JP2021022957A - Vehicle power feeding system - Google Patents

Vehicle power feeding system Download PDF

Info

Publication number
JP2021022957A
JP2021022957A JP2019136107A JP2019136107A JP2021022957A JP 2021022957 A JP2021022957 A JP 2021022957A JP 2019136107 A JP2019136107 A JP 2019136107A JP 2019136107 A JP2019136107 A JP 2019136107A JP 2021022957 A JP2021022957 A JP 2021022957A
Authority
JP
Japan
Prior art keywords
power supply
power
vehicle
intersection
opportunity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019136107A
Other languages
Japanese (ja)
Other versions
JP7251379B2 (en
Inventor
満 柴沼
Mitsuru Shibanuma
満 柴沼
宜久 山口
Yoshihisa Yamaguchi
宜久 山口
大林 和良
Kazuyoshi Obayashi
和良 大林
英介 高橋
Eisuke Takahashi
英介 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019136107A priority Critical patent/JP7251379B2/en
Priority to PCT/JP2020/023578 priority patent/WO2021014833A1/en
Publication of JP2021022957A publication Critical patent/JP2021022957A/en
Application granted granted Critical
Publication of JP7251379B2 publication Critical patent/JP7251379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

To provide a vehicle power feeding system capable of reducing a possibility that electric power of a vehicle is exhausted before arriving at a destination.SOLUTION: A vehicle power feeding system 10 is configured to feed power from a power feeding device which is installed on a power feeding possible course RC of a vehicle travel course RS, to a vehicle 200. The vehicle adjusts feed power of one power feeding opportunity on the travel course to a destination in such a manner that a power storage amount of a battery 230 mounted on the vehicle is made equal to or more than a request value which is set in accordance with the destination, by power feeding of a final power feeding opportunity on the travel path. The power feeding device feeds power to the vehicle in accordance with the feed power of one power feeding opportunity received from the vehicle.SELECTED DRAWING: Figure 1

Description

本開示は、電力によって走行可能な車両に対して給電を行なう技術に関する。 The present disclosure relates to a technique for supplying power to a vehicle that can travel by electric power.

特許文献1には、車両用信号装置の停止表示によって車両走行路上で停車した電気車両に対して、停止表示と連動して給電を安定して行なう非接触給電システムが開示されている。 Patent Document 1 discloses a non-contact power supply system that stably supplies power to an electric vehicle stopped on a vehicle traveling path by a stop display of a vehicle signal device in conjunction with the stop display.

特開2014−193095号公報JP-A-2014-193095

しかしながら、停止表示によって車両走行路上で電気車両が停車する時間は、交通流次第で変化するため、電気車両において適切な充電量が確保されずに、目的地に到達するために要する電気エネルギーを確保することができない可能性がある。また、目的地まで到達したとしても、目的地に車両に給電を行なう設備がなく、別の目的地へ向けて再出発した際に、車両に対して給電が可能な場所まで到達できず、電欠となってしまう可能性がある。 However, the time that the electric vehicle stops on the vehicle path due to the stop display changes depending on the traffic flow, so that the electric vehicle does not have an appropriate amount of charge and the electric energy required to reach the destination is secured. You may not be able to. In addition, even if the vehicle reaches the destination, there is no facility to supply power to the vehicle at the destination, and when the vehicle restarts for another destination, the vehicle cannot reach the place where power can be supplied. It may be missing.

本開示の一形態によれば、車両走行路(RS)の給電可能路(RC)に設置された給電装置(100)から車両(200)に対して非接触で給電を行なう車両給電システム(10)が提供される。この車両給電システムの前記車両は、目的地までの走行経路上における1回の給電機会の給電電力(Pf)を、前記走行経路上の最後の給電機会における給電によって、前記車両に搭載されるバッテリ(230)の蓄電量が、前記目的地に応じて設定される要求値(Wt)以上となるように調整し、前記給電装置は、対応する給電可能路上に前記車両が停車した際に、前記車両から受け取った前記1回の給電電力に従って前記車両に対して給電を行う。
この形態の車両給電システムによれば、目的地に到達する前に車両が電欠となってしまう可能性を低減することができる。また、別の目的地へ向けて車両が再出発した際に、車両に対して給電可能な場所まで到達できず、車両が電欠となってしまう可能性を低減することができる。
According to one form of the present disclosure, a vehicle power supply system (10) that supplies power to a vehicle (200) in a non-contact manner from a power supply device (100) installed on a power supply available path (RC) of a vehicle travel path (RS). ) Is provided. The vehicle of this vehicle power supply system is a battery mounted on the vehicle by supplying power (Pf) of one power supply opportunity on the travel route to the destination by power supply at the last power supply opportunity on the travel route. The amount of electricity stored in (230) is adjusted to be equal to or greater than the required value (Wt) set according to the destination, and the power supply device is used when the vehicle stops on the corresponding power supply available road. Power is supplied to the vehicle according to the one-time power supply received from the vehicle.
According to this form of vehicle power supply system, it is possible to reduce the possibility that the vehicle will run out of electricity before reaching the destination. Further, when the vehicle restarts to another destination, it is possible to reduce the possibility that the vehicle cannot reach a place where power can be supplied to the vehicle and the vehicle runs out of electricity.

車両給電システムの全体構成を示す説明図。Explanatory drawing which shows the whole structure of a vehicle power supply system. 給電装置の1つのセグメントと受電装置の一例を示す説明図。Explanatory drawing which shows one segment of a power feeding device and an example of a power receiving device. 車両側の制御装置が実行する受電制御処理の一例を示すフローチャート。The flowchart which shows an example of the power receiving control processing executed by the control device on the vehicle side. 給電装置側の制御装置が実行する給電制御処理の一例を示すフローチャート。The flowchart which shows an example of the power supply control processing executed by the control device on the power supply device side. 車両に設定される走行経路の一例を示す説明図。Explanatory drawing which shows an example of the traveling route set in a vehicle. 図5の走行経路で実行される第1実施形態の給電の様子を示す説明図。The explanatory view which shows the state of the power supply of the 1st Embodiment executed in the traveling path of FIG. 図5の走行経路で実行される第2実施形態の給電の様子を示す説明図。The explanatory view which shows the state of the power supply of the 2nd Embodiment executed in the traveling path of FIG. 図5の走行経路で実行される第3実施形態の給電の様子を示す説明図。The explanatory view which shows the state of the power supply of the 3rd Embodiment executed in the traveling path of FIG. 給電装置側の制御装置が実行する第4実施形態の給電制御処理の一例を示すフローチャート。The flowchart which shows an example of the power supply control processing of 4th Embodiment executed by the control device on the power supply device side. 図4の走行経路で実行される第4実施形態の給電の様子を示す説明図。The explanatory view which shows the state of the power feeding of the 4th Embodiment executed in the traveling path of FIG. 一つの交差点で停車する車両の停車位置について示す説明図。Explanatory drawing which shows the stop position of the vehicle which stops at one intersection. 図4の走行経路で実行される第5実施形態の給電の様子を示す説明図。The explanatory view which shows the state of the power feeding of the 5th Embodiment executed in the traveling path of FIG.

A.第1実施形態:
図1に示すように、車両給電システム10は、車両走行路RSの交差点等に設置された車両信号表示装置である信号機TLの停止表示によって、停止線SLの手前側の給電可能路RCで停車した車両200に対して、給電可能路RCに設置された給電装置100から非接触で給電が可能な車両給電システムである。車両200は、例えば、電気自動車やハイブリッド車として構成される。なお、信号機TLは、車両が進行可能である旨を示す進行表示(例えば青信号である)、車両が進行不可である旨を示す停止表示(例えば赤信号である)、及び進行表示から停止表示に切り替わる間の注意表示(例えば黄信号)を行なう。なお、注意表示を行なわないものであっても良い。図1において、x軸方向は車両走行路RSの車線に沿った車両200の進行方向を示し、y軸方向は車両走行路RSの幅方向を示し、z軸方向は垂直上方向を示す。後述する他の図におけるx,y,z軸の方向も、図1と同じ方向を示している。
A. First Embodiment:
As shown in FIG. 1, the vehicle power supply system 10 stops at the power supply available road RC on the front side of the stop line SL by the stop display of the traffic light TL, which is a vehicle signal display device installed at an intersection of the vehicle travel path RS. This is a vehicle power supply system capable of supplying power to the vehicle 200 without contact from the power supply device 100 installed on the power supply possible road RC. The vehicle 200 is configured as, for example, an electric vehicle or a hybrid vehicle. The traffic light TL changes from a progress display (for example, a green light) indicating that the vehicle can proceed, a stop display (for example, a red light) indicating that the vehicle cannot proceed, and a progress display to a stop display. A caution display (for example, a yellow traffic light) is displayed during the switching. Note that the caution display may not be performed. In FIG. 1, the x-axis direction indicates the traveling direction of the vehicle 200 along the lane of the vehicle traveling path RS, the y-axis direction indicates the width direction of the vehicle traveling path RS, and the z-axis direction indicates the vertical upward direction. The directions of the x, y, and z axes in other figures described later also show the same directions as in FIG.

給電装置100は、複数のセグメントSegと、複数のセグメントSegに直流電力を供給する電源回路130と、複数のセグメントSegの動作を制御する制御装置140と、車両200との間で無線通信を行なう通信装置150と、車両停車位置を検出する車両停車位置検出部160と、を備えている。各セグメントSegは、送電共振回路110と、送電共振回路110に交流電力を供給する送電回路120と、を備えている。 The power supply device 100 performs wireless communication between the power supply circuit 130 that supplies DC power to the plurality of segment Segs, the plurality of segment Segs, the control device 140 that controls the operation of the plurality of segment Segs, and the vehicle 200. It includes a communication device 150 and a vehicle stop position detection unit 160 that detects a vehicle stop position. Each segment Seg includes a power transmission resonance circuit 110 and a power transmission circuit 120 that supplies AC power to the power transmission resonance circuit 110.

送電共振回路110は、車両走行路RS上の給電可能路RCに設置された送電コイル112と、不図示の共振コンデンサを有している。各セグメントSegの送電コイル112は、給電可能路RCの車線に沿った方向であるx方向に沿って設置されている。 The power transmission resonance circuit 110 has a power transmission coil 112 installed on a power supply available path RC on the vehicle travel path RS, and a resonance capacitor (not shown). The power transmission coil 112 of each segment Seg is installed along the x direction, which is the direction along the lane of the power supply available path RC.

送電回路120は、電源回路130から供給される直流電力を高周波の交流電力に変換して、送電コイル112に供給する回路である。送電回路120の構成例については後述する。電源回路130は、直流電力を送電回路120に供給する回路である。例えば、電源回路130は、外部電源の交流電圧を整流して直流電圧を出力するAC/DCコンバータ回路として構成される。 The power transmission circuit 120 is a circuit that converts DC power supplied from the power supply circuit 130 into high-frequency AC power and supplies it to the power transmission coil 112. A configuration example of the power transmission circuit 120 will be described later. The power supply circuit 130 is a circuit that supplies DC power to the power transmission circuit 120. For example, the power supply circuit 130 is configured as an AC / DC converter circuit that rectifies the AC voltage of the external power supply and outputs a DC voltage.

なお、図1は、複数のセグメントSegのうち、停止線SLに最も近い1番目のセグメントSeg1から4番目のセグメントSeg4までの4つのセグメントが示している。また、図1は、3番目のセグメントSeg3の送電コイル112の上方で、後述する車両200に搭載された受電装置205の受電コイル212が対向するように、車両200が停車している状態を例に示している。なお、「送電コイル112の上方で受電コイル212が対向する」とは、受電コイル212に対して送電コイル112とは反対側から受電コイル212及び送電コイル112を見たときに、送電コイル112のコイル面に対して受電コイル212のコイル面の少なくとも一部が重なっている状態を示している。コイル面は、ループ状の配線によって囲まれ、ループ状のコイルとして機能する面であり、図1においては、基本的にはxy平面に沿った面である。 Note that FIG. 1 shows four segments from the first segment Seg1 to the fourth segment Seg4, which are closest to the stop line SL, among the plurality of segment Segs. Further, FIG. 1 shows an example in which the vehicle 200 is stopped above the power transmission coil 112 of the third segment Seg3 so that the power receiving coil 212 of the power receiving device 205 mounted on the vehicle 200, which will be described later, faces the power receiving coil 212. It is shown in. In addition, "the power receiving coil 212 faces above the power transmitting coil 112" means that when the power receiving coil 212 and the power transmitting coil 112 are viewed from the side opposite to the power transmitting coil 112, the power transmitting coil 112 It shows a state in which at least a part of the coil surface of the power receiving coil 212 overlaps the coil surface. The coil surface is a surface surrounded by loop-shaped wiring and functions as a loop-shaped coil, and in FIG. 1, it is basically a surface along the xy plane.

また、図1では、受電コイル212の送電コイル112側を向くコイル面の大きさと、送電コイル112の受電コイル212側を向くコイル面の大きさが、送電コイル112の配列方向についてほほ同等で、送電コイル112が詰めて配置される構成を例に示している。但し、これに限定されるものではなく、配列された各セグメントSegの送電コイル112の大きさや配置間隔は、1つのセグメントSegで1台の車両への給電を受け持つように設定されていてもよい。 Further, in FIG. 1, the size of the coil surface of the power receiving coil 212 facing the power transmission coil 112 side and the size of the coil surface of the power transmission coil 112 facing the power transmission coil 212 side are almost the same in the arrangement direction of the power transmission coil 112. An example is shown in which the power transmission coils 112 are packed and arranged. However, the present invention is not limited to this, and the size and arrangement interval of the power transmission coils 112 of the arranged segment Segs may be set so that one segment Seg is responsible for supplying power to one vehicle. ..

通信装置150は、車両200との間で無線通信を行い、車両に関する情報を受け取って制御装置140に受け渡す。車両に関する情報については、後述する。 The communication device 150 performs wireless communication with the vehicle 200, receives information about the vehicle, and passes it to the control device 140. Information about the vehicle will be described later.

車両停車位置検出部160は、車両200の停車位置、より具体的には、車両200の受電コイル212の位置を検出し、受電コイル212に対向して、受電コイル212に送電が可能な送電コイル112の位置、すなわち、車両200に送電が可能なセグメントSegの位置を検出する。車両停車位置検出部160は、例えば、車両200の位置を検出する位置センサを利用して受電コイル212の位置を検出することで、受電コイル212に送電が可能な送電コイル112の位置、すなわち、車両200に送電が可能なセグメントSegの位置を検出することができる。その他、停止線SLから車両200の停車位置までの距離を車両200において検出し、無線通信により、車両200から受け取ることにより、受電コイル212の位置を検出することも可能である。車両停車位置検出部160は、検出した位置情報を制御装置140に供給する。 The vehicle stop position detection unit 160 detects the stop position of the vehicle 200, more specifically, the position of the power receiving coil 212 of the vehicle 200, faces the power receiving coil 212, and can transmit power to the power receiving coil 212. The position of 112, that is, the position of the segment Seg capable of transmitting power to the vehicle 200 is detected. The vehicle stop position detection unit 160 detects the position of the power receiving coil 212 by using, for example, a position sensor that detects the position of the vehicle 200, so that the position of the power transmission coil 112 capable of transmitting power to the power receiving coil 212, that is, The position of the segment Seg capable of transmitting power to the vehicle 200 can be detected. In addition, it is also possible to detect the position of the power receiving coil 212 by detecting the distance from the stop line SL to the stop position of the vehicle 200 in the vehicle 200 and receiving it from the vehicle 200 by wireless communication. The vehicle stop position detection unit 160 supplies the detected position information to the control device 140.

