JP2021025390A - Retaining wall construction method - Google Patents
Retaining wall construction method Download PDFInfo
- Publication number
- JP2021025390A JP2021025390A JP2019146959A JP2019146959A JP2021025390A JP 2021025390 A JP2021025390 A JP 2021025390A JP 2019146959 A JP2019146959 A JP 2019146959A JP 2019146959 A JP2019146959 A JP 2019146959A JP 2021025390 A JP2021025390 A JP 2021025390A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- retaining wall
- ground
- wall construction
- piles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010276 construction Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 claims description 12
- 230000000717 retained effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 15
- 230000002265 prevention Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 9
- 230000003405 preventing effect Effects 0.000 abstract description 5
- 230000005484 gravity Effects 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 239000002689 soil Substances 0.000 description 8
- 238000007689 inspection Methods 0.000 description 7
- 238000011065 in-situ storage Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000009412 basement excavation Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000011435 rock Substances 0.000 description 5
- 238000009415 formwork Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Retaining Walls (AREA)
Abstract
Description
本願発明は、山肌、道路側面あるいは造成土地側面等に土留め用の擁壁を構築するのに行われる擁壁構築工法に関するものである。 The present invention relates to a retaining wall construction method used for constructing a retaining wall for retaining earth on a mountain surface, a road side surface, a constructed land side surface, or the like.
土留め用の擁壁としては、従来から、図10の(A)〜(D)に示すように擁壁構築場所の地盤2上に生コンクリートを現場打ちして全体をコンクリート体12で構成した現場打ち擁壁1Aや、図11の(A)〜(D)に示すように内部を中空としたコンクリート成型品13(以下、コンクリートブロックという)を上下・左右に複数個組付け、それらのコンクリートブロック13の内部空所に充填材14(土壌、砕石、生コンクリート等)を充填して構成したブロック積み擁壁1B、等の各種形態のものが使用されている。
Conventionally, as a retaining wall for retaining earth, as shown in FIGS. 10A to 10D, ready-mixed concrete was cast on the
図10の(A)〜(D)に示す現場打ち擁壁1Aにおいて、(A)のものは台形状の重力式擁壁であり、(B)のものは逆台形状の重力式擁壁であり、(C)のものはもたれ式擁壁であり、(D)のものはL型擁壁である。他方、図11の(A)〜(D)に示すブロック積み擁壁1Bにおいて、(A)のものは台形状の重力式擁壁であり、(B)のものは逆台形状の重力式擁壁であり、(C)のものは直立形状の重力式擁壁であり、(D)のものはもたれ掛け状の重力式擁壁である。尚、図10の(A)〜(D)及び図11の(A)〜(D)に示す各擁壁1A,1Bは、代表的なものであってこれらのほかに各種形態のものがあるが、ここでは説明を省略する。又、図10の(A)〜(D)及び図11の(A)〜(D)において、符号10は地盤2上に打設した基礎コンクリートで、多くの場合、各擁壁1A,1Bは基礎コンクリート10上に構築されている。
In the
尚、本件出願人は、上記した各種形態の擁壁のうち、図11(B)に例示する逆台形状のブロック積み擁壁1Bに類似する擁壁として、特開2003−286730号公報(特許文献1)に記載のものを提案している。
Among the various types of retaining walls described above, the applicant has published Japanese Patent Application Laid-Open No. 2003-286730 as a retaining wall similar to the inverted trapezoidal
ところで、土止め用の擁壁については、擁壁背面側の土圧による滑動性や擁壁自体の自重による沈下性等についての安全対策が求められるが、擁壁の滑動性対策や沈下性対策の一例としては、擁壁構築場所の地盤支持力が構築される擁壁に対して必要(安全)強度以上あるかどうかを検査し、その地盤支持力が必要強度に達していないときには地盤の補強工事が行われる。尚、擁壁の滑動力や沈下力は、地震の発生や通行車による振動等によっても増加することがあり、それらの外力を加味して必要な地盤支持力を計算することもある。 By the way, regarding the retaining wall for retaining the earth, safety measures are required for the sliding property due to the earth pressure on the back side of the retaining wall and the sinking property due to the own weight of the retaining wall itself. As an example, it is inspected whether the ground bearing capacity of the retaining wall construction site is more than the required (safety) strength for the retaining wall to be constructed, and if the ground bearing capacity does not reach the required strength, the ground is reinforced. Construction will be carried out. The sliding force and subsidence force of the retaining wall may increase due to the occurrence of an earthquake, vibration caused by a passing vehicle, etc., and the required ground bearing capacity may be calculated in consideration of these external forces.
ところが、擁壁構築のための地盤支持力検査を高精度に行うには、高機能をもった検査設備を使用したり、地盤の検査地点を密にする(短い間隔で多く場所を検査する)ことが有効であるが、検査設備が高価であるとともに検査に長時間を要するという問題があり、結果的にコスト高になる要因となっている。 However, in order to perform the ground bearing capacity inspection for retaining wall construction with high accuracy, use highly functional inspection equipment or make the ground inspection points dense (inspect many places at short intervals). However, there is a problem that the inspection equipment is expensive and the inspection takes a long time, which causes a high cost as a result.
そこで、従来では、擁壁構築場所における地盤支持力検査は、多くの場合、安全性が確実に確保されるほどの高精度で行われるものではなく、案外アバウトに行われているのが実情である。特に、山間部の道路用擁壁のように、非常に長い距離に亘って構築される擁壁の場合は、地盤支持力調査は擁壁構築方向にかなりの間隔をもった各地点で行われることが通例であり、地盤支持力調査を実施していない範囲では、地盤支持力が必要強度に達していない箇所があることも予想される。尚、地盤支持力の必要強度としては、擁壁の単位面積当たりの重量や擁壁背面側からの土圧等に基づく合力(このほかに、地震・通行車による振動、車による荷重等を加味する場合もある)の3倍以上であることが求められている。 Therefore, in the past, the ground bearing capacity inspection at the retaining wall construction site was not performed with high accuracy to ensure safety in many cases, but it was unexpectedly performed about. is there. Especially in the case of retaining walls constructed over a very long distance, such as retaining walls for roads in mountainous areas, ground bearing capacity surveys are conducted at each point with a considerable distance in the retaining wall construction direction. This is customary, and it is expected that there will be places where the ground bearing capacity does not reach the required strength within the range where the ground bearing capacity survey has not been conducted. The required strength of the ground bearing capacity includes the weight per unit area of the retaining wall and the resultant force based on the earth pressure from the back side of the retaining wall (in addition to this, vibration due to earthquakes and passing vehicles, load due to vehicles, etc. are taken into consideration. It is required to be at least three times as much as (sometimes).
