JP2021022846A - Inspection method and inspection system - Google Patents

Inspection method and inspection system Download PDF

Info

Publication number
JP2021022846A
JP2021022846A JP2019138623A JP2019138623A JP2021022846A JP 2021022846 A JP2021022846 A JP 2021022846A JP 2019138623 A JP2019138623 A JP 2019138623A JP 2019138623 A JP2019138623 A JP 2019138623A JP 2021022846 A JP2021022846 A JP 2021022846A
Authority
JP
Japan
Prior art keywords
imaging
inspection method
shooting
flight
still images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019138623A
Other languages
Japanese (ja)
Inventor
龍児 田中
Ryoji Tanaka
龍児 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sabo Eng Kk
SABO ENGINEERING KK
Original Assignee
Sabo Eng Kk
SABO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sabo Eng Kk, SABO ENGINEERING KK filed Critical Sabo Eng Kk
Priority to JP2019138623A priority Critical patent/JP2021022846A/en
Publication of JP2021022846A publication Critical patent/JP2021022846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

To efficiently and effectively inspect a given surface.SOLUTION: An inspection system according to the present invention includes acquisition means that acquires a plurality of still images of a surface to be inspected using an imaging device mounted on a flying object, and analysis means that performs a predetermined analysis process on the acquired still image and inspects the surface to be inspected. Then, the acquisition means controls the flight status of the flying object and the imaging status of the imaging device so as to acquire a plurality of still images of the surface to be inspected at imaging altitude determined on the basis of the size and the number of pixels of an imaging sensor equipped in the imaging device and the focal length of the imaging sensor.SELECTED DRAWING: Figure 4

Description

本発明は、画像を用いてのり面や壁面など所定の面を点検する点検方法、点検システムに関する。 The present invention relates to an inspection method and an inspection system for inspecting a predetermined surface such as a slope or a wall surface using an image.

近年、日本国において高度成長期以降に整備したインフラが急速に老朽化しており、今後20年間で建設後50年以上経過する施設の割合が急速に高くなる見込である。インフラは、適切に点検・補修・修繕を行い、機能維持を図ることが望ましいが、なかには財政的理由や労働者不足により、適切な点検・補修・修繕が実施されず、損傷の程度が悪化して危険性が増し、利用することが難しいインフラも出てきている。そのため、効率的かつ効果的に点検することが重要となっている。 In recent years, the infrastructure developed after the high-growth period in Japan has rapidly deteriorated, and it is expected that the proportion of facilities that have been constructed for more than 50 years will increase rapidly in the next 20 years. It is desirable to properly inspect, repair, and repair the infrastructure to maintain its function, but due to financial reasons and labor shortages, appropriate inspection, repair, and repair are not carried out, and the degree of damage worsens. The danger is increasing, and some infrastructures are difficult to use. Therefore, it is important to inspect efficiently and effectively.

そして、上述したようなインフラの点検においては、近年ではUAV(Unmanned aerial vehicle:無人航空機)の活用が期待されている。つまり、UAVにカメラを搭載して点検対象となる所定の面を撮影し、撮影画像を用いて所定面の点検を行うことが期待されている。例えば、UAVを用いて点検を行う方法として、非特許文献1に記載の方法が検討されている。 In recent years, UAVs (Unmanned aerial vehicles) are expected to be used in the inspection of infrastructure as described above. That is, it is expected that a camera is mounted on the UAV to photograph a predetermined surface to be inspected, and the predetermined surface is inspected using the photographed image. For example, as a method of performing an inspection using a UAV, the method described in Non-Patent Document 1 has been studied.

藤田哲、他6名、「UAVによる撮影と多視点写真測量技術を用いたのり面構造物点検手法の適用性の検討」、平成29年度砂防学会研究発表会、2017Satoshi Fujita, 6 others, "Study of applicability of slope structure inspection method using UAV photography and multi-view photogrammetry technology", 2017 Japan Society of Erosion Control Research Presentation, 2017

しかしながら、非特許文献1では、UAVに搭載されたカメラで撮影した画像を用いて法面構造物の点検を行うことを提案しているが、具体的にUAVを用いてどのように撮影を行うか、といったことまで言及していない。そのため、点検の精度を高めることが困難であり、効率的かつ効果的な点検を行うことができない、という問題が生じる。 However, Non-Patent Document 1 proposes to inspect the slope structure using an image taken by a camera mounted on the UAV, but specifically how to take a picture using the UAV. I didn't even mention that. Therefore, it is difficult to improve the accuracy of the inspection, and there arises a problem that an efficient and effective inspection cannot be performed.

このため、本発明の目的は、上述した課題である、所定の面を効率的かつ効果的に点検できないこと、を解決することにある。 Therefore, an object of the present invention is to solve the above-mentioned problem that a predetermined surface cannot be inspected efficiently and effectively.

本発明の一形態である点検方法は、
飛行体に搭載した撮像装置を用いて点検対象面の静止画像を複数取得し、
取得した前記静止画像に対する所定の解析処理を行い、前記点検対象面の点検を行う点検方法であって、
前記撮像装置に装備された撮像センサのサイズ及び画素数と、当該撮像センサの焦点距離と、に基づいて決定された撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
という構成をとる。
The inspection method, which is one embodiment of the present invention, is
Acquire multiple still images of the surface to be inspected using the image pickup device mounted on the aircraft,
This is an inspection method in which a predetermined analysis process is performed on the acquired still image to inspect the surface to be inspected.
The flight so as to acquire a plurality of the still images of the inspection target surface at a shooting altitude determined based on the size and the number of pixels of the image sensor equipped in the image sensor and the focal length of the image sensor. Controlling the flight status of the body and the imaging status of the imaging device,
It takes the configuration.

