JP2021024904A - Method for regenerating polymer compound - Google Patents

Method for regenerating polymer compound Download PDF

Info

Publication number
JP2021024904A
JP2021024904A JP2019142165A JP2019142165A JP2021024904A JP 2021024904 A JP2021024904 A JP 2021024904A JP 2019142165 A JP2019142165 A JP 2019142165A JP 2019142165 A JP2019142165 A JP 2019142165A JP 2021024904 A JP2021024904 A JP 2021024904A
Authority
JP
Japan
Prior art keywords
polymer compound
polyethylene
regenerating
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019142165A
Other languages
Japanese (ja)
Other versions
JP6735885B1 (en
Inventor
武男 塩野
Takeo Shiono
武男 塩野
昌隆 杉本
Masataka Sugimoto
昌隆 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Repy Plus Co Ltd
Original Assignee
Repy Plus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repy Plus Co Ltd filed Critical Repy Plus Co Ltd
Priority to JP2019142165A priority Critical patent/JP6735885B1/en
Application granted granted Critical
Publication of JP6735885B1 publication Critical patent/JP6735885B1/en
Publication of JP2021024904A publication Critical patent/JP2021024904A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

To provide a method for material-recycle a silane cross-linked polyethylene-containing polyethylene resin by using a simple apparatus and adding a highly safe additive to thermo-plasticize the resin in an effective manner.SOLUTION: A material-recyclable regenerated polymer can be obtained by applying shear stress to a polymer compound in which a cross-linked polyethylene resin and an additive selected from an aliphatic compound having 16 or more carbon atoms and having one or more hydroxyl groups and a boiling point of 300°C or more are mixed, to make it thermo-plasticized.SELECTED DRAWING: Figure 1

Description

本発明は、高分子化合物の再生方法に関する。さらに詳しくは、シラン架橋ポリエチレンを含むポリエチレン樹脂と添加剤を含む高分子化合物を熱可塑化して再生する方法に関する。 The present invention relates to a method for regenerating a polymer compound. More specifically, the present invention relates to a method for thermoplasticizing and regenerating a polyethylene resin containing silane cross-linked polyethylene and a polymer compound containing an additive.

ポリエチレンの廃棄物はこれまでにもプラスチック原料として再生されてきたが、再生されるポリエチレンは非架橋のポリエチレンである高密度ポリエチレンまたは低密度ポリエチレンが主体である。一方、非架橋のポリエチレンを架橋反応させた架橋ポリエチレンは、熱を加えても溶融しないため、マテリアルリサイクルが非常に困難であった。しかし、近年、架橋ポリエチレンのマテリアルリサイクル方法について検討されてきている。 Polyethylene waste has been recycled as a raw material for plastics, but the recycled polyethylene is mainly high-density polyethylene or low-density polyethylene, which is non-crosslinked polyethylene. On the other hand, cross-linked polyethylene obtained by cross-linking non-cross-linked polyethylene does not melt even when heat is applied, so that material recycling is extremely difficult. However, in recent years, a material recycling method for cross-linked polyethylene has been studied.

架橋ポリエチレンは有機過酸化物により架橋した過酸化物架橋ポリエチレンとシラノール縮合触媒により架橋したシラン架橋ポリエチレンに大別される。過酸化物架橋ポリエチレンは二軸押出機を用いて高温でせん断応力を加えることにより比較的容易に架橋点が分解し、熱可塑化することでマテリアルリサイクルすることができる。 Cross-linked polyethylene is roughly classified into cross-linked polyethylene cross-linked with an organic peroxide and silane-cross-linked polyethylene cross-linked with a silanol condensation catalyst. Peroxide cross-linked polyethylene can be recycled as a material by relatively easily decomposing the cross-linked points by applying shear stress at high temperature using a twin-screw extruder and thermoplasticizing the cross-linked polyethylene.

一方、シラン架橋ポリエチレンは、非架橋のポリエチレンにシランカップリング剤を添加し、シラングラフト反応により架橋部がシロキサン結合と呼ばれるケイ素と酸素を結合させたものである。この結合は、ポリエチレンの主鎖を形成している炭素−炭素結合に比べて結合エネルギーが約1.25倍大きい。そのため、単純に熱とせん断応力をかけると炭素−炭素結合が先に切れてしまい、シロキサン結合が残存するため熱可塑化してマテリアルリサイクルすることが困難であった。 On the other hand, silane cross-linked polyethylene is obtained by adding a silane coupling agent to non-cross-linked polyethylene, and the cross-linked portion binds silicon and oxygen, which is called a siloxane bond, by a silane graft reaction. This bond has about 1.25 times higher binding energy than the carbon-carbon bond forming the main chain of polyethylene. Therefore, when heat and shear stress are simply applied, the carbon-carbon bond is broken first, and the siloxane bond remains, which makes it difficult to recycle the material by thermoplasticization.

そこで、シラン架橋ポリエチレンを再利用するための熱可塑化の方法が色々と検討されている。例えば、架橋ポリマーを良好な作業効率と良好な熱効率のもとに連続的にリサイクルすることのできるリサイクル方法(特許文献1)や、分子量のコントロールが可能であり、又、比較的簡単な装置でもってリサイクルを行う方法(特許文献2)、架橋ポリマーの架橋箇所を分子鎖切断するときに優れた省エネルギー性と貯蔵安定性を有する方法(特許文献3)、架橋ポリエチレン混在物を熱可塑化して分子量の低下が少ない良質な生成物を得る方法(特許文献4)などが知られている。 Therefore, various methods of thermoplasticization for reusing silane cross-linked polyethylene have been studied. For example, a recycling method (Patent Document 1) that can continuously recycle a crosslinked polymer under good working efficiency and good thermal efficiency, a molecular weight control is possible, and a relatively simple device is used. (Patent Document 2), a method having excellent energy saving and storage stability when cross-linking a cross-linked portion of a cross-linked polymer (Patent Document 3), and a method of thermoplasticizing a cross-linked polyethylene mixture to have a molecular weight. A method for obtaining a high-quality product with a small decrease in the amount of the polymer (Patent Document 4) is known.

特許文献1に記載のシラン架橋ポリエチレンの熱可塑化方法では、押出機によってシラン架橋ポリエチレンを、送液ポンプによってアルコールを高温の反応容器に供給し、反応容器内にアルコールの超臨界流体を生成させるとともに、生成した超臨界流体とシラン架橋ポリエチレンを反応させ熱可塑化したポリエチレンを得る。 In the method for thermoplasticizing silane cross-linked polyethylene described in Patent Document 1, silane cross-linked polyethylene is supplied to a high-temperature reaction vessel by a liquid feed pump, and a supercritical fluid of alcohol is generated in the reaction vessel. At the same time, the produced supercritical fluid is reacted with silane cross-linked polyethylene to obtain thermoplastic polyethylene.

また、特許文献2に記載のシラン架橋ポリエチレンの熱可塑化方法では、高温のアルコール又は水と架橋ポリマーを押出機中で混練しながら反応させることにより熱可塑化を進行させる。 Further, in the method for thermoplasticizing silane crosslinked polyethylene described in Patent Document 2, the thermoplasticization proceeds by reacting the crosslinked polymer with high temperature alcohol or water while kneading in an extruder.

さらに、特許文献3に記載のシラン架橋ポリエチレンの熱可塑化方法では、超臨界アルコール若しくは亜臨界アルコール、又は高温高圧アルコールにより架橋ポリマーの架橋部分を分子鎖切断して成るリサイクル熱可塑性物質に、高級アルコールを再架橋防止剤として添加して貯蔵安定性の高い熱可塑化ポリエチレンを得る。 Further, in the method for thermoplasticizing silane crosslinked polyethylene described in Patent Document 3, a recycled thermoplastic substance formed by cleaving the crosslinked portion of the crosslinked polymer with supercritical alcohol, subcritical alcohol, or high temperature and high pressure alcohol is used. Alcohol is added as an anti-recrosslinking agent to obtain thermoplastic polyethylene with high storage stability.

そして、特許文献4に記載のシラン架橋ポリエチレンの熱可塑化方法では、高分子化合物とその高分子化合物と反応させる薬剤とを反応用押出機に供給し、これら高分子化合物と薬剤とを反応用押出機内でせん断混練を行い、架橋ポリエチレンを熱可塑化させる。 Then, in the method for thermoplasticizing silane cross-linked polyethylene described in Patent Document 4, a polymer compound and a drug for reacting with the polymer compound are supplied to a reaction extruder, and the polymer compound and the drug are used for reaction. Cross-linked polyethylene is thermoplasticized by shear kneading in the extruder.

特開2002-249618号公報Japanese Unexamined Patent Publication No. 2002-249618 特関2002-332380号公報Tokuseki 2002-332380 Gazette 特開2003-26854号公報Japanese Unexamined Patent Publication No. 2003-26854 特開2009-197138号公報JP-A-2009-197138

しかしながら、特許文献1に記載の方法は、超臨界又は亜臨界流体を使用するため送液ポンプや分離機、二台の押出機が必要になるなど、装置が複雑になる。また、添加剤として320℃の反応温度より低沸点かつ毒性の高いメタノール、エタノールなどを用いるために高温下での引火性や爆発性の危険が生じ、かつ環境汚染を引き起こしやすくなる。そして、超臨界又は亜臨界下、つまり320℃、12MPaという高温高圧下の密閉容器内で熱可塑化反応を行うために反応の制御が難しい。 However, the method described in Patent Document 1 requires a liquid feed pump, a separator, and two extruders because it uses a supercritical or subcritical fluid, and the apparatus becomes complicated. In addition, since methanol, ethanol, etc., which have a boiling point lower than the reaction temperature of 320 ° C. and are highly toxic, are used as the additive, there is a risk of flammability or explosiveness at high temperatures, and environmental pollution is likely to occur. Then, it is difficult to control the reaction because the thermoplastic reaction is carried out in a closed container under supercritical or subcritical, that is, at a high temperature and high pressure of 320 ° C. and 12 MPa.