制御装置140は、車両200に関する情報及び車両200の停車位置の情報に応じて、車両200に電力を送電するセグメントSegの送電回路120の動作を制御することにより、車両200に対して給電を行なう。なお、制御装置140による給電制御動作については、後述する。 The control device 140 supplies power to the vehicle 200 by controlling the operation of the power transmission circuit 120 of the segment Seg that transmits electric power to the vehicle 200 according to the information about the vehicle 200 and the information on the stop position of the vehicle 200. .. The power supply control operation by the control device 140 will be described later.

車両200は、受電装置205と、メインバッテリ230と、モータジェネレータ240と、インバータ回路250と、DC/DCコンバータ回路260と、補機バッテリ270と、補機280と、制御装置290と、通信装置292と、停車位置検出部294と、を備えている。受電装置205は、受電共振回路210と受電回路220と、を有している。 The vehicle 200 includes a power receiving device 205, a main battery 230, a motor generator 240, an inverter circuit 250, a DC / DC converter circuit 260, an auxiliary battery 270, an auxiliary battery 280, a control device 290, and a communication device. It includes 292 and a stop position detection unit 294. The power receiving device 205 has a power receiving resonance circuit 210 and a power receiving circuit 220.

受電共振回路210は、車両200の底面に設置された受電コイル212と、不図示の共振コンデンサを含んでおり、送電共振回路110との間の電磁誘導現象によって受電コイルに誘導された交流電力を得る装置である。受電回路220は、受電共振回路210から出力される交流電力を直流電力に変換する回路である。受電回路220の具体的な構成例については後述する。受電回路220から出力される直流電力は、負荷としてのメインバッテリ230の充電に利用することができる。また、受電回路220から出力される直流電力は、補機バッテリ270の充電や、モータジェネレータ240の駆動、及び、補機280の駆動にも利用可能である。 The power receiving resonance circuit 210 includes a power receiving coil 212 installed on the bottom surface of the vehicle 200 and a resonance capacitor (not shown), and receives AC power induced in the power receiving coil by an electromagnetic induction phenomenon between the power transmission resonance circuit 110. It is a device to obtain. The power receiving circuit 220 is a circuit that converts AC power output from the power receiving resonance circuit 210 into DC power. A specific configuration example of the power receiving circuit 220 will be described later. The DC power output from the power receiving circuit 220 can be used to charge the main battery 230 as a load. Further, the DC power output from the power receiving circuit 220 can also be used for charging the auxiliary battery 270, driving the motor generator 240, and driving the auxiliary machine 280.

メインバッテリ230は、モータジェネレータ240を駆動するための直流電力を出力する2次電池である。モータジェネレータ240は、モータとして動作し、車両200の走行のための駆動力を発生する。モータジェネレータ240は、車両200の減速時にはジェネレータとして動作し、交流電力を発生する。インバータ回路250は、モータジェネレータ240がモータとして動作するとき、メインバッテリ230の直流電力を交流電力に変換してモータジェネレータ240を駆動する。インバータ回路250は、モータジェネレータ240がジェネレータとして動作するとき、モータジェネレータ240が出力する交流電力を直流電力に変換してメインバッテリ230に供給する。なお、一般的には、モータジェネレータには3相モータが用いられ、インバータには3相モータに対応する3相構造のインバータが用いられる。但し、これに限定されるものではなく、3相以上の多相モータ及びこれに対応する多相構造のインバータが用いられてもよい。また、モータジェネレータ、インバータは複数備えられる構成であってもよい。 The main battery 230 is a secondary battery that outputs DC power for driving the motor generator 240. The motor generator 240 operates as a motor and generates a driving force for traveling the vehicle 200. The motor generator 240 operates as a generator when the vehicle 200 is decelerated, and generates AC power. When the motor generator 240 operates as a motor, the inverter circuit 250 converts the DC power of the main battery 230 into AC power to drive the motor generator 240. When the motor generator 240 operates as a generator, the inverter circuit 250 converts the AC power output by the motor generator 240 into DC power and supplies it to the main battery 230. Generally, a three-phase motor is used for the motor generator, and an inverter having a three-phase structure corresponding to the three-phase motor is used for the inverter. However, the present invention is not limited to this, and a three-phase or more multi-phase motor and a corresponding multi-phase structure inverter may be used. Further, a plurality of motor generators and inverters may be provided.

DC/DCコンバータ回路260は、メインバッテリ230の直流電圧を、より低い直流電圧に変換して補機バッテリ270及び補機280に供給する。補機バッテリ270は、補機280を駆動するための直流電力を出力する2次電池である。補機280は、空調装置や電動パワーステアリング装置等の周辺装置である。 The DC / DC converter circuit 260 converts the DC voltage of the main battery 230 into a lower DC voltage and supplies it to the auxiliary battery 270 and the auxiliary 280. The auxiliary battery 270 is a secondary battery that outputs DC power for driving the auxiliary battery 280. The auxiliary machine 280 is a peripheral device such as an air conditioner or an electric power steering device.

通信装置292は、給電装置100の通信装置150との間で無線通信を行い、制御装置290から受け取った車両200に関する情報を、給電装置100に送信する。 The communication device 292 performs wireless communication with the communication device 150 of the power supply device 100, and transmits information about the vehicle 200 received from the control device 290 to the power supply device 100.

停車位置検出部294は、車両200の停車位置を検出する。より具体的には、停止線SLの手前側の車両走行路RS上の給電可能路RCで停車したか否かを、例えば、撮像カメラ等の位置センサにより検出する。但し、これに限定されるものではなく、給電可能路RCで停車したか否かを検出可能であれば、その検出方法に制限はない。 The stop position detection unit 294 detects the stop position of the vehicle 200. More specifically, whether or not the vehicle has stopped at the power supply available road RC on the vehicle travel path RS on the front side of the stop line SL is detected by, for example, a position sensor such as an imaging camera. However, the present invention is not limited to this, and there is no limitation on the detection method as long as it is possible to detect whether or not the vehicle has stopped on the power supply available road RC.

制御装置290は、車両200内の各部を制御する。また、制御装置290は、給電可能路RCで停車した際には、後述するように、通信装置292を介して給電装置100へ車両に関する情報を送信する。そして、制御装置290は、受電コイル212に対向する送電コイル112を有するセグメントSeg(図1では、セグメントSeg3)から非接触給電を受けるように、受電回路220の動作を制御する。 The control device 290 controls each part in the vehicle 200. Further, when the control device 290 stops on the power supply available path RC, the control device 290 transmits information about the vehicle to the power supply device 100 via the communication device 292, as will be described later. Then, the control device 290 controls the operation of the power receiving circuit 220 so as to receive non-contact power supply from the segment Seg (segment Seg3 in FIG. 1) having the power transmission coil 112 facing the power receiving coil 212.

給電装置100の1つのセグメントSegと、車両200の受電装置205は、例えば、図2に示す回路で構成されている。図2は、図1に示すように、受電コイル212に対向する送電コイル112を有する3番目のセグメントSeg3と、受電コイル212を有する受電装置205との間で送電が行なわれている状態を一例に示している。 One segment Seg of the power feeding device 100 and the power receiving device 205 of the vehicle 200 are composed of, for example, the circuit shown in FIG. As shown in FIG. 1, FIG. 2 shows, as an example, a state in which power transmission is performed between the third segment Seg3 having the power transmitting coil 112 facing the power receiving coil 212 and the power receiving device 205 having the power receiving coil 212. It is shown in.

送電共振回路110は、直列に接続された送電コイル112と共振コンデンサ116とを有している。受電共振回路210も、送電共振回路110と同様に、直列に接続された受電コイル212と共振コンデンサ216とを有している。送電共振回路110及び受電共振回路210には、一次直列二次直列コンデンサ方式(「SS方式」とも呼ばれる)が適用されている。また、送電側が単相の送電コイル112で構成され、受電側が単相の受電コイル212で構成された送電側単相−受電側単相の非接触給電方式が適用されている。 The power transmission resonance circuit 110 has a power transmission coil 112 and a resonance capacitor 116 connected in series. Like the power transmission resonance circuit 110, the power reception resonance circuit 210 also has a power reception coil 212 and a resonance capacitor 216 connected in series. A primary series secondary series capacitor system (also referred to as “SS system”) is applied to the power transmission resonance circuit 110 and the power reception resonance circuit 210. Further, a non-contact power feeding system of a single-phase power transmission side to a single-phase power reception side is applied, in which the power transmission side is composed of a single-phase power transmission coil 112 and the power reception side is composed of a single-phase power reception coil 212.

送電回路120は、電源回路130からの直流電力を交流電力に変換するインバータ回路122と、伝送する交流電力の基本周波数成分よりも高い高周波成分を低減させるフィルタ回路124とを備えている。フィルタ回路124としては、イミタンス変換回路やローパスフィルタ回路、バンドパスフィルタ回路等のフィルタ回路が用いられる。但し、フィルタ回路124は省略可能である。 The power transmission circuit 120 includes an inverter circuit 122 that converts DC power from the power supply circuit 130 into AC power, and a filter circuit 124 that reduces a high frequency component higher than the basic frequency component of the AC power to be transmitted. As the filter circuit 124, a filter circuit such as an imittance conversion circuit, a low-pass filter circuit, or a band-pass filter circuit is used. However, the filter circuit 124 can be omitted.

なお、インバータ回路122の作動状態は、制御装置140によって制御される。インバータ回路122が作動状態のセグメントSegは送電可能な状態とされ、インバータ回路122が非作動状態のセグメントSegは送電不可な状態とされる。 The operating state of the inverter circuit 122 is controlled by the control device 140. The segment Seg in which the inverter circuit 122 is in the operating state is in a state where power transmission is possible, and the segment Seg in which the inverter circuit 122 is in the non-operating state is in a state in which power transmission is not possible.

受電回路220は、受電する交流電力の基本周波数成分よりも高い周波数成分を低減させるフィルタ回路224と、フィルタ回路224からの交流電力を直流電力に変換する整流回路226と、メインバッテリ230の充電に適した直流電圧の電力に変換する電力変換回路としてのDC/DCコンバータ回路228とを備えている。フィルタ回路224にも、フィルタ回路124と同様に、イミタンス変換回路やローパスフィルタ回路、バンドパスフィルタ回路等のフィルタ回路が用いられる。但し、フィルタ回路224は省略可能である。 The power receiving circuit 220 is used for charging the main battery 230, a filter circuit 224 that reduces a frequency component higher than the basic frequency component of the received AC power, a rectifier circuit 226 that converts the AC power from the filter circuit 224 into DC power. It includes a DC / DC converter circuit 228 as a power conversion circuit that converts the power into a suitable DC voltage. Similar to the filter circuit 124, the filter circuit 224 also uses a filter circuit such as an imittance conversion circuit, a low-pass filter circuit, and a band-pass filter circuit. However, the filter circuit 224 can be omitted.

なお、図2に示した構成は、直列共振を利用した単相の送電共振回路及び受電共振回路を例に説明したが、これに限定されるものではない。並列共振を利用した送電共振回路及び受電共振回路としてもよく、いずれか一方は直列共振で他方は並列共振を利用した共振回路としてもよい。また、単相の共振回路に限定されるものではなく、少なくとも一方が複数相の共振回路による非接触給電方式であってもよい。 The configuration shown in FIG. 2 has been described by taking a single-phase power transmission resonance circuit and a power reception resonance circuit using series resonance as an example, but the present invention is not limited thereto. A power transmission resonance circuit and a power reception resonance circuit using parallel resonance may be used, and one of them may be a series resonance and the other may be a resonance circuit using parallel resonance. Further, the present invention is not limited to a single-phase resonant circuit, and at least one of them may be a non-contact feeding system using a plurality of phase resonant circuits.

車両200の制御装置290が図3に示す受電制御処理を実行し、各給電可能路RCに設置された給電装置100が図4に示す給電制御処理を実行することにより、車両200が給電可能路RCで停車した際に、給電装置100から車両200に対して非接触給電が行なわれる。なお、以下では、車両200の制御装置290を「車両側制御装置290」とも呼び、給電装置100の制御装置140を「給電装置側制御装置140」とも呼ぶ。 The control device 290 of the vehicle 200 executes the power receiving control process shown in FIG. 3, and the power supply device 100 installed in each power supply possible path RC executes the power supply control process shown in FIG. 4, so that the vehicle 200 can supply power. When the vehicle is stopped at RC, non-contact power is supplied from the power supply device 100 to the vehicle 200. In the following, the control device 290 of the vehicle 200 is also referred to as a "vehicle side control device 290", and the control device 140 of the power supply device 100 is also referred to as a "power supply device side control device 140".

ここで、車両側制御装置290による受電制御処理の実行は、例えば、車両200に搭載されているナビゲーション装置を用いて、ドライバーが出発地及び目的地を設定し、これに対応する走行経路を選択して、走行経路の設定を完了することで行なわれる。また、給電装置側制御装置140による給電制御処理の開始は、例えば、装置の起動に伴って行なわれる。 Here, in the execution of the power receiving control process by the vehicle-side control device 290, for example, the driver sets the departure point and the destination by using the navigation device mounted on the vehicle 200, and selects the traveling route corresponding thereto. Then, the setting of the traveling route is completed. Further, the power supply control process by the power supply device side control device 140 is started, for example, when the device is started.

車両側制御装置290は、図3に示す受電制御処理を開始すると、まず、走行経路の情報を取得する(ステップS210)。なお、走行経路の情報としては、初期設定時には、上記のように選択決定された情報がナビゲーション装置から取得され、走行経路に沿って走行中は、走行状況に応じて更新された情報がナビゲーション装置から取得される。走行経路の情報には、例えば、目的地までの距離等の目的地に到着するまでに要する電力量を計算するために必要な種々の情報や、目的地までの走行経路にある給電可能路RCの位置の情報、目的地に応じて設定されるバッテリの蓄電量(「SOC」とも呼ばれる)の要求値、バッテリに蓄電可能な最大値(「バッテリ容量」とも呼ばれる)等が含まれる。 When the vehicle-side control device 290 starts the power receiving control process shown in FIG. 3, the vehicle-side control device 290 first acquires information on the traveling route (step S210). As for the travel route information, at the time of initial setting, the information selected and determined as described above is acquired from the navigation device, and while traveling along the travel route, the updated information according to the travel condition is the navigation device. Obtained from. The travel route information includes various information necessary for calculating the amount of electric power required to reach the destination, such as the distance to the destination, and the power supply available path RC in the travel route to the destination. The information on the position of the battery, the required value of the battery storage amount (also referred to as "SOC") set according to the destination, the maximum value that can be stored in the battery (also referred to as "battery capacity"), and the like are included.