また、上記点検方法では、
前記撮像装置に装備された撮像センサのサイズ及び画素数と、当該撮像センサの焦点距離と、に基づいて、前記撮像センサの1画素で撮影される領域の寸法である地上画素寸法が所定の範囲の値となるよう決定された前記撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
という構成をとる。
In addition, in the above inspection method,
Based on the size and number of pixels of the image pickup sensor equipped in the image pickup device and the focal distance of the image pickup sensor, the ground pixel size, which is the size of the area photographed by one pixel of the image pickup sensor, is within a predetermined range. At the shooting altitude determined to be the value of, the flight status of the flying object and the imaging status of the imaging device are controlled so as to acquire a plurality of the still images of the surface to be inspected.
It takes the configuration.

また、上記点検方法では、
前記地上画素寸法が1mmから所定の範囲内の値となるよう決定された前記撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
という構成をとる。
In addition, in the above inspection method,
The flight status of the flying object and the imaging of the imaging device so as to acquire a plurality of the still images of the surface to be inspected at the shooting altitude determined so that the ground pixel size is within a predetermined range from 1 mm. Control the situation,
It takes the configuration.

また、上記点検方法では、
前記地上画素寸法が0.7以上1.1mm以下となるよう決定された前記撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
という構成をとる。
In addition, in the above inspection method,
The flight status of the flying object and the imaging of the imaging device so as to acquire a plurality of the still images of the surface to be inspected at the shooting altitude determined so that the ground pixel size is 0.7 or more and 1.1 mm or less. Control the situation,
It takes the configuration.

また、上記点検方法では、
前記撮像センサのサイズが1/2.3型、前記撮像センサの有効画素数が12Mピクセル、前記撮像センサの35mm換算の焦点距離が24mmである場合に、前記撮影高度が2〜3mで、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
という構成をとる。
In addition, in the above inspection method,
When the size of the image sensor is 1 / 2.3 type, the number of effective pixels of the image sensor is 12 M pixels, and the focal length of the image sensor converted to 35 mm is 24 mm, the shooting altitude is 2 to 3 m, and the above. Controlling the flight status of the flying object and the imaging status of the imaging device so as to acquire a plurality of the still images of the surface to be inspected.
It takes the configuration.

また、上記点検方法では、
決定された前記撮影高度で取得する前記静止画像間の重なり度合いが予め設定された値となるよう、前記飛行体の飛行ルート及び飛行速度と前記撮像装置による撮影間隔を制御する、
という構成をとる。
In addition, in the above inspection method,
The flight route and flight speed of the flying object and the shooting interval by the imaging device are controlled so that the degree of overlap between the still images acquired at the determined shooting altitude becomes a preset value.
It takes the configuration.

また、上記点検方法では、
決定された前記撮影高度で取得する前記静止画像間の横方向の重なり度合いと縦方向の重なり度合いとが、それぞれ予め設定された値となるよう、前記飛行体の飛行ルート及び飛行速度と前記撮像装置による撮影間隔とを制御する、
という構成をとる。
In addition, in the above inspection method,
The flight route and flight speed of the flying object and the imaging so that the degree of overlap in the horizontal direction and the degree of overlap in the vertical direction between the still images acquired at the determined shooting altitude are preset values, respectively. Control the shooting interval by the device,
It takes the configuration.

また、本発明の一形態である点検システムは、
飛行体に搭載した撮像装置を用いて点検対象面の静止画像を複数取得する取得手段と、
取得した前記静止画像に対する所定の解析処理を行い、前記点検対象面の点検を行う解析手段と、を備えた点検システムであって、
前記取得手段は、前記撮像装置に装備された撮像センサのサイズ及び画素数と、当該撮像センサの焦点距離と、に基づいて決定された撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
という構成をとる。
Further, the inspection system, which is one form of the present invention, is
An acquisition means for acquiring multiple still images of the surface to be inspected using an image pickup device mounted on the aircraft, and
An inspection system including an analysis means for performing a predetermined analysis process on the acquired still image and inspecting the surface to be inspected.
The acquisition means captures a plurality of the still images of the inspection target surface at a shooting altitude determined based on the size and the number of pixels of the image sensor equipped in the image sensor and the focal length of the image sensor. The flight status of the flying object and the imaging status of the imaging device are controlled so as to be acquired.
It takes the configuration.

本発明は、以上のように構成されることにより、撮像センサの仕様に基づいて決定された撮影高度で点検対象面の静止画像を取得するため、所望の点検精度を得ることができる適切な静止画像を取得することができる。その結果、点検対象面の点検の精度を高めることができ、効率的かつ効果的な点検を行うことができる。 According to the present invention, since a still image of the surface to be inspected is acquired at an imaging altitude determined based on the specifications of the image pickup sensor by being configured as described above, an appropriate stillness capable of obtaining a desired inspection accuracy can be obtained. Images can be acquired. As a result, the accuracy of the inspection of the inspection target surface can be improved, and efficient and effective inspection can be performed.

本発明における点検システムの構成及び点検システムによる静止画像取得時の様子を示す図である。It is a figure which shows the structure of the inspection system in this invention, and the state at the time of the still image acquisition by the inspection system. 図1に開示した情報処理装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the information processing apparatus disclosed in FIG. 情報処理装置で決定される撮影計画の一例を示す図である。It is a figure which shows an example of the photographing plan determined by an information processing apparatus. 情報処理装置で決定される撮影計画の一例を示す図である。It is a figure which shows an example of the photographing plan determined by an information processing apparatus. 情報処理装置で撮影計画を決定する方法を説明するための図である。It is a figure for demonstrating the method of deciding the photography plan by an information processing apparatus. 情報処理装置で撮影計画を決定する方法を説明するための図である。It is a figure for demonstrating the method of deciding the photography plan by an information processing apparatus. 情報処理装置で撮影計画を決定する方法を説明するための図である。It is a figure for demonstrating the method of deciding the photography plan by an information processing apparatus. 本発明における点検システムによる点検方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the inspection method by the inspection system in this invention.

<実施形態1>
本発明の第1の実施形態を、図1乃至図8を参照して説明する。本発明における点検システム及び点検方法は、のり面や壁面など点検対象面の画像を撮影して、かかる画像に基づいて点検対象面を点検するものである。このとき、点検対象面Wは、例えば、図1に示すような、のり面、ダム壁面、道路面などである。このため、本発明における点検システム及び点検方法は、一例として、点検対象面Wに人物が近づいて点検することが難しい場合に、UAV(Unmanned aerial vehicle)といった無人航空機1を用いて静止画像Gを撮影し、クラック等の有無の点検を行うためのものである。
<Embodiment 1>
The first embodiment of the present invention will be described with reference to FIGS. 1 to 8. The inspection system and the inspection method in the present invention take an image of an inspection target surface such as a slope or a wall surface, and inspect the inspection target surface based on the image. At this time, the inspection target surface W is, for example, a slope surface, a dam wall surface, a road surface, or the like as shown in FIG. Therefore, the inspection system and the inspection method in the present invention, for example, use an unmanned aerial vehicle 1 such as a UAV (Unmanned aerial vehicle) to display a still image G when it is difficult for a person to approach the inspection target surface W for inspection. It is for taking a picture and checking for cracks and the like.

図1に示すように、点検システムは、デジタルカメラといった撮像装置10を備えた無人航空機1(飛行体)と、無人航空機1による撮影計画を生成する情報処理装置2と、を備えている。なお、情報処理装置2は、撮影計画を生成するだけでなく、無人航空機1の飛行状況と撮像状況とを制御したり、撮影した画像の解析処理と点検処理を行う機能も備えている。 As shown in FIG. 1, the inspection system includes an unmanned aerial vehicle 1 (aircraft) equipped with an imaging device 10 such as a digital camera, and an information processing device 2 for generating a shooting plan by the unmanned aerial vehicle 1. The information processing device 2 not only generates a shooting plan, but also has a function of controlling the flight status and the imaging status of the unmanned aerial vehicle 1 and performing analysis processing and inspection processing of the captured image.

そして、無人航空機1と情報処理装置2とは、無線通信で通信可能であり、かかる無線通信により、撮影計画を示す撮影計画情報やかかる撮影計画情報に基づく飛行状況や撮影状況を制御する制御情報を、情報処理装置2から無人航空機1に送信したり、無人航空機1にて撮影した静止画像を情報処理装置1に送信してもよい。但し、無人航空機1と情報処理装置2とは、必ずしも通信可能に接続されていることに限定されず、作業者が手動で上述した情報の入出力を行ってもよく、また、無人航空機1は入力された撮影計画情報に基づいて自ら飛行状況と撮像状況とを制御してもよい。 Then, the unmanned aerial vehicle 1 and the information processing device 2 can communicate with each other by wireless communication, and by such wireless communication, the shooting plan information indicating the shooting plan and the control information for controlling the flight status and the shooting status based on the shooting plan information. May be transmitted from the information processing device 2 to the unmanned aerial vehicle 1, or a still image taken by the unmanned aerial vehicle 1 may be transmitted to the information processing device 1. However, the unmanned aerial vehicle 1 and the information processing device 2 are not necessarily connected to each other so as to be communicable, and the operator may manually input / output the above-mentioned information. You may control the flight status and the imaging status by yourself based on the input shooting plan information.

上記情報処理装置2は、演算装置と記憶装置とを備えた一般的な情報処理装置である。そして、情報処理装置2は、図2に示すように、演算装置がプログラムを実行することで構築された、撮影計画部21、撮影制御部22、撮影画像入力部23、解析処理部24、を備えている。また、情報処理装置2は、記憶装置に形成された、撮影計画記憶部25、撮影画像記憶部26、を備えている。 The information processing device 2 is a general information processing device including an arithmetic unit and a storage device. Then, as shown in FIG. 2, the information processing apparatus 2 includes a photographing planning unit 21, a photographing control unit 22, a photographed image input unit 23, and an analysis processing unit 24, which are constructed by the arithmetic unit executing a program. I have. Further, the information processing device 2 includes a photographing plan storage unit 25 and a photographed image storage unit 26 formed in the storage device.

上記撮影計画部21(取得手段)は、無人航空機1による静止画像Gの撮影計画を表す撮影計画情報を生成して、かかる撮影計画情報を撮影計画記憶部25に記憶する。撮影計画情報は、無人航空機1の飛行ルート、飛行速度、撮影高度を含む飛行状況と、撮影間隔を含む撮像状況と、の計画を表す情報を含む。一例として、撮影計画情報は、例えば、図3に示すように、点検対象面Wに沿って、飛行方向を交互に反転させるたびに飛行方向に対して直交方向に飛行コースがずれるような飛行ルート、つまり、飛行コースを並列にずらして複数往復するよう飛行する飛行ルートを含む。また、図4に示すように、点検対象面Wに対する飛行高さである撮影高度を含む。さらに、後述する図7に示すように、飛行方向に隣り合う静止画像G同士が重なる度合いや飛行コースが隣り合う静止画像G同士が重なる度合いが、予め設定された値となるよう、飛行ルート、飛行速度、撮影間隔を含む。 The shooting plan unit 21 (acquisition means) generates shooting plan information representing the shooting plan of the still image G by the unmanned aerial vehicle 1, and stores the shooting plan information in the shooting plan storage unit 25. The shooting plan information includes information representing a plan of the flight status including the flight route, flight speed, and shooting altitude of the unmanned aerial vehicle 1, and the imaging status including the shooting interval. As an example, as shown in FIG. 3, the shooting plan information is a flight route in which the flight course shifts in a direction orthogonal to the flight direction each time the flight direction is alternately reversed along the inspection target surface W. That is, it includes a flight route in which the flight courses are shifted in parallel to make multiple round trips. Further, as shown in FIG. 4, the imaging altitude which is the flight height with respect to the inspection target surface W is included. Further, as shown in FIG. 7, which will be described later, the flight route is set so that the degree to which the still images G adjacent to each other in the flight direction overlap and the degree to which the still images G adjacent to each other in the flight course overlap are preset values. Includes flight speed and shooting interval.