また、特許文献2に記載の方法は、ラム押出機または単軸押出機を用いているために十分なせん断応力がかからず、効果的に熱可塑化を行うことができない。また、添加剤として320℃の反応温度より低沸点かつ毒性の高いメタノール、エタノール、ドデカノールなどを用いるために高温下での引火性や爆発性の危険が生じ、かつ環境汚染を引き起こしやすくなる。そして、320℃以上、12MPa以上の高温高圧下の密閉容器内で熱可塑化反応を行うために反応の制御が難しい。 Further, since the method described in Patent Document 2 uses a ram extruder or a uniaxial extruder, sufficient shear stress is not applied, and effective thermoplasticization cannot be performed. In addition, since methanol, ethanol, dodecanol, etc., which have a boiling point lower than the reaction temperature of 320 ° C. and are highly toxic, are used as additives, there is a risk of flammability and explosiveness at high temperatures, and environmental pollution is likely to occur. Then, since the thermoplastic reaction is carried out in a closed container under a high temperature and high pressure of 320 ° C. or higher and 12 MPa or higher, it is difficult to control the reaction.

さらに、特許文献3に記載の製造方法は、バッチ式で反応を行っているために生産性が悪い。また、添加剤として320℃の反応温度より低沸点かつ毒性の高いメタノール、エタノール、プロパノールなどを用いるために高温下での引火性や爆発性の危険が生じ、かつ環境汚染を引き起こしやすくなる。そして、超臨界又は亜臨界下、つまり320℃以上、12MPa以上高温高圧の密閉容器内で熱可塑化反応を行うために反応の制御が難しい。 Further, the production method described in Patent Document 3 is poor in productivity because the reaction is carried out in a batch manner. In addition, since methanol, ethanol, propanol, etc., which have a boiling point lower than the reaction temperature of 320 ° C. and are highly toxic, are used as the additive, there is a risk of flammability or explosiveness at high temperatures, and environmental pollution is likely to occur. Then, it is difficult to control the reaction because the thermoplastic reaction is carried out under supercritical or subcritical, that is, in a closed container having a high temperature and high pressure of 320 ° C. or higher and 12 MPa or higher.

そして、特許文献4に記載の方法は、超臨界又は亜臨界流体を使用するため、トラッパー、ドライ式の真空ポンプ、コンデンサ、二台の押出機など、装置が複雑になる。また、添加剤として330℃の反応温度より低沸点かつ毒性の高いメタノール、エタノールなどを用いるために高温下での引火性や爆発性の危険が生じ、かつ環境汚染を引き起こしやすくなる。そして、超臨界又は亜臨界下、つまり330℃以上、7.8MPa以上高温高圧の密閉容器内で熱可塑化反応を行うために反応の制御が難しい。 Since the method described in Patent Document 4 uses a supercritical or subcritical fluid, the apparatus such as a trapper, a dry vacuum pump, a condenser, and two extruders becomes complicated. In addition, since methanol, ethanol, etc., which have a boiling point lower than the reaction temperature of 330 ° C. and are highly toxic, are used as additives, there is a risk of flammability and explosiveness at high temperatures, and environmental pollution is likely to occur. Then, it is difficult to control the reaction because the thermoplastic reaction is carried out under supercritical or subcritical, that is, in a closed container having a high temperature and high pressure of 330 ° C. or higher and 7.8 MPa or higher.

以上のように、熱可塑化の反応温度よりも低い沸点の添加剤を用いて、高温高圧下の密閉容器内で熱可塑化を行う方法は装置の複雑化、添加剤による毒性や環境汚染、反応制御の困難性という課題があった。 As described above, the method of performing thermoplasticization in a closed container under high temperature and high pressure using an additive having a boiling point lower than the reaction temperature of thermoplasticization is complicated in terms of equipment, toxicity and environmental pollution by the additive, and so on. There was a problem of difficulty in reaction control.

本発明は、前記の不都合を解消するためになされたものであって、シラン架橋ポリエチレンを含むポリエチレン樹脂を簡便かつ安全で効果的に熱可塑化してマテリアルリサイクルする方法を提供することを目的とする。 The present invention has been made to eliminate the above-mentioned inconveniences, and an object of the present invention is to provide a method for easily, safely and effectively thermoplasticizing a polyethylene resin containing silane crosslinked polyethylene and recycling the material. ..

本発明に係る高分子化合物の再生方法は、少なくともシラン架橋ポリエチレンを含むポリエチレン樹脂と添加剤を含む高分子化合物の再生方法において、前記ポリエチレン樹脂と前記添加剤とを混合させて前記高分子化合物を生成する混合工程と、前記高分子化合物にせん断応力を加えて熱可塑化する熱可塑化工程と、を含み、前記添加剤が、炭素数が16以上であり、かつ1つ以上の水酸基を有する沸点が300℃以上の脂肪族化合物であり、前記添加剤の量が前記シラン架橋ポリエチレン100重量部に対し0.1〜5重量部であることを特徴とする。 The method for regenerating a polymer compound according to the present invention is a method for regenerating a polyethylene resin containing at least silane crosslinked polyethylene and a polymer compound containing an additive, wherein the polyethylene resin and the additive are mixed to obtain the polymer compound. The additive includes a mixing step of producing and a thermoplastic step of applying shear stress to the polymer compound to thermoplasticize the polymer compound, and the additive has 16 or more carbon atoms and has one or more hydroxyl groups. It is an aliphatic compound having a boiling point of 300 ° C. or higher, and the amount of the additive is 0.1 to 5 parts by weight with respect to 100 parts by weight of the silane crosslinked polyethylene.

前記高分子化合物の再生方法は、前記ポリエチレン樹脂が非架橋のポリエチレンを含み、前記非架橋のポリエチレンの量が前記ポリエチレン樹脂の1〜30%であることを特徴とする。 The method for regenerating the polymer compound is characterized in that the polyethylene resin contains non-crosslinked polyethylene, and the amount of the non-crosslinked polyethylene is 1 to 30% of the polyethylene resin.

前記高分子化合物の再生方法は、前記熱可塑化工程の後に非架橋のポリエチレンを混練する混練工程を含み、前記非架橋のポリエチレンの量が前記シラン架橋ポリエチレン100重量部に対して50〜300重量部であることを特徴とする。 The method for regenerating the polymer compound includes a kneading step of kneading the non-crosslinked polyethylene after the thermoplastic step, and the amount of the non-crosslinked polyethylene is 50 to 300 weight with respect to 100 parts by weight of the silane crosslinked polyethylene. It is characterized by being a part.

前記高分子化合物の再生方法は、前記添加物が、1−ヘキサデカノール、シス−9−ヘキサデセン−1−オール、1−ヘプタデカノール、1−オクタデカノール、16−メチルヘプタデセン−1−オール、9E−オクタデセン−1−オール、シス−9−オクタデセン−1−オール、9Z,12Z−オクタデカジエン−1−オール、9E,12E−オクタデカジエン−1−オール、9Z,12Z,15Z−オクタデカトリエン−1−オール、9E,12E,15−E−オクタデカトリエン−1−オール、12−ヒドロキシ−9−オクタデセン−1−オール、ノナデシルアルコール、1−エイコサノール、ヘンエイコサノール、1−ドコサノール、シス−13−ドコセン−1−オール、1−テトラコサノールからなる群から選択される少なくとも1種を含むことを特徴とする。 In the method for regenerating the polymer compound, the additives are 1-hexadecanol, cis-9-hexadecene-1-ol, 1-heptadecanol, 1-octadecanol, 16-methylheptadecene-1-. All, 9E-octadecene-1-ol, cis-9-octadecen-1-ol, 9Z, 12Z-octadecadien-1-ol, 9E, 12E-octadecadien-1-ol, 9Z, 12Z, 15Z- Octadecatriene-1-ol, 9E, 12E, 15-E-octadecatorien-1-ol, 12-hydroxy-9-octadecene-1-ol, nonadesyl alcohol, 1-eicosanol, heneicosanol, 1 It is characterized by containing at least one selected from the group consisting of -docosanol, cis-13-dococene-1-ol, and 1-tetracosanol.

前記高分子化合物の再生方法は、前記熱可塑化工程における前記高分子化合物の熱可塑化時間が30〜600秒の範囲であることを特徴とする。 The method for regenerating a polymer compound is characterized in that the thermoplasticization time of the polymer compound in the thermoplastic step is in the range of 30 to 600 seconds.

前記高分子化合物の再生方法は、前記熱可塑化工程後の熱可塑化された前記高分子化合物のゲル分率が10〜30%の範囲であることを特徴とする。 The method for regenerating the polymer compound is characterized in that the gel content of the thermoplastic polymer compound after the thermoplastic step is in the range of 10 to 30%.

前記高分子化合物の再生方法は、前記混練工程後の高分子化合物の引張強度が15MPa以上であり、かつ伸び率が200%以上であることを特徴とする。 The method for regenerating a polymer compound is characterized in that the tensile strength of the polymer compound after the kneading step is 15 MPa or more and the elongation rate is 200% or more.

本発明によれば反応温度より高い沸点であり、かつ毒性の低い添加剤を用いることで環境汚染を引き起こしづらい。また、熱可塑化反応において一定以上の加圧をしなくてもいいため、熱可塑化の反応制御が容易である。そして、熱可塑化工程の後に非架橋のポリエチレンを混練する工程を含むことで、一台の二軸押出機だけで容易に高物性の高分子化合物を再生することができる。以上より、簡便かつ安全で効果的にシラン架橋ポリエチレンを含むポリエチレン樹脂のマテリアルリサイクルを行うことができる。 According to the present invention, it is difficult to cause environmental pollution by using an additive having a boiling point higher than the reaction temperature and having low toxicity. Further, since it is not necessary to pressurize more than a certain level in the thermoplastic reaction, it is easy to control the reaction of the thermoplastic. Then, by including the step of kneading the non-crosslinked polyethylene after the thermoplastic step, the high-physical polymer compound can be easily regenerated with only one twin-screw extruder. From the above, it is possible to easily, safely and effectively recycle the material of the polyethylene resin containing the silane cross-linked polyethylene.

本発明の実施形態に係る二軸押出機の内部構造を示した概略図である。It is the schematic which showed the internal structure of the twin-screw extruder which concerns on embodiment of this invention. 本発明の実施形態に係る高分子化合物の再生方法の工程図である。It is a process drawing of the method of regenerating the polymer compound which concerns on embodiment of this invention. 本発明の実施形態の変形例1に係る高分子化合物の再生方法の工程図である。It is a process diagram of the method of regenerating the polymer compound which concerns on modification 1 of embodiment of this invention.

以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<装置の説明>
図1は、本発明の実施形態に係る二軸押出機の内部構造を示した概略図である。二軸押出機10は、端部に駆動部14を備えており、駆動部14から筒状のシリンダ12が延在し、その先端部分に排出部34が設けられている。
<Explanation of equipment>
FIG. 1 is a schematic view showing an internal structure of a twin-screw extruder according to an embodiment of the present invention. The twin-screw extruder 10 is provided with a drive unit 14 at an end thereof, a cylindrical cylinder 12 extends from the drive unit 14, and a discharge unit 34 is provided at the tip end portion thereof.

シリンダ12内に、駆動部14から順番に、第一輸送部18、第一混練部20、第二輸送部26、第二混練部28及び第三輸送部32が設けられている。第一輸送部18、第一混練部20、第二輸送部26、第二混練部28、第三輸送部32はそれぞれ対になるスクリューにより構成されている。また、駆動部14は、第一輸送部18と接続され、さらに、各スクリューは、隣接するスクリューと接続している。駆動部14が駆動すると、第一輸送部18、第一混練部20、第二輸送部26、第二混練部28及び第三輸送部32の各スクリューが同時に回転する。さらに、シリンダ12内を所定の温度に保つためのジャケットやヒータなどの図示しない加熱手段が設けられている。 A first transport unit 18, a first kneading unit 20, a second transport unit 26, a second kneading unit 28, and a third transport unit 32 are provided in the cylinder 12 in order from the drive unit 14. The first transport section 18, the first kneading section 20, the second transport section 26, the second kneading section 28, and the third transport section 32 are each composed of a pair of screws. Further, the drive unit 14 is connected to the first transport unit 18, and each screw is connected to an adjacent screw. When the drive unit 14 is driven, the screws of the first transport unit 18, the first kneading unit 20, the second transport unit 26, the second kneading unit 28, and the third transport unit 32 rotate at the same time. Further, a heating means (not shown) such as a jacket or a heater for keeping the inside of the cylinder 12 at a predetermined temperature is provided.

第一輸送部18は、一対のスクリューが互いに異方向に回転する機構を設けている。そして、第一輸送部18は駆動部14と第一混練部20と接続しており、上部に第一投入部16が設けられている。第一投入部16から投入された高分子化合物は第一輸送部18で加熱溶融されて第一混練部20へと導入される。 The first transport unit 18 is provided with a mechanism in which a pair of screws rotate in different directions. The first transport unit 18 is connected to the drive unit 14 and the first kneading unit 20, and the first input unit 16 is provided at the upper portion. The polymer compound charged from the first charging section 16 is heated and melted in the first transport section 18 and introduced into the first kneading section 20.

第一混練部20は、せん断作用が生じる一対のスクリュー構造で構成されている。そして、第一混練部20は、第一輸送部18と第二輸送部26と接続しており、上部に第一脱気部22が設けられている。第一輸送部18から導入された高分子化合物は第一混練部20でせん断応力と熱を加えられた後、第二輸送部26へと導入される。また、第一脱気部22から第一混練部20で発生した気体が外部へと排出される。 The first kneading portion 20 is composed of a pair of screw structures in which a shearing action occurs. The first kneading section 20 is connected to the first transport section 18 and the second transport section 26, and the first degassing section 22 is provided at the upper portion. The polymer compound introduced from the first transport unit 18 is introduced into the second transport unit 26 after being subjected to shear stress and heat in the first kneading unit 20. Further, the gas generated in the first kneading section 20 is discharged from the first degassing section 22 to the outside.

第二輸送部26は、一対のスクリューが互いに異方向に回転する機構を設けている。そして、第二輸送部26は第一混練部20と第二混練部28と接続しており、また第二輸送部26の上部には第二投入部24が設けられている。第二投入部24から投入された投入物は、第一混練部20からの高分子化合物と共に第二混練部28へと導入される。 The second transport unit 26 is provided with a mechanism in which the pair of screws rotate in different directions. The second transport section 26 is connected to the first kneading section 20 and the second kneading section 28, and the second input section 24 is provided above the second transport section 26. The input material charged from the second charging unit 24 is introduced into the second kneading unit 28 together with the polymer compound from the first kneading unit 20.

第二混練部28は、混合及び混練作用が生じる一対のスクリュー形状で構成されており、高分子化合物を均一に混練できる。そして第二混練部28は、第二輸送部26と第三輸送部32と接続しており、第二輸送部26から導入された高分子化合物等は第二混練部28で十分に混練された後に第三輸送部32へと導入される。 The second kneading portion 28 is formed of a pair of screw shapes that cause mixing and kneading action, and can uniformly knead the polymer compound. The second kneading section 28 is connected to the second transport section 26 and the third transport section 32, and the polymer compound or the like introduced from the second transport section 26 is sufficiently kneaded in the second kneading section 28. It will later be introduced into the third transport unit 32.

第三輸送部32は、一対又は一本のスクリューが設けて構成されている。そして、第三輸送部32は第二混練部28と排出部34と接続している。また、第三輸送部32の上部には第二脱気部30が設けられており、シリンダ12内部で発生した気体が外部に排出される構造となっている。第二混練部28から導入された高分子化合物は第三輸送部32を通り排出部34から外部へと排出される。 The third transport unit 32 is configured by providing a pair or one screw. The third transport unit 32 is connected to the second kneading unit 28 and the discharge unit 34. Further, a second degassing unit 30 is provided above the third transport unit 32, and has a structure in which the gas generated inside the cylinder 12 is discharged to the outside. The polymer compound introduced from the second kneading section 28 passes through the third transport section 32 and is discharged from the discharge section 34 to the outside.

<工程の説明>
次に、図2を用いて本発明の実施形態に係る高分子化合物の再生方法について説明する。図2は、本発明の実施形態に係る高分子化合物の再生方法の工程図である。
<Process description>
Next, a method for regenerating the polymer compound according to the embodiment of the present invention will be described with reference to FIG. FIG. 2 is a process diagram of a method for regenerating a polymer compound according to an embodiment of the present invention.

(準備工程:S1)
スタート後に二軸押出機10の駆動部14内にあるモーターが回転し、駆動部14に接続した第一輸送部18、第一混練部20、第二輸送部26、第二混練部28及び第三輸送部32が回転する。同時に加熱機構によりシリンダ12内部が所定の温度に加熱され、装置が十分に安定するまで所定の時間が保たれる。
(Preparation process: S1)
After the start, the motor in the drive unit 14 of the twin-screw extruder 10 rotates, and the first transport unit 18, the first kneading unit 20, the second transport unit 26, the second kneading unit 28, and the second kneading unit 28 are connected to the drive unit 14. (3) The transport unit 32 rotates. At the same time, the inside of the cylinder 12 is heated to a predetermined temperature by the heating mechanism, and a predetermined time is maintained until the apparatus becomes sufficiently stable.

ここで、第一混練部におけるせん断速度は2000〜4000s-1、温度が250〜350℃の範囲で設定される。第一混練部20におけるせん断速度が2000s-1以下だと十分なせん断応力が得られず、また温度が250℃以下だと熱可塑化反応が進まない。また、せん断速度が4000s-1以上、または温度が350℃以上になると二軸押出機10に過度な負荷化がかるため好ましくない。 Here, the shear rate in the first kneading portion is set in the range of 2000 to 4000 s -1 , and the temperature is set in the range of 250 to 350 ° C. If the shear rate in the first kneading section 20 is 2000 s -1 or less, sufficient shear stress cannot be obtained, and if the temperature is 250 ° C. or less, the thermoplastic reaction does not proceed. Further, when the shear rate is 4000 s- 1 or more, or the temperature is 350 ° C. or more, the twin-screw extruder 10 is excessively loaded, which is not preferable.

(混合工程:S2)
次に、シラン架橋ポリエチレンを含むポリエチレン樹脂と添加剤を混合して熱可塑化処理前の高分子化合物を生成する。ポリエチレン樹脂はシラン架橋ポリエチレンのみでもよく、シラン架橋ポリエチレンに、過酸化物架橋ポリエチレン、高密度ポリエチレン、低密度ポリエチレンから選ばれる1種類以上のポリエチレンを組合せても良い。
(Mixing step: S2)
Next, a polyethylene resin containing silane cross-linked polyethylene and an additive are mixed to produce a polymer compound before the thermoplastic treatment. The polyethylene resin may be only silane cross-linked polyethylene, or one or more types of polyethylene selected from peroxide cross-linked polyethylene, high-density polyethylene, and low-density polyethylene may be combined with silane cross-linked polyethylene.

ここで、シラン架橋ポリエチレンのみ、またはシラン架橋ポリエチレンと過酸化物架橋ポリエチレンのみを二軸押出機10に投入すると架橋したポリチレンは熱溶融しないために二軸押出機10に大きな負荷がかかる。その際に、非架橋である高密度ポリエチレン又は低密度ポリエチレンを加えると、非架橋であるポリエチレンは高温下で溶融し潤滑剤の役割を果たすため、二軸押出機10の負荷を大きく低下させるため好ましい。 Here, when only the silane cross-linked polyethylene or only the silane cross-linked polyethylene and the peroxide cross-linked polyethylene are put into the twin-screw extruder 10, the cross-linked polytilene is not thermally melted, so that a large load is applied to the twin-screw extruder 10. At that time, if non-crosslinked high-density polyethylene or low-density polyethylene is added, the non-crosslinked polyethylene melts at a high temperature and acts as a lubricant, which greatly reduces the load on the twin-screw extruder 10. preferable.

非架橋であるポリエチレンの量は、ポリエチレン樹脂全体の1〜30%であることが好ましい。さらには2〜10%が好適である。非架橋であるポリエチレンの量が1%よりも少ないと二軸押出機10に大きな負荷がかかる。また、30%よりも多いと、シラン架橋ポリエチレンの熱可塑化の効率が下がるため好ましくない。 The amount of non-crosslinked polyethylene is preferably 1 to 30% of the total polyethylene resin. Further, 2 to 10% is preferable. If the amount of non-crosslinked polyethylene is less than 1%, a large load is applied to the twin screw extruder 10. Further, if it is more than 30%, the efficiency of thermoplasticization of the silane cross-linked polyethylene is lowered, which is not preferable.

ここで、添加剤の量はシラン架橋ポリエチレン100重量部に対し0.1〜5重量部に調整される。添加剤の量が0.1重量部以下だと熱可塑化反応が進まず、また5重量部以上加えると熱可塑化の効率が下がる。 Here, the amount of the additive is adjusted to 0.1 to 5 parts by weight with respect to 100 parts by weight of the silane cross-linked polyethylene. If the amount of the additive is 0.1 parts by weight or less, the thermoplastic reaction does not proceed, and if 5 parts by weight or more is added, the efficiency of thermoplasticization decreases.

また、添加剤は炭素数が16以上であり、かつ1つ以上の水酸基を有する沸点が大気圧下で300℃以上の脂肪族化合物から選ばれる。好ましくは、炭素数は16以上24以下の脂肪族化合物が望ましく、さらに好ましくは、炭素数は18以上20以下の脂肪族化合物が好適である。さらには、沸点が330℃以上の脂肪族アルコールがより好ましい。 Further, the additive is selected from an aliphatic compound having 16 or more carbon atoms and having one or more hydroxyl groups and having a boiling point of 300 ° C. or higher under atmospheric pressure. Preferably, an aliphatic compound having 16 or more and 24 or less carbon atoms is preferable, and more preferably, an aliphatic compound having 18 or more and 20 or less carbon atoms is preferable. Further, an aliphatic alcohol having a boiling point of 330 ° C. or higher is more preferable.

炭素数が15以下であると沸点が300℃未満となり、熱可塑化反応温度より沸点が低いため二軸押出機10の内部が高圧となる。一方、炭素数が25以上の脂肪族化合物はシロキサン結合との反応性が悪くなりシラン架橋ポリエチレンの熱可塑化が起こりづらい。 When the number of carbon atoms is 15 or less, the boiling point becomes less than 300 ° C., and the boiling point is lower than the thermoplastic reaction temperature, so that the inside of the twin-screw extruder 10 becomes high pressure. On the other hand, an aliphatic compound having 25 or more carbon atoms has poor reactivity with a siloxane bond, and thermoplasticization of silane cross-linked polyethylene is unlikely to occur.

添加剤は、1−ヘキサデカノール、シス−9−ヘキサデセン−1−オール、1−ヘプタデカノール、1−オクタデカノール、16−メチルヘプタデセン−1−オール、9E−オクタデセン−1−オール、シス−9−オクタデセン−1−オール、9Z,12Z−オクタデカジエン−1−オール、9E,12E−オクタデカジエン−1−オール、9Z,12Z,15Z−オクタデカトリエン−1−オール、9E,12E,15−E−オクタデカトリエン−1−オール、12−ヒドロキシ−9−オクタデセン−1−オール、ノナデシルアルコール、1−エイコサノール、ヘンエイコサノール、1−ドコサノール、シス−13−ドコセン−1−オール、1−テトラコサノールからなる群から少なくとも1種類以上選択されることが好ましいが、これ以外の脂肪族化合物も選択することができる。この中では、1-オクタデカノールと1-エイコサノールはより好適である。 Additives were 1-hexadecanol, cis-9-hexadecene-1-ol, 1-heptadecanol, 1-octadecanol, 16-methylheptadecene-1-ol, 9E-octadecene-1-ol, Sis-9-octadecene-1-ol, 9Z, 12Z-octadecatriene-1-ol, 9E, 12E-octadecatien-1-ol, 9Z, 12Z, 15Z-octadecatrien-1-ol, 9E, 12E, 15-E-octadecatriene-1-ol, 12-hydroxy-9-octadecene-1-ol, nonadesyl alcohol, 1-eicosanol, heneicosanol, 1-docosanol, cis-13-docosen-1 It is preferable that at least one type is selected from the group consisting of -ol and 1-tetracosanol, but other aliphatic compounds can also be selected. Of these, 1-octadecanol and 1-eicosanol are more preferred.

(第一投入工程:S3)
ポリエチレン樹脂と添加剤とを混合した高分子化合物は第一投入部16から投入され、第一輸送部18で2軸のスクリュー回りを回転しながら加熱溶融され、第一混練部20へと導入される。
(First input process: S3)
The polymer compound in which the polyethylene resin and the additive are mixed is charged from the first charging section 16, heated and melted while rotating around the biaxial screw in the first transport section 18, and introduced into the first kneading section 20. Ru.

(熱可塑化工程:S4)
高分子化合物は、第一混練部20においてせん断応力と熱を加えられて、シラン架橋ポリエチレンの架橋点が切断され、熱可塑化される。熱可塑化が進行する際に発生する気体は第一混練部20の上側にある第一脱気部22からシリンダ12の外に排出される。この脱気により第一混練部20は大気圧に近い圧力となる。
(Thermoplasticization step: S4)
Shear stress and heat are applied to the polymer compound in the first kneading portion 20, the cross-linking points of the silane cross-linked polyethylene are cut, and the polymer compound is thermoplasticized. The gas generated as the thermoplasticization proceeds is discharged to the outside of the cylinder 12 from the first degassing section 22 on the upper side of the first kneading section 20. Due to this degassing, the pressure of the first kneading portion 20 becomes close to the atmospheric pressure.

(排出工程:S5)
その後、熱可塑化された高分子化合物は第二輸送部26、第二混練部28、第三輸送部32を通り排出部34から二軸押出機10の外部へと排出される。
(Discharge process: S5)
After that, the thermoplastic polymer compound is discharged from the discharge section 34 to the outside of the twin-screw extruder 10 through the second transport section 26, the second kneading section 28, and the third transport section 32.

熱可塑化された高分子化合物はそのまま使用することもできるが、そのままでは成形性が悪い。そこで、別途非架橋のポリエチレンや他のポリマーと混練し、加工用の高分子化合物として使用することができる。そのため、熱可塑化された高分子化合物のゲル分率は10〜30%の範囲となるように二軸押出機10の条件や添加剤の量が調整される。 The thermoplastic polymer compound can be used as it is, but its moldability is poor as it is. Therefore, it can be separately kneaded with non-crosslinked polyethylene or another polymer and used as a polymer compound for processing. Therefore, the conditions of the twin-screw extruder 10 and the amount of additives are adjusted so that the gel fraction of the thermoplastic polymer compound is in the range of 10 to 30%.

ゲル分率が10%未満では加工用の高分子化合物の引張強度が低く、また加工物の耐熱性や衝撃性が低下する。一方、ゲル分率が30%を超えると加工性が著しく悪化し、加工物がもろくなるため好ましくない。 If the gel fraction is less than 10%, the tensile strength of the polymer compound for processing is low, and the heat resistance and impact resistance of the processed product are lowered. On the other hand, if the gel fraction exceeds 30%, the workability is remarkably deteriorated and the processed product becomes brittle, which is not preferable.

次に、図3を用いて、上述した本発明の実施形態の変形例1を説明する。図3は、本発明の実施形態の変形例1に係る高分子化合物の再生方法の工程図である。 Next, a modification 1 of the above-described embodiment of the present invention will be described with reference to FIG. FIG. 3 is a process diagram of a method for regenerating a polymer compound according to Modification 1 of the embodiment of the present invention.

(第二投入工程:S4a)
変形例1は、本発明の実施形態のステップS1〜ステップS4の工程とステップS5の工程の間に第二投入工程(S4a)及び混練工程(S4b)が追加されている。すなわち、ステップS1〜ステップS4の工程を経た後、ステップS4aで第二投入部24から高密度ポリエチレンまたは低密度ポリエチレンが投入され、第二輸送部26から第二混練部28へと導入される。
(Second input process: S4a)
In the first modification, a second charging step (S4a) and a kneading step (S4b) are added between the steps S1 to S4 and the step S5 of the embodiment of the present invention. That is, after passing through the steps S1 to S4, high-density polyethylene or low-density polyethylene is charged from the second charging section 24 in step S4a, and introduced from the second transport section 26 to the second kneading section 28.

ここで、第二投入部24から投入されるポリエチレンは、非架橋である高密度ポリエチレン又は低密度ポリエチレンの少なくとも一方を含む。そして、第二投入部24から投入される非架橋のポリエチレンは、第一投入部から投入されたポリエチレン樹脂100重量部に対して50〜300重量部であることが好ましい。さらには、50〜100重量部であることがより好ましい。 Here, the polyethylene charged from the second charging section 24 includes at least one of non-crosslinked high-density polyethylene and low-density polyethylene. The amount of non-crosslinked polyethylene charged from the second charging section 24 is preferably 50 to 300 parts by weight with respect to 100 parts by weight of the polyethylene resin charged from the first charging section. Further, it is more preferably 50 to 100 parts by weight.

第二投入部24から投入される非架橋であるポリエチレンの量が50重量部未満では成形性の改善効果が低く、また成形品に不良が起こりやすい。一方、300重量部を超えるとシラン架橋ポリエチレンのマリアルリサイクル率が低下する。 If the amount of non-crosslinked polyethylene charged from the second charging section 24 is less than 50 parts by weight, the effect of improving moldability is low, and defects are likely to occur in the molded product. On the other hand, if it exceeds 300 parts by weight, the marial recycling rate of the silane cross-linked polyethylene decreases.

(混練工程:S4b)
そして、熱可塑化された高分子物化合物と第二投入部24から投入された高密度ポリエチレン又は低密度ポリエチレンは第二混練部28において混合混練されて均一な高分子化合物が得られる。
(排出工程:S5)
その後、高分子化合物は第三輸送部を通り、排出部34より二軸押出機10の外部へと排出され、再生高分子化合物が得られる。
(Kneading process: S4b)
Then, the thermoplastic polymer compound and the high-density polyethylene or low-density polyethylene charged from the second charging section 24 are mixed and kneaded in the second kneading section 28 to obtain a uniform polymer compound.
(Discharge process: S5)
After that, the polymer compound passes through the third transport section and is discharged from the discharge section 34 to the outside of the twin-screw extruder 10 to obtain a regenerated polymer compound.

上記のようにして得られた再生高分子化合物は優れた成形性をもち、引張強度が15MPa以上であり、かつ伸び率が200%以上であるため、高い強度が必要な成形品に使用することができる。 The regenerated polymer compound obtained as described above has excellent moldability, has a tensile strength of 15 MPa or more, and an elongation rate of 200% or more, and therefore should be used for molded products requiring high strength. Can be done.

本発明により得られた再生高分子化合物はプレス成形、射出成形のいずれにも使用することが可能であり、高強度、高耐熱性、高衝撃性を有する成形品となる。 The regenerated polymer compound obtained by the present invention can be used for both press molding and injection molding, and is a molded product having high strength, high heat resistance, and high impact resistance.

以下、本発明を実施例および比較例により、熱可塑化高分子物の結果を示すが、これらの実施例は本発明を限定するものでない。 Hereinafter, the results of the thermoplastic polymer product will be shown according to Examples and Comparative Examples of the present invention, but these Examples do not limit the present invention.

〔引張試験及び伸び試験〕
引張試験及び伸び試験は再生高分子化合物に対して行った。引張試験及び伸び試験装置は島津製作所製オートグラフAGSシステムを用いた。また引張試験はJISK6922−2に準拠して1mm厚のシート状にプレス成形した再生高分子化合物をダンベル3号の形状に打ち抜き、200mm/minの速度で引張試験機を用いて行った。
[Tensile test and elongation test]
Tensile tests and elongation tests were performed on regenerated polymer compounds. An autograph AGS system manufactured by Shimadzu Corporation was used as the tensile test and elongation test equipment. The tensile test was carried out by punching a regenerated polymer compound press-molded into a sheet having a thickness of 1 mm in accordance with JIS K6922-2 into the shape of dumbbell No. 3 and using a tensile tester at a speed of 200 mm / min.

〔ゲル分率〕
ゲル分率は、JIS−K 6796 に準拠して沸騰熱キシレン中で8時間抽出した。その後、140℃で3時間真空乾燥した後の重量を秤量し、抽出前の重量との比から下式によりゲル分率を算出した。
ゲル分率(%)=(抽出後重量(g)/抽出前重量(g))×100
なお、使用したシラン架橋ポリエチレンのゲル分率は65〜70%であった。
[Gel fraction]
The gel fraction was extracted in boiling hot xylene for 8 hours according to JIS-K 6996. Then, the weight after vacuum drying at 140 ° C. for 3 hours was weighed, and the gel fraction was calculated by the following formula from the ratio with the weight before extraction.
Gel fraction (%) = (weight after extraction (g) / weight before extraction (g)) x 100
The gel fraction of the silane cross-linked polyethylene used was 65 to 70%.

次に、本実施例1〜10と比較例1〜8を詳しく説明する。 Next, Examples 1 to 10 and Comparative Examples 1 to 8 will be described in detail.

Figure 2021024904
※1:XH:シラン架橋ポリエチレン、XL:過酸化物架橋ポリエチレン、HD:高密度ポリエチレン、LD:低密度ポリエチレン
Figure 2021024904
* 1: XH: Silane cross-linked polyethylene, XL: Peroxide cross-linked polyethylene, HD: High-density polyethylene, LD: Low-density polyethylene

以下に実施例1〜4を説明する。実施例1〜4はシラン架橋ポリエチレンのみ、またはシラン架橋ポリエチレンと、過酸化物架橋ポリエチレン、高密度ポリエチレン、低密度ポリエチレンの少なくとも一つを含むポリエチレン樹脂100重量部に添加剤として1−オクタデカノール0.1重量部を表1の比率で混合し高分子化合物とした。その後、高分子化合物の熱可塑化を行い、熱可塑化した高分子化合物のゲル分率を測定した。 Examples 1 to 4 will be described below. In Examples 1 to 4, 1-octadecanol is added as an additive to 100 parts by weight of a polyethylene resin containing only silane cross-linked polyethylene or silane cross-linked polyethylene and at least one of peroxide cross-linked polyethylene, high-density polyethylene, and low-density polyethylene. 0.1 part by weight was mixed at the ratio shown in Table 1 to obtain a polymer compound. Then, the polymer compound was thermoplasticized, and the gel fraction of the thermoplastic polymer compound was measured.

(実施例1)
図1の二軸押出機10を用いて第一混練部の温度300℃、せん断速度3000s-1、第一混練部での混練時間が60sとなるように設定した(図2 S1:準備工程)。そして、シラン架橋ポリエチレンを100重量部に添加剤として1−オクタデカノールを0.1重量部を混合した高分子化合物を得た(図2 S2:第一混合工程)。混合物を第一投入部16から二軸押出機10に投入した(図2 S3:投入工程)。そして、第一混練部20で60秒間混練をおこない、熱可塑化反応により熱可塑化された高分子化合物を生成した(図2 S4:熱可塑化工程)。ついで、熱可塑化された高分子化合物が第二輸送部26、第二混練部28、第三輸送部32を通って排出部34から排出され、熱可塑化された高分子化合物を得た(図2 S5:排出工程)。得られた高分子化合物のゲル分率は24%であった。
(Example 1)
Using the twin-screw extruder 10 of FIG. 1, the temperature of the first kneading section was set to 300 ° C., the shear rate was 3000 s -1 , and the kneading time at the first kneading section was set to 60 s (FIG. 2 S1: preparation step). .. Then, a polymer compound was obtained in which 0.1 part by weight of 1-octadecanol was mixed with 100 parts by weight of silane cross-linked polyethylene as an additive (FIG. 2 S2: first mixing step). The mixture was charged into the twin-screw extruder 10 from the first charging section 16 (FIG. 2 S3: charging step). Then, kneading was carried out in the first kneading section 20 for 60 seconds to produce a polymer compound thermoplasticized by a thermoplastic reaction (FIG. 2 S4: thermoplastic step). Then, the thermoplastic polymer compound was discharged from the discharge section 34 through the second transport section 26, the second kneading section 28, and the third transport section 32 to obtain the thermoplastic polymer compound (). FIG. 2 S5: Discharge process). The gel fraction of the obtained polymer compound was 24%.

(実施例2)
シラン架橋ポリエチレン95重量部、高密度ポリエチレン5重量部、添加剤として1−オクタデカノールを0.1重量部を混合した高分子化合物を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、熱可塑化された高分子化合物を得た(図2:S5)。得られた高分子化合物のゲル分率は20%であった。
(Example 2)
A polymer compound was obtained by mixing 95 parts by weight of silane cross-linked polyethylene, 5 parts by weight of high-density polyethylene, and 0.1 parts by weight of 1-octadecanol as an additive (FIG. 2: S2). Other than that, the same test as in Example 1 was carried out to obtain a thermoplastic polymer compound (FIG. 2: S5). The gel fraction of the obtained polymer compound was 20%.

(実施例3)
シラン架橋ポリエチレン95重量部、低密度ポリエチレン5重量部、添加剤として1−オクタデカノールを0.1重量部を混合した高分子化合物を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、熱可塑化された高分子化合物を得た(図2:S5)。得られた高分子化合物のゲル分率は18%であった。
(Example 3)
A polymer compound was obtained by mixing 95 parts by weight of silane cross-linked polyethylene, 5 parts by weight of low-density polyethylene, and 0.1 parts by weight of 1-octadecanol as an additive (FIG. 2: S2). Other than that, the same test as in Example 1 was carried out to obtain a thermoplastic polymer compound (FIG. 2: S5). The gel fraction of the obtained polymer compound was 18%.

(実施例4)
シラン架橋ポリエチレン50重量部、過酸化物架橋ポリエチレン50重量部、添加剤として1−オクタデカノールを0.1重量を部混合した高分子化合物を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、熱可塑化された高分子化合物を得た(図2:S5)。得られた高分子化合物のゲル分率は15%であった。
(Example 4)
A polymer compound was obtained by mixing 50 parts by weight of cross-linked silane polyethylene, 50 parts by weight of cross-linked peroxide polyethylene, and 0.1 part by weight of 1-octadecanol as an additive (FIG. 2: S2). Other than that, the same test as in Example 1 was carried out to obtain a thermoplastic polymer compound (FIG. 2: S5). The gel fraction of the obtained polymer compound was 15%.

実施例1〜4の結果から、添加剤として1−オクタデカノールを0.1重量部混合し熱可塑化を行うことでゲル分率が10〜30%の高分子化合物が得られた。 From the results of Examples 1 to 4, a polymer compound having a gel fraction of 10 to 30% was obtained by mixing 0.1 parts by weight of 1-octadecanol as an additive and performing thermoplasticization.

以下に実施例5〜6を説明する。実施例5〜6は、シラン架橋ポリエチレンのみ、又はシラン架橋ポリエチレンと過酸化物架橋ポリエチレンとからなるポリエチレン樹脂100重量部に、添加剤として1-エイコサノール0.2重量部を混合して高分子化合物とした。その後、高分子化合物の熱可塑化を行い、熱可塑化した高分子化合物のゲル分率を測定した。 Examples 5 to 6 will be described below. In Examples 5 to 6, a polymer compound obtained by mixing 100 parts by weight of a polyethylene resin composed of only silane cross-linked polyethylene or silane cross-linked polyethylene and peroxide cross-linked polyethylene with 0.2 parts by weight of 1-eicosanol as an additive. And said. Then, the polymer compound was thermoplasticized, and the gel fraction of the thermoplastic polymer compound was measured.

(実施例5)
シラン架橋ポリエチレン100重量部、添加剤として1-エイコサノール0.2重量部を混合した高分子化合物を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、シラン架橋ポリエチレンが熱可塑化された熱可塑化高分子化合物を得た(図2:S5)。得られた熱可塑化高分子化合物のゲル分率は26%であった。
(Example 5)
A polymer compound was obtained by mixing 100 parts by weight of silane cross-linked polyethylene and 0.2 parts by weight of 1-eicosanol as an additive (FIG. 2: S2). Other than that, the test was carried out in the same manner as in Example 1 to obtain a thermoplastic polymer compound in which silane cross-linked polyethylene was thermoplasticized (FIG. 2: S5). The gel fraction of the obtained thermoplastic polymer compound was 26%.

(実施例6)
シラン架橋ポリエチレン50重量部、過酸化物架橋ポリエチレン50重量部、添加剤として1-エイコサノール0.2重量部を混合した高分子化合物を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、シラン架橋ポリエチレンが熱可塑化された熱可塑化高分子化合物を得た(図2:S5)。得られた熱可塑化高分子化合物のゲル分率は22%であった。
(Example 6)
A polymer compound was obtained by mixing 50 parts by weight of silane cross-linked polyethylene, 50 parts by weight of peroxide cross-linked polyethylene, and 0.2 parts by weight of 1-eicosanol as an additive (FIG. 2: S2). Other than that, the test was carried out in the same manner as in Example 1 to obtain a thermoplastic polymer compound in which silane cross-linked polyethylene was thermoplasticized (FIG. 2: S5). The gel fraction of the obtained thermoplastic polymer compound was 22%.

実施例5〜6の結果から、1-エイコサノール0.2重量部を混合し熱可塑化を行うことでゲル分率が10〜30%の高分子化合物が得られた。 From the results of Examples 5 to 6, a polymer compound having a gel fraction of 10 to 30% was obtained by mixing 0.2 parts by weight of 1-eicosanol and performing thermoplasticization.

以下に実施例7〜10を説明する。実施例7〜10は、高分子化合物の熱可塑化後に高密度ポリエチレンまたは低密度ポリエチレンを混練して再生高分子化合物を生成し、ゲル分率と引張強度及び伸び率を測定した。 Examples 7 to 10 will be described below. In Examples 7 to 10, high-density polyethylene or low-density polyethylene was kneaded after thermoplasticization of the polymer compound to produce a regenerated polymer compound, and the gel fraction, tensile strength and elongation were measured.

(実施例7)
シラン架橋ポリエチレン100重量部、添加剤として1−オクタデカノール0.5重量部を混合した高分子化合物を得た(図3:S2)。また、第二投入部24から高密度ポリエチレン100重量部を投入した(図3:S4a)。その後、熱可塑化高分子化合物と高密度ポリエチレンが第二混練部28で混練され(図3:S4a)熱可塑化高分子化合物と高密度ポリエチレンとが混合された再生高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は19%であった。また、引張強度は29MPa、伸び率は250%であった。
(Example 7)
A polymer compound was obtained by mixing 100 parts by weight of silane cross-linked polyethylene and 0.5 parts by weight of 1-octadecanol as an additive (FIG. 3: S2). In addition, 100 parts by weight of high-density polyethylene was charged from the second charging unit 24 (FIG. 3: S4a). Then, the thermoplastic polymer compound and the high-density polyethylene were kneaded in the second kneading section 28 (FIG. 3: S4a) to obtain a regenerated polymer compound in which the thermoplastic polymer compound and the high-density polyethylene were mixed (FIG. 3: S4a). FIG. 3: S5). The gel fraction of the obtained polymer compound was 19%. The tensile strength was 29 MPa and the elongation rate was 250%.

(実施例8)
シラン架橋ポリエチレン95重量部、高密度ポリエチレン5重量部、添加剤として1−オクタデカノール0.5重量部を混合し高分子化合物を得た(図3:S2)。それ以外は実施例7と同様に試験を行い、再生高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は15%であった。また、引張強度は28MPa、伸び率は261%であった。
(Example 8)
A polymer compound was obtained by mixing 95 parts by weight of silane cross-linked polyethylene, 5 parts by weight of high-density polyethylene, and 0.5 parts by weight of 1-octadecanol as an additive (FIG. 3: S2). Other than that, the test was carried out in the same manner as in Example 7 to obtain a regenerated polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 15%. The tensile strength was 28 MPa and the elongation rate was 261%.

(実施例9)
シラン架橋ポリエチレン95重量部、低密度ポリエチレン5重量部、添加剤として1−オクタデカノール0.5重量部を混合し高分子化合物を得た(図3:S2)。また、第二投入部24から低密度ポリエチレン100重量部を投入した(図3:S4a)。それ以外は実施例7と同様に試験を行い、再生高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は16%であった。また、引張強度は18MPa、伸び率は280%であった。
(Example 9)
95 parts by weight of silane cross-linked polyethylene, 5 parts by weight of low-density polyethylene, and 0.5 parts by weight of 1-octadecanol as an additive were mixed to obtain a polymer compound (FIG. 3: S2). In addition, 100 parts by weight of low-density polyethylene was charged from the second charging unit 24 (FIG. 3: S4a). Other than that, the test was carried out in the same manner as in Example 7 to obtain a regenerated polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 16%. The tensile strength was 18 MPa and the elongation rate was 280%.

(実施例10)
シラン架橋ポリエチレン50重量部、過酸化物架橋ポリエチレン50重量部、添加剤として1−オクタデカノール0.5重量部を混合し高分子化合物を得た(図3:S2)。それ以外は実施例9と同様に試験を行い、再生高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は18%であった。また、引張強度は17MPa、伸び率は320%であった。
(Example 10)
A polymer compound was obtained by mixing 50 parts by weight of silane cross-linked polyethylene, 50 parts by weight of peroxide cross-linked polyethylene, and 0.5 part by weight of 1-octadecanol as an additive (FIG. 3: S2). Other than that, the test was carried out in the same manner as in Example 9 to obtain a regenerated polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 18%. The tensile strength was 17 MPa and the elongation rate was 320%.

実施例7〜10に示したように、再生高分子化合物の引張強度は17以上であり、伸び率も250%以上を示し、再生用のポリエチレンとして利用可能である。 As shown in Examples 7 to 10, the regenerated polymer compound has a tensile strength of 17 or more and an elongation rate of 250% or more, and can be used as polyethylene for regeneration.

以下に比較例1〜4を説明する。比較例1〜4は、シラン架橋ポリエチレンのみ、またはシラン架橋ポリエチレンと、過酸化物架橋ポリエチレン、高密度ポリエチレン、低密度ポリエチレンの少なくとも一つを含むポリエチレン樹脂100重量部とし、添加剤を加えずにポリエチレン樹脂のみで熱可塑化を行い、熱可塑化した高分子化合物のゲル分率を測定した。熱可塑化の条件は実施例1〜4と同じである。 Comparative Examples 1 to 4 will be described below. In Comparative Examples 1 to 4, 100 parts by weight of a polyethylene resin containing only silane cross-linked polyethylene or silane cross-linked polyethylene and at least one of peroxide cross-linked polyethylene, high-density polyethylene, and low-density polyethylene was used, and no additive was added. Thermoplasticization was performed using only polyethylene resin, and the gel fraction of the thermoplasticized polymer compound was measured. The conditions for thermoplasticization are the same as in Examples 1 to 4.

(比較例1)
シラン架橋ポリエチレン100重量部のみを用いて熱可塑化を行った(図2:S4)。それ以外は実施例1と同様に試験を行い、シラン架橋ポリエチレンが熱可塑化された高分子化合物を得た(図2:S5)。得られた熱可塑化された高分子化合物のゲル分率は65%であった。
(Comparative Example 1)
Thermoplasticization was performed using only 100 parts by weight of silane cross-linked polyethylene (FIG. 2: S4). Other than that, the test was carried out in the same manner as in Example 1 to obtain a polymer compound in which silane cross-linked polyethylene was thermoplasticized (FIG. 2: S5). The gel fraction of the obtained thermoplastic polymer compound was 65%.

(比較例2)
シラン架橋ポリエチレン95重量部、高密度ポリエチレン5重量部を混合しポリエチレン樹脂を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、熱可塑化された高分子化合物を得た(図2:S5)。得られた高分子化合物のゲル分率は62%であった。
(Comparative Example 2)
95 parts by weight of silane cross-linked polyethylene and 5 parts by weight of high-density polyethylene were mixed to obtain a polyethylene resin (FIG. 2: S2). Other than that, the same test as in Example 1 was carried out to obtain a thermoplastic polymer compound (FIG. 2: S5). The gel fraction of the obtained polymer compound was 62%.

(比較例3)
シラン架橋ポリエチレン95重量部、低密度ポリエチレン5重量部を混合しポリエチレン樹脂を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、熱可塑化された高分子化合物を得た(図2:S5)。得られた高分子化合物のゲル分率は58%であった。
(Comparative Example 3)
95 parts by weight of silane cross-linked polyethylene and 5 parts by weight of low density polyethylene were mixed to obtain a polyethylene resin (FIG. 2: S2). Other than that, the same test as in Example 1 was carried out to obtain a thermoplastic polymer compound (FIG. 2: S5). The gel fraction of the obtained polymer compound was 58%.

(比較例4)
シラン架橋ポリエチレン50重量部、過酸化物架橋ポリエチレン50重量部を混合しポリエチレン樹脂を得た(図2:S2)。それ以外は実施例1と同様に試験を行い、熱可塑化された高分子化合物を得た(図2:S5)。得られた高分子化合物のゲル分率は55%であった。
(Comparative Example 4)
50 parts by weight of silane cross-linked polyethylene and 50 parts by weight of peroxide cross-linked polyethylene were mixed to obtain a polyethylene resin (FIG. 2: S2). Other than that, the same test as in Example 1 was carried out to obtain a thermoplastic polymer compound (FIG. 2: S5). The gel fraction of the obtained polymer compound was 55%.

比較例1〜4に示したように、添加剤を用いずにポリエチレン樹脂のみで熱可塑化を行うと、ゲル分率は50%以上であり、リサイクルに向かない。 As shown in Comparative Examples 1 to 4, when thermoplasticization is performed only with polyethylene resin without using additives, the gel fraction is 50% or more, which is not suitable for recycling.

以下に比較例5〜8を説明する。比較例5〜8は、ポリエチレン樹脂のみを比較例1〜4と同じ条件で熱可塑化した後に高密度ポリエチレンまたは低密度ポリエチレンを混練して高分子化合物を生成し、ゲル分率と引張強度及び伸び率を測定した。 Comparative Examples 5 to 8 will be described below. In Comparative Examples 5 to 8, only the polyethylene resin was thermally plasticized under the same conditions as in Comparative Examples 1 to 4, and then high-density polyethylene or low-density polyethylene was kneaded to produce a polymer compound, and the gel fraction, tensile strength and tensile strength were obtained. The elongation rate was measured.

(比較例5)
シラン架橋ポリエチレン100重量部をポリエチレン樹脂として熱可塑化を行った(図3:S4)。それ以外は実施例7と同様に試験を行い、高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は40%であった。また、引張強度は6MPa、伸び率は20%であった。
(Comparative Example 5)
100 parts by weight of silane cross-linked polyethylene was used as a polyethylene resin for thermoplasticization (FIG. 3: S4). Other than that, the test was carried out in the same manner as in Example 7 to obtain a polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 40%. The tensile strength was 6 MPa and the elongation rate was 20%.

(比較例6)
シラン架橋ポリエチレン95重量部、高密度ポリエチレン5重量部を混合しポリエチレン樹脂を得た(図3:S2)。それ以外は実施例7と同様に試験を行い、高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は42%であった。また、引張強度は8MPa、伸び率は15%であった。
(Comparative Example 6)
95 parts by weight of silane cross-linked polyethylene and 5 parts by weight of high-density polyethylene were mixed to obtain a polyethylene resin (FIG. 3: S2). Other than that, the test was carried out in the same manner as in Example 7 to obtain a polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 42%. The tensile strength was 8 MPa and the elongation rate was 15%.

(比較例7)
シラン架橋ポリエチレン95重量部、低密度ポリエチレン5重量部を混合しポリエチレン樹脂を得た(図3:S2)。それ以外は実施例9と同様に試験を行い、高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は39%であった。また、引張強度は7MPa、伸び率は22%であった。
(Comparative Example 7)
95 parts by weight of silane cross-linked polyethylene and 5 parts by weight of low density polyethylene were mixed to obtain a polyethylene resin (FIG. 3: S2). Other than that, the test was carried out in the same manner as in Example 9 to obtain a polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 39%. The tensile strength was 7 MPa and the elongation rate was 22%.

(比較例8)
シラン架橋ポリエチレン50重量部、過酸化物架橋ポリエチレン50重量部を混合しポリエチレン樹脂を得た(図3:S2)。それ以外は実施例10と同様に試験を行い、高分子化合物を得た(図3:S5)。得られた高分子化合物のゲル分率は40%であった。また、引張強度は9MPa、伸び率は18%であった。
(Comparative Example 8)
50 parts by weight of silane cross-linked polyethylene and 50 parts by weight of peroxide cross-linked polyethylene were mixed to obtain a polyethylene resin (FIG. 3: S2). Other than that, the test was carried out in the same manner as in Example 10 to obtain a polymer compound (FIG. 3: S5). The gel fraction of the obtained polymer compound was 40%. The tensile strength was 9 MPa and the elongation rate was 18%.

以上の結果より、ポリエチレン樹脂のみで熱可塑化を行い、その後非架橋のポリエチレンを加えて高分子化合物を得ても、引張強度は10MPa以下、伸び率も30%以下であり成形に適さない。一方、添加物を用いてシラン架橋ポリエチレンを含む高分子化合物を熱可塑化し、得られた再生高分子化合物の引張強度は15MPa以上、伸び率は200%以上を示し、十分に再生利用が可能であった。 From the above results, even if a polymer compound is obtained by performing thermoplasticization only with polyethylene resin and then adding non-crosslinked polyethylene, the tensile strength is 10 MPa or less and the elongation rate is 30% or less, which is not suitable for molding. On the other hand, a polymer compound containing silane cross-linked polyethylene was thermally plasticized using an additive, and the obtained recycled polymer compound showed a tensile strength of 15 MPa or more and an elongation rate of 200% or more, and could be sufficiently recycled. there were.

本発明によれば、熱可塑化の反応温度よりも高い沸点をもつ脂肪族化合物を添加剤として用いることにより、シラン架橋ポリエチレンを含む高分子化合物を簡便かつ安全で効果的に熱可塑化を行うことができる。そして、得られた再生高分子化合物は高い成形性と物性値を持ち、マテリアルリサイクル分野での利用が可能となる。 According to the present invention, by using an aliphatic compound having a boiling point higher than the reaction temperature for thermoplasticization as an additive, a polymer compound containing silane cross-linked polyethylene can be easily, safely and effectively thermoplasticized. be able to. The obtained regenerated polymer compound has high moldability and physical property values, and can be used in the material recycling field.

10 二軸押出機
12 シリンダ
14 駆動部
16 第一投入部
18 第一輸送部
20 第一混練部
22 第一脱気部
24 第二投入部
26 第二輸送部
28 第二混練部
30 第二脱気部
32 第三輸送部
34 排出部
10 Twin-screw extruder 12 Cylinder 14 Drive unit 16 First input unit 18 First transport unit 20 First kneading unit 22 First degassing unit 24 Second input unit 26 Second transport unit 28 Second kneading unit 30 Second desorption Air part 32 Third transport part 34 Discharge part

本発明に係る高分子化合物の再生方法は、少なくともシラン架橋ポリエチレンを含むポリエチレン樹脂と、添加剤とを含む高分子化合物の再生方法において、前記シラン架橋ポリエチレン樹脂と、前記ポリエチレン樹脂の1〜30%の非架橋のポリエチレンと、前記添加剤とを混合させて前記高分子化合物を生成する混合工程と、前記高分子化合物にせん断応力を加えて熱可塑化する熱可塑化工程と、熱可塑化された前記高分子化合物に、前記ポリエチレン樹脂100重量部に対して50〜300重量部の非架橋のポリエチレンを混練する混練工程と、を含み、前記添加剤が、炭素数が16以上であり、かつ1つ以上の水酸基を有する沸点が300℃以上の脂肪族化合物であり、前記添加剤の量が前記シラン架橋ポリエチレン100重量部に対し0.1〜5重量部であることを特徴とする. The method for regenerating a polymer compound according to the present invention is a method for regenerating a polymer compound containing at least a polyethylene resin containing silane crosslinked polyethylene and an additive, wherein the silane crosslinked polyethylene resin and 1 to 30% of the polyethylene resin. A mixing step of mixing the non-crosslinked polyethylene and the additive to produce the polymer compound, a thermoplastic step of applying shear stress to the polymer compound to thermoplasticize the polymer compound, and thermoplasticization. The polymer compound comprises a kneading step of kneading 50 to 300 parts by weight of non-crosslinked polyethylene with respect to 100 parts by weight of the polyethylene resin, and the additive has 16 or more carbon atoms and has 16 or more carbon atoms. It is an aliphatic compound having one or more hydroxyl groups and having a boiling point of 300 ° C. or higher, and the amount of the additive is 0.1 to 5 parts by weight with respect to 100 parts by weight of the silane crosslinked polyethylene.

本発明に係る高分子化合物の再生方法は、少なくともシラン架橋ポリエチレンを含むポリエチレン樹脂と、添加剤とを含む高分子化合物の再生方法において、前記シラン架橋ポリエチレンを含む架橋したポリエチレンと、架橋のポリエチレンと、前記添加剤とを混合させて高分子化合物を生成する混合工程と、前記高分子化合物にせん断応力を加えて熱可塑化する熱可塑化工程と、熱可塑化された前記高分子化合物に、前記ポリエチレン樹脂100重量部に対して50〜300重量部の非架橋のポリエチレンを混練する混練工程と、を含み、前記非架橋のポリエチレンの量は、前記ポリエチレン樹脂の1〜30%であり、前記添加剤が、炭素数が16以上であり、かつ1つ以上の水酸基を有する沸点が300℃以上の脂肪族化合物であり、前記添加剤の量が前記シラン架橋ポリエチレン100重量部に対し0.1〜5重量部であることを特徴とする。 The method of reproducing a polymer compound according to the present invention, a polyethylene resin containing at least silane crosslinked polyethylene, in the reproducing method of the polymer compound containing the additive, polyethylene and, in the non-crosslinked crosslinked containing the silane crosslinking polyethylene emissions A mixing step of mixing polyethylene and the additive to produce a polymer compound, a thermoplastic step of applying shear stress to the polymer compound to make it thermoplastic, and the thermoplastic polymer compound. Including a kneading step of kneading 50 to 300 parts by weight of non-crosslinked polyethylene with respect to 100 parts by weight of the polyethylene resin, the amount of the non-bridged polyethylene is 1 to 30% of the polyethylene resin. The additive is an aliphatic compound having 16 or more carbon atoms and having one or more hydroxyl groups and having a boiling point of 300 ° C. or higher, and the amount of the additive is 0 with respect to 100 parts by weight of the silane crosslinked polyethylene. It is characterized by having 1 to 5 parts by weight.

前記高分子化合物の再生方法は、前記添加が、1−ヘキサデカノール、シス−9−ヘキサデセン−1−オール、1−ヘプタデカノール、1−オクタデカノール、16−メチルヘプタデセン−1−オール、9E−オクタデセン−1−オール、シス−9−オクタデセン−1−オール、9Z,12Z−オクタデカジエン−1−オール、9E,12E−オクタデカジエン−1−オール、9Z,12Z,15Z−オクタデカトリエン−1−オール、9E,12E,15−E−オクタデカトリエン−1−オール、12−ヒドロキシ−9−オクタデセン−1−オール、ノナデシルアルコール、1−エイコサノール、ヘンエイコサノール、1−ドコサノール、シス−13−ドコセン−1−オール、 1−テトラコサノールからなる群から選択される少なくとも1種を含むことを特徴とする。 The method for regenerating a polymer compound, the additive, 1-hexadecanol, cis-9-hexadecene-1-ol, 1-heptadecanol, 1-octadecanol, 16-methyl-hept-decene-1 All, 9E-octadecene-1-ol, cis-9-octadecen-1-ol, 9Z, 12Z-octadecadien-1-ol, 9E, 12E-octadecadien-1-ol, 9Z, 12Z, 15Z- Octadecatriene-1-ol, 9E, 12E, 15-E-octadecatorien-1-ol, 12-hydroxy-9-octadecene-1-ol, nonadesyl alcohol, 1-eicosanol, heneicosanol, 1 It is characterized by containing at least one selected from the group consisting of -docosanol, cis-13-dococene-1-ol, and 1-tetracosanol.

以上の結果より、ポリエチレン樹脂のみで熱可塑化を行い、その後非架橋のポリエチレンを加えて高分子化合物を得ても、引張強度は10MPa以下、伸び率も30%以下であり成形に適さない。一方、添加を用いてシラン架橋ポリエチレンを含む高分子化合物を熱可塑化し、得られた再生高分子化合物の引張強度は15MPa以上、伸び率は200%以上を示し、十分に再生利用が可能であった。
From the above results, even if a polymer compound is obtained by performing thermoplasticization only with polyethylene resin and then adding non-crosslinked polyethylene, the tensile strength is 10 MPa or less and the elongation rate is 30% or less, which is not suitable for molding. Meanwhile, heat plasticizing a polymer compound containing a silane cross-linked polyethylene with additives, the tensile strength of the obtained reproduction polymer compound or 15 MPa, elongation showed over 200% can be sufficiently recycled there were.

Claims (7)

少なくともシラン架橋ポリエチレンを含むポリエチレン樹脂と、添加剤とを含む高分子化合物の再生方法において、
前記ポリエチレン樹脂と前記添加剤とを混合させて前記高分子化合物を生成する混合工程と、
前記高分子化合物にせん断応力を加えて熱可塑化する熱可塑化工程と、を含み、
前記添加剤が、炭素数が16以上であり、かつ1つ以上の水酸基を有する沸点が300℃以上の脂肪族化合物であり、
前記添加剤の量が前記シラン架橋ポリエチレン100重量部に対し0.1〜5重量部であることを特徴とする高分子化合物の再生方法。
In a method for regenerating a polymer compound containing at least a polyethylene resin containing silane cross-linked polyethylene and an additive,
A mixing step of mixing the polyethylene resin and the additive to produce the polymer compound, and
It includes a thermoplastic step of applying shear stress to the polymer compound to make it thermoplastic.
The additive is an aliphatic compound having 16 or more carbon atoms and having one or more hydroxyl groups and a boiling point of 300 ° C. or higher.
A method for regenerating a polymer compound, wherein the amount of the additive is 0.1 to 5 parts by weight with respect to 100 parts by weight of the silane crosslinked polyethylene.
請求項1に記載の高分子化合物の再生方法において、
前記ポリエチレン樹脂が非架橋のポリエチレンを含み、
前記非架橋のポリエチレンの量が、前記ポリエチレン樹脂の1〜30%であることを特徴とする高分子化合物の再生方法。
In the method for regenerating a polymer compound according to claim 1,
The polyethylene resin contains non-crosslinked polyethylene and contains
A method for regenerating a polymer compound, wherein the amount of the non-crosslinked polyethylene is 1 to 30% of the polyethylene resin.
請求項2に記載の高分子化合物の再生方法において、
前記熱可塑化工程の後に前記非架橋のポリエチレンを混練する混練工程を含み、
前記非架橋のポリエチレンの量が、前記ポリエチレン樹脂100重量部に対して50〜300重量部であることを特徴とする高分子化合物の再生方法。
In the method for regenerating a polymer compound according to claim 2,
A kneading step of kneading the non-crosslinked polyethylene after the thermoplastic step is included.
A method for regenerating a polymer compound, wherein the amount of the non-crosslinked polyethylene is 50 to 300 parts by weight with respect to 100 parts by weight of the polyethylene resin.
請求項1〜3のいずれか1項に記載の高分子化合物の再生方法において、
前記添加物が、1−ヘキサデカノール、シス−9−ヘキサデセン−1−オール、1−ヘプタデカノール、1−オクタデカノール、16−メチルヘプタデセン−1−オール、9E−オクタデセン−1−オール、シス−9−オクタデセン−1−オール、9Z,12Z−オクタデカジエン−1−オール、9E,12E−オクタデカジエン−1−オール、9Z,12Z,15Z−オクタデカトリエン−1−オール、9E,12E,15−E−オクタデカトリエン−1−オール、12−ヒドロキシ−9−オクタデセン−1−オール、ノナデシルアルコール、1−エイコサノール、ヘンエイコサノール、1−ドコサノール、シス−13−ドコセン−1−オール、1−テトラコサノールからなる群から選択される少なくとも1種を含むことを特徴とする高分子化合物の再生方法。
In the method for regenerating a polymer compound according to any one of claims 1 to 3,
The additives are 1-hexadecanol, cis-9-hexadecene-1-ol, 1-heptadecanol, 1-octadecanol, 16-methylheptadecene-1-ol, 9E-octadecene-1-ol. , Sis-9-octadecene-1-ol, 9Z, 12Z-octadecadiene-1-ol, 9E, 12E-octadecadiene-1-ol, 9Z, 12Z, 15Z-octadecatriene-1-ol, 9E , 12E, 15-E-octadecatorien-1-ol, 12-hydroxy-9-octadecene-1-ol, nonadesyl alcohol, 1-eicosanol, heneicosanol, 1-docosanol, cis-13-dococene- A method for regenerating a polymer compound, which comprises at least one selected from the group consisting of 1-ol and 1-tetracosanol.
請求項1〜4のいずれか1項に記載の高分子化合物の再生方法において、
前記熱可塑化工程における前記高分子化合物の熱可塑化時間が30〜600秒の範囲であることを特徴とする高分子化合物の再生方法。
In the method for regenerating a polymer compound according to any one of claims 1 to 4,
A method for regenerating a polymer compound, characterized in that the thermoplasticization time of the polymer compound in the thermoplastic step is in the range of 30 to 600 seconds.
請求項1〜5のいずれか1項に記載の高分子化合物の再生方法において、
前記熱可塑化工程後の熱可塑化された前記高分子化合物のゲル分率が10〜30%の範囲であることを特徴とする高分子化合物の再生方法。
In the method for regenerating a polymer compound according to any one of claims 1 to 5,
A method for regenerating a polymer compound, wherein the gel fraction of the thermoplastic polymer compound after the thermoplastic step is in the range of 10 to 30%.
請求項1〜6のいずれか1項に記載の高分子化合物の再生方法において、
前記混練工程後の高分子化合物の引張強度が15MPa以上であり、かつ伸び率が200%以上であることを特徴とする高分子化合物の再生方法。
In the method for regenerating a polymer compound according to any one of claims 1 to 6,
A method for regenerating a polymer compound, characterized in that the tensile strength of the polymer compound after the kneading step is 15 MPa or more and the elongation rate is 200% or more.
JP2019142165A 2019-08-01 2019-08-01 Regeneration method of polymer compound Expired - Fee Related JP6735885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019142165A JP6735885B1 (en) 2019-08-01 2019-08-01 Regeneration method of polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019142165A JP6735885B1 (en) 2019-08-01 2019-08-01 Regeneration method of polymer compound

Publications (2)

Publication Number Publication Date
JP6735885B1 JP6735885B1 (en) 2020-08-05
JP2021024904A true JP2021024904A (en) 2021-02-22

Family

ID=71892370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019142165A Expired - Fee Related JP6735885B1 (en) 2019-08-01 2019-08-01 Regeneration method of polymer compound

Country Status (1)

Country Link
JP (1) JP6735885B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281860B1 (en) * 2023-04-12 2023-05-26 株式会社リピープラス Method for producing polymer compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017702A (en) * 1996-07-08 1998-01-20 Mitsubishi Chem Corp Porous film made of polyethylene resin and its production
JP2002332380A (en) * 2001-05-09 2002-11-22 Hitachi Cable Ltd Method for recycling crosslinked polymer
JP2003026854A (en) * 2001-07-23 2003-01-29 Hitachi Cable Ltd Recycled material of crosslinked polymer
JP2009197138A (en) * 2008-02-21 2009-09-03 Hitachi Cable Ltd Method and apparatus for treating polymeric compound
JP2018014159A (en) * 2014-11-26 2018-01-25 住友電気工業株式会社 Insulated wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017702A (en) * 1996-07-08 1998-01-20 Mitsubishi Chem Corp Porous film made of polyethylene resin and its production
JP2002332380A (en) * 2001-05-09 2002-11-22 Hitachi Cable Ltd Method for recycling crosslinked polymer
JP2003026854A (en) * 2001-07-23 2003-01-29 Hitachi Cable Ltd Recycled material of crosslinked polymer
JP2009197138A (en) * 2008-02-21 2009-09-03 Hitachi Cable Ltd Method and apparatus for treating polymeric compound
JP2018014159A (en) * 2014-11-26 2018-01-25 住友電気工業株式会社 Insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281860B1 (en) * 2023-04-12 2023-05-26 株式会社リピープラス Method for producing polymer compound

Also Published As

Publication number Publication date
JP6735885B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
Si et al. Effects of high shear stress on the devulcanization of ground tire rubber in a twin‐screw extruder
AU2017269856B2 (en) Molecular modification of polyethylene resin
AU2016323721A1 (en) Process and apparatus for manufacture of processable polyvinyl alcohol
Wang et al. Effects of shear stress and subcritical water on devulcanization of styrene–butadiene rubber based ground tire rubber in a twin‐screw extruder
Dairi et al. Morphological, mechanical, and physical properties of composites made with wood flour‐reinforced polypropylene/recycled poly (ethylene terephthalate) blends
JP6735885B1 (en) Regeneration method of polymer compound
JP2001131331A (en) Reclaiming process for crosslinked polyethylene resin
CN109251389B (en) Preparation method of light-irradiation cross-linked ultrahigh molecular weight polyethylene injection molding composite material
US6632918B1 (en) Method of reclaiming crosslinked rubber
JP4935710B2 (en) Polymer compound processing method and apparatus
Beztout et al. Effects of acetylation process and cellulose content on the mechanical, thermal, morphological and rheological properties of poly (vinyl chloride)/cellulose composites
KR20170059175A (en) Method for manufacturing bioplastic composite using wood flour and bioplastic composite produced by using the same
JPH11189670A (en) Process for recycling crosslinked polymer material arising especially from electric cable covering material
JP4537614B2 (en) Recycling method for crosslinked polymer
JP4306463B2 (en) Method and apparatus for regenerating crosslinked polyethylene
JP2010194794A (en) Method for manufacturing molded article from recovered polyester
KR101449583B1 (en) Method for manufacture of Pipe from polyvinly chloride resin molding composion
An et al. Characterization of high melt strength polypropylene synthesized via silane grafting initiated by in situ heat induction reaction
US8901252B2 (en) Method of decomposing organic compound
CN103242580A (en) Method for preparing pipeline material by utilization of recovered HDPE low-temperature solid-phase extrusion reaction
JP7281860B1 (en) Method for producing polymer compound
CN113201211A (en) Composite dynamic cross-linked polylactic acid/natural rubber/starch elastomer and preparation method thereof
Shim et al. Effects of the presence of water on ultrasonic devulcanization of polydimethylsiloxane
JP2002225011A (en) Woody composition for molding and its manufacturing method
JP4534945B2 (en) Method for treating crosslinked polyethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190830

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6735885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees