JP2021025843A - Ground fault detection system and ground fault detection device - Google Patents

Ground fault detection system and ground fault detection device Download PDF

Info

Publication number
JP2021025843A
JP2021025843A JP2019142735A JP2019142735A JP2021025843A JP 2021025843 A JP2021025843 A JP 2021025843A JP 2019142735 A JP2019142735 A JP 2019142735A JP 2019142735 A JP2019142735 A JP 2019142735A JP 2021025843 A JP2021025843 A JP 2021025843A
Authority
JP
Japan
Prior art keywords
ground fault
fault detection
switches
detection unit
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019142735A
Other languages
Japanese (ja)
Inventor
誠 松本
Makoto Matsumoto
誠 松本
卓夫 伊丹
Takuo Itami
卓夫 伊丹
昌裕 脇
Masahiro Waki
昌裕 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2019142735A priority Critical patent/JP2021025843A/en
Publication of JP2021025843A publication Critical patent/JP2021025843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

To provide a ground fault detection device with which it is possible to specify a point of DC ground fault in a short time.SOLUTION: A ground fault detection device (20) comprises an AC-DC converter ground fault detection unit (23), a collector box ground fault detection unit (24), a connection box ground fault detection unit (25) an a ground fault point specification unit (26). The AC-DC converter ground fault detection unit (23) turns only one of a plurality of primary circuit breakers off in order and determines the presence of a ground fault. The collector box ground fault detection unit (24) turns only one of a plurality of secondary circuit breakers of a collector box off in order that are connected to the primary circuit breaker which was in an off state when determined to be free of ground fault and determines the presence of a ground fault. The connection box ground fault detection unit (25) turns only one of a plurality of tertiary circuit breakers of a connection box off in order that are connected to the secondary circuit breaker that was in an off state when determined to be free of ground fault and determines the presence of a ground fault. The ground fault point specification unit (26) outputs a ground fault point specification signal that indicates the tertiary circuit breaker that was in an off state when determined to be free of ground fault.SELECTED DRAWING: Figure 3

Description

この発明は、地絡検出システムおよび地絡検出装置に関する。特に、地絡箇所を特定するのに好適な地絡検出システムおよび地絡検出装置に関する。 The present invention relates to a ground fault detection system and a ground fault detection device. In particular, the present invention relates to a ground fault detection system and a ground fault detection device suitable for identifying a ground fault location.

太陽光発電所は、並列に接続された多数の太陽電池と、パワーコンディショナ(Power Conditioning System(PCS))とを備える。パワーコンディショナは、太陽電池で発電された直流電力を交流電力に変換する交直変換装置である。太陽光発電所では、雨や雪、朝露などの湿気により、太陽電池とパワーコンディショナとの間で絶縁不良が生じた場合、直流地絡(以下、単に地絡と記す。)を検出するケースがある。 A photovoltaic power plant includes a large number of solar cells connected in parallel and a power conditioner (Power Conditioning System (PCS)). A power conditioner is an AC / DC converter that converts DC power generated by a solar cell into AC power. In a photovoltaic power plant, when a poor insulation occurs between a solar cell and a power conditioner due to humidity such as rain, snow, or morning dew, a DC ground fault (hereinafter, simply referred to as a ground fault) is detected. There is.

例えば、特許文献1は、地絡検出装置を開示する。当該地絡検出装置によれば、太陽光発電システムの直流地絡状態を検出することができる。 For example, Patent Document 1 discloses a ground fault detection device. According to the ground fault detection device, it is possible to detect the DC ground fault state of the photovoltaic power generation system.

特開平9−285015号公報Japanese Unexamined Patent Publication No. 9-285015

しかしながら、特許文献1の地絡検出装置では、並列に接続された多数の太陽電池のいずれの箇所において地絡が検出されたのかを特定できない。そのため、地絡箇所を特定するには、太陽電池とパワーコンディショナとの間の電源回路を人手により1回路ずつ時間を掛けて調査しなければならなかった。また、気温上昇などの環境変化により短時間で地絡が復帰してしまう場合は、地絡箇所の特定が困難であった。 However, the ground fault detecting device of Patent Document 1 cannot specify at which position of a large number of solar cells connected in parallel the ground fault is detected. Therefore, in order to identify the location of the ground fault, it was necessary to manually investigate the power supply circuit between the solar cell and the power conditioner, one circuit at a time. In addition, when the ground fault recovers in a short time due to environmental changes such as temperature rise, it is difficult to identify the ground fault location.

この発明は、上述の課題を解決するためになされた。この発明の目的は、直流地絡の箇所を短時間で特定することができる地絡検出システムおよび地絡検出装置を提供することである。 The present invention has been made to solve the above-mentioned problems. An object of the present invention is to provide a ground fault detection system and a ground fault detection device capable of identifying the location of a DC ground fault in a short time.

この発明に係る地絡検出システムは、
並列に接続する複数の1次開閉器を有し、直流電力を交流電力に変換する交直変換装置と、
前記複数の1次開閉器にそれぞれ接続し、並列に接続する複数の2次開閉器を各々有する複数の集電箱と、
前記複数の2次開閉器にそれぞれ接続し、並列に接続する複数の3次開閉器を各々有する複数の接続箱と、
前記複数の3次開閉器にそれぞれ接続する複数の太陽電池と、
前記交直変換装置と前記複数の集電箱と前記複数の接続箱とに接続する地絡検出装置と、を備え、
前記地絡検出装置は、
前記複数の1次開閉器が並列に接続する並列接続点についての対地電圧が閾値電圧以下である場合に地絡ありと判定し、前記対地電圧が前記閾値電圧より高い場合に地絡なしと判定する地絡判定部と、
前記複数の1次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の1次開閉器をオン状態に戻す交直変換装置地絡検出部と、
前記交直変換装置地絡検出部において地絡なしと判定された際にオフ状態の前記1次開閉器に接続する前記集電箱の前記複数の2次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の2次開閉器をオン状態に戻す集電箱地絡検出部と、
前記集電箱地絡検出部において地絡なしと判定された際にオフ状態の前記2次開閉器に接続する前記接続箱の前記複数の3次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定する接続箱地絡検出部と、
前記接続箱地絡検出部において地絡なしと判定された際にオフ状態の前記3次開閉器を示す地絡箇所特定信号を出力する地絡箇所特定部と、を備えることを特徴とする。
The ground fault detection system according to the present invention is
An AC / DC converter that has multiple primary switches connected in parallel and converts DC power into AC power.
A plurality of current collector boxes each having a plurality of secondary switches connected to the plurality of primary switches and connected in parallel, and a plurality of current collector boxes.
A plurality of junction boxes each having a plurality of tertiary switches connected to the plurality of secondary switches and connected in parallel, and a plurality of junction boxes.
A plurality of solar cells connected to each of the plurality of tertiary switches and
The AC / DC conversion device, the plurality of current collector boxes, and a ground fault detection device connected to the plurality of junction boxes are provided.
The ground fault detection device is
When the ground voltage at the parallel connection point where the plurality of primary switches are connected in parallel is equal to or less than the threshold voltage, it is determined that there is a ground fault, and when the ground voltage is higher than the threshold voltage, it is determined that there is no ground fault. Ground fault judgment unit and
The AC / DC converter ground fault detection unit that turns off only one of the plurality of primary switches in order, determines the presence or absence of a ground fault by the ground fault determination unit, and returns the plurality of primary switches to the on state. When,
When the AC / DC converter ground fault detection unit determines that there is no ground fault, only one of the plurality of secondary switches of the current collector box connected to the primary switch in the off state is turned off in order. , The current collector box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit and returns the plurality of secondary switches to the ON state.
When the current collector box ground fault detection unit determines that there is no ground fault, only one of the plurality of tertiary switches of the junction box connected to the secondary switch in the off state is turned off in order. A junction box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit,
It is characterized by including a ground fault location identification unit that outputs a ground fault location identification signal indicating the tertiary switch in an off state when the junction box ground fault detection unit determines that there is no ground fault.

また、この発明に係る地絡検出装置は、
並列に接続する複数の1次開閉器を有し、直流電力を交流電力に変換する交直変換装置と、
前記複数の1次開閉器にそれぞれ接続し、並列に接続する複数の2次開閉器を各々有する複数の集電箱と、
前記複数の2次開閉器にそれぞれ接続し、並列に接続する複数の3次開閉器を各々有し、該複数の3次開閉器が複数の太陽電池にそれぞれ接続する複数の接続箱と、に接続する地絡検出装置であって、
前記複数の1次開閉器が並列に接続する並列接続点についての対地電圧が閾値電圧以下である場合に地絡ありと判定し、前記対地電圧が前記閾値電圧より高い場合に地絡なしと判定する地絡判定部と、
前記複数の1次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の1次開閉器をオン状態に戻す交直変換装置地絡検出部と、
前記交直変換装置地絡検出部において地絡なしと判定された際にオフ状態の前記1次開閉器に接続する前記集電箱の前記複数の2次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の2次開閉器をオン状態に戻す集電箱地絡検出部と、
前記集電箱地絡検出部において地絡なしと判定された際にオフ状態の前記2次開閉器に接続する前記接続箱の前記複数の3次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定する接続箱地絡検出部と、
前記接続箱地絡検出部において地絡なしと判定された際にオフ状態の前記3次開閉器を示す地絡箇所特定信号を出力する地絡箇所特定部と、を備えることを特徴とする。
Further, the ground fault detection device according to the present invention is
An AC / DC converter that has multiple primary switches connected in parallel and converts DC power into AC power.
A plurality of current collector boxes each having a plurality of secondary switches connected to the plurality of primary switches and connected in parallel, and a plurality of current collector boxes.
A plurality of junction boxes each having a plurality of tertiary switches connected to the plurality of secondary switches and connected in parallel, and the plurality of tertiary switches being connected to a plurality of solar cells, respectively. A ground fault detector to be connected
When the ground voltage at the parallel connection point where the plurality of primary switches are connected in parallel is equal to or less than the threshold voltage, it is determined that there is a ground fault, and when the ground voltage is higher than the threshold voltage, it is determined that there is no ground fault. Ground fault judgment unit and
The AC / DC converter ground fault detection unit that turns off only one of the plurality of primary switches in order, determines the presence or absence of a ground fault by the ground fault determination unit, and returns the plurality of primary switches to the on state. When,
When the AC / DC converter ground fault detection unit determines that there is no ground fault, only one of the plurality of secondary switches of the current collector box connected to the primary switch in the off state is turned off in order. , The current collector box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit and returns the plurality of secondary switches to the ON state.
When the current collector box ground fault detection unit determines that there is no ground fault, only one of the plurality of tertiary switches of the junction box connected to the secondary switch in the off state is turned off in order. A junction box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit,
It is characterized by including a ground fault location identification unit that outputs a ground fault location identification signal indicating the tertiary switch in an off state when the junction box ground fault detection unit determines that there is no ground fault.

これらの発明によれば、並列に接続された多数の太陽電池のいずれの箇所において直流地絡が検出されたのかを短時間で特定できる。また、直流地絡が生じた箇所を切り離すことにより大きなトラブルの発生を事前に回避し、安全を確保することも可能である。また、人的作業と比較して、直流地絡箇所を特定するまでの時間のみならず作業コストを低減できる。 According to these inventions, it is possible to identify in a short time at which part of a large number of solar cells connected in parallel a DC ground fault is detected. It is also possible to avoid the occurrence of major troubles in advance and ensure safety by disconnecting the location where the DC ground fault has occurred. Further, as compared with human work, not only the time required to identify the DC ground fault location but also the work cost can be reduced.

この発明の実施の形態1における地絡検出システムの全体構成を説明するための図である。It is a figure for demonstrating the whole structure of the ground fault detection system in Embodiment 1 of this invention. この発明の実施の形態1における地絡検出システムの回路構成を説明するための図である。It is a figure for demonstrating the circuit structure of the ground fault detection system in Embodiment 1 of this invention. この発明の実施の形態1における地絡検出装置のブロック図である。It is a block diagram of the ground fault detection device in Embodiment 1 of this invention. この発明の実施の形態1における地絡箇所特定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the ground fault location identification processing in Embodiment 1 of this invention. この発明の実施の形態1における地絡箇所特定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the ground fault location identification processing in Embodiment 1 of this invention. この発明の実施の形態1における地絡箇所特定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the ground fault location identification processing in Embodiment 1 of this invention.

この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 A mode for carrying out the present invention will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are designated by the same reference numerals. The duplicate description of the relevant part will be simplified or omitted as appropriate.

実施の形態1.
(システム構成)
図1は、この発明の実施の形態1における地絡検出システムの全体構成を説明するための図である。図2は、この発明の実施の形態1における地絡検出システムの回路構成を説明するための図である。地絡検出システムは、図1に示すように太陽電池と接続箱との間の1箇所に発生した直流地絡を特定するものである。
Embodiment 1.
(System configuration)
FIG. 1 is a diagram for explaining the overall configuration of the ground fault detection system according to the first embodiment of the present invention. FIG. 2 is a diagram for explaining the circuit configuration of the ground fault detection system according to the first embodiment of the present invention. As shown in FIG. 1, the ground fault detection system identifies a DC ground fault that has occurred at one location between the solar cell and the junction box.

地絡検出システム1は、パワーコンディショナ10、複数の集電箱、複数の接続箱、複数の太陽電池、地絡検出装置20を備える。図1および図2の例では、地絡検出システム1は、3つの集電箱(11,12,13)を備える。地絡検出システム1は、9つの接続箱(111,112,113,121,122,123,131,132,133)を備える。 The ground fault detection system 1 includes a power conditioner 10, a plurality of current collector boxes, a plurality of junction boxes, a plurality of solar cells, and a ground fault detection device 20. In the examples of FIGS. 1 and 2, the ground fault detection system 1 includes three current collector boxes (11, 12, 13). The ground fault detection system 1 includes nine junction boxes (111, 112, 113, 121, 122, 123, 131, 132, 133).

パワーコンディショナ10は、太陽電池により発電された直流電力を交流電力に変換する交直変換装置である。パワーコンディショナ10は、インバータ10eおよび複数の1次開閉器(10a,10b,10c)を有する。複数の1次開閉器(10a,10b,10c)は並列に接続している。各1次開閉器は、地絡検出装置20からの開信号を受信してオン状態となり、閉信号を受信してオフ状態となる。 The power conditioner 10 is an AC / DC conversion device that converts DC power generated by a solar cell into AC power. The power conditioner 10 includes an inverter 10e and a plurality of primary switches (10a, 10b, 10c). A plurality of primary switches (10a, 10b, 10c) are connected in parallel. Each primary switch receives an open signal from the ground fault detection device 20 and turns on, and receives a close signal and turns off.

具体的には、1次開閉器10aの一端は集電箱11に接続する。1次開閉器10bの一端は集電箱12に接続する。1次開閉器10cの一端は集電箱13に接続する。3つの1次開閉器(10a,10b,10c)の他端は並列に結線されて、インバータ10eの直流側に接続している。 Specifically, one end of the primary switch 10a is connected to the current collector box 11. One end of the primary switch 10b is connected to the current collector box 12. One end of the primary switch 10c is connected to the current collector box 13. The other ends of the three primary switches (10a, 10b, 10c) are connected in parallel and connected to the DC side of the inverter 10e.

複数の集電箱(11,12,13)は、複数の1次開閉器(10a、10b、10c)にそれぞれ接続する。複数の集電箱(11、12、13)は、複数の2次開閉器を各々有する。複数の2次開閉器は並列に接続している。各2次開閉器は、地絡検出装置20からの開信号を受信してオン状態となり、閉信号を受信してオフ状態となる。 The plurality of current collector boxes (11, 12, 13) are connected to the plurality of primary switches (10a, 10b, 10c), respectively. Each of the plurality of current collector boxes (11, 12, 13) has a plurality of secondary switches. A plurality of secondary switches are connected in parallel. Each secondary switch receives an open signal from the ground fault detection device 20 and turns on, and receives a close signal and turns off.

図1に示す例では、各集電箱(11,12,13)は、3つの2次開閉器を有する。集電箱11は、3つの2次開閉器(11a,11b,11c)を有する。集電箱12は、3つの2次開閉器(12a,12b,12c)を有する。集電箱13は、3つの2次開閉器(13a,13b,13c)を有する。 In the example shown in FIG. 1, each current collector box (11, 12, 13) has three secondary switches. The current collector box 11 has three secondary switches (11a, 11b, 11c). The current collector box 12 has three secondary switches (12a, 12b, 12c). The current collector box 13 has three secondary switches (13a, 13b, 13c).

一例として、集電箱11の構成について具体的に説明する。2次開閉器11aの一端は、接続箱111に接続する。2次開閉器11bの一端は、接続箱112に接続する。2次開閉器11cの一端は、接続箱113に接続する。3つの2次開閉器(11a,11b,11c)の他端は並列に結線されて、1次開閉器10aに接続している。なお、集電箱12および集電箱13の構成は、図2に示すように集電箱11の構成と同様であるため説明を省略する。 As an example, the configuration of the current collector box 11 will be specifically described. One end of the secondary switch 11a is connected to the junction box 111. One end of the secondary switch 11b is connected to the junction box 112. One end of the secondary switch 11c is connected to the junction box 113. The other ends of the three secondary switches (11a, 11b, 11c) are connected in parallel and connected to the primary switch 10a. Since the configurations of the current collector box 12 and the current collector box 13 are the same as the configurations of the current collector box 11 as shown in FIG. 2, the description thereof will be omitted.

複数の接続箱(111,112,113,121,122,123,131,132,133)は、複数の2次開閉器(11a,11b,11c,12a,12b,12c,13a,13b,13c)にそれぞれ接続する。複数の接続箱(111,112,113,121,122,123,131,132,133)は、複数の3次開閉器を各々有する。複数の3次開閉器は並列に接続している。図1に示す例では、各接続箱(111,112,113,121,122,123,131,132,133)は3つの3次開閉器を有する。各3次開閉器は、地絡検出装置20からの開信号を受信してオン状態となり、閉信号を受信してオフ状態となる。 The plurality of junction boxes (111, 112, 113, 121, 122, 123, 131, 132, 133) have a plurality of secondary switches (11a, 11b, 11c, 12a, 12b, 12c, 13a, 13b, 13c). Connect to each. The plurality of junction boxes (111, 112, 113, 121, 122, 123, 131, 132, 133) each have a plurality of tertiary switches. A plurality of tertiary switches are connected in parallel. In the example shown in FIG. 1, each junction box (111, 112, 113, 121, 122, 123, 131, 132, 133) has three tertiary switches. Each tertiary switch receives an open signal from the ground fault detection device 20 and turns on, and receives a close signal and turns off.

一例として、接続箱111の構成について具体的に説明する。接続箱111は、3つの3次開閉器(111a,111b,111c)を有する。3次開閉器111aの一端は、太陽電池111dに接続する。3次開閉器111bの一端は、太陽電池111eに接続する。3次開閉器111cの一端は、太陽電池111fに接続する。3つの3次開閉器(111a,111b,111c)の他端は並列に結線されて、2次開閉器11aに接続している。なお、接続箱(112,113,121,122,123,131,132,133)の構成は、図2に示すように接続箱111と同様であるため説明を省略する。 As an example, the configuration of the junction box 111 will be specifically described. The junction box 111 has three tertiary switches (111a, 111b, 111c). One end of the tertiary switch 111a is connected to the solar cell 111d. One end of the tertiary switch 111b is connected to the solar cell 111e. One end of the tertiary switch 111c is connected to the solar cell 111f. The other ends of the three tertiary switches (111a, 111b, 111c) are connected in parallel and connected to the secondary switch 11a. Since the configuration of the junction box (112, 113, 121, 122, 123, 131, 132, 133) is the same as that of the junction box 111 as shown in FIG. 2, the description thereof will be omitted.

複数の太陽電池(111d,111e,111f,・・・,133d,133e,133f)は、複数の3次開閉器(111a,111b,111c,・・・,133a,133b,133c)にそれぞれ接続する。本明細書において太陽電池とは、複数の太陽電池モジュールを直列で配線したストリングスである。 A plurality of solar cells (111d, 111e, 111f, ..., 133d, 133e, 133f) are connected to a plurality of tertiary switches (111a, 111b, 111c, ..., 133a, 133b, 133c), respectively. .. In the present specification, the solar cell is a string in which a plurality of solar cell modules are wired in series.

(地絡検出装置)
次に、図1および図3を用いて、地絡検出装置20の機能について説明する。図3は、この発明の実施の形態1における地絡検出装置20のブロック図である。また、図1には直流地絡の一例として、太陽電池121eと接続箱121の3次開閉器121bとの間において直流地絡が発生した異常回路が描かれている。
(Ground fault detector)
Next, the function of the ground fault detection device 20 will be described with reference to FIGS. 1 and 3. FIG. 3 is a block diagram of the ground fault detection device 20 according to the first embodiment of the present invention. Further, in FIG. 1, as an example of a DC ground fault, an abnormal circuit in which a DC ground fault has occurred between the solar cell 121e and the tertiary switch 121b of the junction box 121 is drawn.

地絡検出装置20は、パワーコンディショナ10と複数の集電箱(11,12,13)と複数の接続箱(112,113,121,122,123,131,132,133)とに接続する。また、地絡検出装置20は、各開閉器に個別に開信号または閉信号を送信できる。 The ground fault detection device 20 is connected to the power conditioner 10, a plurality of current collector boxes (11, 12, 13), and a plurality of junction boxes (112, 113, 121, 122, 123, 131, 132, 133). .. In addition, the ground fault detection device 20 can individually transmit an open signal or a close signal to each switch.

地絡検出装置20は、対地電圧測定部21、地絡判定部22、交直変換装置地絡検出部23、集電箱地絡検出部24、接続箱地絡検出部25、地絡箇所特定部26、地絡箇所切離部27を備える。 The ground fault detection device 20 includes a ground voltage measurement unit 21, a ground fault determination unit 22, an AC / DC conversion device ground fault detection unit 23, a current collector box ground fault detection unit 24, a connection box ground fault detection unit 25, and a ground fault location identification unit. 26, a ground fault location cutting portion 27 is provided.

対地電圧測定部21は、複数の1次開閉器(10a,10b,10c)が並列に接続する並列接続点10dと基準電位点(接地点または接地側電線)との間の対地電圧を測定する。 The ground voltage measuring unit 21 measures the ground voltage between the parallel connection point 10d in which a plurality of primary switches (10a, 10b, 10c) are connected in parallel and the reference potential point (grounding point or grounding side electric wire). ..

地絡判定部22は、並列接続点10dについての対地電圧が閾値電圧以下である場合に地絡ありと判定する。また、地絡判定部22は、並列接続点10dについての対地電圧が閾値電圧より高い場合に地絡なしと判定する。なお、すべての太陽電池は並列に接続されているため、太陽電池の増減に依らず、閾値電圧は固定値としてよい。 The ground fault determination unit 22 determines that there is a ground fault when the ground voltage with respect to the parallel connection point 10d is equal to or less than the threshold voltage. Further, the ground fault determination unit 22 determines that there is no ground fault when the ground voltage at the parallel connection point 10d is higher than the threshold voltage. Since all the solar cells are connected in parallel, the threshold voltage may be a fixed value regardless of the increase or decrease of the solar cells.

交直変換装置地絡検出部23は、複数の1次開閉器(10a,10b,10c)を順に1つのみオフ状態にして、地絡判定部22により地絡の有無を判定する。その後、交直変換装置地絡検出部23は、複数の1次開閉器(10a、10b、10c)をオン状態に戻す。 The AC / DC converter ground fault detection unit 23 turns off only one of the plurality of primary switches (10a, 10b, 10c) in order, and the ground fault determination unit 22 determines the presence or absence of a ground fault. After that, the AC / DC converter ground fault detection unit 23 returns the plurality of primary switches (10a, 10b, 10c) to the ON state.

集電箱地絡検出部24は、交直変換装置地絡検出部23において地絡なしと判定された際にオフ状態の1次開閉器(図1の例では10b)に接続する集電箱(図1の例では12)の複数の2次開閉器(図1の例では12a,12b,12c)を順に1つのみオフ状態にして、地絡判定部22により地絡の有無を判定する。その後、集電箱地絡検出部24は、複数の2次開閉器(図1の例では12a,12b,12c)をオン状態に戻す。 The current collector box ground fault detection unit 24 is connected to the current collector box (10b in the example of FIG. 1) in the off state when the AC / DC converter ground fault detection unit 23 determines that there is no ground fault. In the example of FIG. 1, only one of the plurality of secondary switches (12a, 12b, 12c in the example of FIG. 1) of 12) is turned off in order, and the ground fault determination unit 22 determines the presence or absence of a ground fault. After that, the current collector box ground fault detection unit 24 returns the plurality of secondary switches (12a, 12b, 12c in the example of FIG. 1) to the ON state.

接続箱地絡検出部25は、集電箱地絡検出部24において地絡なしと判定された際にオフ状態の2次開閉器(図1の例では12a)に接続する接続箱(図1の例では121)の複数の3次開閉器(図1の例では121a,121b,121c)を順に1つのみオフ状態にして、地絡判定部22により地絡の有無を判定する。その後、接続箱地絡検出部25は、複数の3次開閉器(図1の例では121a,121b,121c)をオン状態に戻す。 The junction box ground fault detection unit 25 is connected to the secondary switch (12a in the example of FIG. 1) in the off state when the current collector box ground fault detection unit 24 determines that there is no ground fault (FIG. 1). In the example of 121), only one of the plurality of tertiary switches (121a, 121b, 121c in the example of FIG. 1) is turned off in order, and the ground fault determination unit 22 determines the presence or absence of a ground fault. After that, the junction box ground fault detection unit 25 returns the plurality of tertiary switches (121a, 121b, 121c in the example of FIG. 1) to the ON state.

地絡箇所特定部26は、接続箱地絡検出部25において地絡なしと判定された際にオフ状態の3次開閉器(図1の例では121b)を示す地絡箇所特定信号を出力する。 The ground fault location identification unit 26 outputs a ground fault location identification signal indicating a tertiary switch (121b in the example of FIG. 1) in the off state when the junction box ground fault detection unit 25 determines that there is no ground fault. ..

地絡箇所切離部27は、地絡箇所特定信号に応じた3次開閉器(図1の例では121b)をオフ状態にする開信号を出力する。開信号を受信した3次開閉器はオフ状態となる。 The ground fault location separation portion 27 outputs an open signal that turns off the tertiary switch (121b in the example of FIG. 1) in response to the ground fault location identification signal. The tertiary switch that receives the open signal is turned off.

(地絡箇所特定処理の流れ)
次に、図4から図6までを参照して、地絡検出装置20が実行する地絡箇所特定処理のルーチンについて説明する。本ルーチンは、地絡検出装置20が作業員に操作されること、または、地絡検出装置20が外部から地絡箇所特定指令を受信することにより実行される。また、地絡箇所特定処理の具体例として、図1に示す太陽電池121eと接続箱121の3次開閉器121bとの間で地絡が発生したケースについて併せて説明する。
(Flow of ground fault location identification process)
Next, with reference to FIGS. 4 to 6, a routine for ground fault location identification processing executed by the ground fault detection device 20 will be described. This routine is executed when the ground fault detection device 20 is operated by an operator or when the ground fault detection device 20 receives a ground fault location identification command from the outside. Further, as a specific example of the ground fault location identification process, a case where a ground fault occurs between the solar cell 121e shown in FIG. 1 and the tertiary switch 121b of the junction box 121 will be described together.

まず、ステップS100において、地絡検出装置20は、すべての開閉器をオン状態にする。 First, in step S100, the ground fault detection device 20 turns on all the switches.

ステップS101において、対地電圧測定部21は、すべての開閉器をオンにした状態において対地電圧を測定する。 In step S101, the ground voltage measuring unit 21 measures the ground voltage with all switches turned on.

ステップS102において、地絡判定部22は、対地電圧が閾値電圧以下である場合に地絡ありと判定し、対地電圧が閾値電圧より高い場合に地絡なしと判定する。地絡ありと判定された場合、地絡箇所を特定するために地絡検出装置20はステップS103以降の処理を実行する。一方、地絡なしと判定された場合、いずれの太陽電池とパワーコンディショナ10との間にも地絡は発生していないので、地絡検出装置20は本ルーチンを終了する。 In step S102, the ground fault determination unit 22 determines that there is a ground fault when the ground voltage is equal to or less than the threshold voltage, and determines that there is no ground fault when the ground voltage is higher than the threshold voltage. When it is determined that there is a ground fault, the ground fault detection device 20 executes the processes after step S103 in order to identify the ground fault location. On the other hand, when it is determined that there is no ground fault, no ground fault has occurred between any of the solar cells and the power conditioner 10, so the ground fault detection device 20 ends this routine.

ステップS103において、交直変換装置地絡検出部23は、変数iに1を代入する。 In step S103, the AC / DC converter ground fault detection unit 23 substitutes 1 for the variable i.

ステップS104において、交直変換装置地絡検出部23は、i番目の1次開閉器のみオフ状態にする。例えばi=1の場合、交直変換装置地絡検出部23は、1番目の1次開閉器である10aをオフ状態、10bと10cをオン状態とする。 In step S104, the AC / DC converter ground fault detection unit 23 turns off only the i-th primary switch. For example, when i = 1, the AC / DC converter ground fault detection unit 23 turns 10a, which is the first primary switch, off, and 10b and 10c on.

ステップS105において、対地電圧測定部21は対地電圧を測定する。 In step S105, the ground voltage measuring unit 21 measures the ground voltage.

ステップS106において、交直変換装置地絡検出部23は、地絡判定部22により地絡の有無を検出する。地絡判定部22は、対地電圧が閾値電圧以下である場合に地絡ありと判定し、対地電圧が閾値電圧より高い場合に地絡なしと判定する。地絡ありと判定された場合、オフ状態としたi番目の1次開閉器とこれに接続する太陽電池との間は正常回路である。この場合、他の1次開閉器に接続する回路に異常が発生していることが疑われる。そのため、交直変換装置地絡検出部23は、他の1次開閉器のいずれが異常回路に接続しているか特定するために、ステップS107以降の処理を実行する。一方、地絡なしと判定された場合、オフ状態としたi番目の1次開閉器とこれに接続する太陽電池との間に異常が発生している。この場合、交直変換装置地絡検出部23は、ステップS109の処理を実行する。 In step S106, the AC / DC conversion device ground fault detection unit 23 detects the presence or absence of a ground fault by the ground fault determination unit 22. The ground fault determination unit 22 determines that there is a ground fault when the ground voltage is equal to or less than the threshold voltage, and determines that there is no ground fault when the ground voltage is higher than the threshold voltage. When it is determined that there is a ground fault, there is a normal circuit between the i-th primary switch turned off and the solar cell connected to the primary switch. In this case, it is suspected that an abnormality has occurred in the circuit connected to the other primary switch. Therefore, the AC / DC converter ground fault detection unit 23 executes the processes after step S107 in order to identify which of the other primary switches is connected to the abnormal circuit. On the other hand, when it is determined that there is no ground fault, an abnormality has occurred between the i-th primary switch turned off and the solar cell connected to the primary switch. In this case, the AC / DC converter ground fault detection unit 23 executes the process of step S109.

ステップS107において、交直変換装置地絡検出部23は、i番目の1次開閉器をオン状態とする。これにより、すべての1次開閉器がオン状態となる。 In step S107, the AC / DC converter ground fault detection unit 23 turns on the i-th primary switch. As a result, all the primary switches are turned on.

次にステップS108において、交直変換装置地絡検出部23は、変数iに1をインクリメントする。これによって続くステップS104以降の処理において、インクリメントされた変数iを用いて処理を進めることができる。具体的には、ステップS108の処理によりi=2となった場合、続くステップS104〜ステップS106において、2番目の1次開閉器10bのみをオフ状態として、地絡の有無を判定できる。 Next, in step S108, the AC / DC converter ground fault detection unit 23 increments the variable i by 1. As a result, in the subsequent processing in step S104 and subsequent steps, the processing can proceed using the incremented variable i. Specifically, when i = 2 by the process of step S108, the presence or absence of a ground fault can be determined by turning off only the second primary switch 10b in the following steps S104 to S106.

図1の例では、i=2のとき、すなわち2番目の1次開閉器10bのみオフ状態としたときに、ステップS106において地絡なしと判定される。これにより1次開閉器10bとこれに接続する太陽電池(121d,121e,121f,・・・,123d,123e,123f)との間で地絡が発生していることが検出される。 In the example of FIG. 1, when i = 2, that is, when only the second primary switch 10b is turned off, it is determined in step S106 that there is no ground fault. As a result, it is detected that a ground fault has occurred between the primary switch 10b and the solar cells (121d, 121e, 121f, ..., 123d, 123e, 123f) connected to the primary switch 10b.

ステップS106において地絡なしと判定された場合、次にステップS109において、i番目の1次開閉器(図1の例では10b)をオン状態とする。これにより、すべての1次開閉器がオン状態となる。地絡箇所をさらに絞り込むため図5のステップS110以降の処理に進む。 If it is determined in step S106 that there is no ground fault, then in step S109, the i-th primary switch (10b in the example of FIG. 1) is turned on. As a result, all the primary switches are turned on. In order to further narrow down the ground fault location, the process proceeds to the process after step S110 in FIG.

図5を参照して、集電箱地絡検出部24による地絡箇所の絞り込みについて説明する。 With reference to FIG. 5, the narrowing down of the ground fault location by the current collector box ground fault detection unit 24 will be described.

ステップS110において、集電箱地絡検出部24は、変数jに1を代入する。 In step S110, the current collector box ground fault detection unit 24 substitutes 1 for the variable j.

ステップS111において、集電箱地絡検出部24は、交直変換装置地絡検出部23において地絡なしと判定された際にオフ状態の1次開閉器(図1の例では10b)に接続する集電箱(図1の例では12)のj番目の2次開閉器のみオフ状態にする。例えばj=1の場合、集電箱地絡検出部24は、集電箱12の1番目の2次開閉器である12aをオフ状態、12bと12cをオン状態とする。 In step S111, the current collector box ground fault detection unit 24 is connected to the primary switch (10b in the example of FIG. 1) in the off state when the AC / DC converter ground fault detection unit 23 determines that there is no ground fault. Only the j-th secondary switch of the current collector box (12 in the example of FIG. 1) is turned off. For example, when j = 1, the current collector box ground fault detection unit 24 turns 12a, which is the first secondary switch of the current collector box 12, in the off state, and 12b and 12c in the on state.

ステップS112において、対地電圧測定部21は対地電圧を測定する。 In step S112, the ground voltage measuring unit 21 measures the ground voltage.

ステップS113において、集電箱地絡検出部24は、地絡判定部22により地絡の有無を検出する。地絡判定部22は、対地電圧が閾値電圧以下である場合に地絡ありと判定し、対地電圧が閾値電圧より高い場合に地絡なしと判定する。地絡ありと判定された場合、オフ状態としたj番目の2次開閉器とこれに接続する太陽電池との間は正常回路である。この場合、他の2次開閉器に接続する回路に異常が発生していることが疑われる。そのため、集電箱地絡検出部24は、他の2次開閉器のいずれが異常回路に接続しているか特定するために、ステップS114以降の処理を実行する。一方、地絡なしと判定された場合、オフ状態としたj番目の2次開閉器とこれに接続する太陽電池との間に異常が発生している。この場合、集電箱地絡検出部24は、ステップS116の処理を実行する。 In step S113, the current collector box ground fault detection unit 24 detects the presence or absence of a ground fault by the ground fault determination unit 22. The ground fault determination unit 22 determines that there is a ground fault when the ground voltage is equal to or less than the threshold voltage, and determines that there is no ground fault when the ground voltage is higher than the threshold voltage. When it is determined that there is a ground fault, there is a normal circuit between the j-th secondary switch turned off and the solar cell connected to the secondary switch. In this case, it is suspected that an abnormality has occurred in the circuit connected to the other secondary switch. Therefore, the current collector box ground fault detection unit 24 executes the processes after step S114 in order to identify which of the other secondary switches is connected to the abnormal circuit. On the other hand, when it is determined that there is no ground fault, an abnormality has occurred between the j-th secondary switch turned off and the solar cell connected to the secondary switch. In this case, the current collector box ground fault detection unit 24 executes the process of step S116.

ステップS114において、集電箱地絡検出部24は、j番目の2次開閉器をオン状態とする。これにより、すべての2次開閉器がオン状態となる。 In step S114, the current collector box ground fault detection unit 24 turns on the j-th secondary switch. As a result, all secondary switches are turned on.

次にステップS115において、集電箱地絡検出部24は、変数jに1をインクリメントする。これによって続くステップS111以降の処理において、インクリメントされた変数jを用いて処理を進めることができる。具体的には、ステップS115の処理によりj=2となった場合、続くステップS111〜ステップS113において、2番目の2次開閉器12bのみをオフ状態として、地絡の有無を判定できる。 Next, in step S115, the current collector box ground fault detection unit 24 increments the variable j by 1. As a result, in the subsequent processing in step S111 and subsequent steps, the processing can proceed using the incremented variable j. Specifically, when j = 2 is obtained by the process of step S115, the presence or absence of a ground fault can be determined by turning off only the second secondary switch 12b in the following steps S111 to S113.

図1の例では、j=1のとき、すなわち1番目の2次開閉器12aのみオフ状態としたときに、ステップS113において地絡なしと判定される。これにより2次開閉器12aとこれに接続する太陽電池(121d,121e,121f)との間で地絡が発生していることが検出される。 In the example of FIG. 1, when j = 1, that is, when only the first secondary switch 12a is turned off, it is determined in step S113 that there is no ground fault. As a result, it is detected that a ground fault has occurred between the secondary switch 12a and the solar cells (121d, 121e, 121f) connected to the secondary switch 12a.

ステップS113において地絡なしと判定された場合、次にステップS116において、j番目の2次開閉器(図1の例では12a)をオン状態とする。これにより、すべての2次開閉器がオン状態となる。地絡箇所をさらに絞り込むため図6のステップS117以降の処理に進む。 If it is determined in step S113 that there is no ground fault, then in step S116, the j-th secondary switch (12a in the example of FIG. 1) is turned on. As a result, all secondary switches are turned on. In order to further narrow down the ground fault location, the process proceeds to the process after step S117 in FIG.

図6を参照して、接続箱地絡検出部25による地絡箇所の絞り込みについて説明する。 With reference to FIG. 6, the narrowing down of the ground fault location by the junction box ground fault detection unit 25 will be described.

ステップS117において、接続箱地絡検出部25は、変数kに1を代入する。 In step S117, the junction box ground fault detection unit 25 substitutes 1 for the variable k.

ステップS118において、接続箱地絡検出部25は、集電箱地絡検出部24において地絡なしと判定された際にオフ状態の2次開閉器(図1の例では12a)に接続する接続箱(図1の例では121)のk番目の3次開閉器のみオフ状態にする。例えばk=1の場合、接続箱地絡検出部25は、接続箱121の1番目の3次開閉器である121aをオフ状態、121bと121cをオン状態とする。 In step S118, the connection box ground fault detection unit 25 is connected to the secondary switch (12a in the example of FIG. 1) in the off state when the current collector box ground fault detection unit 24 determines that there is no ground fault. Only the kth tertiary switch of the box (121 in the example of FIG. 1) is turned off. For example, when k = 1, the junction box ground fault detection unit 25 turns 121a, which is the first tertiary switch of the junction box 121, in the off state, and 121b and 121c in the on state.

ステップS119において、対地電圧測定部21は対地電圧を測定する。 In step S119, the ground voltage measuring unit 21 measures the ground voltage.

ステップS120において、接続箱地絡検出部25は、地絡判定部22により地絡の有無を検出する。地絡判定部22は、対地電圧が閾値電圧以下である場合に地絡ありと判定し、対地電圧が閾値電圧より高い場合に地絡なしと判定する。地絡ありと判定された場合、オフ状態としたk番目の3次開閉器とこれに接続する太陽電池との間は正常回路である。この場合、他の3次開閉器に接続する回路に異常が発生していることが疑われる。そのため、接続箱地絡検出部25は、他の3次開閉器のいずれが異常回路に接続しているか特定するために、ステップS121以降の処理を実行する。一方、地絡なしと判定された場合、オフ状態としたk番目の3次開閉器とこれに接続する太陽電池との間に異常が発生している。この場合、接続箱地絡検出部25は、ステップS123の処理を実行する。 In step S120, the junction box ground fault detection unit 25 detects the presence or absence of a ground fault by the ground fault determination unit 22. The ground fault determination unit 22 determines that there is a ground fault when the ground voltage is equal to or less than the threshold voltage, and determines that there is no ground fault when the ground voltage is higher than the threshold voltage. When it is determined that there is a ground fault, there is a normal circuit between the k-th tertiary switch turned off and the solar cell connected to the third switch. In this case, it is suspected that an abnormality has occurred in the circuit connected to the other tertiary switch. Therefore, the junction box ground fault detection unit 25 executes the processes after step S121 in order to identify which of the other tertiary switches is connected to the abnormal circuit. On the other hand, when it is determined that there is no ground fault, an abnormality has occurred between the k-th tertiary switch turned off and the solar cell connected to the third switch. In this case, the junction box ground fault detection unit 25 executes the process of step S123.

ステップS121において、接続箱地絡検出部25は、k番目の3次開閉器をオン状態とする。これにより、すべての3次開閉器がオン状態となる。 In step S121, the junction box ground fault detection unit 25 turns on the kth tertiary switch. As a result, all tertiary switches are turned on.

ステップS122において、接続箱地絡検出部25は、変数kに1をインクリメントする。これによって続くステップS118以降の処理において、インクリメントされた変数kを用いて処理を進めることができる。具体的には、ステップS122の処理によりk=2となった場合、続くステップS118〜ステップS120において、2番目の3次開閉器121bのみをオフ状態として、地絡の有無を判定できる。 In step S122, the junction box ground fault detection unit 25 increments the variable k by 1. As a result, in the subsequent processing in step S118 and subsequent steps, the processing can proceed using the incremented variable k. Specifically, when k = 2 by the process of step S122, the presence or absence of a ground fault can be determined by turning off only the second tertiary switch 121b in the following steps S118 to S120.

図1の例では、k=2のとき、すなわち2番目の3次開閉器121bのみオフ状態としたときに、ステップS120において地絡なしと判定される。これにより3次開閉器121bとこれに接続する太陽電池121eとの間で地絡が発生していることが検出される。 In the example of FIG. 1, when k = 2, that is, when only the second tertiary switch 121b is turned off, it is determined in step S120 that there is no ground fault. As a result, it is detected that a ground fault has occurred between the tertiary switch 121b and the solar cell 121e connected to the tertiary switch 121b.

ステップS120において地絡なしと判定された場合、次にステップS123において、k番目の3次開閉器(図1の例では121b)をオン状態とする。これにより、すべての2次開閉器がオン状態となる。 If it is determined in step S120 that there is no ground fault, then in step S123, the kth tertiary switch (121b in the example of FIG. 1) is turned on. As a result, all secondary switches are turned on.

次にステップS124において、地絡箇所特定部26は、ステップS120において地絡なしと判定された際にオフ状態の3次開閉器(図1の例では121b)を示す地絡箇所特定信号を出力する。他のルーチンにおいて、地絡検出装置20、パワーコンディショナ10、または上位計算機(図示省略)は、地絡箇所特定信号を受信し、地絡箇所を音声や表示により通知し、または地絡箇所を記憶部に記憶する。 Next, in step S124, the ground fault location identification unit 26 outputs a ground fault location identification signal indicating the tertiary switch (121b in the example of FIG. 1) in the off state when it is determined in step S120 that there is no ground fault. To do. In another routine, the ground fault detection device 20, the power conditioner 10, or the host computer (not shown) receives the ground fault location identification signal, notifies the ground fault location by voice or display, or notifies the ground fault location. Store in the storage unit.

ステップS125において、地絡箇所切離部27は、地絡箇所特定信号に応じた3次開閉器(図1の例では121b)をオフ状態にする開信号を出力する。開信号を受信した3次開閉器(図1の例では121b)はオフ状態となり、太陽電池(図1の例では121e)は切り離される。 In step S125, the ground fault location separating portion 27 outputs an open signal that turns off the tertiary switch (121b in the example of FIG. 1) in response to the ground fault location identification signal. The tertiary switch (121b in the example of FIG. 1) that received the open signal is turned off, and the solar cell (121e in the example of FIG. 1) is disconnected.

以上説明したように、本実施形態に係る地絡検出システム1および地絡検出装置20によれば、太陽電池とパワーコンディショナ10との間に構成される各電源機器を自動で遠隔操作、計測監視する。これによれば、並列に接続された多数の太陽電池のいずれの箇所において直流地絡が検出されたのかを自動的に短時間で特定できる。また、直流地絡が生じた箇所を切り離すことにより大きなトラブルの発生を事前に回避し、安全を確保することも可能である。また、人的作業と比較して、直流地絡箇所を特定するまでの時間のみならず作業コストを低減できる。 As described above, according to the ground fault detection system 1 and the ground fault detection device 20 according to the present embodiment, each power supply device configured between the solar cell and the power conditioner 10 is automatically remotely controlled and measured. Monitor. According to this, it is possible to automatically identify in a short time at which part of a large number of solar cells connected in parallel a DC ground fault is detected. It is also possible to avoid the occurrence of major troubles in advance and ensure safety by disconnecting the location where the DC ground fault has occurred. Further, as compared with human work, not only the time required to identify the DC ground fault location but also the work cost can be reduced.

ところで、上述した実施の形態1のシステムにおいては、地絡検出装置20はパワーコンディショナ10の外部に配置されているが、これに限定されるものではない。地絡検出装置20は、パワーコンディショナ10に搭載されてもよい。 By the way, in the system of the first embodiment described above, the ground fault detection device 20 is arranged outside the power conditioner 10, but is not limited to this. The ground fault detection device 20 may be mounted on the power conditioner 10.

また、上述した実施の形態1のシステムにおいては、各開閉器はPラインに配置されているが、これに限定されるものではない。各開閉器はNラインに配置されてもよい。この場合、地絡検出装置20はNラインに接続される。 Further, in the system of the first embodiment described above, each switch is arranged on the P line, but the present invention is not limited to this. Each switch may be arranged on the N line. In this case, the ground fault detection device 20 is connected to the N line.

以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be variously modified and implemented without departing from the spirit of the present invention.

1 地絡検出システム
10 パワーコンディショナ
10a,10b,10c 1次開閉器
10d 並列接続点
10e インバータ
11,12,13 集電箱
11a,11b,11c 集電箱11が有する2次開閉器
12a,12b,12c 集電箱12が有する2次開閉器
13a,13b,13c 集電箱13が有する2次開閉器
20 地絡検出装置
21 対地電圧測定部
22 地絡判定部
23 交直変換装置地絡検出部
24 集電箱地絡検出部
25 接続箱地絡検出部
26 地絡箇所特定部
27 地絡箇所切離部
111,112,113,121,122,123,131,132,133 接続箱
111a,111b,111c 接続箱111が有する3次開閉器
112a,112b,112c 接続箱112が有する3次開閉器
113a,113b,113c 接続箱113が有する3次開閉器
121a,121b,121c 接続箱121が有する3次開閉器
122a,122b,122c 接続箱122が有する3次開閉器
123a,123b,123c 接続箱123が有する3次開閉器
131a,131b,131c 接続箱131が有する3次開閉器
132a,132b,132c 接続箱132が有する3次開閉器
133a,133b,133c 接続箱133が有する3次開閉器
111d,111e,111f,112d,112e,112f,113d,113e,113f,121d,121e,121f,122d,122e,122f,123d,123e,123f,131d,131e,131f,132d,132e,132f,133d,133e,133f 太陽電池
1 Ground fault detection system 10 Power conditioners 10a, 10b, 10c Primary switch 10d Parallel connection point 10e Inverters 11, 12, 13 Current collector boxes 11a, 11b, 11c Secondary switches 12a, 12b of the current collector box 11 , 12c Secondary switch 13a, 13b, 13c of the current collector box 12 Secondary switch of the current collector box 13 20 Ground fault detection device 21 Ground voltage measurement unit 22 Ground fault determination unit 23 AC / DC converter Ground fault detection unit 24 Current collecting box Ground fault detection unit 25 Connection box Ground fault detection unit 26 Ground fault location identification unit 27 Ground fault location separation unit 111, 112, 113, 121, 122, 123, 131, 132, 133 Connection box 111a, 111b , 111c The tertiary switch 112a, 112b, 112c of the junction box 111 The tertiary switch 113a, 113b, 113c of the junction box 112 The tertiary switch 121a, 121b, 121c of the junction box 113 has 3 Secondary switches 122a, 122b, 122c Secondary switches 123a, 123b, 123c included in the junction box 122 Tertiary switches 131a, 131b, 131c included in the junction box 123 Tertiary switches 132a, 132b, 132c included in the junction box 131 Tertiary switches 133a, 133b, 133c included in the junction box 132 Tertiary switches 111d, 111e, 111f, 112d, 112e, 112f, 113d, 113e, 113f, 121d, 121e, 121f, 122d, 122e included in the junction box 133 , 122f, 123d, 123e, 123f, 131d, 131e, 131f, 132d, 132e, 132f, 133d, 133e, 133f Solar cell

Claims (4)

並列に接続する複数の1次開閉器を有し、直流電力を交流電力に変換する交直変換装置と、
前記複数の1次開閉器にそれぞれ接続し、並列に接続する複数の2次開閉器を各々有する複数の集電箱と、
前記複数の2次開閉器にそれぞれ接続し、並列に接続する複数の3次開閉器を各々有する複数の接続箱と、
前記複数の3次開閉器にそれぞれ接続する複数の太陽電池と、
前記交直変換装置と前記複数の集電箱と前記複数の接続箱とに接続する地絡検出装置と、を備え、
前記地絡検出装置は、
前記複数の1次開閉器が並列に接続する並列接続点についての対地電圧が閾値電圧以下である場合に地絡ありと判定し、前記対地電圧が前記閾値電圧より高い場合に地絡なしと判定する地絡判定部と、
前記複数の1次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の1次開閉器をオン状態に戻す交直変換装置地絡検出部と、
前記交直変換装置地絡検出部において地絡なしと判定された際にオフ状態の前記1次開閉器に接続する前記集電箱の前記複数の2次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の2次開閉器をオン状態に戻す集電箱地絡検出部と、
前記集電箱地絡検出部において地絡なしと判定された際にオフ状態の前記2次開閉器に接続する前記接続箱の前記複数の3次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定する接続箱地絡検出部と、
前記接続箱地絡検出部において地絡なしと判定された際にオフ状態の前記3次開閉器を示す地絡箇所特定信号を出力する地絡箇所特定部と、
を備えることを特徴とする地絡検出システム。
An AC / DC converter that has multiple primary switches connected in parallel and converts DC power into AC power.
A plurality of current collector boxes each having a plurality of secondary switches connected to the plurality of primary switches and connected in parallel, and a plurality of current collector boxes.
A plurality of junction boxes each having a plurality of tertiary switches connected to the plurality of secondary switches and connected in parallel, and a plurality of junction boxes.
A plurality of solar cells connected to each of the plurality of tertiary switches and
The AC / DC conversion device, the plurality of current collector boxes, and a ground fault detection device connected to the plurality of junction boxes are provided.
The ground fault detection device is
When the ground voltage at the parallel connection point where the plurality of primary switches are connected in parallel is equal to or less than the threshold voltage, it is determined that there is a ground fault, and when the ground voltage is higher than the threshold voltage, it is determined that there is no ground fault. Ground fault judgment unit and
The AC / DC converter ground fault detection unit that turns off only one of the plurality of primary switches in order, determines the presence or absence of a ground fault by the ground fault determination unit, and returns the plurality of primary switches to the on state. When,
When the AC / DC converter ground fault detection unit determines that there is no ground fault, only one of the plurality of secondary switches of the current collector box connected to the primary switch in the off state is turned off in order. , The current collector box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit and returns the plurality of secondary switches to the ON state.
When the current collector box ground fault detection unit determines that there is no ground fault, only one of the plurality of tertiary switches of the junction box connected to the secondary switch in the off state is turned off in order. A junction box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit,
A ground fault location identification unit that outputs a ground fault location identification signal indicating the tertiary switch in the off state when the junction box ground fault detection unit determines that there is no ground fault.
A ground fault detection system characterized by being equipped with.
前記地絡箇所特定信号に応じた前記3次開閉器をオフ状態にする地絡箇所切離部
を備えることを特徴とする請求項1に記載の地絡検出システム。
The ground fault detection system according to claim 1, further comprising a ground fault location separation portion that turns off the tertiary switch in response to the ground fault location identification signal.
並列に接続する複数の1次開閉器を有し、直流電力を交流電力に変換する交直変換装置と、
前記複数の1次開閉器にそれぞれ接続し、並列に接続する複数の2次開閉器を各々有する複数の集電箱と、
前記複数の2次開閉器にそれぞれ接続し、並列に接続する複数の3次開閉器を各々有し、該複数の3次開閉器が複数の太陽電池にそれぞれ接続する複数の接続箱と、に接続する地絡検出装置であって、
前記複数の1次開閉器が並列に接続する並列接続点についての対地電圧が閾値電圧以下である場合に地絡ありと判定し、前記対地電圧が前記閾値電圧より高い場合に地絡なしと判定する地絡判定部と、
前記複数の1次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の1次開閉器をオン状態に戻す交直変換装置地絡検出部と、
前記交直変換装置地絡検出部において地絡なしと判定された際にオフ状態の前記1次開閉器に接続する前記集電箱の前記複数の2次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定し、前記複数の2次開閉器をオン状態に戻す集電箱地絡検出部と、
前記集電箱地絡検出部において地絡なしと判定された際にオフ状態の前記2次開閉器に接続する前記接続箱の前記複数の3次開閉器を順に1つのみオフ状態にして、前記地絡判定部により地絡の有無を判定する接続箱地絡検出部と、
前記接続箱地絡検出部において地絡なしと判定された際にオフ状態の前記3次開閉器を示す地絡箇所特定信号を出力する地絡箇所特定部と、
を備えることを特徴とする地絡検出装置。
An AC / DC converter that has multiple primary switches connected in parallel and converts DC power into AC power.
A plurality of current collector boxes each having a plurality of secondary switches connected to the plurality of primary switches and connected in parallel, and a plurality of current collector boxes.
A plurality of junction boxes each having a plurality of tertiary switches connected to the plurality of secondary switches and connected in parallel, and the plurality of tertiary switches being connected to a plurality of solar cells, respectively. A ground fault detector to be connected
When the ground voltage at the parallel connection point where the plurality of primary switches are connected in parallel is equal to or less than the threshold voltage, it is determined that there is a ground fault, and when the ground voltage is higher than the threshold voltage, it is determined that there is no ground fault. Ground fault judgment unit and
The AC / DC converter ground fault detection unit that turns off only one of the plurality of primary switches in order, determines the presence or absence of a ground fault by the ground fault determination unit, and returns the plurality of primary switches to the on state. When,
When the AC / DC converter ground fault detection unit determines that there is no ground fault, only one of the plurality of secondary switches of the current collector box connected to the primary switch in the off state is turned off in order. , The current collector box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit and returns the plurality of secondary switches to the ON state.
When the current collector box ground fault detection unit determines that there is no ground fault, only one of the plurality of tertiary switches of the junction box connected to the secondary switch in the off state is turned off in order. A junction box ground fault detection unit that determines the presence or absence of a ground fault by the ground fault determination unit,
A ground fault location identification unit that outputs a ground fault location identification signal indicating the tertiary switch in the off state when the junction box ground fault detection unit determines that there is no ground fault.
A ground fault detection device characterized by being provided with.
前記地絡箇所特定信号に応じた前記3次開閉器をオフ状態にする地絡箇所切離部
を備えることを特徴とする請求項3に記載の地絡検出装置。
The ground fault detecting device according to claim 3, further comprising a ground fault location separating portion that turns off the tertiary switch in response to the ground fault location identification signal.
JP2019142735A 2019-08-02 2019-08-02 Ground fault detection system and ground fault detection device Pending JP2021025843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019142735A JP2021025843A (en) 2019-08-02 2019-08-02 Ground fault detection system and ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019142735A JP2021025843A (en) 2019-08-02 2019-08-02 Ground fault detection system and ground fault detection device

Publications (1)

Publication Number Publication Date
JP2021025843A true JP2021025843A (en) 2021-02-22

Family

ID=74662955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019142735A Pending JP2021025843A (en) 2019-08-02 2019-08-02 Ground fault detection system and ground fault detection device

Country Status (1)

Country Link
JP (1) JP2021025843A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026449A1 (en) * 2010-08-24 2012-03-01 三洋電機株式会社 Earth-fault detection device, collector box using earth-fault detection device, and photovoltaic power generation device using collector box
WO2012046331A1 (en) * 2010-10-07 2012-04-12 東芝三菱電機産業システム株式会社 Failure detecting apparatus
JP2012244852A (en) * 2011-05-23 2012-12-10 Toshiba Corp Ground fault detection apparatus for photovoltaic power generation system
WO2013105628A1 (en) * 2012-01-12 2013-07-18 シャープ株式会社 Solar power generation system, apparatus for predicting performance of power generation system, method for predicting performance of power generation system, and power generation system
JP2016213914A (en) * 2015-04-30 2016-12-15 株式会社東芝 Ground fault point identification device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026449A1 (en) * 2010-08-24 2012-03-01 三洋電機株式会社 Earth-fault detection device, collector box using earth-fault detection device, and photovoltaic power generation device using collector box
WO2012046331A1 (en) * 2010-10-07 2012-04-12 東芝三菱電機産業システム株式会社 Failure detecting apparatus
JP2012244852A (en) * 2011-05-23 2012-12-10 Toshiba Corp Ground fault detection apparatus for photovoltaic power generation system
WO2013105628A1 (en) * 2012-01-12 2013-07-18 シャープ株式会社 Solar power generation system, apparatus for predicting performance of power generation system, method for predicting performance of power generation system, and power generation system
JP2016213914A (en) * 2015-04-30 2016-12-15 株式会社東芝 Ground fault point identification device

Similar Documents

Publication Publication Date Title
EP2626712B1 (en) Failure detecting apparatus
US10483754B2 (en) Fault detection and location in nested microgrids
US8461716B2 (en) Photovoltaic power generating device, and controlling method
US8446042B2 (en) Photovoltaic array systems, methods, and devices with improved diagnostics and monitoring
US8659858B2 (en) Ground-fault detecting device, current collecting box using the ground-fault detecting device, and photovoltaic power generating device using the current collecting box
US10348093B2 (en) Medium voltage direct current power collection systems and methods
US10503126B2 (en) Access control method for parallel direct current power supplies and device thereof
US20120050924A1 (en) Current collecting box for photovoltaic power generation
US9819196B2 (en) Power distribution system capable of automatic fault detection in a distributed manner and method thereof
JPWO2012050207A1 (en) Power storage system
US9419428B2 (en) Protection device for DC collection systems
Mirsaeidi et al. Review and analysis of existing protection strategies for micro-grids
Gulbhile et al. Overhead line fault detection using GSM technology
JP2021025843A (en) Ground fault detection system and ground fault detection device
JP6321996B2 (en) Power supply system, power supply control device, power supply control method and program in power supply system
US20230378908A1 (en) Impedance detection method and photovoltaic system
JP7122678B2 (en) Switches and test methods for switches
KR102534230B1 (en) Control units of combiner-box which has a function with detecting the fault current by algorithm and disconnecting the circuit of PV plants
KR101354190B1 (en) Photovoltaic power system
JP6633242B1 (en) Deterioration determination method and degradation determination device for solar cell module
CN113589024A (en) Method and device for rapidly detecting single set of abnormal alternating voltage measurement of redundant system
CN217882826U (en) Relay protection device and wind turbine generator system
US20230136795A1 (en) Network protector that detects an error condition
US11831158B2 (en) Power grid fault detection method and device with distributed energy resource
US11585863B2 (en) Capacitive pickup fault detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230124