そして、車両側制御装置290は、走行経路の情報から、目的地までに必要な電力量を計算し(ステップS220)、目的地までの残りの給電機会の残数、すなわち、給電可能路RCの数を計算し(ステップS230)、1回の給電機会の給電電力を計算する(ステップS240)。1回の給電機会の給電電力Pfは、現在値から目的地までに必要な電力量Wrqと、現在値から目的地までの走行経路上の給電可能路RCの数で表される給電機会の数Ncと、各給電可能路RCに停車する確率ksと、1回の給電機会において給電可能路RCに停車している平均停車時間tmとから、以下のように求めることができる。なお、[(給電機会の数Nc)・(停車確率ks)]は、推定される実給電機会数を示しており、(1回の給電機会の給電電力Pf)は、実給電機会数で平均化した単位時間当たりの給電量を示している。
(1回の給電機会の給電電力Pf)=(目的地までに必要な電力量Wrq)/[(給電機会の数Nc)・(停車確率ks)・(平均停車時間tm)] ・・・(1)
Then, the vehicle-side control device 290 calculates the amount of electric power required to reach the destination from the travel route information (step S220), and the remaining number of remaining power supply opportunities to the destination, that is, the power supply available path RC. The number is calculated (step S230), and the power supply power for one power supply opportunity is calculated (step S240). The power supply power Pf of one power supply opportunity is the number of power supply opportunities represented by the amount of power Wrq required from the current value to the destination and the number of power supply possible paths RC on the travel route from the current value to the destination. From Nc, the probability ks of stopping at each power supply available road RC, and the average stop time tm of stopping at each power supply available road RC at one power supply opportunity, it can be obtained as follows. In addition, [(number of power supply opportunities Nc) / (stop probability ks)] indicates the estimated number of actual power supply opportunities, and (power supply power Pf of one power supply opportunity) is averaged by the number of actual power supply opportunities. It shows the amount of power supplied per unit time.
(Power supply power Pf for one power supply opportunity) = (Power amount required to reach the destination Wrq) / [(Number of power supply opportunities Nc), (Stop probability ks), (Average stop time tm)] ... ( 1)

なお、車両側制御装置290は、信号機TLの停止表示により停止線SL(図1参照)の手前側の給電可能路RCで自身の車両200が停車するまで(ステップS250:NO)、ステップS220〜S240を繰り返す。ここで、停止線SLの手前側の給電可能路RCで自身が停車したか否かは、停車位置検出部294の検出結果で判断可能である。なお、給電装置100から無線通信により、停車の通知を受け取ることによって判断することも可能である。 It should be noted that the vehicle-side control device 290 is in steps S220 to S220 until its own vehicle 200 stops at the power supply available path RC on the front side of the stop line SL (see FIG. 1) by the stop display of the traffic light TL (step S250: NO). Repeat S240. Here, whether or not the vehicle has stopped on the power supply available path RC on the front side of the stop line SL can be determined from the detection result of the stop position detection unit 294. It is also possible to make a judgment by receiving a stop notification from the power feeding device 100 by wireless communication.

給電可能路RCで自身の車両200が停車した場合には(ステップS250:YES)、車両側制御装置290は、車両に関する情報を無線通信により、停車した給電可能路RCの給電装置100へ送信する(ステップS260)。車両に関する情報としては、例えば、車両IDや、バッテリのSOC、バッテリ容量、1回の給電機会の給電電力Pf、給電機会の残数Nc等が含まれる。 When the own vehicle 200 is stopped on the power supply available road RC (step S250: YES), the vehicle side control device 290 transmits information about the vehicle to the power supply device 100 of the stopped power supply available road RC by wireless communication. (Step S260). The information about the vehicle includes, for example, the vehicle ID, the SOC of the battery, the battery capacity, the power supply power Pf of one power supply opportunity, the remaining number Nc of the power supply opportunity, and the like.

そして、車両側制御装置290は、受電回路220を制御して、給電装置100から供給される電力の受電を実行する(ステップS270)。なお、給電装置100からの給電については、後述する。また、車両側制御装置290は、再び走行を開始するまで受電を継続した後、それまでに受電した電力量、すなわち、給電装置100からの給電量Wfを計算する(ステップS280)。なお、計算結果は、次回のステップS220における必要電力量Wrqの計算に利用される。そして、車両側制御装置290は、目的地に到達して処理を終了するまで(ステップS290:NO)、ステップS210〜S280の処理を繰り返す。 Then, the vehicle-side control device 290 controls the power receiving circuit 220 to receive the electric power supplied from the power feeding device 100 (step S270). The power supply from the power supply device 100 will be described later. Further, the vehicle-side control device 290 continues to receive power until the vehicle starts traveling again, and then calculates the amount of power received up to that point, that is, the amount of power supplied from the power supply device 100 Wf (step S280). The calculation result will be used for the calculation of the required electric energy Wrq in the next step S220. Then, the vehicle-side control device 290 repeats the processes of steps S210 to S280 until the destination is reached and the process is completed (step S290: NO).

一方、走行経路中の給電装置100の給電装置側制御装置140は、図4に示す給電制御処理を開始すると、まず、信号機TLの停止表示により停止した車両があると判断するまで(ステップS110:NO)、待機する。なお、この判断は、車両停車位置検出部160の検出結果に従って行なわれる。 On the other hand, when the power supply control device 140 of the power supply device 100 in the traveling path starts the power supply control process shown in FIG. 4, it first determines that there is a vehicle stopped by the stop display of the traffic light TL (step S110: NO), wait. This determination is made according to the detection result of the vehicle stop position detection unit 160.

停止表示により停止した車両200があった場合には(ステップS110:YES)、給電装置側制御装置140は、その車両200から送信されたその車両に関する情報を無線通信により受信する(ステップS120)。なお、停車した車両が複数あった場合には、それぞれから送信されたそれぞれの情報を受信する。そして、給電装置側制御装置140は、受信した情報のそれぞれに含まれる1回の給電機会の給電電力Pfから、給電装置100がそれぞれの車両に対して給電する給電電力の総量ΣPfを計算する(ステップS130)。 When there is a vehicle 200 stopped by the stop display (step S110: YES), the power supply device side control device 140 receives the information about the vehicle transmitted from the vehicle 200 by wireless communication (step S120). If there are a plurality of stopped vehicles, the respective information transmitted from each is received. Then, the power supply device side control device 140 calculates the total amount of power supply power ΣPf supplied by the power supply device 100 to each vehicle from the power supply power Pf of one power supply opportunity included in each of the received information ( Step S130).

計算した給電電力の総量ΣPfが給電装置100において同時に給電可能な電力の上限値(「給電可能量」とも呼ぶ)PU以上である場合には(ステップS140:YES)、給電装置側制御装置140は、給電電力の総量ΣPfが上限値PU未満となるように、各車両のそれぞれに関連付けられている優先度に従って各車両に分配する給電電力を計算して、実際に給電する給電電力を設定する。なお、優先度としては、例えば、メインバッテリ230のSOCと給電機会の残数との積を用いることができる。そして、この積の値が小さいほど優先度が高く、分配する割合を高くして、給電電力を設定すればよい。なお、優先度としては、現在位置から目的地までの距離や、バッテリ容量、車重、消費電力(いわゆる電費に相当する)、冷却料金等を利用して優先度を決定するようにしてもよい。 When the calculated total amount of power supply ΣPf is equal to or greater than the upper limit value (also referred to as “power supply capacity”) PU of the power supply device 100 that can simultaneously supply power (step S140: YES), the power supply device side control device 140 , The power supply power to be distributed to each vehicle is calculated according to the priority associated with each vehicle so that the total amount of power supply power ΣPf is less than the upper limit value PU, and the power supply power to be actually supplied is set. As the priority, for example, the product of the SOC of the main battery 230 and the remaining number of power supply opportunities can be used. Then, the smaller the value of this product, the higher the priority, and the distribution ratio may be increased to set the power supply. As the priority, the priority may be determined by using the distance from the current position to the destination, the battery capacity, the vehicle weight, the power consumption (corresponding to the so-called electricity cost), the cooling charge, and the like. ..

一方、計算した給電電力の総量ΣPfが上限値PU未満である場合には(ステップS140:NO)、給電装置側制御装置140は、受信した各車両の1回の給電機会の給電電力Pfを、実際に給電する給電電力に設定する。 On the other hand, when the calculated total amount of power supply power ΣPf is less than the upper limit value PU (step S140: NO), the power supply device side control device 140 sets the power supply power Pf of one power supply opportunity of each received vehicle. Set to the power supply that is actually supplied.

次に、給電装置側制御装置140は、給電を実行するセグメントSeg(図1参照)の給電量が設定した給電量となるようにインバータ回路122の動作を制御して、給電を実行する(ステップS160)。なお、複数のセグメントSegにおいて複数の車両に対して給電を行なう場合には、それぞれのSegのインバータ回路122の動作を制御して、それぞれに対して給電を実行する。 Next, the power supply device side control device 140 controls the operation of the inverter circuit 122 so that the power supply amount of the segment Seg (see FIG. 1) that executes power supply becomes the set power supply amount, and executes power supply (step). S160). When power is supplied to a plurality of vehicles in a plurality of segment Segs, the operation of the inverter circuit 122 of each Seg is controlled to supply power to each of them.

そして、給電装置側制御装置140は、信号機TLの進行表示により、車両が再走行となるまで(ステップS170:NO)、ステップS120〜S160の処理を繰り返して給電を実行する。また、給電装置側制御装置140は、車両が再走行となった場合(ステップS170:YES)、実行していた給電動作を停止させる。そして、給電装置側制御装置140は、給電装置100の動作を終了させるまで(ステップS190:NO)、ステップS110〜ステップS170の処理を繰り返し実行して、給電可能路RCに停車する車両に対する給電を実行する。なお、「車両が再走行となるか否かの判断は」、実際に再走行したか否かではなく、再走行可能な状態となったか否かの判断であり、信号機TLが進行表示となったか否かで判断される。 Then, the power supply device side control device 140 repeats the processes of steps S120 to S160 to execute power supply until the vehicle is restarted (step S170: NO) by the progress display of the traffic light TL. Further, when the vehicle is restarted (step S170: YES), the power feeding device side control device 140 stops the power feeding operation that has been executed. Then, the power supply device side control device 140 repeatedly executes the processes of steps S110 to S170 until the operation of the power supply device 100 is completed (step S190: NO) to supply power to the vehicle stopped on the power supply possible path RC. Execute. It should be noted that "determination of whether or not the vehicle will be re-running" is not whether or not the vehicle has actually re-running, but whether or not it is in a re-running state, and the traffic light TL is displayed as progress. It is judged by whether or not it is.

以上のように、車両200において、出発地から目的地に到着するまでの間、図3に示した処理が実行される。また、各給電可能路RCの給電装置100において、図4に示した処理が実行される。これにより、以下で説明するように、出発地から目的地までの走行経路に沿って走行する場合において、車両200が停車した給電可能路RCの給電装置100から車両200に対して、調整された1回の給電機会の給電電力で給電が実行され、車両200のメインバッテリ230のSOCが調整される。 As described above, in the vehicle 200, the process shown in FIG. 3 is executed from the departure point to the arrival at the destination. In addition, the process shown in FIG. 4 is executed in the power supply device 100 of each power supply possible path RC. As a result, as described below, when the vehicle travels along the travel route from the departure point to the destination, the power supply device 100 of the power supply enable road RC in which the vehicle 200 is stopped is adjusted with respect to the vehicle 200. The power supply is executed by the power supply power of one power supply opportunity, and the SOC of the main battery 230 of the vehicle 200 is adjusted.

以下の説明及び後述する各実施形態では、図5に示すように、出発地から、給電装置100が設置された給電可能路RCを有する3つの交差点1,2,3を経由して、目的地に至る走行経路を前提として、車両200に対する1回の給電機会の給電電力による給電及びメインバッテリ230のSOCの調整について説明する。 In the following description and each embodiment described later, as shown in FIG. 5, the destination is from the starting point via three intersections 1, 2, and 3 having a power feeding possible path RC in which the power feeding device 100 is installed. On the premise of the traveling route leading to the above, the power supply by the power supply power of one power supply opportunity to the vehicle 200 and the adjustment of the SOC of the main battery 230 will be described.

図6は、以下で説明するように、車両200が、3つの交差点1,2,3のそれぞれの給電可能路RCにおいて、信号機TLの停止表示(赤信号である)によって停車して、車両200に対してそれぞれの給電装置100からの給電が実行された場合について示している。 In FIG. 6, as described below, the vehicle 200 is stopped by the stop display (red light) of the traffic light TL at each of the power supply available paths RC at the three intersections 1, 2, and 3, and the vehicle 200 is shown. The case where the power supply from each power supply device 100 is executed is shown.

[1]交差点1における給電
交差点1では、出発地から交差点1までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf1での給電(図3のステップS240)が実行される。
[1] Power supply at intersection 1 At intersection 1, power supply at the power supply power Pf1 obtained by the following calculation (steps S220 to S240 in FIG. 3) from the departure point to intersection 1 (step S240 in FIG. 3) is performed. Will be executed.

[1−1]必要電力量の計算(ステップS220)
走行経路の情報から、出発地から交差点1までの第1消費電力量Wc1、交差点1から交差点2までの第2消費電力量Wc2、交差点2から交差点3までの第3消費電力量Wc3、及び、交差点3から目的地までの第4消費電力量Wc4を計算する。そして、出発地から目的地の手前にある最後の交差点3までの消費電力量の総量S1=(Wc1+Wc2+Wc3)を計算する。
[1-1] Calculation of required electric energy (step S220)
From the travel route information, the first power consumption Wc1 from the departure point to the intersection 1, the second power consumption Wc2 from the intersection 1 to the intersection 2, the third power consumption Wc3 from the intersection 2 to the intersection 3, and The fourth power consumption Wc4 from the intersection 3 to the destination is calculated. Then, the total amount of power consumption S1 = (Wc1 + Wc2 + Wc3) from the starting point to the last intersection 3 in front of the destination is calculated.

また、目的地に到着時のバッテリ残量の要求値である目的地要求残量Weと第4消費電力量Wc4を加算することにより、最後の交差点3の給電可能路RCでの給電後におけるメインバッテリ230のSOCの値(以下、「バッテリ残量」とも呼ぶ)の要求値Wtを計算する。なお、目的地要求残量Weは、少なくとも、設定された目的地から他の目的地に出発した際に、目的地の周囲のいずれかの給電可能路RCまで到達するのに要する電力量以上となるように設定されればよい。例えば、目的地要求残量Weは、目的地から予め定めた距離移動するのに要する電力量に設定することができる。予め定めた距離は、例えば、目的地からその距離を半径とする周囲内に、停車確率を考慮してあらかじめ設定された数の給電可能路RCが含まれるように設定することができる。 Further, by adding the destination required remaining amount We, which is the required value of the remaining battery level at the time of arrival at the destination, and the fourth power consumption amount Wc4, the main after power supply on the power supply possible path RC at the last intersection 3 The required value Wt of the SOC value of the battery 230 (hereinafter, also referred to as “remaining battery capacity”) is calculated. The destination required remaining amount We is at least the amount of electric power required to reach any of the power supply possible paths RC around the destination when departing from the set destination to another destination. It may be set so as to be. For example, the destination required remaining amount We can be set to the amount of electric power required to move a predetermined distance from the destination. The predetermined distance can be set so that, for example, a predetermined number of power supply possible roads RC are included in the surrounding area having the distance from the destination as the radius in consideration of the stop probability.

また、要求値Wtから出発地におけるバッテリ残量Ws(以下、「出発地残量Ws」とも呼ぶ)を減算することにより、出発地残量Wsを要求値Wtまで増加させるために必要な要求電力量(Wt−Ws)を計算する。 Further, the required power required to increase the remaining battery Ws at the departure point to the required value Wt by subtracting the remaining battery Ws at the departure point (hereinafter, also referred to as "remaining amount Ws at the departure point") from the required value Wt. Calculate the quantity (Wt-Ws).

そして、出発地から目的地までの必要電力量Wrq1を計算する。必要電力量Wrq1は、以下のように、出発地から最後の交差点3までの消費電力の総量S1に、要求増加量(Wt−Ws)を加算した値として求めることができる。また、必要電力量Wrq1は、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算した値として求めることもできる。
Wrq1=S1+(WtーWs)
=(Wc1+Wc2+Wc3+Wc4)+(We−Ws)
=ΣWc+(We−Ws)
Then, the required electric energy Wrq1 from the starting point to the destination is calculated. The required electric energy Wrq1 can be obtained as a value obtained by adding the required increase amount (Wt-Ws) to the total amount of power consumption S1 from the departure point to the last intersection 3 as described below. Further, the required electric energy Wrq1 is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the departure point to the destination as shown below. It can also be obtained as a value obtained by adding We-Ws).
Wrq1 = S1 + (Wt-Ws)
= (Wc1 + Wc2 + Wc3 + Wc4) + (We-Ws)
= ΣWc + (We-Ws)

[1−2]給電機会残数(ステップS230)
出発地から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、出発地から目的地までの間の給電機会残数Ncの値Nc1を計算することができる。なお、本例ではNc1=3である。
[1-2] Remaining power supply opportunity (step S230)
By calculating the number of intersections having power supply available road RC included in the travel route from the departure point to the destination, the value Nc1 of the remaining number of power supply opportunities Nc between the departure point and the destination can be calculated. .. In this example, Nc1 = 3.

[1−3]1回の給電機会の給電電力(ステップS240)
交差点1における1回の給電機会の給電電力Pf1は、上式(1)に基づいて以下のように求めることができる。
Pf1=Wrq1/(Nc1・ks・tm)
=Wrq1/(3・ks・tm)
なお、ksは走行経路中の交差点における給電可能路に停車する確率、tmは1回の給電機会において給電可能路RCに停車している平均時間である。停車確率ksは、例えば、各交差点で停車する場合をks=1として、交通流の状態に応じて1未満の値に設定される。
[1-3] Power supply power for one power supply opportunity (step S240)
The power supply power Pf1 of one power supply opportunity at the intersection 1 can be obtained as follows based on the above equation (1).
Pf1 = Wrq1 / (Nc1, ks, tm)
= Wrq1 / (3 ・ ks ・ tm)
In addition, ks is the probability of stopping at the power supply available road at the intersection in the traveling route, and tm is the average time of stopping at the power supply possible road RC at one power supply opportunity. The stop probability ks is set to a value less than 1 according to the state of the traffic flow, for example, when the vehicle stops at each intersection, ks = 1.

[1−4]交差点1における給電(ステップS270)
交差点1の給電可能路RCでは、上記[1−3]で求められた給電電力Pf1で、停車時間t1の間だけ給電が行なわれ、給電量Wf1=(Pf1・t1)だけバッテリのSOCが増加される。これにより、図6に示すように、バッテリのSOCが、出発地残量Wsから、交差点1の出発時残量Ws1まで増加される。なお、交差点1の出発時残量Ws1は、Ws1=(Ws−Wc1+Wf1)で表される。
[1-4] Power supply at intersection 1 (step S270)
In the power supply available path RC at the intersection 1, power is supplied only during the stop time t1 with the power supply power Pf1 obtained in the above [1-3], and the SOC of the battery increases by the power supply amount Wf1 = (Pf1 · t1). Will be done. As a result, as shown in FIG. 6, the SOC of the battery is increased from the remaining amount Ws at the departure point to the remaining amount Ws1 at the time of departure at the intersection 1. The remaining amount Ws1 at the time of departure at the intersection 1 is represented by Ws1 = (Ws−Wc1 + Wf1).

[2]交差点2における給電
交差点2では、再出発地である交差点1から交差点2までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf2での給電(図3のステップS240)が実行される。
[2] Power supply at intersection 2 At intersection 2, power is supplied by the power supply power Pf2 obtained by the following calculation (steps S220 to S240 in FIG. 3) between the intersection 1 and the intersection 2 which are the restarting points (FIG. 3). Step S240) is executed.

[2−1]必要電力量の計算(ステップS220)
上記[1]の交差点1における給電の場合と同様に、出発地に対応する走行再開地である交差点1から目的地までの必要電力量Wrq2を計算する。必要電力量Wrq2は、以下のように、交差点1から最後の交差点3までの消費電力の総量S2=(Wc2+Wc3)に、要求値Wtと交差点1の出発時残量Ws1の差から求められる要求増加量(Wt−Ws1)を加算した値として求めることができる。また、必要電力量Wrq2は、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算し、交差点1における1回の給電機会の給電量Wf1を減算した値として求めることもできる。さらにまた、必要電力量Wrq2は、以下のように、出発地から目的地までの必要電力量Wrq1から、給電量Wf1を減算した値として求めることもできる。
Wrq2=S2+(Wt−Ws1)
=Wc2+Wc3+(We+Wc4)−(Ws−Wc1+Pf1)
=ΣWc+(We−Ws)−Wf1
=Wrq1−Wf1
[2−2]給電機会残数(ステップS220)
交差点1から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、交差点1から目的地までの間の給電機会残数Ncの値Nc2を計算することができる。なお、本例ではNC2=(Nc1−1)=2である。
[2-1] Calculation of required electric energy (step S220)
Similar to the case of power supply at the intersection 1 of the above [1], the required electric energy Wrq2 from the intersection 1 which is the restarting place corresponding to the starting place to the destination is calculated. The required electric energy Wrq2 is an increase required from the difference between the required value Wt and the remaining amount Ws1 at the start of the intersection 1 in the total amount of power consumption S2 = (Wc2 + Wc3) from the intersection 1 to the last intersection 3 as shown below. It can be obtained as a value obtained by adding the amount (Wt-Ws1). Further, the required electric energy Wrq2 is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the departure point to the destination as shown below. We-Ws) can also be added and obtained as a value obtained by subtracting the power supply amount Wf1 of one power supply opportunity at the intersection 1. Furthermore, the required electric energy Wrq2 can also be obtained as a value obtained by subtracting the power supply amount Wf1 from the required electric energy Wrq1 from the starting point to the destination as follows.
Wrq2 = S2 + (Wt-Ws1)
= Wc2 + Wc3 + (We + Wc4)-(Ws-Wc1 + Pf1)
= ΣWc + (We-Ws) -Wf1
= Wrq1-Wf1
[2-2] Remaining power supply opportunity (step S220)
By calculating the number of intersections having a power supply available path RC included in the traveling route from the intersection 1 to the destination, the value Nc2 of the remaining number of power supply opportunities Nc between the intersection 1 and the destination can be calculated. .. In this example, NC2 = (Nc1-1) = 2.

[2−3]1回の給電機会の給電電力(ステップS230)
交差点2における1回の給電機会の給電電力Pf2は、上式(1)に基づいて以下のように求めることができる。
Pf2=Wrq2/(Nc2・ks・tm)
=Wrq2/(2・ks・tm)
=(Wrq1−Wf1)/(2・ks・tm)
[2-3] Power supply power for one power supply opportunity (step S230)
The power supply power Pf2 of one power supply opportunity at the intersection 2 can be obtained as follows based on the above equation (1).
Pf2 = Wrq2 / (Nc2 ・ ks ・ tm)
= Wrq2 / (2 ・ ks ・ tm)
= (Wrq1-Wf1) / (2 ・ ks ・ tm)

[2−4]交差点2における給電(ステップS270)
交差点2の給電可能路RCでは、上記[2−3]で求められた1回の給電機会の給電電力Pf2で、停車時間t2の間だけ給電が行なわれ、給電量Wf2=(Pf2・t2)だけバッテリのSOCが増加される。これにより、図6に示すように、バッテリのSOCが、交差点1の出発時残量Ws1から、交差点2の出発時残量Ws2まで増加される。なお、交差点2の出発時残量Ws2は、Ws2=(Ws1−Wc2+Wf2)、すなわち、Ws2=(Ws−Wc1−Wc2+Wf1+Wf2)で表される。
[2-4] Power supply at intersection 2 (step S270)
In the power supply available path RC at the intersection 2, power is supplied only during the stop time t2 with the power supply power Pf2 of one power supply opportunity obtained in the above [2-3], and the power supply amount Wf2 = (Pf2 · t2). Only the SOC of the battery is increased. As a result, as shown in FIG. 6, the SOC of the battery is increased from the starting remaining amount Ws1 at the intersection 1 to the starting remaining amount Ws2 at the intersection 2. The remaining amount Ws2 at the departure of the intersection 2 is represented by Ws2 = (Ws1-Wc2 + Wf2), that is, Ws2 = (Ws-Wc1-Wc2 + Wf1 + Wf2).

[3]交差点3における給電
交差点3では、再出発地である交差点2から交差点3までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf3での給電(図3のステップS240)が実行される。
[3] Power supply at intersection 3 At intersection 3, power is supplied by the power supply power Pf3 obtained by the following calculation (steps S220 to S240 in FIG. 3) between the intersection 2 and the intersection 3 which are the restarting points (FIG. 3). Step S240) is executed.

[3−1]必要電力量の計算(ステップS220)
上記[2]の交差点2における給電の場合と同様に、走行再開地である交差点2から目的地までの必要電力量Wrq3を計算する。すなわち、必要電力量Wrq3は、以下のように、交差点2から最後の交差点3までの消費電力の総量S3=Wc3に、要求値Wtと交差点2の出発時残量Ws2の差から求められる要求増加量(Wt−Ws2)を加算した値として求めることができる。また、必要電力量Wrq3は、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算し、交差点1における1回の給電機会の給電量Wf1と交差点2における1回の給電機会の給電量Wf2の和(Wf1+Wf2)を減算した値として求めることもできる。さらにまた、必要電力量Wrq3は、以下のように、出発地から目的地までの必要電力量Wrq1から、給電量Wf1と給電量Wf2の和(Wf1+Wf2)を減算した値として求めることもできる。
Wrq3=S3+(Wt−Ws2)
=Wc3+(We+Wc4)−(Ws−Wc1−Wc2+Wf1+Wf2)
=(Wc1+Wc2+Wc3+Wc4)+(We−Ws)−(Wf1+Wf2)
=Wrq1−(Wf1+Wf2)
[3-1] Calculation of required electric energy (step S220)
Similar to the case of power supply at the intersection 2 of the above [2], the required electric energy Wrq3 from the intersection 2 which is the restarting place to the destination is calculated. That is, the required electric energy Wrq3 is the required increase obtained from the difference between the required value Wt and the remaining amount Ws2 at the time of departure of the required value Wt and the total amount of power consumption S3 = Wc3 from the intersection 2 to the last intersection 3 as follows. It can be obtained as a value obtained by adding the amount (Wt-Ws2). Further, the required electric energy Wrq3 is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the departure point to the destination as shown below. We-Ws) can be added, and the sum (Wf1 + Wf2) of the power supply amount Wf1 of one power supply opportunity at the intersection 1 and the power supply amount Wf2 of one power supply opportunity at the intersection 2 can be obtained as a value. Furthermore, the required electric energy Wrq3 can also be obtained as a value obtained by subtracting the sum of the electric energy Wf1 and the electric energy Wf2 (Wf1 + Wf2) from the electric energy Wrq1 required from the starting point to the destination as follows.
Wrq3 = S3 + (Wt-Ws2)
= Wc3 + (We + Wc4)-(Ws-Wc1-Wc2 + Wf1 + Wf2)
= (Wc1 + Wc2 + Wc3 + Wc4) + (We-Ws)-(Wf1 + Wf2)
= Wrq1- (Wf1 + Wf2)

[3−2]給電機会残数(ステップS220)
交差点2から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、交差点2から目的地までの間の給電機会残数Ncの値Nc3を計算することができる。なお、本例ではNc3=(Nc2−1)=(Nc1−2)=1である。
[3-2] Remaining power supply opportunity (step S220)
By calculating the number of intersections having a power supply available path RC included in the traveling route from the intersection 2 to the destination, the value Nc3 of the remaining number of power supply opportunities Nc between the intersection 2 and the destination can be calculated. .. In this example, Nc3 = (Nc2-1) = (Nc1-2) = 1.

[3−3]1回の給電機会の給電電力(ステップS230)
交差点3における1回の給電機会の給電電力Pf3は、上式(1)に基づいて以下のように求めることができる。
Pf3=Wrq3/(Nc3・ks・tm)
=Wrq3/((1・ks・tm)
=(Wrq1−Wf1−Wf2)/(1・ks・tm)
[3-3] Power supply power for one power supply opportunity (step S230)
The power supply power Pf3 of one power supply opportunity at the intersection 3 can be obtained as follows based on the above equation (1).
Pf3 = Wrq3 / (Nc3 ・ ks ・ tm)
= Wrq3 / ((1 · ks · tm)
= (Wrq1-Wf1-Wf2) / (1 · ks · tm)

[3−4]交差点3における給電(ステップS270)
交差点2の給電可能路RCでは、上記[3−3]で求められた給電電力Pf3で、停車時間t3の間だけ給電が行なわれ、給電量Wf3=(Pf3・t3)だけバッテリのSOCが増加される。これにより、図6に示すように、バッテリのSOCが、交差点2の出発時残量Ws2から、交差点3の出発時残量Ws3、すなわち、少なくとも、要求値Wtまで増加される。なお、交差点3の出発時残量Ws3、すなわち、Ws3=(Ws2−Wc3+Wf3)、すなわち、Ws3=(Ws−Wc1−Wc2−Wc3+Wf1+Wf2+Wf3)で表される。
[3-4] Power supply at intersection 3 (step S270)
In the power supply available path RC at the intersection 2, power is supplied only during the stop time t3 with the power supply power Pf3 obtained in the above [3-3], and the SOC of the battery increases by the power supply amount Wf3 = (Pf3 · t3). Will be done. As a result, as shown in FIG. 6, the SOC of the battery is increased from the starting remaining amount Ws2 at the intersection 2 to the starting remaining amount Ws3 at the intersection 3, that is, at least the required value Wt. The remaining amount Ws3 at the time of departure of the intersection 3, that is, Ws3 = (Ws2-Wc3 + Wf3), that is, Ws3 = (Ws-Wc1-Wc2-Wc3 + Wf1 + Wf2 + Wf3).

以上図6を用いて説明したように、図3の受電制御処理及び図4の給電制御処理によって、出発地から目的地までの走行経路において、最後の交差点3における給電装置100から車両200に対して給電が実行された時点で、バッテリ残量Ws3が要求値Wt以上となるように調整される。これにより、車両200が目的地に到着した時点のバッテリ残量を、目的地要求残量We以上の値とすることが可能である。この結果、到着した目的地に給電装置がなくても、他の目的地に出発した際に、目的地の周囲のいずれかの給電可能路RCまで到達する前にバッテリ残量が零となって、いわゆる電欠となってしまう可能性を低減することができる。 As described above with reference to FIG. 6, by the power receiving control process of FIG. 3 and the power supply control process of FIG. 4, the power supply device 100 to the vehicle 200 at the last intersection 3 in the traveling route from the departure point to the destination When the power supply is executed, the remaining battery level Ws3 is adjusted to be equal to or higher than the required value Wt. As a result, the remaining battery level at the time when the vehicle 200 arrives at the destination can be set to a value equal to or higher than the destination required remaining amount We. As a result, even if there is no power supply device at the destination, when the vehicle departs for another destination, the remaining battery level becomes zero before reaching any of the power supply possible paths RC around the destination. , The possibility of running out of electricity can be reduced.

また、走行経路中において、車両200が停車した各交差点における1回の給電機会の給電電力を上式(1)に従って求めることにより、1回の給電機会の給電電力を1回の給電機会の残数で平均化している。これにより、停車する各交差点における1回の給電機会の給電電力が均等となるように調整することができるので、1つの車両200への給電において、1つの給電装置100に掛かる負荷を軽減することができる。 Further, in the traveling route, the power supply power of one power supply opportunity is obtained according to the above equation (1) at each intersection where the vehicle 200 is stopped, so that the power supply power of one power supply opportunity is the remaining power supply of one power supply opportunity. It is averaged by number. As a result, it is possible to adjust so that the power supply power of one power supply opportunity at each intersection where the vehicle is stopped is equalized, so that the load applied to one power supply device 100 can be reduced in the power supply to one vehicle 200. Can be done.

ここで、単純には、車両走行路上の給電可能路で停車して給電が行なわれる度に、バッテリの状態が満充電状態となるような1回の給電機会の給電電力で給電が行なわれるようにすればよい。しかしながら、交差点で停車した複数の車のすべてに対して給電を可能とするには、大容量の電源を備える必要があり、交差点に設置する給電装置の大型化を招く。このため、各交差点に満充電を可能とする給電装置を設置することは、設置スペースの確保、費用等の面で現実的ではない。 Here, simply, every time the vehicle is stopped on the power supply available road on the vehicle running path and power is supplied, power is supplied by the power supply power of one power supply opportunity such that the battery state is fully charged. It should be. However, in order to be able to supply power to all of a plurality of vehicles stopped at an intersection, it is necessary to provide a large-capacity power supply, which leads to an increase in the size of the power supply device installed at the intersection. For this reason, it is not realistic to install a power supply device capable of fully charging at each intersection in terms of securing installation space, cost, and the like.

これに対して、上記実施形態の構成とすれば、各交差点の給電装置100の最大定格の低下を図ることができ、給電装置の小型化や給電装置の冷却性能の要求値の低下を図ることができる。 On the other hand, according to the configuration of the above embodiment, the maximum rating of the power feeding device 100 at each intersection can be lowered, the size of the power feeding device can be reduced, and the required value of the cooling performance of the power feeding device can be lowered. Can be done.

また、給電装置100が同時に複数の車両に給電を実行する際に、各車両の1回の給電機会の給電電力の総量ΣPfが給電装置100の給電可能な能力の上限値PU以上である場合に、各車両のそれぞれの優先度に応じて、各車両に分配する給電量を計算して、実際に給電可能な給電量で各車両に対して給電を実行することができる。これにより、給電装置100において給電可能な能力以上の給電が実際に実行されて、作動不可とならないようにすることができる。 Further, when the power feeding device 100 simultaneously supplies power to a plurality of vehicles, the total amount of power supplied by each vehicle at one power supply opportunity ΣPf is equal to or greater than the upper limit value PU of the power feeding capacity of the power feeding device 100. , The amount of power supplied to each vehicle can be calculated according to the priority of each vehicle, and the amount of power supplied to each vehicle can be actually supplied. As a result, it is possible to prevent the power feeding device 100 from being inoperable due to actual power supply exceeding the capacity capable of supplying power.

なお、上記した図6を用いた説明では、説明を容易にするため走行経路中に、給電可能路RCを有する3つの交差点を含む場合を例に説明したが、これに限定されるものではなく、3以上の複数の交差点を含む場合においても同様である。また、走行経路中に、交差点ではなく、信号機TLに対応して設置された給電可能路RCを含む場合においても同様である。 In the above description using FIG. 6, for ease of explanation, a case where three intersections having a power supply available path RC are included in the traveling route has been described as an example, but the description is not limited to this. The same applies when a plurality of intersections of 3 or more are included. The same applies to the case where the traveling route includes a power supply available path RC installed corresponding to the traffic light TL instead of the intersection.

B.第2実施形態:
図7に実線で示すように、交差点1を通過した場合には、交差点1では給電が行なわれないため、破線(図6の実線に対応)で示した交差点1で給電が行なわれた場合に比べて、交差点2で停車した場合のバッテリ残量が低下する。このため、第1実施形態と同様に、各交差点で停車した場合と同じ給電電力Pfで給電を実行したとすると、最後の交差点3における給電後のバッテリ残量Ws3が要求値Wt以上とならない可能性がある。そこで、この場合には、以下で説明するように、交差点2における1回の給電機会の給電電力を給電電力Pf2から給電電力Pf2bに増加させ、交差点3における給電電力を給電電力Pf3から給電電力Pf3bに増加させて、図7に実線で示すように、最後の交差点3における給電後のバッテリ残量Ws3が要求値Wt以上となるようにすることが好ましい。
B. Second embodiment:
As shown by the solid line in FIG. 7, when the power is supplied at the intersection 1 when passing through the intersection 1, the power is supplied at the intersection 1 shown by the broken line (corresponding to the solid line in FIG. 6). In comparison, the remaining battery level when the vehicle is stopped at the intersection 2 is reduced. Therefore, as in the first embodiment, if power is supplied with the same power supply power Pf as when the vehicle is stopped at each intersection, the remaining battery level Ws3 after power supply at the last intersection 3 may not exceed the required value Wt. There is sex. Therefore, in this case, as described below, the power supply power of one power supply opportunity at the intersection 2 is increased from the power supply power Pf2 to the power supply power Pf2b, and the power supply power at the intersection 3 is increased from the power supply power Pf3 to the power supply power Pf3b. As shown by the solid line in FIG. 7, it is preferable that the remaining battery level Ws3 after power supply at the last intersection 3 becomes the required value Wt or more.

[1]交差点2における給電
交差点2では、出発地から交差点2までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf2bでの給電(図3のステップS240)が実行される。
[1] Power supply at intersection 2 At intersection 2, power supply at the power supply power Pf2b obtained by the following calculation (steps S220 to S240 in FIG. 3) from the departure point to intersection 2 (step S240 in FIG. 3) is performed. Will be executed.

[1−1]必要電力量の計算(ステップS220)
出発地から目的地までの必要電力量Wrq2bを計算する。すなわち、必要電力量Wrq2bは、以下のように、出発地から最後の交差点3までの消費電力の総量S2b=(Wc1+Wc2+Wc3)に、要求値Wtと出発地残量Wsの差から求められる要求増加量(Wt−Ws)を加算した値として求めることができる。また、必要電力量Wrq2bは、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算した値として求めることができる。なお、この必要電力量Wrq2bは、第1実施形態の交差点1における必要電力量Wrq1と同じである。従って、必要電力量Wrq2bは、第1実施形態における必要電力量Wrq2よりも大きくなる。
Wrq2b=S2b+(Wt−Ws)
=(Wc1+Wc2+Wc3)+(We+Wc4)−Ws
=ΣWc+(We−Ws)
=Wrq1>Wrq2
[1-1] Calculation of required electric energy (step S220)
The required electric energy Wrq2b from the starting point to the destination is calculated. That is, the required electric energy Wrq2b is the required increase amount obtained from the difference between the required value Wt and the remaining amount Ws of the starting point in the total amount of power consumption S2b = (Wc1 + Wc2 + Wc3) from the starting point to the last intersection 3 as follows. It can be obtained as a value obtained by adding (Wt-Ws). Further, the required electric energy Wrq2b is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the departure point to the destination as shown below. It can be obtained as a value obtained by adding We-Ws). The required electric energy Wrq2b is the same as the required electric energy Wrq1 at the intersection 1 of the first embodiment. Therefore, the required electric energy Wrq2b is larger than the required electric energy Wrq2 in the first embodiment.
Wrq2b = S2b + (Wt-Ws)
= (Wc1 + Wc2 + Wc3) + (We + Wc4) -Ws
= ΣWc + (We-Ws)
= Wrq1> Wrq2

[1−2]給電機会残数(ステップS220)
交差点1の通過時には、通過した交差点1から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、交差点1から目的地までの間の給電機会残数Ncの値Nc2を計算することができる。なお、本例ではNc2=2である。
[1-2] Remaining power supply opportunity (step S220)
When passing through intersection 1, the number of remaining power supply opportunities Nc between intersection 1 and the destination is calculated by calculating the number of intersections having power supply available road RC included in the travel route from the passed intersection 1 to the destination. The value Nc2 can be calculated. In this example, Nc2 = 2.

[1−3]1回の給電機会の給電電力(ステップS230)
交差点2における1回の給電機会の給電電力Pf2bは、上式(1)に基づいて以下のように求めることができる。なお、上記のように、必要電力量Wrq2bは第1実施形態における必要電力量Wrq2よりも大きくなるので、給電電力Pf2bは第1実施形態における給電電力Pf2よりも大きくなる(図7の破線及び実線の傾き参照)。
Pf2b=Wrq2b/(Nc2・ks・tm)
=Wrq2b/(2・ks・tm)
=Wrq1/(2・Ks・tm)>Pf2
[1-3] Power supply power for one power supply opportunity (step S230)
The power supply power Pf2b of one power supply opportunity at the intersection 2 can be obtained as follows based on the above equation (1). As described above, since the required power amount Wrq2b is larger than the required power amount Wrq2 in the first embodiment, the power supply power Pf2b is larger than the power supply power Pf2 in the first embodiment (broken line and solid line in FIG. 7). See tilt of).
Pf2b = Wrq2b / (Nc2 ・ ks ・ tm)
= Wrq2b / (2 ・ ks ・ tm)
= Wrq1 / (2 ・ Ks ・ tm)> Pf2

[1−4]交差点2における給電(ステップS270)
交差点2の給電可能路RCでは、上記[1−3]で求められた1回の給電機会の給電電力Pf2bで、停車時間t2の間だけ給電が行なわれ、給電量Wf2b=(Pf2b・t2)だけバッテリのSOCが増加される。これにより、図7に示すように、バッテリのSOCが、出発地残量Wsから、交差点2の出発時残量Ws2bまで増加される。なお、交差点2の出発時残量Ws2bは、Ws2b=(Ws−Wc1−Wc2+Wf2b)で表される。出発時残量Ws2bは、交差点1で停車した場合の出発時残量Ws2よりも低くなっている。
[1-4] Power supply at intersection 2 (step S270)
In the power supply available path RC at the intersection 2, power is supplied only during the stop time t2 with the power supply power Pf2b of one power supply opportunity obtained in the above [1-3], and the power supply amount Wf2b = (Pf2b · t2). Only the SOC of the battery is increased. As a result, as shown in FIG. 7, the SOC of the battery is increased from the remaining amount Ws at the departure point to the remaining amount Ws2b at the time of departure at the intersection 2. The remaining amount Ws2b at the time of departure at the intersection 2 is represented by Ws2b = (Ws-Wc1-Wc2 + Wf2b). The remaining amount Ws2b at the time of departure is lower than the remaining amount Ws2 at the time of departure when the vehicle is stopped at the intersection 1.

上記のように、給電電力Pf2bは第1実施形態における給電電力Pf2よりも大きくなるので、給電量Wf2bは第1実施形態における給電量Wf2よりも大きくなる(図7の破線及び実線参照)。 As described above, since the power supply power Pf2b is larger than the power supply power Pf2 in the first embodiment, the power supply amount Wf2b is larger than the power supply amount Wf2 in the first embodiment (see the broken line and the solid line in FIG. 7).

[2]交差点3における給電
交差点3では、再出発地である交差点2から交差点3までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf3bでの給電(図3のステップS240)が実行される。
[2] Power supply at intersection 3 At intersection 3, power is supplied by the power supply power Pf3b obtained by the following calculation (steps S220 to S240 in FIG. 3) between the intersection 2 and the intersection 3 which are the restarting points (FIG. 3). Step S240) is executed.

[2−1]必要電力量の計算(ステップS220)
上記[1]の交差点2における給電の場合と同様に、走行再開地である交差点2から目的地までの必要電力量Wrq3bを計算する。すなわち、必要電力量Wrq3bは、以下のように、交差点2から最後の交差点3までの消費電力の総量S3=Wc3に、要求値Wtと交差点2の出発時残量Ws2bの差から求められる要求増加量(Wt−Ws2)を加算した値として求めることができる。また、必要電力量Wrq3bは、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算し、交差点2における1回の給電機会の給電量Wf2bを減算した値として求めることができる。さらにまた、必要電力量Wrq3bは、以下のように、出発地から目的地までの必要電力量Wrq1から、給電量Wf2bを減算した値として求めることができる。なお、給電量Wf2bは、交差点1における給電量Wf1と交差点2いのける給電量Wf2の和(Wf1+Wf2)よりも小さいので、必要電力量Wrq3bは、第1実施形態における必要電力量Wrq3よりも大きくなる。
Wrq3b=S3+(Wt−Ws2b)
=(Wc1+Wc2+Wc3+Wc4)+(We−Ws)−Wf2b
=ΣWc+(We−Ws)−Wf2b
=Wrq1−Wf2b>Wrq3
[2-1] Calculation of required electric energy (step S220)
Similar to the case of power supply at the intersection 2 of the above [1], the required electric energy Wrq3b from the intersection 2 which is the restarting place to the destination is calculated. That is, the required electric energy Wrq3b is the required increase obtained from the difference between the required value Wt and the remaining amount Ws2b at the time of departure of the required value Wt and the total amount of power consumption S3 = Wc3 from the intersection 2 to the last intersection 3 as follows. It can be obtained as a value obtained by adding the amount (Wt-Ws2). Further, the required electric energy Wrq3b is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the starting point to the destination as shown below. We-Ws) can be added, and it can be obtained as a value obtained by subtracting the power supply amount Wf2b of one power supply opportunity at the intersection 2. Furthermore, the required electric energy Wrq3b can be obtained as a value obtained by subtracting the power supply amount Wf2b from the required electric energy Wrq1 from the starting point to the destination as follows. Since the power supply amount Wf2b is smaller than the sum of the power supply amount Wf1 at the intersection 1 and the power supply amount Wf2 at the intersection 2 (Wf1 + Wf2), the required power amount Wrq3b is larger than the required power amount Wrq3 in the first embodiment. Become.
Wrq3b = S3 + (Wt-Ws2b)
= (Wc1 + Wc2 + Wc3 + Wc4) + (We-Ws) -Wf2b
= ΣWc + (We-Ws) -Wf2b
= Wrq1-Wf2b> Wrq3

[2−2]給電機会残数(ステップS220)
交差点2から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、交差点2から目的地までの間の給電機会残数Ncの値Nc3を計算することができる。なお、本例ではNc3=(Nc2−1)=1である。
[2-2] Remaining power supply opportunity (step S220)
By calculating the number of intersections having a power supply available path RC included in the traveling route from the intersection 2 to the destination, the value Nc3 of the remaining number of power supply opportunities Nc between the intersection 2 and the destination can be calculated. .. In this example, Nc3 = (Nc2-1) = 1.

[2−3]1回の給電機会の給電電力(ステップS230)
交差点3における1回の給電機会の給電電力Pf3bは、上式(1)に基づいて以下のように求めることができる。なお、上記のように、必要電力量Wrq3bは、交差点1及び交差点2で停車した場合の必要電力量Wrq3よりも大きくなるので、給電電力Pf3bは、第1実施形態における給電電力Pf3よりも大きくなる(図7の破線及び実線の傾き参照)。
Pf3b=Wrq3b/(Nc3・ks・tm)
=Wrq3b/(1・ks・tm)
=(Wrq1−Wf2b)/(1・ks・tm)>Pf3
[2-3] Power supply power for one power supply opportunity (step S230)
The power supply power Pf3b of one power supply opportunity at the intersection 3 can be obtained as follows based on the above equation (1). As described above, the required power amount Wrq3b is larger than the required power amount Wrq3 when the vehicle is stopped at the intersection 1 and the intersection 2, so that the power supply power Pf3b is larger than the power supply power Pf3 in the first embodiment. (See the slope of the broken line and the solid line in FIG. 7).
Pf3b = Wrq3b / (Nc3 ・ ks ・ tm)
= Wrq3b / (1 · ks · tm)
= (Wrq1-Wf2b) / (1 · ks · tm)> Pf3

[2−4]交差点3における給電(ステップS270)
交差点3の給電可能路RCでは、上記[2−3]で求められた給電電力Pf3bで、停車時間t3の間だけ給電が行なわれ、給電量Wf3b=(Pf3b・t3)だけバッテリのSOCが増加される。これにより、図7に示すように、バッテリのSOCが、交差点2の出発時残量Ws2bから、交差点3の出発時残量Ws3b、すなわち、少なくとも、要求値Wtまで増加される。なお、交差点3の出発時残量Ws3bは、Ws3b=(Ws2b−Wc3+Wf3b)、すなわち、Ws3b=(Ws−Wc1−Wc2−Wc3+Wf2b+Wf3b)で表される。
[2-4] Power supply at intersection 3 (step S270)
In the power supply available path RC at the intersection 3, power is supplied only during the stop time t3 with the power supply power Pf3b obtained in the above [2-3], and the SOC of the battery increases by the power supply amount Wf3b = (Pf3b · t3). Will be done. As a result, as shown in FIG. 7, the SOC of the battery is increased from the starting remaining amount Ws2b at the intersection 2 to the starting remaining amount Ws3b at the intersection 3, that is, at least the required value Wt. The remaining amount Ws3b at the departure of the intersection 3 is represented by Ws3b = (Ws2b-Wc3 + Wf3b), that is, Ws3b = (Ws-Wc1-Wc2-Wc3 + Wf2b + Wf3b).

上記のように、必要電力量Wrq3bは第1実施形態における必要電力量Wrq3よりも大きくなるため、給電電力Pf3bは第1実施形態における給電電力Pf3よりも大きくなり、給電量Wf3bは第1実施形態における給電量Wf3よりも大きくなる(図7の破線及び実線参照)。 As described above, since the required power amount Wrq3b is larger than the required power amount Wrq3 in the first embodiment, the power supply power Pf3b is larger than the power supply power Pf3 in the first embodiment, and the power supply amount Wf3b is the first embodiment. It becomes larger than the power supply amount Wf3 in (see the broken line and the solid line in FIG. 7).

以上のように、交差点1を通過した場合には、交差点2における1回の給電機会の給電電力を第1実施形態の給電電力Pf2から給電電力Pf2bに増加させ、交差点3における1回の給電機会の給電電力を第1実施形態の給電電力Pf3から給電電力Pf3bに増加させる。これにより、通過した交差点1以降の交差点2及び交差点3における給電量を増加させることができ、第1実施形態と同様の効果を得ることができる。 As described above, when passing through the intersection 1, the power supply power of one power supply opportunity at the intersection 2 is increased from the power supply power Pf2 of the first embodiment to the power supply power Pf2b, and the power supply power of one power supply opportunity at the intersection 3 is increased. The power supply power of the above is increased from the power supply power Pf3 of the first embodiment to the power supply power Pf3b. As a result, the amount of power supplied at the intersections 2 and 3 after the passed intersection 1 can be increased, and the same effect as that of the first embodiment can be obtained.

C.第3実施形態:
図8に実線で示すように、信号機TLの停止表示(赤信号である)により交差点1の給電可能路RCで車両200が1度停車し、その後信号機TLの進行表示(青信号である)により走行可能となったが、渋滞により給電可能路RC内から移動できず、再び信号機TLが停止表示となった場合には、交差点1において複数回の給電が行なわれる。この場合において、第1実施形態で説明したように、各交差点で停車した場合と同じ給電電力Pfで給電を実行したとすると、交差点1で複数回の給電がなされるために、交差点2あるいは交差点3における給電によって、メインバッテリ230のSOCとして蓄電可能な最大値までの充電に必要な電力量よりも多く余分な電力量が供給されてしまう可能性がある。そこで、この場合には、以下で説明するように、交差点2における給電電力を給電電力Pf2から給電電力Pf2cに減少させ、交差点3における給電電力を給電電力Pf3から給電電力Pf3cに減少させて、図8に実線で示すように、最後の交差点3における給電後のバッテリ残量Ws3cが要求値Wt以上となるようにすることが好ましい。
C. Third Embodiment:
As shown by the solid line in FIG. 8, the vehicle 200 stops once on the power supply available road RC at the intersection 1 due to the stop display (red light) of the traffic light TL, and then runs on the progress display (green light) of the traffic light TL. However, if it is possible to move from within the power supply available road RC due to traffic congestion and the traffic light TL is displayed as a stop again, power supply is performed a plurality of times at the intersection 1. In this case, as described in the first embodiment, if power is supplied with the same power supply power Pf as when the vehicle is stopped at each intersection, power is supplied a plurality of times at the intersection 1, so that the power is supplied to the intersection 2 or the intersection. The power supply in No. 3 may supply an extra amount of electric power that is larger than the amount of electric power required for charging up to the maximum value that can be stored as the SOC of the main battery 230. Therefore, in this case, as described below, the power supply at the intersection 2 is reduced from the power supply Pf2 to the power supply Pf2c, and the power supply at the intersection 3 is reduced from the power supply Pf3 to the power supply Pf3c. As shown by a solid line in 8, it is preferable that the remaining battery level Ws3c after power supply at the last intersection 3 is equal to or higher than the required value Wt.

[1]交差点2における給電
交差点2では、交差点1から交差点2までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf2cでの給電(図3のステップS240)が実行される。
[1] Power supply at intersection 2 At intersection 2, power supply at the power supply power Pf2c obtained by the following calculation (steps S220 to S240 in FIG. 3) between intersection 1 and intersection 2 (step S240 in FIG. 3) is performed. Will be executed.

[1−1]必要電力量の計算(ステップS220)
交差点1から目的地までの必要電力量Wrq2cを計算する。すなわち、必要電力量Wrq2cは、以下のように、交差点1から最後の交差点3までの消費電力の総量S2=(Wc2+Wc3)に、要求値Wtと交差点1の出発時残量Ws1cとの差から求められる要求増加量(Wt−Ws1c)を加算した値として求めることができる。なお、交差点1の出発時残量Ws1cは、Ws1c=Ws−Wc1+2・Wf1で表される。従って、必要電力量Wrq2cは、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算し、交差点1における2回分の給電量(2・Wf1)を減算した値として求めることができる。なお、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算した値は、第1実施形態の交差点1における必要電力量Wrq1と同じである。従って、必要電力量Wrq2cは、第1実施形態の交差点2における必要電力量Wrq2よりも小さくなる。
Wrq2c=S2+(Wt−Ws1c)
=(Wc2+Wc3)+(We+Wc4)−(WsーWc1+2・Wf1)
=ΣWc+(We−Ws)−2・Wf1
=Wrq1−2・Wf1<Wrq2
[1-1] Calculation of required electric energy (step S220)
The required electric energy Wrq2c from the intersection 1 to the destination is calculated. That is, the required electric energy Wrq2c is obtained from the difference between the required value Wt and the remaining amount Ws1c at the departure of the intersection 1 in the total amount of power consumption S2 = (Wc2 + Wc3) from the intersection 1 to the last intersection 3 as follows. It can be obtained as a value obtained by adding the required increase amount (Wt-Ws1c). The remaining amount Ws1c at the time of departure at the intersection 1 is represented by Ws1c = Ws−Wc1 + 2 · Wf1. Therefore, the required electric energy Wrq2c is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the starting point to the destination as shown below. We-Ws) is added, and it can be obtained as a value obtained by subtracting the power supply amount (2. Wf1) for two times at the intersection 1. The value obtained by adding the destination increase amount (We-Ws) obtained from the difference between the destination required remaining amount We and the departure place remaining amount Ws to the total amount of power consumption from the departure point to the destination ΣWc is the first value. It is the same as the required electric energy Wrq1 at the intersection 1 of the first embodiment. Therefore, the required electric energy Wrq2c is smaller than the required electric energy Wrq2 at the intersection 2 of the first embodiment.
Wrq2c = S2 + (Wt-Ws1c)
= (Wc2 + Wc3) + (We + Wc4)-(Ws-Wc1 + 2 · Wf1)
= ΣWc + (We-Ws) -2 ・ Wf1
= Wrq1-2 · Wf1 <Wrq2

[1−2]給電機会残数(ステップS220)
交差点1で給電後であるので、交差点1から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、交差点1から目的地までの間の給電機会残数Ncの値Nc2を計算することができる。なお、本例ではNc2=2である。
[1-2] Remaining power supply opportunity (step S220)
Since the power is supplied at the intersection 1, the remaining number of power supply opportunities Nc between the intersection 1 and the destination is calculated by calculating the number of intersections having the power supply possible road RC included in the traveling route from the intersection 1 to the destination. The value Nc2 of can be calculated. In this example, Nc2 = 2.

[1−3]1回の給電機会の給電電力(ステップS230)
交差点2における1回の給電機会の給電電力Pf2cは、上式(1)に基づいて以下のように求めることができる。なお、上記のように、必要電力量Wrq2cは、第1実施形態における必要電力量Wrq2よりも小さくなるので、給電電力Pf2cは、第1実施形態における給電電力Pf2よりも小さくなる(図8の破線及び実線の傾き参照)。
Pf2c=Wrq2c/(Nc2・ks・tm)
=Wrq2c/(2・ks・tm)<Pf2
[1-3] Power supply power for one power supply opportunity (step S230)
The power supply power Pf2c of one power supply opportunity at the intersection 2 can be obtained as follows based on the above equation (1). As described above, since the required power amount Wrq2c is smaller than the required power amount Wrq2 in the first embodiment, the power supply power Pf2c is smaller than the power supply power Pf2 in the first embodiment (broken line in FIG. 8). And the slope of the solid line).
Pf2c = Wrq2c / (Nc2 ・ ks ・ tm)
= Wrq2c / (2 ・ ks ・ tm) <Pf2

[1−4]交差点2における給電(ステップS270)
交差点2の給電可能路RCでは、上記[1−3]で求められた給電電力Pf2cで、停車時間t2の間だけ給電が行なわれ、給電量Wf2c=(Pf2c・t2)だけバッテリのSOCが増加される。これにより、図8に示すように、バッテリのSOCが、交差点1の出発時残量Ws1cから、交差点2の出発時残量Ws2cまで増加される。なお、交差点2の出発時残量Ws2cは、Ws2c=(Ws−Wc1−Wc2+2・Wf1+Wf2c)で表される。
[1-4] Power supply at intersection 2 (step S270)
In the power supply available path RC at the intersection 2, power is supplied only during the stop time t2 with the power supply power Pf2c obtained in the above [1-3], and the SOC of the battery increases by the power supply amount Wf2c = (Pf2c · t2). Will be done. As a result, as shown in FIG. 8, the SOC of the battery is increased from the starting remaining amount Ws1c at the intersection 1 to the starting remaining amount Ws2c at the intersection 2. The remaining amount Ws2c at the time of departure at the intersection 2 is represented by Ws2c = (Ws-Wc1-Wc2 + 2 · Wf1 + Wf2c).

上記のように、必要電力量Wrq2cは第1実施形態における必要電力量Wrq2よりも小さくなるため、給電電力Pf2cは第1実施形態における給電電力Pf2よりも小さくなり、給電量Wf2cは第1実施形態における給電量Wf2よりも小さくなる(図8の破線及び実線参照)。 As described above, since the required power amount Wrq2c is smaller than the required power amount Wrq2 in the first embodiment, the power supply power Pf2c is smaller than the power supply power Pf2 in the first embodiment, and the power supply amount Wf2c is the first embodiment. It is smaller than the power supply amount Wf2 in (see the broken line and the solid line in FIG. 8).

[2]交差点3における給電
交差点3では、再出発地である交差点2から交差点3までの間に以下の計算(図3のステップS220〜S240)により求められた給電電力Pf3cでの給電(図3のステップS240)が実行される。
[2] Power supply at intersection 3 At intersection 3, power is supplied by the power supply power Pf3c obtained by the following calculation (steps S220 to S240 in FIG. 3) between the intersection 2 and the intersection 3 which are the restarting points (FIG. 3). Step S240) is executed.

[2−1]必要電力量の計算(ステップS220)
上記[1]の交差点2における給電の場合と同様に、走行再開地である交差点2から目的地までの必要電力量Wrq3cを計算する。すなわち、必要電力量Wrq3cは、以下のように、交差点2から最後の交差点3までの消費電力の総量S3=Wc3に、要求値Wtと交差点2の出発時残量Ws2cの差から求められる要求増加量(Wt−Ws2c)を加算した値として求めることができる。また、必要電力量Wrq3cは、以下のように、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算し、交差点1における2回分の給電量(2・Wf1)と交差点2における給電量Wf2cの和(2・Wf1−Wf2c)を減算した値として求めることができる。なお、出発地から目的地までの消費電力量の総量ΣWcに、目的地要求残量Weと出発地残量Wsの差から求められる目的地増加量(We−Ws)を加算した値は、第1実施形態の交差点1における必要電力量Wrq1と同じである。従って、必要電力量Wrq3cは、第1実施形態の交差点3における必要電力量Wrq3よりも小さくなる。
Wrq3b=S3+(Wt−Ws2c)
=(Wc1+Wc2+Wc3+Wc4)+(We−Ws)−(2・Wf1+Wf2c)
=ΣWc+(We−Ws)−(2・Wf1+Wf2c)
=Wrq1−(2・Wf1+Wf2c)<Wrq3
[2-1] Calculation of required electric energy (step S220)
Similar to the case of power supply at the intersection 2 of the above [1], the required electric energy Wrq3c from the intersection 2 which is the restarting place to the destination is calculated. That is, the required electric energy Wrq3c is the required increase obtained from the difference between the required value Wt and the remaining amount Ws2c at the time of departure of the required value Wt and the total amount of power consumption S3 = Wc3 from the intersection 2 to the last intersection 3 as follows. It can be obtained as a value obtained by adding the amount (Wt-Ws2c). Further, the required electric energy Wrq3c is the destination increase amount obtained from the difference between the destination required remaining amount We and the starting point remaining amount Ws in the total amount of power consumption ΣWc from the starting point to the destination as shown below. We-Ws) is added, and it can be obtained as a value obtained by subtracting the sum of the power supply amounts (2. Wf1) for two times at the intersection 1 and the power supply amount Wf2c at the intersection 2 (2. Wf1-Wf2c). The value obtained by adding the destination increase amount (We-Ws) obtained from the difference between the destination required remaining amount We and the departure place remaining amount Ws to the total amount of power consumption from the departure point to the destination ΣWc is the first value. It is the same as the required electric energy Wrq1 at the intersection 1 of the first embodiment. Therefore, the required electric energy Wrq3c is smaller than the required electric energy Wrq3 at the intersection 3 of the first embodiment.
Wrq3b = S3 + (Wt-Ws2c)
= (Wc1 + Wc2 + Wc3 + Wc4) + (We-Ws)-(2 ・ Wf1 + Wf2c)
= ΣWc + (We-Ws)-(2 ・ Wf1 + Wf2c)
= Wrq1- (2 · Wf1 + Wf2c) <Wrq3

[2−2]給電機会残数(ステップS220)
交差点2で給電後であるので、交差点2から目的地までの走行経路に含まれる給電可能路RCを有する交差点の数を計算することにより、交差点2から目的地までの間の給電機会残数Ncの値Nc3を計算することができる。なお、本例ではNc3=(Nc2−1)=1である。
[2-2] Remaining power supply opportunity (step S220)
Since the power is supplied at the intersection 2, the remaining number of power supply opportunities Nc between the intersection 2 and the destination is calculated by calculating the number of intersections having the power supply possible road RC included in the traveling route from the intersection 2 to the destination. The value Nc3 of can be calculated. In this example, Nc3 = (Nc2-1) = 1.

[2−3]1回の給電機会の給電電力(ステップS230)
交差点3における1回の給電機会の給電電力Pf3bは、上式(1)に基づいて以下のように求めることができる。なお、上記のように、必要電力量Wrq3cは、第1実施形態における必要電力量Wrq3よりも小さくなるので、給電電力Pf3cは、第1実施形態における給電電力Pf3よりも小さくなる(図8の破線及び実線の傾き参照)。
Pf3c=Wrq3c/(Nc3・ks・tm)
=Wrq3c/(1・ks・tm)
=Wrq1−(2・Wf1+Wf2c)<Pf3
[2-3] Power supply power for one power supply opportunity (step S230)
The power supply power Pf3b of one power supply opportunity at the intersection 3 can be obtained as follows based on the above equation (1). As described above, since the required power amount Wrq3c is smaller than the required power amount Wrq3 in the first embodiment, the power supply power Pf3c is smaller than the power supply power Pf3 in the first embodiment (broken line in FIG. 8). And the slope of the solid line).
Pf3c = Wrq3c / (Nc3 ・ ks ・ tm)
= Wrq3c / (1 · ks · tm)
= Wrq1- (2 ・ Wf1 + Wf2c) <Pf3

[2−4]交差点3における給電(ステップS270)
交差点3の給電可能路RCでは、上記[2−3]で求められた給電電力Pf3cで、停車時間t3の間だけ給電が行なわれ、給電量Wf3c=(Pf3c・t3)だけバッテリのSOCが増加される。これにより、図8に示すように、バッテリのSOCが、交差点2の出発時残量Ws2cから、交差点3の出発時残量Ws3c、すなわち、少なくとも、要求値Wtまで増加される。なお、交差点3の出発時残量Ws3cは、Ws3c=(Ws2c−Wc3+Wf3c)、すなわち、Ws3c=(Ws−Wc1−Wc2−Wc3+2・Wf1+Wf2c+Wf3c)で表される。
[2-4] Power supply at intersection 3 (step S270)
In the power supply available path RC at the intersection 3, power is supplied only during the stop time t3 with the power supply power Pf3c obtained in the above [2-3], and the SOC of the battery increases by the power supply amount Wf3c = (Pf3c · t3). Will be done. As a result, as shown in FIG. 8, the SOC of the battery is increased from the starting remaining amount Ws2c at the intersection 2 to the starting remaining amount Ws3c at the intersection 3, that is, at least the required value Wt. The remaining amount Ws3c at the departure of the intersection 3 is represented by Ws3c = (Ws2c-Wc3 + Wf3c), that is, Ws3c = (Ws-Wc1-Wc2-Wc3 + 2 · Wf1 + Wf2c + Wf3c).

上記のように、必要電力量Wrq3cは第1実施形態における必要電力量Wrq3よりも小さくなるため、給電電力Pf3cは第1実施形態における給電電力Pf3よりも小さくなり、給電量Wf3cは第1実施形態における給電量Wf3よりも小さくなる(図8の破線及び実線参照)。 As described above, since the required power amount Wrq3c is smaller than the required power amount Wrq3 in the first embodiment, the power supply power Pf3c is smaller than the power supply power Pf3 in the first embodiment, and the power supply amount Wf3c is the first embodiment. It is smaller than the power supply amount Wf3 in (see the broken line and the solid line in FIG. 8).

以上のように、交差点1で複数回の給電が行なわれた場合には、交差点2における1回の給電機会の給電電力を第1実施形態の給電電力Pf2から給電電力Pf2cに減少させ、交差点3における1回の給電機会の給電電力を第1実施形態の給電電力Pf3から給電電力Pf3cに減少させる。これにより、メインバッテリ230のSOCとして蓄電可能な最大値まで充電されるよりも大きく余分な電力量が供給されてしまう可能性を低減できる。また、第1実施形態と同様の効果を得ることができる。 As described above, when the power supply is performed a plurality of times at the intersection 1, the power supply power of one power supply opportunity at the intersection 2 is reduced from the power supply power Pf2 of the first embodiment to the power supply power Pf2c, and the power supply power Pf2c is reduced to the intersection 3 The power supply power of one power supply opportunity in the above is reduced from the power supply power Pf3 of the first embodiment to the power supply power Pf3c. As a result, it is possible to reduce the possibility that an extra amount of electric power will be supplied, which is larger than the maximum value that can be stored as the SOC of the main battery 230. Moreover, the same effect as that of the first embodiment can be obtained.

なお、上記説明では、交差点1で複数回の給電が行われた場合を例に説明しているが、他の交差点において複数回の給電が行われた場合も同様である。また、渋滞により給電可能路RCから移動できない際には、2回目以降の給電を行わないようにしても良い。その際の給電には、図6に示した第1実施形態の給電や、図7に示した第2実施形態の給電が適用される。 In the above description, the case where the power supply is performed a plurality of times at the intersection 1 is described as an example, but the same applies to the case where the power supply is performed a plurality of times at another intersection. Further, when it is not possible to move from the power supply available road RC due to traffic congestion, the second and subsequent power supply may not be performed. The power supply according to the first embodiment shown in FIG. 6 and the power supply according to the second embodiment shown in FIG. 7 are applied to the power supply at that time.

D.第4実施形態:
第3実施形態で説明したように、1つの交差点において複数回の給電が行なわれる場合には、以下で説明するように、その交差点の給電装置100における給電側制御装置140が、図9に示す給電制御処理を行なうようにしてもよい。この給電制御処理は、図4に示した給電制御処理のステップS120とステップS130との間に、ステップS121,S122の処理が加えられている。
D. Fourth Embodiment:
As described in the third embodiment, when power is supplied a plurality of times at one intersection, the power supply side control device 140 in the power supply device 100 at that intersection is shown in FIG. 9, as described below. The power supply control process may be performed. In this power supply control process, the processes of steps S121 and S122 are added between steps S120 and S130 of the power supply control process shown in FIG.

車両側制御部140は、ステップS120において、停止表示により停止した車両200から送信されたその車両に関する情報を無線通信により受信した後、ステップS121において、受信した情報に含まれる1回の給電機会の給電電力Pfを変更する必要があるか否か判断する。受信した給電電力Pfを変更する必要がある場合(ステップS121:YES)には、ステップS122において、その変更条件に従って給電電力を計算する。具体的には、上記のように、渋滞により複数回の給電が行なわれて、給電装置100の稼働率が高くなる場合において、給電電力を低減させればよい。なお、渋滞により複数回の給電が行なわれて、給電装置100の稼働率が高くなる場合は、停車確率ksが1よりも大きき場合に対応し、2回の給電が行われる場合はks=1、3回の給電が行われる場合はks=3に対応する。 In step S120, the vehicle-side control unit 140 receives the information about the vehicle transmitted from the vehicle 200 stopped by the stop display by wireless communication, and then in step S121, the power supply opportunity of one time included in the received information. It is determined whether or not it is necessary to change the power supply power Pf. When it is necessary to change the received power supply power Pf (step S121: YES), the power supply power is calculated according to the change condition in step S122. Specifically, as described above, when power is supplied a plurality of times due to traffic congestion and the operating rate of the power supply device 100 is high, the power supply may be reduced. When the power supply is performed a plurality of times due to traffic congestion and the operating rate of the power supply device 100 becomes high, it corresponds to the case where the stop probability ks is larger than 1, and when the power supply is performed twice, ks = When power is supplied one or three times, it corresponds to ks = 3.

ここで、図10に破線で示した第3実施形態(図8参照)の場合には、交差点1において渋滞により複数回の給電が行なわれた場合に、第1実施形態における給電電力Pf1で複数回の給電が行なわれている。これに対して、上記処理によれば、例えば、図10に実線で示すように、複数回の給電で、第1実施形態における給電電力Pf1での1回の給電による給電量と同等の給電量となるように、給電電力を給電電力Pf1よりも小さい給電電力Pf1dに低減させることができる。なお、1交差点で何回の給電が行なわれるかは、停止した車両200の状態を監視することで推定が可能である。 Here, in the case of the third embodiment (see FIG. 8) shown by the broken line in FIG. 10, when power is supplied a plurality of times due to traffic congestion at the intersection 1, a plurality of power supplies Pf1 in the first embodiment are used. Power is being supplied several times. On the other hand, according to the above processing, for example, as shown by the solid line in FIG. 10, the power supply amount equivalent to the power supply amount by one power supply with the power supply power Pf1 in the first embodiment by a plurality of power supply times. Therefore, the power supply power can be reduced to the power supply power Pf1d smaller than the power supply power Pf1. The number of times the power is supplied at one intersection can be estimated by monitoring the state of the stopped vehicle 200.

以上のように、交差点1で複数回の給電が行なわれるような稼働率、すなわち、停車確率が高い場合には、その給電電力を減少させることにより、第3実施形態と同様に、メインバッテリ230のSOCとして蓄電可能な最大値まで充電されるよりも大きく余分な電力量が供給されてしまう可能性を低減できる。また、第1実施形態と同様の効果を得ることができる。 As described above, when the operating rate at which power is supplied a plurality of times at the intersection 1, that is, when the vehicle stop probability is high, the power supplied is reduced to reduce the power supplied to the main battery 230, as in the third embodiment. It is possible to reduce the possibility that an extra amount of electric power will be supplied, which is larger than the maximum value that can be stored as the SOC of. Moreover, the same effect as that of the first embodiment can be obtained.

E.第5実施形態:
図11に示すように、給電可能路RC内における停車位置が停止SLに対して後方の車両200tの場合には、停車時間が短くなる可能性が高い。例えば、図12に破線で示すように、交差点2において、図11に示すような状況が発生して、車両200tの停車時間が第1実施形態における停車時間t2(図6参照)に比べて短い停車時間t2dとなった場合、給電量Wf2が小さくなり、最後の交差点3の出発時残量Ws3が要求値Wtまで上昇できない可能性がある。
E. Fifth embodiment:
As shown in FIG. 11, when the stop position in the power supply available road RC is 200 tons of the vehicle behind the stop SL, there is a high possibility that the stop time will be shortened. For example, as shown by the broken line in FIG. 12, the situation shown in FIG. 11 occurs at the intersection 2, and the stop time of the vehicle 200t is shorter than the stop time t2 (see FIG. 6) in the first embodiment. When the stop time is t2d, the power supply amount Wf2 becomes small, and there is a possibility that the remaining amount Ws3 at the time of departure at the last intersection 3 cannot rise to the required value Wt.

このような場合には、図9のステップS121において給電電力変更要と判断して、ステップS122における計算により、短い停車時間t2dにおいて、第1実施形態における給電電力Pf2での給電量(Pf2・t2)と同等の給電量Wf2dが得られるように、車両200tの給電電力を第1実施形態における給電電力Pf2よりも増加させた給電電力Pf2dに設定するようにすればよい。このようにすれば、停車時間が短くなることが推定される車両200の給電電力を増加させて給電を行なうことができ、最後の交差点3の出発時残量Ws3dが要求値Wt以上となるように調整することができ、第1実施形態と同様の効果を得るこができる。 In such a case, it is determined in step S121 of FIG. 9 that it is necessary to change the power supply power, and according to the calculation in step S122, the power supply amount (Pf2 · t2) at the power supply power Pf2 in the first embodiment in the short stop time t2d. ), The power supply power of the vehicle 200t may be set to the power supply power Pf2d which is larger than the power supply power Pf2 in the first embodiment so that the power supply amount Wf2d equivalent to the above) can be obtained. In this way, the power supply of the vehicle 200, which is estimated to have a shorter stop time, can be increased to supply power, and the remaining amount Ws3d at the time of departure at the last intersection 3 becomes the required value Wt or more. It is possible to obtain the same effect as that of the first embodiment.

なお、上記説明では、最後尾の車両200tを例としたが、これに限定されるものではなく、停止線SLの後方に停車したいずれの車両に対して、給電電力を増加させるかは、停車時間に応じて設定されることが好ましい。 In the above description, the rearmost vehicle 200t is taken as an example, but the present invention is not limited to this, and it is not limited to this, and it is determined which vehicle stops behind the stop line SL to increase the power supply. It is preferably set according to the time.

F.第6実施形態:
上記各実施形態では、要求値Wtとして、少なくも、目的地残量Weを確保することが可能な値を設定していたが、メインバッテリ230のSOCとして蓄電可能な最大値を要求値Wtとして設定してもよい。このようにすれば、到着した目的地から他の目的地に出発した際に、目的地の周囲のいずれかの給電可能路RCまで到達する前にバッテリ残量がゼロになり、電欠となってしまう可能性をより低減することができる。
F. Sixth Embodiment:
In each of the above embodiments, the required value Wt is set to at least a value capable of securing the remaining destination We, but the maximum value that can be stored as the SOC of the main battery 230 is set as the required value Wt. It may be set. In this way, when departing from the destination to another destination, the remaining battery level becomes zero before reaching any of the power supply possible paths RC around the destination, resulting in power shortage. It is possible to further reduce the possibility of the battery.

上記各実施形態では、車両給電システムとして車両のバッテリに非接触で給電する非接触給電システムを例に説明した。しかしながら、これに限定されるものではなく、例えば、ロボットアームを用いた接触式給電システムであっても良い。すなわち、車両のバッテリに給電する車両給電システムであれば良い。 In each of the above embodiments, a non-contact power supply system that supplies power to the battery of the vehicle in a non-contact manner as a vehicle power supply system has been described as an example. However, the present invention is not limited to this, and for example, a contact type power feeding system using a robot arm may be used. That is, any vehicle power supply system that supplies power to the vehicle battery may be used.

本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each form described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

10…車両給電システム、100…給電装置、200…車両、230…メインバッテリ、Pf…給電電力、Wt…バッテリ残量の要求値 10 ... Vehicle power supply system, 100 ... Power supply device, 200 ... Vehicle, 230 ... Main battery, Pf ... Power supply power, Wt ... Required value of remaining battery level

Claims (10)

車両走行路(RS)の給電可能路(RC)に設置された給電装置(100)から車両(200)に対して給電を行なう車両給電システム(10)であって、
前記車両は、目的地までの走行経路上における1回の給電機会の給電電力(Pf)を、前記走行経路上の最後の給電機会における給電によって、前記車両に搭載されるバッテリ(230)の蓄電量が、前記目的地に応じて設定される要求値(Wt)以上となるように調整し、
前記給電装置は、対応する給電可能路上に前記車両が停車した際に、前記車両から受け取った前記1回の給電電力に従って前記車両に対して給電を行う、
ことを特徴とする車両給電システム。
A vehicle power supply system (10) that supplies power to a vehicle (200) from a power supply device (100) installed on a power supply available path (RC) of a vehicle travel path (RS).
The vehicle stores the power supply power (Pf) of one power supply opportunity on the travel route to the destination by the power supply at the last power supply opportunity on the travel route to store the battery (230) mounted on the vehicle. Adjust the amount so that it is equal to or greater than the required value (Wt) set according to the destination.
When the vehicle is stopped on the corresponding power supply available road, the power supply device supplies power to the vehicle according to the one power supply power received from the vehicle.
A vehicle power supply system characterized by that.
請求項1に記載の車両給電システムであって、
前記要求値は前記バッテリの蓄電量として蓄電可能な最大値である、
ことを特徴とする車両給電システム。
The vehicle power supply system according to claim 1.
The required value is the maximum value that can be stored as the amount of electricity stored in the battery.
A vehicle power supply system characterized by that.
請求項1または請求項2に記載の車両給電システムであって、
前記車両は、前記走行経路上の各給電機会における給電量が均等となるように、前記1回の給電機会の給電電力を調整する、
ことを特徴とする車両給電システム。
The vehicle power supply system according to claim 1 or 2.
The vehicle adjusts the power supply of the one power supply opportunity so that the power supply amount at each power supply opportunity on the travel path is equal.
A vehicle power supply system characterized by that.
請求項1または請求項2に記載の車両給電システムであって、
前記車両は、前記走行経路上のいずれかの給電機会で給電が行なわれなかった場合には、次の給電機会以降における前記1回の給電機会の給電電力を増加させる、
ことを特徴とする車両給電システム。
The vehicle power supply system according to claim 1 or 2.
If power is not supplied at any of the power supply opportunities on the travel path, the vehicle increases the power supply power of the one power supply opportunity after the next power supply opportunity.
A vehicle power supply system characterized by that.
請求項1、請求項2、請求項4のいずれか一項に記載の車両給電システムであって、
前記車両は、前記走行経路上のいずれかの給電機会に対応する給電可能路上において、車両用信号装置(TL)の複数回の停止表示によって停車して、前記車両に対して複数回の給電が行なわれた場合には、少なくとも、次の給電機会における前記1回の給電機会の給電電力を減少させる、
ことを特徴とする車両給電システム。
The vehicle power supply system according to any one of claims 1, 2, and 4.
The vehicle is stopped by a plurality of stop indications of the vehicle signal device (TL) on a power supply available road corresponding to any of the power supply opportunities on the travel route, and the vehicle is supplied with power supply a plurality of times. If done, at least reduce the power supply of the one power supply opportunity at the next power supply opportunity.
A vehicle power supply system characterized by that.
請求項1、請求項2、請求項4のいずれか一項に記載の車両給電システムであって、
前記給電装置は、対応する給電可能路における前記車両の停車確率が高いほど、前記車両から受け取った前記1回の給電電力よりも低減させた給電電力で前記車両に対して給電を行なう、
ことを特徴とする車両給電システム。
The vehicle power supply system according to any one of claims 1, 2, and 4.
The power supply device supplies power to the vehicle with a power supply power reduced from the one power supply power received from the vehicle as the stop probability of the vehicle on the corresponding power supply available path increases.
A vehicle power supply system characterized by that.
請求項1から請求項6のいずれか一項に記載の車両給電システムであって、
前記給電装置は、対応する給電可能路における前記車両の停車位置が、停止線から遠い車両に対して、前記車両から受け取った前記1回の給電電力よりも増加させた給電電力で給電を行なう、
ことを特徴とする車両給電システム。
The vehicle power supply system according to any one of claims 1 to 6.
The power supply device supplies power to a vehicle whose stop position of the vehicle on the corresponding power supply available path is far from the stop line, with a power supply power increased from the one power supply power received from the vehicle.
A vehicle power supply system characterized by that.
請求項1から請求項7までのいずれか一項に記載の車両給電システムであって、
前記給電装置は、対応する給電可能路に停車した複数の車両に対して給電を行なうにあたり、前記複数の車両のそれぞれから要求される給電電力の総量が、前記給電装置で給電可能な給電可能量を超えた場合には、前記複数の車両にそれぞれ関連付けられている優先度に応じて給電電力を分配する、
ことを特徴とする車両給電システム。
The vehicle power supply system according to any one of claims 1 to 7.
When the power supply device supplies power to a plurality of vehicles stopped on a corresponding power supply available path, the total amount of power supply power required from each of the plurality of vehicles is the amount of power supply that can be supplied by the power supply device. When the above is exceeded, the power supply is distributed according to the priority associated with each of the plurality of vehicles.
A vehicle power supply system characterized by that.
請求項8に記載の車両給電システムであって、
前記優先度は、前記車両のバッテリの蓄電量と、前記給電機会の残数と、で決定される、
ことを特徴とする車両給電システム。
The vehicle power supply system according to claim 8.
The priority is determined by the amount of electricity stored in the battery of the vehicle and the remaining number of power supply opportunities.
A vehicle power supply system characterized by that.
請求項1から請求項9までのいずれか一項に記載の車両給電システムであって、
前記1回の給電機会の給電電力は、
1回の給電機会の給電電力=目的地までに必要な電力量/[(走行経路上の給電機会の数)・(停車確率)・(1回の給電機会における平均停車時間))
で求められる、
ことを特徴とする車両給電システム。
The vehicle power supply system according to any one of claims 1 to 9.
The power supply for the one power supply opportunity is
Power supply power for one power supply opportunity = Power required to reach the destination / [(Number of power supply opportunities on the travel route), (Stop probability), (Average stop time for one power supply opportunity))
Required by
A vehicle power supply system characterized by that.
JP2019136107A 2019-07-24 2019-07-24 Vehicle power supply system Active JP7251379B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019136107A JP7251379B2 (en) 2019-07-24 2019-07-24 Vehicle power supply system
PCT/JP2020/023578 WO2021014833A1 (en) 2019-07-24 2020-06-16 Vehicle power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136107A JP7251379B2 (en) 2019-07-24 2019-07-24 Vehicle power supply system

Publications (2)

Publication Number Publication Date
JP2021022957A true JP2021022957A (en) 2021-02-18
JP7251379B2 JP7251379B2 (en) 2023-04-04

Family

ID=74193385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136107A Active JP7251379B2 (en) 2019-07-24 2019-07-24 Vehicle power supply system

Country Status (2)

Country Link
JP (1) JP7251379B2 (en)
WO (1) WO2021014833A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122692A (en) * 1973-03-24 1974-11-22
JP2005073313A (en) * 2003-08-26 2005-03-17 Asahi Glass Co Ltd Power supply system of electric automobile, electric automobile used for its system and the same power supply device
KR20110066057A (en) * 2009-12-10 2011-06-16 한국과학기술원 Method for determining charging priority of online electric vehicle
JP2012213467A (en) * 2011-03-31 2012-11-08 Maspro Denkoh Corp System for controlling electric golf cart
JP2012230027A (en) * 2011-04-27 2012-11-22 Mitsubishi Motors Corp Arrival time prediction system
JP2013038991A (en) * 2011-08-10 2013-02-21 Sumitomo Electric Ind Ltd Charging system, central control device, and signal control device
JP2013228238A (en) * 2012-04-25 2013-11-07 Toyota Motor Corp Vehicle information provision system, terminal device, and server
JP2014045615A (en) * 2012-08-28 2014-03-13 Mitsubishi Electric Corp Charging and generating system for vehicle
JP2014193095A (en) * 2013-03-28 2014-10-06 Nippon Signal Co Ltd:The Non-contact power supply system
JP2015092328A (en) * 2013-10-04 2015-05-14 株式会社東芝 Operation management device and operation planning method for electric vehicle
JP2019041455A (en) * 2017-08-23 2019-03-14 本田技研工業株式会社 Electric vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122692A (en) * 1973-03-24 1974-11-22
JP2005073313A (en) * 2003-08-26 2005-03-17 Asahi Glass Co Ltd Power supply system of electric automobile, electric automobile used for its system and the same power supply device
KR20110066057A (en) * 2009-12-10 2011-06-16 한국과학기술원 Method for determining charging priority of online electric vehicle
JP2012213467A (en) * 2011-03-31 2012-11-08 Maspro Denkoh Corp System for controlling electric golf cart
JP2012230027A (en) * 2011-04-27 2012-11-22 Mitsubishi Motors Corp Arrival time prediction system
JP2013038991A (en) * 2011-08-10 2013-02-21 Sumitomo Electric Ind Ltd Charging system, central control device, and signal control device
JP2013228238A (en) * 2012-04-25 2013-11-07 Toyota Motor Corp Vehicle information provision system, terminal device, and server
JP2014045615A (en) * 2012-08-28 2014-03-13 Mitsubishi Electric Corp Charging and generating system for vehicle
JP2014193095A (en) * 2013-03-28 2014-10-06 Nippon Signal Co Ltd:The Non-contact power supply system
JP2015092328A (en) * 2013-10-04 2015-05-14 株式会社東芝 Operation management device and operation planning method for electric vehicle
JP2019041455A (en) * 2017-08-23 2019-03-14 本田技研工業株式会社 Electric vehicle

Also Published As

Publication number Publication date
WO2021014833A1 (en) 2021-01-28
JP7251379B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
KR102406107B1 (en) Wireless charging system for electric vehicle with adjustable flux angle
JP5664665B2 (en) Non-contact charger
JP5621898B2 (en) Information provision device
US8825248B2 (en) Information terminal and cruise controller for electric-powered vehicle
JP6060195B2 (en) Vehicle parking control device
JP6284921B2 (en) Power supply system, transport equipment, and power transmission method
KR102033988B1 (en) Hybrid vehicle
US11180039B2 (en) On-travel power supply system, power supply facility, and electric vehicle
JP2008011681A (en) Vehicle power supply system and on-vehicle machine
JP2013228238A (en) Vehicle information provision system, terminal device, and server
KR102491571B1 (en) Apparatus and method for predicting driving distance according to driving mode of electric vehicle
JP2018198495A (en) Non-contact power transmission system
JP6492430B2 (en) Control device for plug-in hybrid vehicle
JP2016026949A (en) Vehicle control unit
JP2014045633A (en) Controller for dc-dc converter
WO2021014833A1 (en) Vehicle power supply system
JP6424778B2 (en) Electric rotating machine controller
JP2013207847A (en) Control device of vehicle, and vehicle equipped with the same
JP2019115244A (en) Electric automobile
JP7099350B2 (en) Alarm device for electric vehicles
JP6173412B2 (en) Power supply system, transport equipment, and power transmission method
US20210387535A1 (en) Driving assistance apparatus
JP2021023034A (en) On-vehicle non-contact charger and vehicle
JP2024046517A (en) management system
US20230226923A1 (en) Server, vehicle, and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151