これに対して、従来から実施されている擁壁構造では、上記した図10の(A)〜(D)及び図11の(A)〜(D)に例示するように、擁壁背面側の土圧による滑動性や擁壁自重による沈下性等に対して特別な安全(抑止)対策がなされていないのが実情である。 On the other hand, in the conventional retaining wall structure, as illustrated in (A) to (D) of FIG. 10 and (A) to (D) of FIG. 11 described above, the back side of the retaining wall is used. The reality is that no special safety (deterrence) measures have been taken against slipperiness due to earth pressure and subsidence due to the weight of the retaining wall.
土留め用の擁壁には、擁壁背面側の土圧による滑動性や擁壁自体の自重による沈下性等についての安全性を確保しておくことが求められているが、擁壁構築場所での地盤支持力検査は上記したように精度面で案外アバウトに行われているのが実情であって、広範囲の擁壁構築場所では地盤支持力が必要強度に達していない箇所があることも予想される。 Retaining walls for retaining walls are required to ensure safety regarding sliding properties due to earth pressure on the back side of the retaining walls and subsidence due to the weight of the retaining walls themselves. As mentioned above, the ground bearing capacity inspection in Japan is unexpectedly performed about in terms of accuracy, and there are places where the ground bearing capacity does not reach the required strength in a wide range of retaining wall construction sites. is expected.
他方、従来から実施されている擁壁構造では、例えば図10の(A)〜(D)及び図11の(A)〜(D)に例示するように、擁壁背面側の土圧による滑動性や擁壁自重による沈下性等に対して特別な安全(抑止)対策がなされていないのが実情である。 On the other hand, in the conventionally implemented retaining wall structure, for example, as illustrated in (A) to (D) of FIG. 10 and (A) to (D) of FIG. 11, sliding due to earth pressure on the back side of the retaining wall. The reality is that no special safety (deterrence) measures have been taken against the nature and subsidence due to the weight of the retaining wall.
従って、従来の擁壁構造では、上記のように地盤支持力の不確かさと、擁壁に対する滑動抑止対策や沈下抑止対策が施されていないことにより、構築した擁壁が滑動性や沈下性等の点で信頼性が十分であるとは言えないものであった。 Therefore, in the conventional retaining wall structure, due to the uncertainty of the ground bearing capacity and the lack of anti-slip and subsidence measures for the retaining wall as described above, the constructed retaining wall has slipperiness and subsidence. In that respect, the reliability was not sufficient.
そこで、本願発明は、擁壁構築場所での地盤支持力に十分な信頼性がもてない場合であっても、比較的簡単な手法で擁壁の滑動抑止機能や沈下抑止機能や転倒抑止機能等を補完させ得るようにした擁壁構築工法を提供することを目的としてなされたものである。 Therefore, according to the present invention, even when the ground bearing capacity at the retaining wall construction site is not sufficiently reliable, the retaining wall can be prevented from slipping, sinking, falling, etc. by a relatively simple method. It was made for the purpose of providing a retaining wall construction method that could be complemented.
本願発明は、上記課題を解決するための手段として次の構成を有している。尚、本願発明は、擁壁構築場所において実施される擁壁構築工法を対象にしたものである。 The present invention has the following configuration as a means for solving the above problems. The present invention is intended for a retaining wall construction method implemented at a retaining wall construction site.
[本願請求項1の発明]
本願請求項1の発明の擁壁構築工法は、擁壁構築場所の地盤と該地盤上に構築される擁壁とに跨がって埋設される杭を多数本使用し、上記地盤における擁壁構築方向に所定間隔をもった各位置においてそれぞれ上記各杭の下部側を所定の押込力で地盤中に押し込んで上記各杭が地盤の抵抗力でそれ以上地盤中に進入しない深さまで杭下部を埋め込む杭下部埋込工程と、上記杭下部を地盤中に埋め込んだ後の各杭における地盤上に露出している各杭上部を上記擁壁の一部を構成する生コンクリートで固めることで上記各杭上部を上記擁壁のコンクリート体中に固着させる杭上部固着工程とを行うことを特徴としている。尚、以下の説明では、地盤における各杭が設置される位置を杭設置位置ということがある。
[Invention of
The retaining wall construction method of the invention of
本願の擁壁構築工法で使用される杭は、地盤と擁壁とに跨がって埋設して、擁壁が滑動したり沈下したり転倒したりするのを抑止するアンカーとして機能させるものである。そして、この杭は、地盤の上方から杭下部を地盤中に所定深さまで押し込んで設置されるもので、所定長さ(例えば通常50cm〜100cm、長いものでは100cm〜150cm)を有し且つ所定断面積をもつ鋼材(H型鋼、L型鋼、丸パイプ、角パイプ等)が使用可能である。尚、本願で使用する杭の材料としては、長さ方向からの圧縮力に強いものであればよく、上記鋼材に代えて例えばコンクリート杭や樹脂杭を採用してもよい。 The pile used in the retaining wall construction method of the present application is buried straddling the ground and the retaining wall to function as an anchor to prevent the retaining wall from sliding, sinking, or tipping over. is there. The pile is installed by pushing the lower part of the pile into the ground from above the ground to a predetermined depth, has a predetermined length (for example, usually 50 cm to 100 cm, and a long one is 100 cm to 150 cm) and has a predetermined cut. Steel materials with an area (H-shaped steel, L-shaped steel, round pipes, square pipes, etc.) can be used. The material of the pile used in the present application may be any material that is strong in compressive force from the length direction, and for example, a concrete pile or a resin pile may be used instead of the steel material.
本願請求項1の発明の擁壁構築工法では、上記杭下部埋込工程において、擁壁構築場所の地盤における擁壁構築方向に所定間隔をもった各杭設置位置にそれぞれ各杭の下部側を地盤中に押し込んで設置するが、各杭設置位置の間隔は、例えば1m〜2m間隔程度が適当である。
In the retaining wall construction method of the invention of
杭押込用の動力源としては、例えば構築現場で使用されている掘削用ショベルを利用することができる。この掘削用ショベルを利用する場合は、ショベル部分を杭の上端に載せた状態で該ショベル部分を油圧力で下方に押し下げることで、杭に対する地盤中への押込力を発生させることができる。又、単一の掘削用ショベルを使用すると、杭に対する押込力を毎回一定(例えば1トン程度の一定押込力)にすることができる。尚、杭に対する押込力は、構築される擁壁の規模(単位面積当たりの擁壁重量)によって増減することができ、例えば小規模(単位面積当たりの擁壁重量が軽量)の擁壁が構築される場所では上記押込力の小さい(例えば0.5トン程度の一定押込力)掘削用ショベルを使用することができる。 As a power source for pushing piles, for example, an excavator for excavation used at a construction site can be used. When this excavator is used, the excavator portion is placed on the upper end of the pile and the excavator portion is pushed downward by hydraulic pressure to generate a pushing force against the pile into the ground. Further, when a single excavator for excavation is used, the pushing force to the pile can be made constant (for example, a constant pushing force of about 1 ton) every time. The pushing force against the pile can be increased or decreased depending on the scale of the retaining wall to be constructed (retaining wall weight per unit area). For example, a small-scale retaining wall (retaining wall weight per unit area is light) is constructed. An excavator for excavation having a small pushing force (for example, a constant pushing force of about 0.5 tons) can be used in the place where the retaining wall is used.
そして、上記杭下部埋込工程では、各杭設置位置においてそれぞれ各杭の下部側を所定(一定)の押込力で地盤中に押し込んで各杭が地盤の抵抗力でそれ以上地盤中に進入しない深さまで杭下部を埋め込むが、各杭下部が地盤中に埋め込まれる深さは各杭設置位置の地盤の状態によって異なる。つまり、各杭設置位置における地盤は、土壌の硬さや支持層(岩盤)までの深さの違い等によって杭下部の進入を阻止する地盤の抵抗力が異なるために、各杭設置位置においてそれぞれ一定押込力で杭を押し込んだときの各杭の地盤進入深さが異なる。このとき、杭下部を地盤中に押し込んだ各杭における地盤上に露出する杭上部の露出長さはそれぞれ異なることになるが、杭上部の露出長さが異なっても、これらの露出部分は後の杭上部固着工程でコンクリート体中に埋め込まれるので、何ら支障は生じない。 Then, in the pile lower part embedding step, the lower side of each pile is pushed into the ground with a predetermined (constant) pushing force at each pile installation position, and each pile does not enter the ground any more due to the resistance of the ground. The lower part of the pile is embedded to the depth, but the depth at which each lower part of the pile is embedded in the ground differs depending on the condition of the ground at each pile installation position. In other words, the ground at each pile installation position is constant at each pile installation position because the resistance of the ground that prevents the intrusion of the lower part of the pile differs depending on the hardness of the soil and the depth to the support layer (rock). The ground entry depth of each pile when the pile is pushed by the pushing force is different. At this time, the exposed length of the upper part of the pile exposed on the ground in each pile that pushed the lower part of the pile into the ground will be different, but even if the exposed length of the upper part of the pile is different, these exposed parts will be rear. Since it is embedded in the concrete body in the pile upper fixing process, no trouble occurs.
尚、杭を上記一定押込力で地盤中に押し込んだときに、杭の全長が地盤中に埋没するような場所(地盤支持力が弱い場所)では、その地盤中に埋没した杭を無効にして、その近傍に先の埋没杭より長い別の杭(支持層に達する長さの杭が好適)を再度地盤中に押し込むようにするとよい。 In a place where the entire length of the pile is buried in the ground (a place where the ground bearing capacity is weak) when the pile is pushed into the ground with the above constant pushing force, the pile buried in the ground is invalidated. , It is advisable to push another pile longer than the previous buried pile (pile with a length reaching the support layer is preferable) into the ground again in the vicinity.
ところで、上記押込力により各杭が地盤の抵抗力でそれ以上地盤中に進入しない深さまで杭下部が埋め込まれた状態では、該杭に上記押込力に見合う地盤からの支持力が発生するが、この地盤による支持力は後述する擁壁沈下抑止機能となるものである。 By the way, in a state where the lower part of the pile is embedded to a depth where each pile does not enter the ground any more due to the resistance force of the ground due to the pushing force, a supporting force from the ground corresponding to the pushing force is generated in the pile. The bearing capacity of this ground serves as a function to prevent the sinking of the retaining wall, which will be described later.
又、このように各杭を地盤の抵抗力でそれ以上地盤中に進入しない深さまで押し込むことは、その杭の押し込み深さによって地盤の支持力(硬さ)を調査できることになる。 Further, by pushing each pile to a depth that does not enter the ground any more by the resistance force of the ground in this way, the bearing capacity (hardness) of the ground can be investigated by the pushing depth of the pile.
他方、本願請求項1の擁壁構築工法では、上記した杭下部埋込工程の後に杭上部固着工程を行うが、この杭上部固着工程は、杭下部を地盤中に埋め込んだ後の各杭における地盤上に露出している各杭上部を擁壁の一部を構成する生コンクリートで固めることで各杭上部を擁壁のコンクリート体中に固着させるものである。
On the other hand, in the retaining wall construction method of
つまり、この杭上部固着工程を行うと、各杭上部が擁壁の一部を構成するコンクリート体(上記生コンクリートが固化したもの)中に固着されるので、各杭上部が擁壁と一体的に結合されることになる。 That is, when this pile upper part fixing step is performed, each pile upper part is fixed in the concrete body (the solidified ready-mixed concrete) forming a part of the retaining wall, so that each pile upper part is integrated with the retaining wall. Will be combined with.
従って、擁壁の重量の一部が各杭を介して地盤で支持されることになるが、該各杭は上記押込力に見合う地盤からの支持力で保持されているので、擁壁が沈下するのを抑止する機能が生じる。 Therefore, a part of the weight of the retaining wall is supported by the ground through each pile, but since each pile is held by the supporting force from the ground corresponding to the pushing force, the retaining wall sinks. There is a function to prevent it from happening.
又、この請求項1の擁壁構築工法を実施した擁壁構造では、地盤と擁壁とに跨がって杭が介設されているので、擁壁が地盤に対して滑動するのを抑止する機能や擁壁が転倒するのを抑止する機能も生じる。
Further, in the retaining wall structure in which the retaining wall construction method of
[本願請求項2の発明]
本願請求項2の発明は、上記請求項1の擁壁構築工法において、杭下部埋込工程における杭の地盤中への押込力を、杭の下端部が地盤中にある硬質の支持層に達するまで押し込み得る強さに設定していることを特徴としている。
[Invention of
According to the second aspect of the present application, in the retaining wall construction method of the first aspect, the pushing force of the pile into the ground in the pile lower part embedding step reaches the hard support layer in which the lower end of the pile is in the ground. The feature is that it is set to a strength that can be pushed in.
地盤中にある硬質の支持層は、岩盤とも称されるもので非常に硬いものであり、杭の下端部が支持層に達するまで地盤中に押し込まれた状態では、該杭に上方からさらに大きな荷重(押込力)が働いても該杭がそれ以上地盤中に進入しないので、杭に対する地盤側での支持力は非常に大きいものとなる。 The hard support layer in the ground, also called rock mass, is very hard, and when the lower end of the pile is pushed into the ground until it reaches the support layer, it is larger than the pile from above. Even if a load (pushing force) is applied, the pile does not enter the ground any more, so that the bearing force on the ground side with respect to the pile is very large.
尚、この請求項2の場合も、杭を大きな押込力で地盤中に押し込んだときに、杭の全長が地盤中に埋没するような場所(地盤支持力が弱い場所)では、その地盤中に埋没した杭を無効にして、その近傍に先の埋没杭より長い別の杭(支持層に達する長さの杭)を再度地盤中に押し込むようにするとよい。
Also in the case of
[本願請求項1の発明の効果]
本願請求項1の発明の擁壁構築工法は、擁壁構築場所の地盤中に杭を所定の押込力で押し込んで該杭が地盤の抵抗力でそれ以上地盤中に進入しない深さまで杭下部を埋め込み、杭下部を地盤中に埋め込んだ後の各杭における地盤上に露出している各杭上部を擁壁の一部を構成する生コンクリートで固めることで各杭上部を擁壁のコンクリート体中に固着させるようにしたものである。
[Effect of the invention of
In the retaining wall construction method of the invention of
このようにすると、地盤中に埋め込んだ杭に地盤によるかなり強い支持力が発生する一方、杭上部が擁壁のコンクリート体中に固着されているので、擁壁の重量が杭を介して地盤で支持される。 In this way, the piles embedded in the ground generate a fairly strong bearing capacity due to the ground, while the upper part of the piles is fixed in the concrete body of the retaining wall, so that the weight of the retaining wall is transferred to the ground through the piles. Be supported.
従って、この請求項1の擁壁構築工法を実施すると、擁壁が地盤中に沈下するのを抑止する機能を補完できる一方、擁壁と地盤間に杭を介在させていることにより、擁壁が地盤に対して滑動するのを抑止する機能と擁壁が転倒するのを抑止する機能とをそれぞれ補完できる、という各種の効果を達成できる。
Therefore, when the retaining wall construction method of
又、この請求項1の擁壁構築工法では、地盤中に杭下部を押し込む工程(杭下部埋込工程)と、杭上部を生コンクリートで擁壁中に固着させる工程(杭上部固着工程)という比較的簡単な手法を実施することで、上記した擁壁沈下抑止機能と擁壁滑動抑止機能と擁壁転倒抑止機能とを簡単且つ安価に補完できるという効果がある。
Further, in the retaining wall construction method of
又、本願請求項1のように、各杭を地盤の抵抗力でそれ以上地盤中に進入しない深さまで押し込むことは、その杭の押し込み深さによって地盤の支持力(硬さ)を調査できることになり、上記擁壁沈下抑止機能や擁壁滑動抑止機能や擁壁転倒抑止機能等のほかに、地盤支持力の調査としても利用できるという効果もある。
Further, as in
[本願請求項2の発明の効果]
本願請求項2の発明では、上記請求項1の擁壁構築工法において、杭下部埋込工程における杭の地盤中への押込力を杭の下端部が地盤中にある硬質の支持層に達するまで押し込み得る強さに設定しているので、杭の下端を上記支持層に達するまで確実に押し込むことができる。
[Effect of the invention of
In the invention of
従って、この請求項2の擁壁構築工法では、杭が地盤中に一層強固に支持される(杭が沈下しない)ので、上記請求項1の効果に加えて、擁壁の滑動作用、沈下作用及び転倒作用に対してそれぞれ一層の抑止効果を達成できる。
Therefore, in the retaining wall construction method of
[実施例]
図1〜図7には、本願実施例で行われる擁壁構築工法の各工程を示し、図8(A)〜(D)には本願実施例の擁壁構築工法で構築される代表的な4種類の現場打ち擁壁1Aを示し、図9(A)〜(D)には本願実施例の擁壁構築工法で構築される代表的な4種類のブロック積み擁壁1Bを示している。
[Example]
1 to 7 show each step of the retaining wall construction method performed in the embodiment of the present application, and FIGS. 8 (A) to 8 (D) show typical processes constructed by the retaining wall construction method of the embodiment of the present application. Four types of on-
ところで、土止め用の擁壁については、擁壁背面側の土圧による滑動性や擁壁自体の自重による沈下性等についての安全対策が求められるが、図1〜図7に示す本願実施例の擁壁構築工法は、比較的簡易な手法で擁壁の滑動性や沈下性や転倒性に対してそれぞれ有効な抑止力を発揮し得る擁壁構造を構築できるものである。 By the way, regarding the retaining wall for retaining the soil, safety measures are required for the sliding property due to the earth pressure on the back side of the retaining wall and the subsidence property due to the weight of the retaining wall itself. The retaining wall construction method can construct a retaining wall structure that can exert effective deterrents against the sliding property, subsidence property, and tipping property of the retaining wall by a relatively simple method.
そして、本願実施例の擁壁構築工法では、図1〜図9に示すように、擁壁構築場所の地盤2と該地盤上に構築される擁壁(1A,1B)とに跨がって埋設される杭3を多数本使用する。この杭3は、地盤2と擁壁(1A,1B)とに跨がって埋設して、擁壁が滑動したり沈下したり転倒するのを抑止するアンカーとして機能させるものである。
Then, in the retaining wall construction method of the embodiment of the present application, as shown in FIGS. 1 to 9, the retaining wall construction site straddles the
この実施例の擁壁構築工法では、杭3として、所定長さ(例えば通常50cm〜100cm、長いものでは100cm〜150cm)を有し且つ所定断面積をもつH型鋼が採用されている。この杭3(H型鋼)の端面の大きさは、特に限定するものではないが一辺が10cm程度のものでよい。杭3としてH型鋼を採用した場合、該H型鋼の肉厚さは5〜6mm程度であり、この杭3(H型鋼)を地盤中に押し込む際に、地盤の硬さにもよるが0.5トン〜1.0トン程度の押込力で地盤2中に押し込み得る。尚、この杭3としては、H型鋼のほかに、L型鋼、丸パイプ、角パイプ等の鋼材が使用可能であり、さらに鋼材に代えてコンクリート杭や樹脂杭を採用することもできる。
In the retaining wall construction method of this embodiment, H-shaped steel having a predetermined length (for example, usually 50 cm to 100 cm, and a long one 100 cm to 150 cm) and having a predetermined cross-sectional area is adopted as the
そして、本願実施例の擁壁構築工法は、上記杭3を多数本使用し、図1〜図2に示す杭下部埋込工程と、図3に示す基礎コンクリート打設工程と、図4〜図5又は図6〜図7に示す杭上部固着工程とを順次行うが、以下、これらの各工程について詳細に説明する。
Then, in the retaining wall construction method of the embodiment of the present application, a large number of the
杭下部埋込工程では、図1に示すように擁壁構築場所の地盤2における擁壁構築方向に所定間隔L(L=例えば1m〜2m間隔)をもった各位置P,P・・に、それぞれ各杭3,3・・の下部側(杭下部31)を所定の押込力Fで地盤2中に押し込んでいく。尚、以下の説明では、地盤2における杭3が押し込まれる各位置P,P・・をそれぞれ杭設置位置ということがある。
In the pile lower embedding step, as shown in FIG. 1, at each position P, P ... With a predetermined interval L (L = for example, 1 m to 2 m interval) in the retaining wall construction direction in the
杭3を地盤2中に押し込むための動力源としては、例えば構築現場で多用されている掘削用ショベルを利用することができる。この掘削用ショベルを使用する場合は、ショベル部分を杭3の上端に載せた状態で該ショベル部分を油圧力で下方に押し下げることで、杭3に対する地盤2中への押込力Fを発生させることができる。このとき、単一の掘削用ショベルを使用すると、杭3に対する押込力Fを毎回一定にすることができる。尚、杭3に対する押込力Fの大きさは、構築される擁壁の規模(単位面積当たりの擁壁重量)によって増減することができ、大規模(単位面積当たりの擁壁重量が大重量)の擁壁が構築されるものでは上記押込力Fの大きい(例えば1トン程度の押込力)掘削用ショベルを使用し、小規模(単位面積当たりの擁壁重量が軽量)の擁壁が構築されるものでは上記押込力Fの小さい(例えば0.5トン程度の押込力)掘削用ショベルを使用することができる。
As a power source for pushing the
杭下部埋込工程では、図1〜図2に示すように、各杭設置位置P,P・・においてそれぞれ各杭3,3・・の下部側を所定(一定)の押込力Fで地盤中に押し込んで各杭3,3・・が地盤2の抵抗力でそれ以上地盤2中に進入しない深さまで杭下部31を埋め込むが、杭3がそれ以上地盤中に進入しない深さまで押し込んだ状態では、該杭3に対して地盤2による上記押込力Fに見合った進入抑止力が発生することになる。
In the pile lower embedding process, as shown in FIGS. 1 and 2, the lower side of each
又、上記所定押込力Fで杭3を地盤2に押し込んだときに、各杭下部31が地盤2中に埋め込まれる深さは各杭設置位置P,P・・の地盤の状態によって異なる。つまり、各杭設置位置P,P・・における地盤は、土壌21の硬さや支持層(硬い岩盤)22までの深さの違い等によって杭下部31の進入を阻止する地盤の抵抗力が異なるために、各杭設置位置P,P・・においてそれぞれ一定押込力Fで杭3を押し込んだときの各杭3,3・・の地盤進入深さが異なることになる。このとき、杭下部31を地盤2中に押し込んだ各杭3,3・・における地盤2上に露出する杭上部32の露出長さはそれぞれ異なることになるが、これら杭上部32,32・・の露出部分は図5及び図7に示すように後でコンクリート体12中に完全に埋め込まれるので特に問題にならない。尚、各杭上部32,32・・の露出長さが大きく異なる場合は、露出部分の所定高さ位置で切断して露出高さを揃えるようにしてもよい。
Further, when the
ところで、単一の擁壁構築場所で用いられる各杭3,3・・は、順次一定長さ(例えば1m長さ)のものを使用するのが基本であるが、杭3を一定押込力Fで地盤2中に押し込んだときに、例えば図2の左端部位置の杭3のように全長が地盤2中に埋没するような場所(地盤支持力が弱く、且つ杭下端3aが支持層22まで達しない場所)では、その地盤中に埋没した杭3を無効にして、その近傍に先の埋没杭(例えば1m長さ)より長い別の杭3’(できれば支持層22に達する長さを有する杭)を再度地盤中に押し込むようにするとよい。
By the way, each
地盤2には、図2に示すように土壌21の下に支持層(非常に硬い岩盤)22がある場合が多いが、この支持層22は非常に硬いので、所定の押込力Fで杭3の下部側を地盤2中に押し込んでいく際に、杭3の下端3aが支持層22に達した時点で杭3がそれ以上地盤2中に進入できなくなる。従って、下端3aが支持層22に達するまで地盤中に埋め込んだ杭3については、地盤の抵抗力(杭進入抑止力)が非常に大きくなるので、後述するように該杭3に下向きの大きな負荷が働いても、それ以上地盤中への進入を抑止することができる。尚、本願請求項2では、杭下部埋込工程において、杭3の下端3aが地盤2の支持層22に達するまで杭3を押し込むことを特定しているが、このように杭3の下端3aが支持層22に達していると、該杭3に対する沈下抑止力が非常に大きくなり、後述するように擁壁自体の自重による沈下力に対して大きな抑止力となる。
As shown in FIG. 2, the
ところで、構築すべき擁壁の規模が比較的小さい(単位面積当たりの擁壁重量が小さい)場合は、地盤の支持力がさほど大きくなくてもよいことがあるが、その場合は杭3に対する押込力Fを擁壁の規模に応じて小さくしてもよい(例えば0.5トン程度の押込力でもよい)。そして、杭3に対する押込力Fを小さくすると、杭3の下端3aが地盤2の支持層(硬い岩盤)22に達する前に地盤2中の抵抗力で杭3がそれ以上進入しなくなることがあるが、そのときには杭3の進入が停止した時点で杭3への押し込みを停止すればよい。
By the way, when the scale of the retaining wall to be constructed is relatively small (the weight of the retaining wall per unit area is small), the bearing capacity of the ground may not be so large, but in that case, it is pushed into the
杭3の下端3aが支持層22に達しない状態では、杭の下端3aが支持層22に達した状態よりも杭3に対する沈下抑止力が小さくなるものの、杭3の下端3aが支持層22に達しない状態(地盤2の抵抗力による杭3への支持力だけ)でも、ある程度の沈下抑止効果を発揮できる。そして、このように杭3の下端3aが支持層22に達しない状態(杭3に対する沈下抑止力が小さい状態)での杭設置は、上記のように擁壁の規模が小さくて地盤の支持力がさほど大きくなくてもよい場合に適用することができる。
When the
各杭設置位置P,P・・においてそれぞれ杭下部31が地盤2中に埋め込まれた後(図2の杭下部埋込工程完了状態)、図3に示すように地盤2上に基礎コンクリート10となる生コンクリートを打設するが、この基礎コンクリート10となる生コンクリートは、地盤2上から露出している各杭上部32,32・・の根元部分を一体的に固めている。このとき基礎コンクリート10は比較的小厚さ(例えば10cm程度の厚さ)であるので、地盤2上に露出していた各杭上部32,32・・は、基礎コンクリート10の上面より上方に露出しているものが多い。尚、基礎コンクリート10は、各杭3,3・・の一部(杭上部32の根元部分)を強固に固着させているので、各杭3,3・・を介して基礎コンクリート10部分の沈下抑止力を大きくすることができる。
After the pile
図3に示す基礎コンクリート打設後に、図4〜図5又は図6〜図7に示すように地盤2(基礎コンクリート10)上に露出している各杭上部32,32・・の露出部分を擁壁(1A,1B)の一部を構成する生コンクリート(固化してコンクリート体12となる)で固める杭上部固着工程を行うが、この杭上部固着工程は、構築すべき擁壁の構成が、図8(A)〜(D)に示す各現場打ち擁壁1Aであるか図9(A)〜(D)に示すブロック積み擁壁1Bであるかによって作業形態が異なる。
After the foundation concrete is placed as shown in FIG. 3, the exposed portions of the pile
図8(A)〜(D)に示す各現場打ち擁壁1Aを構築する場合は、図4のように擁壁構築場所の地盤2(基礎コンクリート10)上に、該地盤2(基礎コンクリート10)上に露出する各杭上部32を囲うように型枠18を組立て(擁壁構築方向に所定長さ組立てる)、その型枠18内に生コンクリートを充填して固化させることで、図5に示すように地盤2(基礎コンクリート10)上に露出していた各杭上部32,32・・を擁壁1Aの一部を構成するコンクリート体12中に固着させる。
When constructing each in-
そして、図4に鎖線図示するように必要高さの現場打ち擁壁1Aを構築するには、1段目として構築したコンクリート体12の上に次段の型枠18’を組立ててその型枠18’の内部に生コンクリート12’を充填して固化させ、順次同様に所望高さまで現場打ち擁壁1Aを構築する。
Then, in order to construct the on-
図4〜図5の擁壁構築例は、図8(A)の現場打ち擁壁1Aを構築するものであるが、ほかの現場打ち擁壁(図8(B)〜(D)のもの)であっても、上記とほぼ同様の工程(杭下部埋込工程、基礎コンクリート打設工程、杭上部固着工程)を行うことでそれぞれ各種の現場打ち擁壁1Aを構築できる。尚、図8の各現場打ち擁壁1Aにおいて、(A)のものは台形状の重力式擁壁であり、(B)のものは逆台形状の重力式擁壁であり、(C)のものはもたれ式擁壁であり、(D)のものはL型擁壁である。
The retaining wall construction examples of FIGS. 4 to 5 are for constructing the on-
ところで、図8(D)のL型擁壁1Aでは、その底版1Aaが薄いので杭上部32の一部が底版1Aaの上面から突出することがあり、その場合は底版1Aaの上面から突出した露出部分を生コンクリート12aで固めると、杭3と擁壁1Aとの固着力を大きくできる。
By the way, in the L-shaped
他方、図9(A)〜(D)に示すブロック積み擁壁1Bを構築する場合は、図6及び図7のように擁壁構築場所の地盤2(基礎コンクリート10)上に、該地盤2(基礎コンクリート10)上に露出する各杭上部32,32・・を囲うように内部が中空のコンクリートブロック13,13・・を設置し(擁壁構築方向に所定長さ連続させる)、その各コンクリートブロック13,13・・の内部空所に生コンクリートを充填して固化させることで、図6〜図7に示すように地盤2(基礎コンクリート10)上に露出していた各杭上部32,32・・をブロック積み擁壁1Bの一部を構成するコンクリート体12中に固着させる。尚、1段目のコンクリートブロック13の内部空所に充填する生コンクリート(符号12)の量(充填高さ)は、基礎コンクリート10上に露出している杭上部32を完全に埋設し得る程度まで充填することが好ましいが、その充填生コンクリートで杭上部32を強固に固着できる(コンクリートブロック13と一体化させ得る)量であれば、任意の量でよい。
On the other hand, when constructing the block stacking
そして、必要高さのブロック積み擁壁1Bを構築するには、図6に示すように、1段目として構築したコンクリート体入りコンクリートブロック13の上に次段のコンクリートブロック13’を積み上げてそのコンクリートブロック13’内に充填材14’を充填し、順次同様に所望高さまでブロック積み擁壁1Bを構築する。このブロック積み擁壁1Bも重力式擁壁となるもので、各コンクリートブロック13(又は13’)内に充填される充填材14(又は14’)としては、土壌、砕石、生コンクリート等の適宜のものが採用できる。尚、図6〜図7の実施例のブロック積み擁壁1Bでは、充填材14(又は14’)として土壌を採用している。
Then, in order to construct the
図6〜図7の擁壁構築例は、図9(A)のブロック積み擁壁1Bを構築するものであるが、ほかのブロック積み擁壁(図9(B)〜(D)のもの)であっても、上記とほぼ同様の工程(杭下部埋込工程、基礎コンクリート打設工程、杭上部固着工程)を行うことでそれぞれ各種のブロック積み擁壁1Bを構築できる。尚、図9の各ブロック積み擁壁1Bにおいて、(A)のものは台形状の重力式擁壁であり、(B)のものは逆台形状の重力式擁壁であり、(C)のものは直立形状の重力式擁壁であり、(D)のものはもたれ掛け状の重力式擁壁である。
The retaining wall construction examples of FIGS. 6 to 7 are for constructing the
本願実施例の擁壁構築工法を行って構築される擁壁としては、例えば図8(A)〜(D)に示す現場打ち擁壁1Aや図9(A)〜(D)に示すブロック積み擁壁1Bがあるが、これらの擁壁構造では、地盤2と擁壁(1A,1B)とに跨がって多数の杭3,3・・が介設されており、さらに各杭3は上記押込力Fに見合う地盤2からのかなり強い支持力で保持されている一方、杭上部32が擁壁の一部となるコンクリート体12中に一体的に固着されている。
Examples of the retaining wall constructed by performing the retaining wall construction method of the embodiment of the present application include the in-
従って、本願の擁壁構築工法を行って構築された擁壁構造では、擁壁の重量の一部が各杭3,3・・を介して地盤2によるかなり強い支持力で支持されることになるので、該各杭3,3・・により擁壁が地盤2中に沈下するのを抑止する機能が生じるとともに、各杭3,3・・が地盤2と擁壁とに跨がって介設されているので、擁壁が地盤2に対して滑動するのを抑止できるとともに擁壁が転倒するのを抑止できるという各機能もある。
Therefore, in the retaining wall structure constructed by the retaining wall construction method of the present application, a part of the weight of the retaining wall is supported by the
又、本願の擁壁構築工法では、地盤2中に杭下部31を押し込む工程(杭下部埋込工程)と、杭上部32を生コンクリートで擁壁中に固着させる工程(杭上部固着工程)という比較的簡単な手法で、上記擁壁の沈下抑止機能と滑動抑止機能と転倒抑止機能とを補完できる。
Further, in the retaining wall construction method of the present application, there are a step of pushing the
さらに、本願請求項2の擁壁構築工法のように、杭下部埋込工程における杭3の地盤2中への押込力Fを杭3の下端部3aが地盤中にある硬質の支持層22に達するまで押し込み得る強さに設定していると、杭の下端3aを上記支持層22に達するまで確実に押し込むことができるので、擁壁の滑動作用、沈下作用及び転倒作用に対してそれぞれ一層の抑止効果を達成できる。
Further, as in the retaining wall construction method of
尚、本願の実施例では、杭3の下部側を地盤2中に押し込んだ後、地盤2上に基礎コンクリート10を打設しているが、この基礎コンクリート10の打設は必須ではなく、例えば現場打ち擁壁1Aを構築する場合は基礎コンクリートを打設しないで地盤2上に直に擁壁を構築することもある。
In the embodiment of the present application, the lower side of the
1A,1Bは擁壁、2は地盤、3は杭、3aは杭の下端、10は基礎コンクリート、12はコンクリート体、13はコンクリートブロック、14は充填材、18は型枠、21は土壌、22は支持層、31は杭下部、32は杭上部、Fは杭押込力、Pは杭設置位置である。 1A and 1B are retaining walls, 2 is ground, 3 is piles, 3a is the lower end of piles, 10 is foundation concrete, 12 is concrete body, 13 is concrete block, 14 is filler, 18 is mold, 21 is soil, 22 is the support layer, 31 is the lower part of the pile, 32 is the upper part of the pile, F is the pile pushing force, and P is the pile installation position.
Claims (2)
上記擁壁構築場所の地盤(2)と該地盤(2)上に構築される擁壁(1A,1B)とに跨がって埋設される杭(3)を多数本使用し、
上記地盤(2)における擁壁構築方向に所定間隔をもった各位置(P,P・・)においてそれぞれ上記各杭(3,3・・)の下部側を所定の押込力(F)で地盤(2)中に押し込んで上記各杭(3,3・・)が地盤(2)の抵抗力でそれ以上地盤(2)中に進入しない深さまで杭下部(31)を埋め込む杭下部埋込工程と、
上記杭下部(31)を地盤(2)中に埋め込んだ後の各杭(3,3・・)における地盤(2)上に露出している各杭上部(32,32・・)を上記擁壁(1A,1B)の一部を構成する生コンクリートで固めることで上記各杭上部(32,32・・)を上記擁壁(1A,1B)のコンクリート体(12)中に固着させる杭上部固着工程とを行う、
ことを特徴とする擁壁構築工法。 It is a retaining wall construction method implemented at the retaining wall construction site.
A large number of piles (3) buried across the ground (2) at the retaining wall construction site and the retaining wall (1A, 1B) constructed on the ground (2) are used.
At each position (P, P ...) With a predetermined interval in the retaining wall construction direction in the ground (2), the lower side of each of the piles (3, 3 ...) is grounded with a predetermined pushing force (F). (2) Pile bottom embedding step of embedding the pile bottom (31) to a depth where each of the above piles (3, 3, ...) Is pushed into the ground (2) and does not enter the ground (2) any more due to the resistance of the ground (2). When,
The upper part (32, 32 ...) of each pile exposed on the ground (2) in each pile (3, 3 ...) after the lower part (31) of the pile is embedded in the ground (2) is retained. The upper part of the pile (32, 32 ...) Is fixed to the concrete body (12) of the retaining wall (1A, 1B) by solidifying with the ready-mixed concrete that constitutes a part of the wall (1A, 1B). Perform the fixing process
Retaining wall construction method characterized by this.
ことを特徴とする請求項1に記載の擁壁構築工法。 In the pile lower part embedding step, the pushing force (F) of the pile (3) into the ground (2) is applied to the hard support in which the lower end portion (3a) of the pile (3) is in the ground (2). The strength is set so that it can be pushed in until it reaches the layer (22).
The retaining wall construction method according to claim 1, wherein the retaining wall is constructed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146959A JP6991182B2 (en) | 2019-08-09 | 2019-08-09 | Retaining wall construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146959A JP6991182B2 (en) | 2019-08-09 | 2019-08-09 | Retaining wall construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021025390A true JP2021025390A (en) | 2021-02-22 |
JP6991182B2 JP6991182B2 (en) | 2022-01-12 |
Family
ID=74664485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019146959A Active JP6991182B2 (en) | 2019-08-09 | 2019-08-09 | Retaining wall construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6991182B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003119805A (en) * | 2001-10-10 | 2003-04-23 | Pacific Consultants Co Ltd | Method of constructing retaining wall and gravity type retaining wall having pile |
JP2003286730A (en) * | 2002-03-28 | 2003-10-10 | Landex Kogyo Kk | Retaining wall structure |
JP2005146849A (en) * | 2005-02-25 | 2005-06-09 | Eiji Adachi | Reinforcing method for retaining wall and the retaining wall |
JP2007051541A (en) * | 2005-07-19 | 2007-03-01 | Kanuka Design:Kk | Retaining wall and construction method therefor |
JP2011236571A (en) * | 2010-05-06 | 2011-11-24 | Kanukadesign Ltd | Retaining wall and construction method of the same |
-
2019
- 2019-08-09 JP JP2019146959A patent/JP6991182B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003119805A (en) * | 2001-10-10 | 2003-04-23 | Pacific Consultants Co Ltd | Method of constructing retaining wall and gravity type retaining wall having pile |
JP2003286730A (en) * | 2002-03-28 | 2003-10-10 | Landex Kogyo Kk | Retaining wall structure |
JP2005146849A (en) * | 2005-02-25 | 2005-06-09 | Eiji Adachi | Reinforcing method for retaining wall and the retaining wall |
JP2007051541A (en) * | 2005-07-19 | 2007-03-01 | Kanuka Design:Kk | Retaining wall and construction method therefor |
JP2011236571A (en) * | 2010-05-06 | 2011-11-24 | Kanukadesign Ltd | Retaining wall and construction method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP6991182B2 (en) | 2022-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuwano et al. | Performance of reinforced soil walls during the 2011 Tohoku earthquake | |
CN110924450B (en) | Method for protecting existing viaduct friction pile in pit under foundation pit excavation condition | |
Johansson et al. | Fault induced permanent ground deformations: experimental verification of wet and dry soil, numerical findings’ relation to field observations of tunnel damage and implications for design | |
IL259266A (en) | Method for forming a stable foundation ground | |
Mizuno et al. | Pile damage during the 1995 Hyogoken-Nanbu earthquake in Japan | |
JP2005179917A (en) | Retaining wall | |
JP6991182B2 (en) | Retaining wall construction method | |
Villalobos et al. | Re-assessing a soil nailing design in heavily weathered granite after a strong earthquake | |
Brooks et al. | Basics of retaining wall design | |
Campelo et al. | Georeferenced monitoring of displacements of gabion walls | |
Hamada et al. | Soil liquefaction and countermeasures | |
Hokmabadi et al. | Seismic response of superstructure on soft soil considering soil-pile-structure interaction | |
Rashidi et al. | Comparative study of anchored wall performance with two facing designs | |
Taylor et al. | Design and Construction of Mechanically Stabilized Earth (MSE) Walls | |
Kim et al. | Assessment of stability of railway abutment using geosynthetics | |
González et al. | Estudio de la respuesta estática y sísmica de un muro de suelo reforzado con geomalla como estribo de puente en Concepción | |
Brabant | Mechanically Stabilized Earth walls for support of highway bridges | |
Adilov et al. | On numerical investigation of stability of roadbeds reinforced by gabion structures | |
Wang | Prediction of the residual strength of liquefied soils | |
Abdullah | Evaluation of load transfer platforms and their design methods for embankments supported on geopiers | |
Sunkavalli et al. | Case study—A state of the art, reinforced soil slope system for runway end safety area at kannur international airport, India | |
JP2013108299A (en) | Soil improvement method for preventing liquefaction upon earthquake | |
Wietek | Slopes and Excavations: Design and Calculation | |
González et al. | Study of the static and seismic performance of a geogrid reinforced soil wall as bridge abutment in Concepción | |
Kawamata et al. | Full-scale lateral pile load test in rock fill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6991182 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |