 kPa when α m = 1. The correction coefficient f l is expressed by the following equation (12).

なお、上記の(12)式において、Iは下記の(13)式で表され、CI は至適長状態を示す定数である。なお、Cは筋粒子iの右コーシー・グリーン(Cauchy‐Green)変形テンソルである。
In the above equation (12), I 4 is represented by the following equation (13), CI 4 0 is a constant indicating the optimum length state. In addition, C i is the right Cauchy-Green (Cauchy-Green) deformation tensor of muscle particles i.

次に受動的応力Spassiveについて説明する。受動的応力Spassiveは次の(14)式で表される。
Next, the passive stress Spassive will be described. Passive stress S passive is expressed by the following equation (14).

Wは下記の(15)式で表される。Cは、右コーシー・グリーン(Cauchy‐Green)変形テンソルであり、C=FFで表される。Fは変形勾配テンソルであり、FはFの転置行列を示す。
W is expressed by the following equation (15). C is a right Cauchy-Green (Cauchy-Green) deformation tensor is expressed by C = F T F. F is the deformation gradient tensor, F T denotes a transposed matrix of F.

上記の(15)式において、C、C及びDはムーニー・リブリン(Mooney‐Rivlin)体の材料定数であり、I はCの第1低減不変量であり、Jは、J=det Fである。 In equation (15) above, C 1 , C 2 and D 1 are the material constants of the Mooney-Rivlin form, I - 1 is the first reduced invariant of C, and J is J. = Det F.

<筋粒子iに加わる人工ポテンシャル力fi,artificial
筋粒子iの人工ポテンシャル力fi,artificialは、ハミルトニアン粒子法(Hamiltonian MPS法)による特異性のある変位モードとそれによる振動を抑制するものであり、変形勾配テンソルFの誤差を打ち消す方向に働くものである。この筋粒子iの人工ポテンシャル力fi,artificialは下記の(16)式で表される。この(16)式のC artは下記の(17)式で表される。
<Artificial potential force applied to muscle particle i fi, artificial >
The artificial potential force fi, artificial of the muscle particle i suppresses the specific displacement mode by the Hamiltonian particle method (Hamiltonian MPS method) and the vibration caused by it, and works in the direction of canceling the error of the deformation gradient tensor F. It is a thing. The artificial potential force fi, artificial of the muscle particle i is expressed by the following equation (16). C i art of this (16) is represented by (17) below.

なお、この人工ポテンシャル力fi,artificialの計算方法の詳細は、文献「Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., and Toyama Y., “Numerical simulation of interaction between organs and food bolus during swallowing and aspiration,” Computers in Biology and Medicine, 80, (2017), pp. 114‐123.」と、文献「「Kikuchi, T., Michiwaki, Y., Kamiya, T. et al. Comp. Part. Mech. (2015) 2: 247. “Human swallowing simulation based on videofluorography images using Hamiltonian MPS method”」とに開示されていることから、ここではその説明は省略する。 For details on the calculation method of this artificial potential force fi, artificial , refer to the document "Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., and Toyama Y.," Numerical simulation of interaction between. organs and food bolus during swallowing and aspiration, "Computers in Biology and Medicine, 80, (2017), pp. 114-123." Comp. Part. Mech. (2015) 2: 247. Since it is disclosed in “Human swallowing simulation based on videofluorography images using Hamiltonian MPS method”, the explanation is omitted here.

<筋粒子iに加わる粘性力fi,viscous
筋粒子iに加わる粘性力fi,viscousは、筋粒子iの速度を減衰させ、計算を安定化させるものであり、下記の(18)式で表される。
<Viscous force applied to muscle particles i , viscous >
The viscous force fi, viscous applied to the muscle particle i attenuates the velocity of the muscle particle i and stabilizes the calculation, and is expressed by the following equation (18).

ρは、筋粒子iの密度である。νelaは弾性体の粘度である。dは次元数である。λ及びnはハミルトニアン粒子法(Hamiltonian MPS法)の定数である。 ρ is the density of the muscle particles i. ν ela is the viscosity of the elastic body. d is a number of dimensions. λ and n 0 are constants of the Hamiltonian particle method (Hamiltonian MPS method).

この粘性力fi,viscousの計算方法の詳細は、上記と同様の文献「Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., and Toyama Y., “Numerical simulation of interaction between organs and food bolus during swallowing and aspiration,” Computers in Biology and Medicine, 80, (2017), pp. 114‐123.」に開示されていることから、ここではその説明は省略する。 For details on the calculation method of this viscous force fi, viscous , refer to the same document as above, "Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., and Toyama Y.," Numerical simulation of interaction. Since it is disclosed in between organs and food bolus during swallowing and aspiration, "Computers in Biology and Medicine, 80, (2017), pp. 114-123.", The description thereof is omitted here.

<筋粒子iに加わる接触力fi,contact
筋粒子iに加わる接触力fi,contactは、筋粒子同士の接触力であり、垂直抗力fi,norと摩擦力fi,tanとを合わせたものとなる。ここでは、ペナルティ法によって壁面(接触する他の筋粒子jから決定した壁面)にめり込んだ筋粒子iに接触力を与える。他の物体との接触境界条件として適用されるペナルティ法では、他の物体に接触した筋粒子iに対してペナルティ力、すなわち反発力として下記の(19)式で表される垂直抗力fi,norが筋粒子iに与えられる。
<Contact force applied to muscle particles i , contact >
The contact force fi, contact applied to the muscle particles i is the contact force between the muscle particles, and is a combination of the normal force fi, nor and the frictional force fi, tan . Here, a contact force is applied to the muscle particles i that are sunk into the wall surface (the wall surface determined from the other muscle particles j that come into contact with each other) by the penalty method. In the penalty method applied as a contact boundary condition with another object, the normal force fi, expressed by the following equation (19) as a penalty force, that is, a repulsive force against the muscle particle i in contact with the other object . nor is given to the muscle particle i.

kは、ペナルティ係数であり、pは、めり込み量であり、nは、垂直抗力fi,norの単位方向ベクトルである。図24に示すように、垂直抗力fi,norは、壁面とめり込み量pに比例した大きさの力を、壁面の法線ベクトルnの方向へ与えるものである。 k is a penalty coefficient, p is a sinking amount, and n is a unit direction vector of normal force fi, nor. As shown in FIG. 24, the normal force fi, nor applies a force having a magnitude proportional to the wall surface and the amount of penetration p in the direction of the wall surface normal vector n.

また、摩擦力fi,tanは、下記の(20)式で表される。
The frictional forces fi and tan are expressed by the following equation (20).

ρは、筋粒子iの密度であり、μtanは、摩擦係数であり、viw,tanは、筋粒子iと壁面の相対速度のうち、壁面の法線ベクトルnに垂直な成分である。 ρ i is the density of the muscle particles i, μ tan is the coefficient of friction, and viv, tan are the components of the relative velocity between the muscle particles i and the wall surface, which are perpendicular to the normal vector n of the wall surface. ..

このような接触力fi,contactの計算方法の詳細は、文献「菊地貴博, 道脇幸博, 越塚誠一, 神谷哲, 長田尭, 神野暢子, 外山義雄. 壁境界条件としてペナルティ法を導入したHamiltonian MPS 法による超弾性体モデルの単軸圧縮シミュレーション. 日本計算工学会論文集, 2014:20140010, 2014」に開示されていることから、ここではその説明は省略する。 For details on the calculation method of such contact force fi, contact , refer to the literature "Takahiro Kikuchi, Yukihiro Michiwaki, Seiichi Koshizuka, Satoshi Kamiya, Takashi Nagata, Nobuko Kamino, Yoshio Toyama. Hamiltonian MPS that introduced the penalty method as a wall boundary condition. Single-axis compression simulation of a superelastic body model by the method. Since it is disclosed in "Proceedings of the Japan Society for Computational Engineering, 2014: 20140010, 2014", its explanation is omitted here.

<筋粒子iに加わる擬似経口摂取品からの流体力fi,interaction
ここでは、構造粒子(筋粒子)を壁粒子として流体解析を行い、構造粒子が流体粒子(擬似経口摂取品100の粒子)に与える力の反作用力を、筋粒子iが流体粒子から受ける流体力fi,interactionとして与える。非圧縮性流体の支配方程式は、下記の(21)式で表すことができる。ここでは、嚥下させる擬似経口摂取品100はニュートン流体としてE−MPS法(Explicit MPS法)を用いて解析する。
<Fluid force from pseudo-oral ingestion product applied to muscle particle i , interaction >
Here, fluid analysis is performed using structural particles (muscle particles) as wall particles, and the reaction force of the force that the structural particles give to the fluid particles (particles of the pseudo-oral intake product 100) is the fluid force that the muscle particles i receive from the fluid particles. It is given as fi, intervention. The governing equation of the incompressible fluid can be expressed by the following equation (21). Here, the pseudo-oral ingestion product 100 to be swallowed is analyzed using the E-MPS method (Explicit MPS method) as a Newtonian fluid.

筋粒子iに加わる擬似経口摂取品からの流体力fi,interactionの支配方程式は下記の(21)式となる。
The governing equation of the fluid force fi, interaction from the pseudo-oral intake product applied to the muscle particle i is the following equation (21).

ここで、上記の(21)式の右辺第1項は圧力勾配項であり、右辺第2項は粘性項であり、右辺第3項は重力項であり、右辺第4項は表面張力項である。 Here, the first term on the right side of the above equation (21) is a pressure gradient term, the second term on the right side is a viscosity term, the third term on the right side is a gravity term, and the fourth term on the right side is a surface tension term. is there.

vは流体(擬似経口摂取品100)の速度、ρは流体の密度、Pは流体の圧力、νは流体の動粘性係数、gは重力加速度、fsurface tensionは表面張力である。上記の(21)式の右辺の重力加速度以外の各項は、流体粒子が壁粒子から受ける壁境界条件の影響を含んだ形で定式化されている。 v is the velocity of the fluid (pseudo-oral intake 100), ρ is the density of the fluid, P is the pressure of the fluid, ν is the kinematic viscosity coefficient of the fluid, g is the gravitational acceleration, and f surface tension is the surface tension. Each term other than the gravitational acceleration on the right side of the above equation (21) is formulated in a form including the influence of the wall boundary condition that the fluid particle receives from the wall particle.

このような非圧縮性流体の支配方程式に関する計算方法の詳細は、その詳細については、文献「大地雅俊, 越塚誠一, 酒井幹夫. 自由表面流れ解析のためのMPS 陽的アルゴリズムの開発. 日本計算工学会論文集, 2010:20100013, 2010.」や、文献「鈴木幸人. 粒子法の高精度化とマルチフィジクスシミュレータに関する研究. 博士論文, 2007.」、文献「近藤雅裕, 越塚誠一, 滝本正人. MPS 法における粒子間ポテンシャル力を用いた表面張力モデル. 日本計算工学会論文集, 2007:20070021, 2007.」に開示されていることから、ここではその説明は省略する。 For details on the calculation method for the governing equation of such an incompressible fluid, refer to the literature "Masatoshi Daichi, Seiichi Koshizuka, Mikio Sakai. Development of MPS explicit algorithm for free surface flow analysis. Proceedings of the Society, 2010: 20100013, 2010. ”, Literature“ Yukito Suzuki. Research on high precision particle method and multi-physics simulator. Doctoral paper, 2007. ”, Literature“ Masahiro Kondo, Seiichi Koshizuka, Masato Takimoto. A surface tension model using the interparticle potential force in the MPS method. Since it is disclosed in "Proceedings of the Japan Society for Computational Engineering, 2007: 20070021, 2007.", its description is omitted here.

なお、上記の(21)式の流体の圧力Pについて、流体から筋粒子iに加わる圧力Pは下記の(22)式で表される。
Incidentally, the pressure P of the above (21) of the fluid, the pressure P i applied from the fluid to the muscle particles i is represented by (22) below.

cは流体の音速、nは筋粒子iに対して他の全ての筋粒子及び流体粒子との間で重み関数の和をとったもので筋粒子iの粒子数密度と称するものである。nは筋粒子iの初期時刻0での粒子数密度である。▽Pは下記の(23)式で表される。Pは流体から筋粒子jに加わる圧力である。
c are those referred acoustic velocity of the fluid, n i is the particle number density of muscle particles i in those taking the sum of the weighting function with the all other muscle particles and fluid particles against the muscle particles i. n 0 is the particle number density of the muscle particle i at the initial time 0. ▽ P i is expressed by (23) below. P j is the pressure applied from the fluid to the muscle particles j.

表面張力fsurface tensionは、下記の(24)式で表される。
The surface tension f surface tension is expressed by the following equation (24).

ST ijはポテンシャル力の係数である。φは下記の(25)で表される。
C ST ij is a coefficient of potential force. φ is represented by (25) below.

は初期最近接粒子間距離であり、rはポテンシャル力の影響半径である。 l 0 is the distance between the initial nearest particle, r e is the influence radius of potential force.

(6)<ハミルトニアン粒子法(Hamiltonian MPS法)による演算処理手順>
本実施形態における嚥下シミュレーション装置1では、上述した「(5)<動的三次元頭頸部粒子モデルにおける構造解析手法>」で説明した各式が、運動解析部50に記憶されている。嚥下シミュレーション装置1は、経口摂取品物性設定部40によって擬似経口摂取品100の物性値が設定されると、運動解析部50に記憶されている各式に基づいて動的三次元頭頸部粒子モデル10cの筋粒子の運動(筋粒子が移動する位置r及び速度v)や、擬似経口摂取品100の挙動を算出することができる。
(6) <Procedure for arithmetic processing by the Hamiltonian particle method (Hamiltonian MPS method)>
In the swallowing simulation device 1 of the present embodiment, each equation described in the above-mentioned "(5) <Structural analysis method in the dynamic three-dimensional head and neck particle model>" is stored in the motion analysis unit 50. When the physical property value of the pseudo-oral intake product 100 is set by the oral intake product property setting unit 40, the swallowing simulation device 1 is a dynamic three-dimensional head and neck particle model based on each equation stored in the motion analysis unit 50. The movement of the muscle particles of 10c (position r and velocity v at which the muscle particles move) and the behavior of the pseudo-oral ingestion product 100 can be calculated.

嚥下シミュレーション装置1は、このような算出結果に基づいて、動的三次元頭頸部粒子モデル10cや動的三次元頭頸部モデル10aが擬似経口摂取品100を嚥下する嚥下シミュレーションを動画像により提示することができる。 Based on such calculation results, the swallowing simulation device 1 presents a swallowing simulation in which the dynamic three-dimensional head and neck particle model 10c and the dynamic three-dimensional head and neck model 10a swallow the pseudo-oral ingestion product 100 by moving images. be able to.

ここで、図25は、ハミルトニアン粒子法(Hamiltonian MPS法)を用いて動的三次元頭頸部粒子モデル10cでの嚥下シミュレーションを行う際の演算処理手順を示したフローチャートである。なお、ここでは、動的三次元頭頸部粒子モデル10cの咽頭部14における所定の筋粒子iに着目して以下説明するが、動的三次元頭頸部粒子モデル10cの各筋粒子に対してそれぞれ以下の演算処理が行われる。 Here, FIG. 25 is a flowchart showing a calculation processing procedure when performing a swallowing simulation with the dynamic three-dimensional head and neck particle model 10c using the Hamiltonian particle method (Hamiltonian MPS method). Although the following description will be given focusing on the predetermined muscle particles i in the pharynx 14 of the dynamic three-dimensional head and neck particle model 10c, each muscle particle of the dynamic three-dimensional head and neck particle model 10c will be described below. The following arithmetic processing is performed.

なお、動的三次元頭頸部粒子モデル10cに設定した強制移動粒子については、嚥下開始から嚥下終了までの間に移動する位置(三次元画像内の座標)が予め決められていることから、嚥下シミュレーション時における強制移動粒子の三次元画像内での移動は、下記の演算処理では特定されない。しかしながら、強制移動粒子についても下記の演算処理は行われる。その理由は、強制移動粒子において算出した応力等が、筋粒子や、他の粒子(強制移動粒子及び筋粒子以外の粒子)に影響を与えるためである。すなわち、強制移動粒子において算出した第2ピオラ-キルヒホッフ応力テンソルが、例えば、筋粒子iの演算処理を行う際に、ステップS3の弾性力(上記の(8)式)の算出に影響を与える。また、強制移動粒子において算出した変形勾配テンソルが、例えば、筋粒子iの演算処理を行う際に、ステップS3の人工ポテンシャル力(上記の(16)式)の算出、及び、ステップS4の接触力の解析(上記の(19)式と(20)式)に影響を与える。 The forced moving particles set in the dynamic three-dimensional head and neck particle model 10c are swallowed because the position (coordinates in the three-dimensional image) to move between the start of swallowing and the end of swallowing is predetermined. The movement of the forced moving particles in the three-dimensional image during the simulation is not specified by the following arithmetic processing. However, the following arithmetic processing is also performed on the forced displacement particles. The reason is that the stress calculated in the forced displacement particles affects the muscle particles and other particles (forced displacement particles and particles other than the muscle particles). That is, the second Piora-Kirchhoff stress tensor calculated for the forced displacement particles affects the calculation of the elastic force (the above equation (8)) in step S3, for example, when performing the arithmetic processing of the muscle particles i. Further, when the deformation gradient tensor calculated in the forced displacement particle performs, for example, the arithmetic processing of the muscle particle i, the artificial potential force in step S3 (the above equation (16)) is calculated, and the contact force in step S4. (Equations (19) and (20) above) are affected.

また、動的三次元頭頸部粒子モデル10cにおける、強制移動粒子及び筋粒子以外の粒子についても、下記の演算処理が行われるが、この際は、筋粒子で演算が行われる能動的収縮応力Sactiveの演算は行われない。すなわち、強制移動粒子及び筋粒子以外の粒子では、ステップS3において「弾性力」を求める際に、上述した能動的収縮応力Sactiveが存在しない演算が行われる。 Further, in the dynamic three-dimensional head and neck particle model 10c, the following arithmetic processing is also performed on the particles other than the forced moving particles and the muscle particles. In this case, the active contraction stress S in which the arithmetic is performed by the muscle particles No active operation is performed. That is, for particles other than the forced displacement particles and the muscle particles, when the "elastic force" is obtained in step S3, the above-mentioned calculation in which the active contraction stress Sactive does not exist is performed.

動的三次元頭頸部粒子モデル10cの筋粒子iの場合、始めに、ステップS1において、運動解析部50は、タイムステップtにおける動的三次元頭頸部粒子モデル10cの筋粒子iの位置rと、速度vとを仮定し、次のステップS2に移る。初期のステップS1では、位置r=rとなり、これは動的三次元頭頸部粒子モデル10cの初期形状そのものであり、速度v=vは0となる。なお、ステップS10から戻った2回目以降のステップS1は、前のステップS9で求められた位置r´と速度v´を、位置r及び速度vとして用いる。 For muscle particles i dynamic three-dimensional head and neck particle model 10c, first, at step S1, the motion analysis unit 50, a position r t of muscle particles i dynamic three-dimensional head and neck particle model 10c at time step t And the speed v t, and move on to the next step S2. In the initial step S1, the position r t = r 0, and the which is the initial shape itself of the dynamic three-dimensional head and neck particle model 10c, the speed v t = v 0 0. Incidentally, Step S1 of second and later returned from step S10, the position r'and speed v'obtained in the previous step S9, used as a position r t and velocity v t.

ステップS2において、運動解析部50は、筋粒子iに加わる擬似経口摂取品100からの流体力fi,interactionについて、上記の(21)式における右辺第2項の粘性項と、右辺第3項の重力項と、右辺第4項の表面張力項とを求め、次のステップS3に移る。なお、本運動解析は上記の(21)式の右辺を同時に求めず、ステップS2とS7に分離して求める解法であるため、上記の(21)式における右辺第1項の勾配圧力項はS7において求める。 In step S2, the motion analysis unit 50 describes the viscosity term of the right-hand side second term and the right-hand side third term in the above equation (21) with respect to the fluid force fi, interaction from the pseudo-oral intake product 100 applied to the muscle particle i. The gravity term and the surface tension term of the fourth term on the right side are obtained, and the process proceeds to the next step S3. Since this motion analysis is a solution method in which the right side of the above equation (21) is not obtained at the same time but is obtained separately in steps S2 and S7, the gradient pressure term of the first term of the right side in the above equation (21) is S7. Ask in.

ステップS3において、運動解析部50は、構造解析として、筋粒子iに加わる弾性力fi,elasticを上記の(8)式に基づき算出し、筋粒子iに加わる人工ポテンシャル力fi,artificialを上記の(16)式に基づき算出し、筋粒子iに加わる粘性力fi,viscousを上記の(18)式に基づき算出して、次にステップS4に移る。 In step S3, the motion analysis unit 50, as a structural analysis, the elastic force applied to the muscle particles i f i, is calculated on the basis of the elastic to the above (8), an artificial potential force f i applied to the muscle particles i, the artificial Calculated based on the above equation (16) , the viscous force fi, viscous applied to the muscle particles i is calculated based on the above equation (18), and then the process proceeds to step S4.

ここで、本実施形態では、筋粒子iに加わる弾性力fi,elasticを算出する際に、上記の(9)式に基づいて受動的応力Spassiveと、筋線維方向に基づく能動的な収縮応力である能動的収縮応力Sactiveとが筋粒子iに反映させることでき、擬似経口摂取品100の嚥下時における頭頸部器官の筋粒子iの運動を従来よりも一段と正確に再現することができる。 In the present embodiment, the elastic force applied to the muscle particles i f i, when calculating the elastic, and passive stress S passive based on the above expression (9), active contraction based on muscle fiber direction can be reflected on the active contraction stress S active Togasuji particles i is the stress, the movement of the muscle particles i of the head and neck organs during swallowing of the pseudo-orally ingested product 100 can be reproduced more accurately than conventional ..

ステップS4において、運動解析部50は、接触解析として、筋粒子iに加わる接触力fi,contactを上記の(19)式及び(20)式に基づき算出し、次のステップS5に移る。 In step S4, the motion analysis unit 50 calculates the contact force fi, contact applied to the muscle particle i based on the above equations (19) and (20) as a contact analysis, and moves to the next step S5.

ステップS5において、運動解析部50は、筋粒子iに加わる弾性力fi,elasticと、筋粒子iに加わる人工ポテンシャル力fi,artificialと、筋粒子iに加わる粘性力fi,viscousと、筋粒子iに加わる接触力fi,contactと、さらに、筋粒子iに加わる擬似経口摂取品100からの流体力fi,interactionのうち(21)式の右辺第2項の粘性項と、右辺第3項の重力項と、右辺第4項の表面張力項と、から、上記の(4)式を基に筋粒子iの仮の加速度∂v/∂t´を算出し、得られた算出結果から筋粒子iの仮の位置r´と速度v´とを求め、次のステップS6に移る。 In step S5, the motion analysis unit 50 includes elastic force fi, elastic applied to the muscle particle i, artificial potential force fi, artificial applied to the muscle particle i, and viscous force fi, viscous applied to the muscle particle i. Of the contact force fi, contact applied to the muscle particle i, and the fluid force fi, interaction from the pseudo-oral intake product 100 applied to the muscle particle i, the viscous term of the second term on the right side of Eq. (21) and the right side. From the gravity term of the third term and the surface tension term of the fourth term on the right side, the provisional acceleration ∂v i / ∂t'of the muscle particle i was calculated based on the above equation (4) and obtained. From the calculation result, the temporary position r'and the velocity v'of the muscle particle i are obtained, and the process proceeds to the next step S6.

ステップS6において、運動解析部50は、仮の位置r´を利用して上記の(22)式から圧力Pを求め、次のステップS7に移る。ステップS7において、運動解析部50は、ステップS6で求めた圧力P及び上記の(23)式を用いて、上記の(21)式における右辺第1項の勾配圧力項を求め、次のステップS8に移る。 In step S6, the motion analysis unit 50 obtains the pressure P i from the equation (22) using the temporary position r', proceeds to the next step S7. In step S7, the motion analysis unit 50 uses at determined pressure P i and the above equation (23) step S6, obtains the pressure gradient term of the first term in the above equation (21), the next step Move on to S8.

これにより、運動解析部50は、ステップS7で上記の(21)式における右辺第1項の勾配圧力項を用いることで、上記の(21)式で表された、筋粒子iに加わる擬似経口摂取品100からの流体力fi,interactionを求めることができる。 As a result, the motion analysis unit 50 uses the gradient pressure term of the first term on the right side in the above equation (21) in step S7 to add to the muscle particle i represented by the above equation (21). The fluid force fi, interaction from the ingested product 100 can be obtained.

ステップS8において、運動解析部50は、剛体計算として、筋粒子iに加わる弾性力fi,elasticと、筋粒子iに加わる人工ポテンシャル力fi,artificialと、筋粒子iに加わる粘性力fi,viscousと、筋粒子iに加わる接触力fi,contactと、筋粒子iに加わる擬似経口摂取品100からの流体力fi,interactionとを用い、上記の(4)式から筋粒子iの加速度∂v/∂tを算出し、次のステップS9に移る。 In step S8, the motion analysis unit 50, as a rigid body calculations, the elastic force f i applied to the muscle particles i, elastic and artificial potential force f i applied to the muscle particles i, artificial and, viscous force f i applied to the muscle particle i and Viscous, a contact force f i, contact applied to the muscle particles i, the fluid force f i from the pseudo orally ingested product 100 applied to the muscle particles i, using the interaction, the (4) muscle particle i from the equation The acceleration ∂v i / ∂t is calculated, and the process proceeds to the next step S9.

ステップS9において、運動解析部50は、上記の(4)式から算出した筋粒子iの加速度∂v/∂tを基に、筋粒子iの位置r´と速度v´を算出し、ステップS5で算出した仮の位置r´と速度v´とを、このステップS9で算出した位置r´と速度v´とに修正して、次のステップS10に移る。 In step S9, the motion analysis unit 50 calculates the position r t ′ and velocity v t ′ of the muscle particle i based on the acceleration ∂v i / ∂t of the muscle particle i calculated from the above equation (4). and the provisional position r'and speed v'calculated in step S5, to correct the 'a velocity v t' position r t calculated in step S9 and proceeds to next step S10.

ステップS10において、運動解析部50は、タイムステップtを進めt=t+1として再びステップS1に戻り、上述した処理を行い、次の時刻であるタイムステップ(t+1)のときの筋粒子iの位置rt+1´と速度vt+1´とを求める。このようにして、嚥下シミュレーション装置1では、動的三次元頭頸部モデル10aにおける各頭頸部器官の運動と、擬似経口摂取品100の嚥下に係る挙動とを、粒子法を用いて三次元画像内で解析することができ、動的三次元頭頸部モデル10aにおける嚥下の様子を表示部4の表示画面に動画像として提示できる。 In step S10, the motion analysis unit 50 advances the time step t, returns to step S1 again with t = t + 1, performs the above-described processing, and performs the above-mentioned processing, and the position r of the muscle particle i at the time step (t + 1) which is the next time. Find t + 1'and velocity v t + 1 '. In this way, in the swallowing simulation device 1, the movement of each head and neck organ in the dynamic three-dimensional head and neck model 10a and the behavior related to swallowing of the pseudo-oral ingestion product 100 are captured in a three-dimensional image using the particle method. The state of swallowing in the dynamic three-dimensional head and neck model 10a can be presented as a moving image on the display screen of the display unit 4.

(7)<検証結果>
次に、比較例として、筋線維方向への収縮応力を規定した筋粒子を設けずに、強制移動粒子を設けて粒子法による嚥下シミュレーションを行える動的三次元頭頸部モデルを作製した。そして、強制移動粒子に加えて、筋線維方向に収縮応力により移動する筋粒子を設けた、本実施形態の動的三次元頭頸部モデル10aと、比較例の動的三次元頭頸部モデルとについて、同じ擬似経口摂取品100を嚥下させる嚥下シミュレーションを行い、その動作の違いについて確認した。
(7) <Verification result>
Next, as a comparative example, a dynamic three-dimensional head and neck model capable of performing swallowing simulation by the particle method by providing forced moving particles without providing muscle particles that regulate contraction stress in the muscle fiber direction was prepared. Then, about the dynamic three-dimensional head and neck model 10a of the present embodiment and the dynamic three-dimensional head and neck model of the comparative example in which muscle particles that move in the muscle fiber direction by contraction stress are provided in addition to the forced moving particles. , A swallowing simulation of swallowing the same pseudo-oral ingestion product 100 was performed, and the difference in the operation was confirmed.

ここで、図26の左側は、本実施形態における動的三次元頭頸部モデル10a1,10a2を示しており、左上側に嚥下開始から1.583S後の動的三次元頭頸部モデル10a1を示し、左下側に嚥下開始から1.800S後の動的三次元頭頸部モデル10a2を示している。 Here, the left side of FIG. 26 shows the dynamic three-dimensional head and neck models 10a1 and 10a2 in the present embodiment, and the upper left side shows the dynamic three-dimensional head and neck model 10a1 1.583S after the start of swallowing. The dynamic three-dimensional head and neck model 10a2 after 1.800S from the start of swallowing is shown on the lower left side.

一方、図26の右側は、比較例の動的三次元頭頸部モデル10f1,10f2を示しており、右上側に嚥下開始から1.583S後の動的三次元頭頸部モデル10f1を示し、右下側に嚥下開始から1.800S後の動的三次元頭頸部モデル10f2を示している。 On the other hand, the right side of FIG. 26 shows the dynamic three-dimensional head and neck model 10f1 and 10f2 of the comparative example, and the dynamic three-dimensional head and neck model 10f1 1.583S after the start of swallowing is shown on the upper right side, and the lower right side shows the dynamic three-dimensional head and neck model 10f1. The dynamic three-dimensional head and neck model 10f2 after 1.800S from the start of swallowing is shown on the side.

図26から、強制移動粒子に加えて、筋線維方向に収縮応力で移動する筋粒子を設けた本実施形態の動的三次元頭頸部モデル10a1,10a2と、比較例の動的三次元頭頸部モデル10f1,10f2とでは、咽頭部14の壁面の運動に違いが確認され、これに伴い擬似経口摂取品100の流れ方にも違いが生じることが確認できた。 From FIG. 26, the dynamic three-dimensional head and neck models 10a1 and 10a2 of the present embodiment in which muscle particles that move in the muscle fiber direction by contraction stress are provided in addition to the forced moving particles, and the dynamic three-dimensional head and neck of the comparative example. It was confirmed that there was a difference in the movement of the wall surface of the pharynx 14 between the models 10f1 and 10f2, and that the flow of the pseudo-oral ingestion product 100 was also different accordingly.

また、図27、図28及び図29に示すように、本実施形態の動的三次元頭頸部モデル10aにおいて、上咽頭収縮筋舌咽頭部14aの中間辺りの高さZ1の位置で水平断面をとり、この水平断面で粒子表示させた動的三次元頭頸部粒子モデル10cの形状変化を確認した。ここでは、図27、図28及び図29の中央には、動的三次元頭頸部モデル10aを粒子で表示させた動的三次元頭頸部粒子モデル10cについて、高さZ1で粒子表示させた水平断面構成を示す。 Further, as shown in FIGS. 27, 28 and 29, in the dynamic three-dimensional head and neck model 10a of the present embodiment, a horizontal cross section is formed at a height Z1 around the middle of the superior pharyngeal constrictor lingual pharynx 14a. The shape change of the dynamic three-dimensional head and neck particle model 10c in which the particles were displayed in this horizontal cross section was confirmed. Here, in the center of FIGS. 27, 28, and 29, the dynamic three-dimensional head and neck particle model 10c in which the dynamic three-dimensional head and neck model 10a is displayed in particles is displayed horizontally at a height Z1. The cross-sectional structure is shown.

図27、図28及び図29の右側には、比較例として、強制移動粒子により動作する動的三次元頭頸部粒子モデル10gについて、高さZ1で粒子表示させた水平断面構成を示す。 On the right side of FIGS. 27, 28 and 29, as a comparative example, a horizontal cross-sectional configuration in which particles are displayed at a height Z1 of a dynamic three-dimensional head and neck particle model 10 g operated by forced moving particles is shown.

図27は、嚥下開始から1.45S後の状態を示し、図28は、嚥下開始から1.62S後の状態を示し、図29は、嚥下開始から1.77S後の状態を示したものである。本実施形態の動的三次元頭頸部粒子モデル10cでは、図27、図28及び図29に示すような一連の動作から、咽頭表面14jの壁面長さ(周長)が短縮し、咽頭後壁の隆起も生じ、咽頭表面14j自体が筋として能動的に収縮するような動作を実現できていることが分かった。 FIG. 27 shows the state after 1.45S from the start of swallowing, FIG. 28 shows the state after 1.62S from the start of swallowing, and FIG. 29 shows the state after 1.77S from the start of swallowing. is there. In the dynamic three-dimensional head and neck particle model 10c of the present embodiment, the wall surface length (perimeter) of the pharyngeal surface 14j is shortened and the posterior pharyngeal wall is shortened from a series of operations as shown in FIGS. 27, 28 and 29. It was found that the pharyngeal surface 14j itself was able to realize an action of actively contracting as a muscle.

一方、比較例である動的三次元頭頸部粒子モデル10gでは、咽頭部14の板状に配置させた強制移動粒子19を強制移動させて咽頭表面14jを押し潰すように動作し、咽頭表面14jの壁面長さ(周長)が短縮しておらず、自然な嚥下動作が再現されていなかった。 On the other hand, in the dynamic three-dimensional head and neck particle model 10g, which is a comparative example, the forced displacement particles 19 arranged in a plate shape of the pharynx 14 are forcibly moved to crush the pharyngeal surface 14j, and the pharyngeal surface 14j is crushed. The wall length (perimeter) was not shortened, and the natural swallowing movement was not reproduced.

次に、図30及び図31に示すように、本実施形態の動的三次元頭頸部モデル10aにおいて、下咽頭収縮筋甲状咽頭下部14g辺りの高さZ2の位置で水平断面をとり、この水平断面で粒子表示させた動的三次元頭頸部粒子モデル10cの形状変化を確認した。なお、11bは甲状軟骨である。図30は、嚥下開始から1.57S後の状態を示し、図31は、嚥下開始から1.88S後の状態を示したものである。本実施形態の動的三次元頭頸部粒子モデル10cでは、図30及び図31に示すような一連の動作から、下咽頭収縮筋甲状咽頭下部14gでも壁面長さ(周長)が短縮し、下咽頭収縮筋甲状咽頭下部14g自体が筋として能動的に収縮するような動作を実現できていることが分かった。 Next, as shown in FIGS. 30 and 31, in the dynamic three-dimensional head and neck model 10a of the present embodiment, a horizontal cross section is taken at a height Z2 around 14 g of the inferior pharyngeal contractile thyroid lower pharynx, and this horizontal section is taken. The shape change of the dynamic three-dimensional head and neck particle model 10c in which the particles were displayed in the cross section was confirmed. Reference numeral 11b is thyroid cartilage. FIG. 30 shows the state after 1.57S from the start of swallowing, and FIG. 31 shows the state after 1.88S from the start of swallowing. In the dynamic three-dimensional head and neck particle model 10c of the present embodiment, the wall surface length (perimeter) is shortened even in the inferior pharyngeal contraction muscular thyroid lower part 14 g from the series of operations as shown in FIGS. It was found that the inferior pharyngeal muscle thyroid lower part 14g itself was able to realize an action of actively contracting as a muscle.

次に、被験者の嚥下動作を撮像したVF画像と、粒子1つ1つは表示せずに頭頸部器官の表面形状を表示した本実施形態の動的三次元頭頸部モデル10aと、粒子1つ1つを表示した本実施形態の動的三次元頭頸部粒子モデル10cとについて嚥下の動作を対比した。この場合、VF画像は、造影剤を添加した水5mlを経口摂取品100cとして被験者に嚥下させたときのVF画像である。 Next, a VF image of the swallowing motion of the subject, a dynamic three-dimensional head and neck model 10a of the present embodiment in which the surface shape of the head and neck organ is displayed without displaying each particle, and one particle. The swallowing motion was compared with the dynamic three-dimensional head and neck particle model 10c of the present embodiment in which one was displayed. In this case, the VF image is a VF image when the subject swallows 5 ml of water to which a contrast medium is added as an oral ingestion product 100c.

なお、動的三次元頭頸部モデル10aは、マーチングキューブ法により動的三次元頭頸部粒子モデル10cから作製した。図32の上段には、嚥下開始から1.50S後の様子を撮像したVF画像IM1と、嚥下開始から1.58S後の様子を撮像したVF画像IM2とを示す。また、図33の上段には、嚥下開始から1.65S後の様子を撮像したVF画像IM3と、嚥下開始から1.75S後の様子を撮像したVF画像IM4とを示す。 The dynamic three-dimensional head and neck model 10a was prepared from the dynamic three-dimensional head and neck particle model 10c by the Marching cube method. The upper part of FIG. 32 shows a VF image IM1 that captures the state after 1.50S from the start of swallowing and a VF image IM2 that captures the state after 1.58S from the start of swallowing. Further, the upper part of FIG. 33 shows a VF image IM3 that captures the state after 1.65S from the start of swallowing and a VF image IM4 that captures the state after 1.75S from the start of swallowing.

図32の中段には、嚥下開始から1.50S後の様子を示した動的三次元頭頸部モデル10a5と、嚥下開始から1.58S後の様子を示した動的三次元頭頸部モデル10a6とを示す。また、図33の中段には、嚥下開始から1.65S後の様子を示した動的三次元頭頸部モデル10a7と、嚥下開始から1.75S後の様子を示した動的三次元頭頸部モデル10a8とを示す。 In the middle of FIG. 32, there are a dynamic three-dimensional head and neck model 10a5 showing the state after 1.50S from the start of swallowing, and a dynamic three-dimensional head and neck model 10a6 showing the state after 1.58S from the start of swallowing. Is shown. Further, in the middle of FIG. 33, a dynamic three-dimensional head and neck model 10a7 showing the state after 1.65S from the start of swallowing and a dynamic three-dimensional head and neck model showing the state after 1.75S from the start of swallowing. It is shown as 10a8.

図32の下段には、嚥下開始から1.50S後の様子を示した動的三次元頭頸部粒子モデル10c5と、嚥下開始から1.58S後の様子を示した動的三次元頭頸部粒子モデル10c6とを示す。また、図33の下段には、嚥下開始から1.65S後の様子を示した動的三次元頭頸部粒子モデル10c7と、嚥下開始から1.75S後の様子を示した動的三次元頭頸部粒子モデル10c8とを示す。 In the lower part of FIG. 32, a dynamic three-dimensional head and neck particle model 10c5 showing the state after 1.50S from the start of swallowing and a dynamic three-dimensional head and neck particle model showing the state after 1.58S from the start of swallowing. It is shown as 10c6. Further, in the lower part of FIG. 33, a dynamic three-dimensional head and neck particle model 10c7 showing the state after 1.65S from the start of swallowing and a dynamic three-dimensional head and neck showing the state after 1.75S from the start of swallowing. The particle model 10c8 is shown.

図32及び図33に示した、動的三次元頭頸部モデル10a5,10a6,10a7と、動的三次元頭頸部粒子モデル10c5,10c6,10c7とから、解析開始時に舌上にあった擬似経口摂取品100は舌の進行波的波動運動によって咽頭部に送られること、このとき、上咽頭収縮筋の収縮により喉頭蓋谷の空間が狭くなっていること、擬似経口摂取品100が梨状窩に流入していること、が再現できていることを確認した。 From the dynamic three-dimensional head and neck model 10a5, 10a6, 10a7 and the dynamic three-dimensional head and neck particle model 10c5, 10c6, 10c7 shown in FIGS. 32 and 33, the pseudo-oral ingestion that was on the tongue at the start of the analysis. Product 100 is sent to the pharynx by the progressive wave motion of the tongue, at this time, the space of the epiglottis valley is narrowed due to the contraction of the superior pharyngeal constrictor muscle, and the pseudo-oral intake product 100 flows into the pear-shaped fossa. It was confirmed that what was done was reproduced.

また、図33に示した、動的三次元頭頸部モデル10a7,10a8と、動的三次元頭頸部粒子モデル10c7,10c8とでは、その後に、擬似経口摂取品100を咽頭から食道に送る際は、咽頭収縮筋を順に収縮させることで、咽頭部の壁面の長さを短縮しながら、咽頭部側壁を中央へ、咽頭部後壁を前方へそれぞれ移動させながら、中咽頭収縮筋が閉鎖するような動作が再現できることを確認した。 Further, in the dynamic three-dimensional head and neck model 10a7, 10a8 and the dynamic three-dimensional head and neck particle model 10c7, 10c8 shown in FIG. 33, when the pseudo-oral ingestion product 100 is subsequently sent from the pharynx to the esophagus, By contracting the pharyngeal contractile muscles in order, the pharyngeal contractile muscles are closed while shortening the length of the wall surface of the pharynx and moving the side wall of the pharynx to the center and the posterior wall of the pharynx forward. It was confirmed that various operations can be reproduced.

(8)<作用及び効果>
以上の構成において、嚥下シミュレーション装置1では、複数の粒子によって三次元画像でモデル化した複数の頭頸部器官を作製し、複数の頭頸部器官からなる動的三次元頭頸部粒子モデル10cを三次元画像により作製し(頭頸部モデリングステップ)、この動的三次元頭頸部粒子モデル10cにおける複数の頭頸部器官の運動を設定する(器官運動設定ステップ)。
(8) <Action and effect>
In the above configuration, the swallowing simulation device 1 prepares a plurality of head and neck organs modeled by a three-dimensional image from a plurality of particles, and three-dimensionally creates a dynamic three-dimensional head and neck particle model 10c composed of the plurality of head and neck organs. It is created by an image (head and neck modeling step), and the movement of a plurality of head and neck organs in this dynamic three-dimensional head and neck particle model 10c is set (organ movement setting step).

この際、嚥下シミュレーション装置1は、動的三次元頭頸部粒子モデル10cの複数の粒子のうち、擬似経口摂取品100の嚥下時に頭頸部器官で強制的に移動する粒子を強制移動粒子とし、嚥下時における強制移動粒子の運動を設定する(強制運動設定ステップ)。また、嚥下シミュレーション装置1は、動的三次元頭頸部粒子モデル10cの複数の粒子のうち、医学的知見に基づき頭頸部器官の収縮筋ごとに三次元画像内で筋線維方向を特定し、かつ筋線維方向に基づく収縮応力が与えられる粒子を筋粒子とし、嚥下時における筋粒子の運動を設定する(筋収縮運動設定ステップ)。 At this time, the swallowing simulation device 1 uses, among the plurality of particles of the dynamic three-dimensional head and neck particle model 10c, the particles that are forcibly moved by the head and neck organ when swallowing the pseudo-oral intake product 100 as the forced moving particles, and swallows. Set the motion of forced moving particles at time (forced motion setting step). Further, the swallowing simulation device 1 identifies the muscle fiber direction in the three-dimensional image for each contraction muscle of the head and neck organ based on medical knowledge among a plurality of particles of the dynamic three-dimensional head and neck particle model 10c, and also Particles to which contraction stress is applied based on the muscle fiber direction are defined as muscle particles, and the movement of the muscle particles during swallowing is set (muscle contraction movement setting step).

嚥下シミュレーション装置1では、運動解析部50によって、擬似経口摂取品100を動的三次元頭頸部粒子モデル10cで嚥下させたときの頭頸部器官の運動と、擬似経口摂取品100の嚥下時の挙動と、を粒子法に基づいて三次元画像で解析する(運動解析ステップ)。 In the swallowing simulation device 1, the motion analysis unit 50 moves the head and neck organs when the pseudo-oral ingestion product 100 is swallowed by the dynamic three-dimensional head and neck particle model 10c, and the behavior of the pseudo-oral ingestion product 100 during swallowing. And are analyzed with a three-dimensional image based on the particle method (motion analysis step).

そして、嚥下シミュレーション装置1は、運動解析部50により三次元画像で解析された、擬似経口摂取品100の嚥下時の頭頸部器官の運動と、擬似経口摂取品100の嚥下時の挙動との解析結果を、動画像で表示する(表示ステップ)。 Then, the swallowing simulation device 1 analyzes the movement of the head and neck organs during swallowing of the pseudo-oral ingestion product 100 and the behavior of the pseudo-oral ingestion product 100 during swallowing, which is analyzed by the motion analysis unit 50 in a three-dimensional image. The result is displayed as a moving image (display step).

なお、本実施形態では、複数の粒子によって三次元画像でモデル化した動的三次元頭頸部粒子モデル10cから、マーチングキューブ法などにより各頭頸部器官の表面形状を作製し、粒子1つ1つが表示されずに頭頸部器官の表面形状のみが表示される動的三次元頭頸部モデル10aする。そして、動的三次元頭頸部粒子モデル10cによる擬似経口摂取品100の嚥下時の頭頸部器官の運動と、擬似経口摂取品100の嚥下時の挙動との解析結果を、表面表示の動的三次元頭頸部モデル10aにより動画像で表示する。 In this embodiment, the surface shape of each head and neck organ is prepared from the dynamic three-dimensional head and neck particle model 10c modeled by a three-dimensional image by a plurality of particles by the marching cube method or the like, and each particle is formed. A dynamic three-dimensional head and neck model 10a in which only the surface shape of the head and neck organs is displayed without being displayed. Then, the analysis results of the movement of the head and neck organs during swallowing of the pseudo-oral ingestion product 100 and the behavior of the pseudo-oral ingestion product 100 during swallowing by the dynamic three-dimensional head and neck particle model 10c are displayed in a dynamic three-dimensional surface display. It is displayed as a moving image by the head and neck model 10a.

このように、嚥下シミュレーション装置1では、頭頸部器官を粒子で作製し、所定の粒子を強制移動粒子と筋粒子とし、収縮筋ごとに筋線維方向に基づく収縮応力を筋粒子に与えるように設定したことで、擬似経口摂取品100の嚥下時における頭頸部器官の運動や、擬似経口摂取品100の挙動などを従来よりも一段と正確に再現することができる。 In this way, in the swallowing simulation device 1, the head and neck organs are made of particles, predetermined particles are forced moving particles and muscle particles, and contraction stress based on the muscle fiber direction is applied to the muscle particles for each contraction muscle. As a result, the movement of the head and neck organs when the pseudo-oral intake product 100 is swallowed, the behavior of the pseudo-oral intake product 100, and the like can be reproduced more accurately than before.

また、本実施形態では、頭頸部器官の収縮筋の筋種mごとに設定した活性化レベルαの時間的変化を反映させて、粒子法により、動的三次元頭頸部粒子モデル10cによる擬似経口摂取品100の嚥下時における筋粒子iの運動を、三次元画像で解析するようにした。これにより、嚥下シミュレーション装置1では、嚥下時における時間経過に応じて活発的に動く収縮筋を再現することができ、擬似経口摂取品100の嚥下時における頭頸部器官の運動や、擬似経口摂取品100の挙動などを従来よりも一段と正確に再現することができる。 Further, in the present embodiment, the dynamic three-dimensional head and neck particle model 10c is simulated by the particle method, reflecting the temporal change of the activation level α m set for each muscle type m of the contractile muscle of the head and neck organ. The movement of the muscle particles i during swallowing of the orally ingested product 100 was analyzed by a three-dimensional image. As a result, the swallowing simulation device 1 can reproduce the contractile muscles that actively move with the passage of time during swallowing, and the movement of the head and neck organs during swallowing of the pseudo-oral intake product 100 and the pseudo-oral intake product. The behavior of 100 can be reproduced more accurately than before.

(9)<他の実施形態>
上述した実施形態においては、嚥下障害者又は健常者の頭頸部器官を再現した動的三次元頭頸部粒子モデル10cを三次元画像により形成する他にも、例えば、乳幼児又は高齢者等の頭頸部器官を再現した動的三次元頭頸部粒子モデルを三次元画像により形成してもよい。
(9) <Other embodiments>
In the above-described embodiment, in addition to forming a dynamic three-dimensional head and neck particle model 10c that reproduces the head and neck organs of a dysphagic person or a healthy person by a three-dimensional image, for example, the head and neck of an infant or an elderly person, etc. A dynamic three-dimensional head and neck particle model that reproduces the organ may be formed by a three-dimensional image.

また、上述した実施形態においては、粒子法として、本実施形態で採用したMPS法以外に、SPH(Smoothed Particle Hydrodynamics)法などを適用してもよい。 Further, in the above-described embodiment, the SPH (Smoothed Particle Hydrodynamics) method or the like may be applied as the particle method in addition to the MPS method adopted in the present embodiment.

また、上述した実施形態においては、上記に(11)式の演算式を適用した場合について述べたが、本発明はこれに限らない。例えば、上記の(11)式の演算式における補正係数fは常に1としてもよい。また、例えば、筋線維長の変化速度に応じた補正係数fvを、上記の(11)式の演算式にさらに掛け算で追加してもよい。 Further, in the above-described embodiment, the case where the arithmetic expression of the equation (11) is applied is described above, but the present invention is not limited to this. For example, the correction coefficient f l in the calculation formula of the equation (11) is always may be one. Further, for example, the correction coefficient fv according to the change rate of the muscle fiber length may be further added to the calculation formula of the above formula (11) by multiplication.

また、上述した実施形態においては、咽頭部14における収縮筋を、上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hの8つに分けた場合について述べたが、本発明はこれに限らず、例えば、上咽頭収縮筋と中咽頭収縮筋と下咽頭収縮筋とに少なくとも分けられていればよい。上咽頭収縮筋と中咽頭収縮筋と下咽頭収縮筋とに分けた場合には、上咽頭収縮筋と中咽頭収縮筋と下咽頭収縮筋とにそれぞれ異なる筋線維方向が設定されるとともに、活性化レベルが設定される。 Further, in the above-described embodiment, the contractile muscles in the pharynx 14 are the nasopharyngeal contractile muscle lingual pharyngeal 14a, the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b, the mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, and the mesopharyngeal contraction. It is divided into eight parts: the upper muscular pharynx 14d, the mesopharyngeal contractile muscle large horny lower pharynx 14e, the hypopharyngeal contraction muscular thyroid upper part 14f, the hypopharyngeal contraction muscular thyroid lower part 14g, and the hypopharyngeal contraction muscle ring pharynx 14h. However, the present invention is not limited to this, and for example, it may be divided into at least a nasopharyngeal contraction muscle, a mesopharyngeal contraction muscle, and a hypopharyngeal contraction muscle. When the superior pharyngeal constrictor, the middle pharyngeal constrictor, and the hypopharyngeal constrictor are divided, different muscle fiber directions are set for the nasopharyngeal constrictor, the middle pharyngeal constrictor, and the hypopharyngeal constrictor, and the activity is increased. The conversion level is set.

なお、上述した実施形態においては、筋粒子を設定する頭頸部器官の具体的な収縮筋として、咽頭部14にある上咽頭収縮筋舌咽頭部14aと、中咽頭収縮筋小角咽頭上部14bと、中咽頭収縮筋小角咽頭下部14cと、中咽頭収縮筋大角咽頭上部14dと、中咽頭収縮筋大角咽頭下部14eと、下咽頭収縮筋甲状咽頭上部14fと、下咽頭収縮筋甲状咽頭下部14gと、下咽頭収縮筋輪状咽頭部14hとについて例を挙げて説明したが、本発明はこれに限らない。動的三次元頭頸部粒子モデルにおいて、頭頸部器官の収縮筋として、例えば、その他、咽頭挙筋群や、舌筋、軟口蓋の筋、舌骨上筋群、舌骨下筋群、喉頭の筋、等に筋粒子を設定し、嚥下時に、三次元画像内で特定した筋線維方向に基づいて収縮応力により当該筋粒子を運動させるようにしてもよい。 In the above-described embodiment, as specific contractile muscles of the head and neck organs for setting muscle particles, the nasopharyngeal contractile muscle tongue pharynx 14a in the pharynx 14, the mesopharyngeal contractile muscle small horn pharyngeal upper part 14b, and the like The mesopharyngeal contractile muscle small horn pharyngeal lower part 14c, the mesopharyngeal contractor muscle large horn pharyngeal upper part 14d, the mesopharyngeal contractile muscle large horny pharyngeal lower part 14e, the hypopharyngeal contractile muscle thyroid upper part 14f, the hypopharyngeal contraction muscle thyroid lower part 14g Although the hypopharyngeal contractile muscle ring-shaped pharynx 14h has been described with an example, the present invention is not limited to this. In the dynamic three-dimensional head and neck particle model, as contractile muscles of the head and neck organs, for example, the pharyngeal levitation muscle group, the tongue muscle, the soft palate muscle, the suprahyoid muscle group, the infrahyoid muscle group, and the laryngeal muscle. , Etc. may be set, and the muscle particles may be moved by contraction stress based on the muscle fiber direction specified in the three-dimensional image at the time of swallowing.

また、上述した実施形態においては、受動的応力Spassiveとして、等方性材料であるムーニー・リブリン体の超弾性体での応力算出の方法を利用し、上記の(10)式に基づいて受動的応力Spassiveを求める場合について述べたが、本発明はこれに限らない。他の受動的応力Spassiveの算出方法としては、例えば、ムーニー・リブリン体の代わりにオグデン(Ogden)体という超弾性体構成則を適用したり、或いは、等方性材料の構成則だけでなく、筋線維による異方性材料の構成則を適用することもできる。 Further, in the above-described embodiment, as the passive stress space , a method of calculating the stress of the Mooney-riblin body, which is an isotropic material, in a superelastic body is used, and the passive stress is based on the above equation (10). Although the case of obtaining the target stress stress has been described, the present invention is not limited to this. As another method for calculating the passive stress Spassive , for example, a superelastic body constitutive law called an Ogden body is applied instead of the Mooney-riblin body, or not only the constitutive law of an isotropic material but also , The constitutive law of anisotropic material by muscle fibers can also be applied.

1 嚥下シミュレーション装置
4 表示部
10a 動的三次元頭頸部モデル
10c 動的三次元頭頸部粒子モデル
10 頭頸部モデリング部
30 器官運動設定部
31 強制運動設定部
32 筋収縮運動設定部
50 運動解析部
1 Swallowing simulation device 4 Display unit 10a Dynamic 3D head and neck model 10c Dynamic 3D head and neck particle model 10 Head and neck modeling unit 30 Organ movement setting unit 31 Forced movement setting unit 32 Muscle contraction movement setting unit 50 Motion analysis unit

Claims (9)

複数の粒子によって三次元画像でモデル化した複数の頭頸部器官を作製し、前記複数の頭頸部器官からなる動的三次元頭頸部粒子モデルを前記三次元画像により作製する頭頸部モデリング部と、
前記動的三次元頭頸部粒子モデルにおける前記複数の頭頸部器官の運動を設定する器官運動設定部と、
経口摂取品を複数の粒子によって前記三次元画像でモデル化した擬似経口摂取品を、前記動的三次元頭頸部粒子モデルで嚥下させたときの前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動と、を粒子法に基づいて前記三次元画像で解析する運動解析部と、
前記運動解析部により前記三次元画像で解析された、前記擬似経口摂取品の嚥下時の前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動との解析結果を、動画像で表示する表示部と、
を備え、
前記器官運動設定部は、
前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記擬似経口摂取品の嚥下時に前記頭頸部器官で強制的に移動する粒子を強制移動粒子とし、前記嚥下時における前記強制移動粒子の運動を設定する強制運動設定部と、
前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記頭頸部器官の収縮筋ごとに前記三次元画像内で筋線維方向が特定され、かつ前記筋線維方向に基づく収縮応力が与えられる粒子を筋粒子とし、前記嚥下時における前記筋粒子の運動を設定する筋収縮運動設定部と、
を備える、嚥下シミュレーション装置。
A head and neck modeling unit that prepares a plurality of head and neck organs modeled by a three-dimensional image from a plurality of particles, and prepares a dynamic three-dimensional head and neck particle model composed of the plurality of head and neck organs by the three-dimensional image.
An organ movement setting unit that sets the movement of the plurality of head and neck organs in the dynamic three-dimensional head and neck particle model, and an organ movement setting unit.
The movement of the head and neck organs when the pseudo-oral ingested product modeled by the three-dimensional image with a plurality of particles is swallowed by the dynamic three-dimensional head and neck particle model, and the pseudo-oral ingested product. The motion analysis unit that analyzes the behavior during swallowing with the three-dimensional image based on the particle method,
The analysis result of the movement of the head and neck organ during swallowing of the pseudo-oral ingestion product and the behavior of the pseudo-oral ingestion product during swallowing, analyzed by the motion analysis unit in the three-dimensional image, is obtained by moving images. The display part to display and
With
The organ movement setting unit
Among the plurality of particles of the dynamic three-dimensional head and neck particle model, particles that are forcibly moved by the head and neck organ when swallowing the pseudo-oral ingestion product are designated as forced moving particles, and the forced moving particles during swallowing are used. Forced exercise setting unit that sets the exercise of
Among the plurality of particles of the dynamic three-dimensional head and neck particle model, the muscle fiber direction is specified in the three-dimensional image for each contraction muscle of the head and neck organ, and the contraction stress based on the muscle fiber direction is applied. A muscle contraction movement setting unit that sets the movement of the muscle particles during swallowing, and a muscle contraction movement setting unit,
A swallowing simulation device.
前記筋収縮運動設定部は、
前記筋線維方向に基づく前記収縮応力には、前記筋線維方向に基づく能動的な収縮応力である能動的収縮応力が設定されている、
請求項1に記載の嚥下シミュレーション装置。
The muscle contraction exercise setting unit
An active contraction stress, which is an active contraction stress based on the muscle fiber direction, is set in the contraction stress based on the muscle fiber direction.
The swallowing simulation apparatus according to claim 1.
前記筋収縮運動設定部は、
前記筋線維方向に基づく前記収縮応力には、前記他の筋粒子及び前記強制移動粒子の移動により受ける受動的な応力である受動的応力が設定されている、
請求項2に記載の嚥下シミュレーション装置。
The muscle contraction exercise setting unit
The contraction stress based on the muscle fiber direction is set to a passive stress which is a passive stress received by the movement of the other muscle particles and the forced displacement particles.
The swallowing simulation apparatus according to claim 2.
前記筋収縮運動設定部は、
前記動的三次元頭頸部粒子モデルによる前記擬似経口摂取品の嚥下時に、前記頭頸部器官の前記収縮筋の筋種ごとに前記筋粒子に与えられる前記収縮応力の時間的変化を、活性化レベルとして設定し、
前記運動解析部は、
前記頭頸部器官の前記収縮筋の筋種ごとに設定した前記活性化レベルの時間的変化を反映させて、前記粒子法により、前記動的三次元頭頸部粒子モデルによる前記擬似経口摂取品の嚥下時における前記筋粒子の運動を、前記三次元画像で解析する、
請求項1〜3のいずれか1項に記載の嚥下シミュレーション装置。
The muscle contraction exercise setting unit
When swallowing the pseudo-oral ingested product by the dynamic three-dimensional head and neck particle model, the activation level of the temporal change of the contraction stress applied to the muscle particles for each muscle type of the contraction muscles of the head and neck organ. Set as
The motion analysis unit
The pseudo-oral ingestion product is swallowed by the dynamic three-dimensional head and neck particle model by the particle method, reflecting the temporal change of the activation level set for each muscle type of the contractile muscle of the head and neck organ. The movement of the muscle particles at time is analyzed by the three-dimensional image.
The swallowing simulation apparatus according to any one of claims 1 to 3.
前記筋収縮運動設定部は、
前記頭頸部器官における前記収縮筋が、少なくとも上咽頭収縮筋と中咽頭収縮筋と下咽頭収縮筋とに分けられている、
請求項1〜4のいずれか1項に記載の嚥下シミュレーション装置。
The muscle contraction exercise setting unit
The contractile muscles in the head and neck organs are divided into at least a superior pharyngeal constrictor, a middle pharyngeal constrictor, and a hypopharyngeal constrictor.
The swallowing simulation apparatus according to any one of claims 1 to 4.
前記運動解析部は、
前記粒子法により前記筋粒子に加わる弾性力と、前記筋粒子に加わる人工ポテンシャル力と、前記筋粒子に加わる粘性力と、他の粒子と接触した際に粒子に加わる接触力と、前記筋粒子に加わる前記擬似経口摂取品からの流体力とを解析し、
前記弾性力を解析する際に、前記筋粒子への前記収縮応力の付与として、下記の(1)式で表す第2ピオラ-キルヒホッフ(Piola-Kirchhoff)応力テンソルを含めて解析する、
請求項1に記載の嚥下シミュレーション装置。

passiveは、前記他の筋粒子及び前記強制移動粒子の移動により受ける受動的な応力である受動的応力を表し、Sactiveは、前記筋線維方向に基づく能動的な収縮応力である能動的収縮応力を表す。
The motion analysis unit
The elastic force applied to the muscle particles by the particle method, the artificial potential force applied to the muscle particles, the viscous force applied to the muscle particles, the contact force applied to the particles when they come into contact with other particles, and the muscle particles. Analyzing the fluid force from the pseudo-oral ingestion product applied to
When analyzing the elastic force, as the application of the contraction stress to the muscle particles, a second Piola-Kirchhoff stress tensor represented by the following equation (1) is included in the analysis.
The swallowing simulation apparatus according to claim 1.

Spasive represents a passive stress which is a passive stress received by the movement of the other muscle particles and the forced displacement particles, and Sactive is an active contraction stress which is an active contraction stress based on the muscle fiber direction. Represents stress.
能動的収縮応力Sactiveは、
前記動的三次元頭頸部粒子モデルによる前記擬似経口摂取品の嚥下時に、前記頭頸部器官の筋種mにおける筋粒子iの前記収縮応力の時間的変化を示す活性化レベルαと、
筋種mの筋粒子iに設定した初期時刻0の筋線維方向a i,mと、
を含んだ演算式により算出される、
請求項6に記載の嚥下シミュレーション装置。
Active contraction stress Sactive is
When the pseudo-oral ingested product is swallowed by the dynamic three-dimensional head and neck particle model, the activation level α m indicating the temporal change of the contraction stress of the muscle particle i in the muscle type m of the head and neck organ, and the activation level α m.
The muscle fiber directions a 0 i, m at the initial time 0 set for the muscle particles i of the muscle type m, and
Calculated by an arithmetic expression including
The swallowing simulation apparatus according to claim 6.
所定の筋粒子iにおけるSactiveを示すSi,activeは、下記の(2)式で表される、
請求項6に記載の嚥下シミュレーション装置。
i,mは、下記の(3)式で表される。添え字のiは、筋粒子iを識別する識別子、添え字のmは、前記頭頸部器官の筋種ごとに規定された識別子である。
αは、前記動的三次元頭頸部粒子モデルによる前記擬似経口摂取品の嚥下時に、前記頭頸部器官の筋種mにおける筋粒子iの前記収縮応力の時間的変化を示す活性化レベルである。
maxは、活性化レベルαが最大値のときの最大の能動的収縮応力、fは、現在時刻における筋線維長の基づく能動的収縮応力の補正係数、a i,mは、筋種mの筋粒子iに設定した初期時刻0の筋線維方向を示す。
Si , active indicating Active in a predetermined muscle particle i is represented by the following equation (2).
The swallowing simulation apparatus according to claim 6.
Si and m are represented by the following equation (3). The subscript i is an identifier that identifies the muscle particle i, and the subscript m is an identifier defined for each muscle type of the head and neck organ.
α m is an activation level indicating a temporal change in the contractile stress of the muscle particle i in the muscle type m of the head and neck organ when the pseudo-oral ingestion product is swallowed by the dynamic three-dimensional head and neck particle model. ..
f max is the maximum active contraction stress at the maximum activation levels alpha m value, f l is the correction coefficient of the active contraction stress based the muscle fiber length at the current time, a 0 i, m is the muscle The muscle fiber direction at the initial time 0 set for the muscle particle i of the species m is shown.
複数の粒子によって三次元画像でモデル化した複数の頭頸部器官を作製し、前記複数の頭頸部器官からなる動的三次元頭頸部粒子モデルを前記三次元画像により作製する頭頸部モデリングステップと、
前記動的三次元頭頸部粒子モデルにおける前記複数の頭頸部器官の運動を設定する器官運動設定ステップと、
経口摂取品を複数の粒子によって前記三次元画像でモデル化した擬似経口摂取品を、前記動的三次元頭頸部粒子モデルで嚥下させたときの前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動と、を粒子法に基づいて前記三次元画像で解析する運動解析ステップと、
前記運動解析ステップにより前記三次元画像で解析された、前記擬似経口摂取品の嚥下時の前記頭頸部器官の運動と、前記擬似経口摂取品の嚥下時の挙動との解析結果を、動画像で表示する表示ステップと、
を備え、
前記器官運動設定ステップは、
前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記擬似経口摂取品の嚥下時に前記頭頸部器官で強制的に移動する粒子を強制移動粒子とし、前記嚥下時における前記強制移動粒子の運動を設定する強制運動設定ステップと、
前記動的三次元頭頸部粒子モデルの前記複数の粒子のうち、前記頭頸部器官の収縮筋ごとに前記三次元画像内で筋線維方向が特定され、かつ前記筋線維方向に基づく収縮応力が与えられる粒子を筋粒子とし、前記嚥下時における前記筋粒子の運動を設定する筋収縮運動設定ステップと、
を備える、嚥下シミュレーション方法。

A head and neck modeling step in which a plurality of head and neck organs modeled by a three-dimensional image are prepared by a plurality of particles, and a dynamic three-dimensional head and neck particle model composed of the plurality of head and neck organs is prepared by the three-dimensional image.
An organ movement setting step for setting the movement of the plurality of head and neck organs in the dynamic three-dimensional head and neck particle model, and
The movement of the head and neck organs when the pseudo-oral ingested product modeled by the three-dimensional image with a plurality of particles is swallowed by the dynamic three-dimensional head and neck particle model, and the pseudo-oral ingested product. The motion analysis step of analyzing the behavior during swallowing with the three-dimensional image based on the particle method, and
The analysis result of the movement of the head and neck organ during swallowing of the pseudo-oral ingestion product and the behavior of the pseudo-oral ingestion product during swallowing, which was analyzed in the three-dimensional image by the motion analysis step, is obtained by moving images. Display steps to display and
With
The organ movement setting step
Among the plurality of particles of the dynamic three-dimensional head and neck particle model, particles that are forcibly moved by the head and neck organ when swallowing the pseudo-oral ingestion product are designated as forced moving particles, and the forced moving particles during swallowing are used. Forced exercise setting step to set the exercise of
Among the plurality of particles of the dynamic three-dimensional head and neck particle model, the muscle fiber direction is specified in the three-dimensional image for each contraction muscle of the head and neck organ, and the contraction stress based on the muscle fiber direction is applied. The muscle particles are used as muscle particles, and the muscle contraction movement setting step for setting the movement of the muscle particles during swallowing and
A swallowing simulation method.

JP2019157449A 2019-08-29 2019-08-29 Swallowing simulation device and swallowing simulation method Active JP7401225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157449A JP7401225B2 (en) 2019-08-29 2019-08-29 Swallowing simulation device and swallowing simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157449A JP7401225B2 (en) 2019-08-29 2019-08-29 Swallowing simulation device and swallowing simulation method

Publications (2)

Publication Number Publication Date
JP2021029980A true JP2021029980A (en) 2021-03-01
JP7401225B2 JP7401225B2 (en) 2023-12-19

Family

ID=74677103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157449A Active JP7401225B2 (en) 2019-08-29 2019-08-29 Swallowing simulation device and swallowing simulation method

Country Status (1)

Country Link
JP (1) JP7401225B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159916A (en) * 2001-11-27 2003-06-03 Yokohama Rubber Co Ltd:The Method for predicting tire characteristics, pneumatic tire and program
WO2013002374A1 (en) * 2011-06-30 2013-01-03 株式会社明治 Swallowing simulation device and method
JP2013202119A (en) * 2012-03-27 2013-10-07 Meiji Co Ltd Deglutition simulation apparatus and method
JP2014206931A (en) * 2013-04-15 2014-10-30 富士通株式会社 Display processing program, display processing method, and display processing device
US20160292902A1 (en) * 2015-04-03 2016-10-06 Disney Enterprises, Inc. Geometric multigrid on incomplete linear octrees for simulating deformable animated characters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159916A (en) * 2001-11-27 2003-06-03 Yokohama Rubber Co Ltd:The Method for predicting tire characteristics, pneumatic tire and program
WO2013002374A1 (en) * 2011-06-30 2013-01-03 株式会社明治 Swallowing simulation device and method
JP2013202119A (en) * 2012-03-27 2013-10-07 Meiji Co Ltd Deglutition simulation apparatus and method
JP2014206931A (en) * 2013-04-15 2014-10-30 富士通株式会社 Display processing program, display processing method, and display processing device
US20160292902A1 (en) * 2015-04-03 2016-10-06 Disney Enterprises, Inc. Geometric multigrid on incomplete linear octrees for simulating deformable animated characters

Also Published As

Publication number Publication date
JP7401225B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP6022789B2 (en) Swallowing simulation apparatus and method
JP2021112557A (en) Swallowing simulation apparatus and swallowing simulation method
Nazari et al. Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation
US20120278711A1 (en) Haptic response system and method of use
Kalra Developing fe human models from medical images
Kikuchi et al. Numerical simulation of interaction between organs and food bolus during swallowing and aspiration
JP6060076B2 (en) Swallowing simulation apparatus and method
Kikuchi et al. Human swallowing simulation based on videofluorography images using Hamiltonian MPS method
US20220222823A1 (en) Prediction and intervention of obstructive sleep apnoea
Michiwaki et al. Realistic computer simulation of bolus flow during swallowing
JP5946829B2 (en) Food development support device, food development method, food manufacturing method, food education support device, and food education method
JP7401225B2 (en) Swallowing simulation device and swallowing simulation method
Mundt et al. Synthesising 2D video from 3D motion data for machine learning applications
Farazi et al. A 3D dynamic biomechanical swallowing model for training and diagnosis of dysphagia
JP2024077550A (en) Simulation device and simulation method
JP7082000B2 (en) Oral ingestion product development support method and oral ingestion product development support system
Kuruppumullage Biomechanical models of human upper and tracheal airway functionality
Ilegbusi et al. Dynamics of cough and particulate behaviour in the human airway
Farazi 3D biomechanical oropharyngeal model for training and diagnosis of dysphagia
Ilegbusi et al. A computational model of upper airway respiratory function with muscular coupling
Tokuyasu et al. Development of virtual palpation system for dental education
Reddy et al. Development of an Automated System for Identification of Skeletal Maturity using Convolutional Neural Networks Approach
Qin et al. Three-Dimensional Model Construction of Swallowing
Ho A Novel SPH Method for Investigating the Role of Saliva in Swallowing using 4D CT images
Preciado-Méndez et al. Numerical Analysis of Peristaltic Flow Through the Pharyngeal Duct

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7401225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150