ここで、撮影計画部21による撮影計画情報を決定する方法の一例を説明する。はじめに、上述した撮影高度を決定する方法を説明する。撮影高度は、以下に説明するように、撮像装置10に装備された撮像センサのサイズ及び画素数と、撮像センサの焦点距離と、に基づいて決定される。ここで、本実施形態では、撮像装置10の諸元として、撮像センサであるCMOSのサイズ:1/2.3型(a×b:6.2mm×4.7mm)、有効画素数:12Mピクセル(4056×3040ピクセル(4000×3000ピクセルとする))、レンズ焦点距離:24mm(35mm換算)、であることとする。但し、上記撮影装置10の諸元は一例であり、また、以下の計算方法も一例である。 Here, an example of a method of determining the shooting plan information by the shooting planning unit 21 will be described. First, the method of determining the shooting altitude described above will be described. The shooting altitude is determined based on the size and number of pixels of the image sensor equipped in the image sensor 10 and the focal length of the image sensor, as described below. Here, in the present embodiment, as the specifications of the image pickup device 10, the size of the CMOS that is the image pickup sensor: 1 / 2.3 type (a × b: 6.2 mm × 4.7 mm), the number of effective pixels: 12 M pixels. (4056 × 3040 pixels (4000 × 3000 pixels)), lens focal length: 24 mm (35 mm conversion). However, the specifications of the photographing apparatus 10 are an example, and the following calculation method is also an example.

まず、図5に示すように、35mmフィルム30の対角線長Lと、撮像センサであるCMOSの対角線長lとは、その縦横サイズから、L=43.266615mm、l=7.780103mm、となる。続いて、各対角線長L,lと、35mm換算の焦点距離F=24mmと、を用いて、図6に示すように、レンズ12から撮像センサであるCMOS11までの実際の焦点距離fを求める。すると、f=4.315625mmとなる。 First, as shown in FIG. 5, the diagonal length L of the 35 mm film 30 and the diagonal length l of the CMOS image sensor are L = 43.266615 mm and l = 7.780103 mm due to their vertical and horizontal sizes. Subsequently, as shown in FIG. 6, the actual focal length f from the lens 12 to the CMOS 11 image sensor is obtained by using the diagonal lengths L and l and the focal length F = 24 mm in the 35 mm equivalent. Then, f = 4.315625 mm.

ここで、算出した焦点距離fと、撮影高度Hと、点検対象面の撮影範囲とセンサ画像との縮尺1/mと、は、下記式1の関係となる。
1/m=f/H・・・式1
上記式1を用いて、撮影高度Hを2,3,5mとそれぞれ設定した場合の縮尺1/mは、以下の式1−1,1−2,1−3で表すことができる。
・H=2
1/m=f/H=4.315625/(2×1000)=1/463・・・式1−1
・H=3
1/m=f/H=4.315625/(3×1000)=1/695・・・式1−2
・H=5
1/m=f/H=4.315625/(5×1000)=1/1158・・・式1−3
Here, the calculated focal length f, the shooting altitude H, the shooting range of the inspection target surface, and the scale 1 / m of the sensor image have the relationship of the following equation 1.
1 / m = f / H ... Equation 1
The scale 1 / m when the shooting altitude H is set to 2, 3 and 5 m using the above formula 1 can be expressed by the following formula 1-1, 1-2, 1-3.
・ H = 2
1 / m = f / H = 4.315625 / (2 × 1000) = 1/463 ... Equation 1-1
・ H = 3
1 / m = f / H = 4.315625 / (3 × 1000) = 1/695 ... Equation 1-2
・ H = 5
1 / m = f / H = 4.315625 / (5 × 1000) = 1/1158 ... Equation 1-3

そして、算出した各撮影高度Hにおける縮尺1/mから、撮像センサであるCMOSの1画素で撮影される領域の寸法である地上画素寸法p1×p2は、式2−1,2−2,2−3のように求めることができる。
・H=2
p1×p2=((6.2/4000)×463)×((4.7/3000)×463)
=0.7mm×0.7mm・・・式2−1
・H=3
p1×p2=((6.2/4000)×695)×((4.7/3000)×695)
=1.1mm×1.1mm・・・式2−2
・H=5
p1×p2=((6.2/4000)×1158)×((4.7/3000)×1158=1.8mm×1.8mm・・・式2−3
Then, from the calculated scale 1 / m at each shooting altitude H, the ground pixel size p1 × p2, which is the size of the area shot by one pixel of CMOS, which is an imaging sensor, is given by Equations 2-1, 2-2, 2. It can be calculated as -3.
・ H = 2
p1 x p2 = ((6.2 / 4000) x 463) x ((4.7 / 3000) x 463)
= 0.7 mm x 0.7 mm ... Equation 2-1
・ H = 3
p1 x p2 = ((6.2 / 4000) x 695) x ((4.7 / 3000) x 695)
= 1.1 mm x 1.1 mm ... Formula 2-2
・ H = 5
p1 x p2 = ((6.2 / 4000) x 1158) x ((4.7 / 3000) x 1158 = 1.8 mm x 1.8 mm ... Equation 2-3

以上より、地上画素寸法p1×p2=0.7mm×0.7mm、または、1.1mm×1.1mmとなる撮影高度H=2m又は3mとすることで、約1mmの精度で点検対象面Wを点検することが可能となる。このようにして、撮影高度をH=2m、または、3mと決定する。 Based on the above, by setting the shooting altitude H = 2 m or 3 m, which has the ground pixel dimensions p1 x p2 = 0.7 mm x 0.7 mm or 1.1 mm x 1.1 mm, the inspection target surface W has an accuracy of about 1 mm. Can be inspected. In this way, the shooting altitude is determined to be H = 2 m or 3 m.

続いて、飛行ルート、飛行速度、撮影間隔を決定する。ここでは、図7上図に示すように、同一の飛行コースR1上で隣り合って撮影された静止画像G1,G2が相互に重なる度合い、つまり、静止画像G1,G2同士が横方向に重なる度合い、であるオーバーラップP=90%とする場合における、静止画像G1,G2間の撮影間隔Bを決定する。また、図7下図に示すように、相互に隣り合う飛行コースR3,R4でそれぞれ撮影された静止画像G3,G4が相互に重なる度合い、つまり、静止画像G3,G4同士が縦方向に重なる度合い、であるサイドラップQ=60%とする場合における、飛行コースの間隔を表すコース間隔Cを決定する。なお、図7上図における一点鎖線は、静止画像G1,G2のそれぞれの横方向の中心を示し、図7下図における一点鎖線は、静止画像G3,G4のそれぞれの縦方向の中心を示している。そして、上述した各撮影高度における撮影間隔B及びコース間隔Cは、例えば、以下の式に示すように算出する。なお、以下の式におけるa,bは、6.2,4,7と撮像センサであるCOMSのサイズを表し、mは、上述したように算出した各撮影高度における縮尺を表している。 Next, the flight route, flight speed, and shooting interval are determined. Here, as shown in the upper figure of FIG. 7, the degree to which the still images G1 and G2 taken adjacent to each other on the same flight course R1 overlap each other, that is, the degree to which the still images G1 and G2 overlap in the lateral direction. , The shooting interval B between the still images G1 and G2 is determined when the overlap P = 90%. Further, as shown in the lower figure of FIG. 7, the degree to which the still images G3 and G4 taken on the adjacent flight courses R3 and R4 overlap each other, that is, the degree to which the still images G3 and G4 overlap in the vertical direction. When the side lap Q = 60%, the course interval C representing the flight course interval is determined. The alternate long and short dash line in the upper diagram of FIG. 7 indicates the horizontal center of each of the still images G1 and G2, and the alternate long and short dash line in the lower diagram of FIG. 7 indicates the vertical center of each of the still images G3 and G4. .. Then, the shooting interval B and the course interval C at each shooting altitude described above are calculated, for example, as shown in the following formula. In the following formula, a and b represent 6.2, 4, 7 and the size of the COMS that is the imaging sensor, and m represents the scale at each shooting altitude calculated as described above.

・H=2
B=m・a・(1−P/100)×1/1000=463×6.2×(1−90/100)×1/1000=0.3・・・式3−1a
C=m・b・(1−Q/100)×1/1000=463×4.7×(1−60/100)×1/1000=0.9・・・式3−1b
・H=3
B=m・a・(1−P/100)×1/1000=695×6.2×(1−90/100)×1/1000=0.4・・・式3−2a
C=m・b・(1−Q/100)×1/1000=695×4.7×(1−60/100)×1/1000=1.3・・・式3−2b
・H=5
B=m・a・(1−P/100)×1/1000=1158×6.2×(1−90/100)×1/1000=0.7・・・式3−3a
C=m・b・(1−Q/100)×1/1000=1158×4.7×(1−60/100)×1/1000=2.2・・・式3−3b
・ H = 2
B = m · a · (1-P / 100) x 1/1000 = 463 x 6.2 x (1-90 / 100) x 1/1000 = 0.3 ... Equation 3-1a
C = m · b · (1-Q / 100) × 1/1000 = 463 × 4.7 × (1-60 / 100) × 1/1000 = 0.9 ... Equation 3-1b
・ H = 3
B = m · a · (1-P / 100) x 1/1000 = 695 x 6.2 x (1-90 / 100) x 1/1000 = 0.4 ... Equation 3-2a
C = m · b · (1-Q / 100) × 1/1000 = 695 × 4.7 × (1-60 / 100) × 1/1000 = 1.3 ... Equation 3-2b
・ H = 5
B = m · a · (1-P / 100) x 1/1000 = 1158 x 6.2 x (1-90 / 100) x 1/1000 = 0.7 ... Equation 3-3a
C = m · b · (1-Q / 100) × 1/1000 = 1158 × 4.7 × (1-60 / 100) × 1/1000 = 2.2 ... Equation 3-3b

以上より、撮影計画部21は、以下に示すように、撮影高度2m又は3mの2通りの飛行計画情報を生成して(図8のステップS1)、撮影計画記憶部25に記憶する。
(1)撮影高度:2m、飛行速度:0.15m/s以下、コース間隔0.9m以下、撮影間隔:2秒
(2)撮影高度:3m、飛行速度:0.30m/s以下、コース間隔1.3m以下、撮影間隔:2秒
なお、飛行速度と撮影間隔(秒)は、算出した撮影間隔Bをもとに決定している。
Based on the above, the shooting plan unit 21 generates two types of flight plan information at a shooting altitude of 2 m or 3 m (step S1 in FIG. 8) and stores them in the shooting plan storage unit 25, as shown below.
(1) Shooting altitude: 2 m, flight speed: 0.15 m / s or less, course interval 0.9 m or less, shooting interval: 2 seconds (2) Shooting altitude: 3 m, flight speed: 0.30 m / s or less, course interval 1.3 m or less, shooting interval: 2 seconds The flight speed and shooting interval (seconds) are determined based on the calculated shooting interval B.

そして、上記撮影制御部22(取得部)は、作業者の指示により、あるいは、自動的に、生成された撮影計画情報のうち、1つの撮影計画情報を選択して、無人航空機1に送信する。これにより、無人航空機1は、撮影計画情報に含まれる飛行ルートRや撮影高度Hに従って飛行し、撮影計画情報に含まれる撮影間隔に従って静止画像を撮影する(図8のステップS2)。なお、無人航空機1は、撮影計画情報に基づいて、自律的に飛行状況と撮像状況とを制御して静止画像を撮影してもよい。あるいは、情報処理装置2の撮影制御部22が、撮影計画情報に基づいて無人航空機1に対して飛行及び撮影を制御する制御情報を送信し、遠隔で無人航空機1の飛行状況と撮像状況とを制御して静止画像を撮影してもよい。 Then, the shooting control unit 22 (acquisition unit) selects one shooting plan information from the generated shooting plan information according to the instruction of the operator or automatically, and transmits it to the unmanned aerial vehicle 1. .. As a result, the unmanned aerial vehicle 1 flies according to the flight route R and the shooting altitude H included in the shooting plan information, and shoots a still image according to the shooting interval included in the shooting plan information (step S2 in FIG. 8). The unmanned aerial vehicle 1 may autonomously control the flight status and the imaging status to capture a still image based on the imaging plan information. Alternatively, the shooting control unit 22 of the information processing device 2 transmits control information for controlling flight and shooting to the unmanned aerial vehicle 1 based on the shooting plan information, and remotely obtains the flight status and the imaging status of the unmanned aerial vehicle 1. You may control and take a still image.

上記撮影画像入力部23(取得部)は、無人航空機1に搭載された撮影装置10で撮影された静止画像を無線通信を介して受信し、撮影画像記憶部26に記憶する。但し、撮影画像入力部23は、他の方法により撮影画像の入力を受けてもよい。例えば、無線航空機1が作業者のもとに帰還したのちに、手動で撮影装置10から静止画像を情報処理装置に記憶してもよい。 The captured image input unit 23 (acquisition unit) receives a still image captured by the photographing device 10 mounted on the unmanned aerial vehicle 1 via wireless communication, and stores it in the captured image storage unit 26. However, the captured image input unit 23 may receive the input of the captured image by another method. For example, after the wireless aircraft 1 returns to the operator, the still image may be manually stored in the information processing device from the photographing device 10.

その後、上記解析処理部24(解析手段)は、撮影画像記憶部26に記憶された静止画像に対する所定の解析処理を行い、点検対象面Wの点検処理を行う(図8のステップS3,S4)。解析処理は、例えば、SfM(Structure from Motion)技術を用いて、複数の撮影画像からローカル座標系における三次元座標(三次元点群データ)からなる三次元再構成画像を生成して、静止画像内のクラック(ひび割れ)や破損個所などの検出を行う。そして、点検処理は、予め設定された基準を満たすクラックや破損個所、例えば、予め設定された大きさ以上のクラックや予め設定された破損度合い以上の破損個所、が存在するか否かを調べる。但し、解析処理及び点検処理の内容は、いかなる処理であってもよい。 After that, the analysis processing unit 24 (analysis means) performs a predetermined analysis process on the still image stored in the captured image storage unit 26, and inspects the inspection target surface W (steps S3 and S4 in FIG. 8). .. In the analysis process, for example, SfM (Structure from Motion) technology is used to generate a three-dimensional reconstructed image consisting of three-dimensional coordinates (three-dimensional point cloud data) in the local coordinate system from a plurality of captured images, and a still image. Detects cracks and damaged parts inside. Then, the inspection process checks whether or not there are cracks or damaged parts satisfying a preset standard, for example, cracks having a preset size or more or damaged parts having a preset degree of damage or more. However, the content of the analysis process and the inspection process may be any process.

以上のように、本発明の点検システムでは、撮像センサの仕様に基づいて決定された撮影高度で点検対象面の静止画像を取得するため、所望の点検精度を得ることができる適切な静止画像を取得することができる。特に、撮像センサの1画素で撮影される領域の寸法である地上画素寸法p1×p2が、0.7mm×0.7mm、または、1.1mm×1.1mmとなる撮影高度H=2m又は3mとすることで、約1mmの精度で点検対象面Wを点検することが可能となる。その結果、点検対象面の点検の精度を高めることができ、効率的かつ効果的な点検を行うことができる。なお、上記では、地上画素寸法p1×p2が、0.7mm×0.7mm、または、1.1mm×1.1mmとなる撮影高度を決定しているが、地上画素寸法p1×p2が、0.7mm×0.7mmから1.1mm×1.1mmの間となる撮影高度を決定してもよく、地上画素寸法が1mm×1mmから所定の範囲内の値となるよう撮影高度を決定してもよい。さらには、必ずしも地上画素寸法が1mm×1mm前後となるような撮影高度に決定することに限定されず、撮像センサの諸元に基づいて、点検の内容に応じて適切な静止画像が取得できるような撮影高度に決定してもよい。 As described above, in the inspection system of the present invention, since the still image of the inspection target surface is acquired at the shooting altitude determined based on the specifications of the image sensor, an appropriate still image capable of obtaining the desired inspection accuracy can be obtained. Can be obtained. In particular, the shooting altitude H = 2 m or 3 m at which the ground pixel size p1 × p2, which is the size of the area imaged by one pixel of the image sensor, is 0.7 mm × 0.7 mm or 1.1 mm × 1.1 mm. Therefore, it is possible to inspect the inspection target surface W with an accuracy of about 1 mm. As a result, the accuracy of the inspection of the inspection target surface can be improved, and efficient and effective inspection can be performed. In the above, the shooting altitude at which the ground pixel size p1 × p2 is 0.7 mm × 0.7 mm or 1.1 mm × 1.1 mm is determined, but the ground pixel size p1 × p2 is 0. The shooting altitude may be determined to be between 7. mm × 0.7 mm and 1.1 mm × 1.1 mm, and the shooting altitude is determined so that the ground pixel size is within a predetermined range from 1 mm × 1 mm. May be good. Furthermore, the shooting altitude is not necessarily determined so that the ground pixel size is around 1 mm × 1 mm, and an appropriate still image can be obtained according to the content of the inspection based on the specifications of the image sensor. The shooting altitude may be determined.

なお、上述したプログラムは、記憶装置に記憶されていたり、情報処理装置が読み取り可能な記録媒体に記録されている。例えば、記録媒体は、フレキシブルディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等の可搬性を有する媒体である。 The above-mentioned program is stored in a storage device or recorded on a recording medium that can be read by the information processing device. For example, the recording medium is a portable medium such as a flexible disk, an optical disk, a magneto-optical disk, and a semiconductor memory.

以上、上記実施形態等を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。 Although the invention of the present application has been described above with reference to the above-described embodiments and the like, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.

1 無人航空機
10 撮影装置
11 撮影センサ(CMOS)
12 レンズ
2 情報処理装置
21 撮影計画部
22 撮影制御部
23 撮影画像入力部
24 解析処理部
25 撮影計画記憶部
26 撮影画像記憶部
W 点検対象面
G 静止画像
R 飛行ルート
1 Unmanned aerial vehicle 10 Imaging device 11 Imaging sensor (CMOS)
12 Lens 2 Information processing device 21 Imaging planning unit 22 Imaging control unit 23 Imaging image input unit 24 Analysis processing unit 25 Imaging planning storage unit 26 Imaging image storage unit W Inspection target surface G Still image R Flight route

Claims (8)

飛行体に搭載した撮像装置を用いて点検対象面の静止画像を複数取得し、
取得した前記静止画像に対する所定の解析処理を行い、前記点検対象面の点検を行う点検方法であって、
前記撮像装置に装備された撮像センサのサイズ及び画素数と、当該撮像センサの焦点距離と、に基づいて決定された撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
点検方法。
Acquire multiple still images of the surface to be inspected using the image pickup device mounted on the aircraft,
This is an inspection method in which a predetermined analysis process is performed on the acquired still image to inspect the surface to be inspected.
The flight so as to acquire a plurality of the still images of the inspection target surface at a shooting altitude determined based on the size and the number of pixels of the image sensor equipped in the image sensor and the focal length of the image sensor. Controlling the flight status of the body and the imaging status of the imaging device,
Inspection method.
請求項1に記載の点検方法であって、
前記撮像装置に装備された撮像センサのサイズ及び画素数と、当該撮像センサの焦点距離と、に基づいて、前記撮像センサの1画素で撮影される領域の寸法である地上画素寸法が所定の範囲の値となるよう決定された前記撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
点検方法。
The inspection method according to claim 1.
Based on the size and number of pixels of the image pickup sensor equipped in the image pickup device and the focal distance of the image pickup sensor, the ground pixel size, which is the size of the area photographed by one pixel of the image pickup sensor, is within a predetermined range. At the shooting altitude determined to be the value of, the flight status of the flying object and the imaging status of the imaging device are controlled so as to acquire a plurality of the still images of the surface to be inspected.
Inspection method.
請求項2に記載の点検方法であって、
前記地上画素寸法が1mmから所定の範囲内の値となるよう決定された前記撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
点検方法。
The inspection method according to claim 2.
The flight status of the flying object and the imaging of the imaging device so as to acquire a plurality of the still images of the surface to be inspected at the shooting altitude determined so that the ground pixel size is within a predetermined range from 1 mm. Control the situation,
Inspection method.
請求項2又は3に記載の点検方法であって、
前記地上画素寸法が0.7以上1.1mm以下となるよう決定された前記撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
点検方法。
The inspection method according to claim 2 or 3.
The flight status of the flying object and the imaging of the imaging device so as to acquire a plurality of the still images of the surface to be inspected at the shooting altitude determined so that the ground pixel size is 0.7 or more and 1.1 mm or less. Control the situation,
Inspection method.
請求項2乃至4のいずれかに記載の点検方法であって、
前記撮像センサのサイズが1/2.3型、前記撮像センサの有効画素数が12Mピクセル、前記撮像センサの35mm換算の焦点距離が24mmである場合に、前記撮影高度が2〜3mで、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
点検方法。
The inspection method according to any one of claims 2 to 4.
When the size of the image sensor is 1 / 2.3 type, the number of effective pixels of the image sensor is 12 M pixels, and the focal length of the image sensor converted to 35 mm is 24 mm, the shooting altitude is 2 to 3 m, and the above. Controlling the flight status of the flying object and the imaging status of the imaging device so as to acquire a plurality of the still images of the surface to be inspected.
Inspection method.
請求項1乃至5のいずれかに記載の点検方法であって、
決定された前記撮影高度で取得する前記静止画像間の重なり度合いが予め設定された値となるよう、前記飛行体の飛行ルート及び飛行速度と前記撮像装置による撮影間隔を制御する、
点検方法。
The inspection method according to any one of claims 1 to 5.
The flight route and flight speed of the flying object and the shooting interval by the imaging device are controlled so that the degree of overlap between the still images acquired at the determined shooting altitude becomes a preset value.
Inspection method.
請求項6に記載の点検方法であって、
決定された前記撮影高度で取得する前記静止画像間の横方向の重なり度合いと縦方向の重なり度合いとが、それぞれ予め設定された値となるよう、前記飛行体の飛行ルート及び飛行速度と前記撮像装置による撮影間隔とを制御する、
点検方法。
The inspection method according to claim 6.
The flight route and flight speed of the flying object and the imaging so that the degree of overlap in the horizontal direction and the degree of overlap in the vertical direction between the still images acquired at the determined shooting altitude are preset values, respectively. Control the shooting interval by the device,
Inspection method.
飛行体に搭載した撮像装置を用いて点検対象面の静止画像を複数取得する取得手段と、
取得した前記静止画像に対する所定の解析処理を行い、前記点検対象面の点検を行う解析手段と、を備えた点検システムであって、
前記取得手段は、前記撮像装置に装備された撮像センサのサイズ及び画素数と、当該撮像センサの焦点距離と、に基づいて決定された撮影高度で、前記点検対象面の複数の前記静止画像を取得するよう前記飛行体の飛行状況と前記撮像装置の撮像状況とを制御する、
点検システム。
An acquisition means for acquiring multiple still images of the surface to be inspected using an image pickup device mounted on the aircraft, and
An inspection system including an analysis means for performing a predetermined analysis process on the acquired still image and inspecting the surface to be inspected.
The acquisition means captures a plurality of the still images of the inspection target surface at a shooting altitude determined based on the size and the number of pixels of the image sensor equipped in the image sensor and the focal length of the image sensor. The flight status of the flying object and the imaging status of the imaging device are controlled so as to be acquired.
Inspection system.
JP2019138623A 2019-07-29 2019-07-29 Inspection method and inspection system Pending JP2021022846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138623A JP2021022846A (en) 2019-07-29 2019-07-29 Inspection method and inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138623A JP2021022846A (en) 2019-07-29 2019-07-29 Inspection method and inspection system

Publications (1)

Publication Number Publication Date
JP2021022846A true JP2021022846A (en) 2021-02-18

Family

ID=74574861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138623A Pending JP2021022846A (en) 2019-07-29 2019-07-29 Inspection method and inspection system

Country Status (1)

Country Link
JP (1) JP2021022846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019236A1 (en) * 2020-07-22 2022-01-27 株式会社エムアールサポート Orthoimage creation method, ground model creation method, orthoimage creation system, and ground model creation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179378A1 (en) * 2016-04-14 2017-10-19 国立大学法人北海道大学 Spectral camera control device, spectral camera control program, spectral camera control system, aircraft equipped with said system, and spectral image capturing method
CN109211202A (en) * 2018-09-21 2019-01-15 长安大学 A kind of method for optimizing route of the expressway slope inspection based on unmanned plane
JP2019060641A (en) * 2017-09-25 2019-04-18 和樹 ▲柳▼ Aerial marking, analysis device, and drone airborne survey system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179378A1 (en) * 2016-04-14 2017-10-19 国立大学法人北海道大学 Spectral camera control device, spectral camera control program, spectral camera control system, aircraft equipped with said system, and spectral image capturing method
JP2019060641A (en) * 2017-09-25 2019-04-18 和樹 ▲柳▼ Aerial marking, analysis device, and drone airborne survey system
CN109211202A (en) * 2018-09-21 2019-01-15 长安大学 A kind of method for optimizing route of the expressway slope inspection based on unmanned plane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019236A1 (en) * 2020-07-22 2022-01-27 株式会社エムアールサポート Orthoimage creation method, ground model creation method, orthoimage creation system, and ground model creation system

Similar Documents

Publication Publication Date Title
US7974460B2 (en) Method and system for three-dimensional obstacle mapping for navigation of autonomous vehicles
KR102143456B1 (en) Depth information acquisition method and apparatus, and image collection device
JP4889351B2 (en) Image processing apparatus and processing method thereof
CN105184784B (en) The method that monocular camera based on movable information obtains depth information
JP6574845B2 (en) Drawing creating apparatus and drawing creating method
JP2016090333A (en) Image processor, inspection equipment, image processing method, and image processing program
EP3529978B1 (en) An image synthesis system
JP2010014450A (en) Position measurement method, position measurement device, and program
US20210264666A1 (en) Method for obtaining photogrammetric data using a layered approach
JP2016057063A (en) Non-contact detecting method for measurement objects, and apparatus for the same
WO2020008973A1 (en) Image-capture plan presentation device and method
JP2017201261A (en) Shape information generating system
CN113984019A (en) Measurement system, measurement method, and measurement program
JP2021022846A (en) Inspection method and inspection system
JP2021096865A (en) Information processing device, flight control instruction method, program, and recording medium
KR102578056B1 (en) Apparatus and method for photographing for aerial photogrammetry using an air vehicle
CN110036411B (en) Apparatus and method for generating electronic three-dimensional roaming environment
US10721419B2 (en) Ortho-selfie distortion correction using multiple image sensors to synthesize a virtual image
WO2021115192A1 (en) Image processing device, image processing method, program and recording medium
JP5409451B2 (en) 3D change detector
KR101415145B1 (en) Generation of Target Coordination for Automatic Image Aquisition of the Airborne EO/IR Pod
JP2023072353A (en) Mobile body travel route determination device, mobile body travel route determination method, and mobile body travel route determination program
JP7216994B2 (en) Existing survey map creation system, method and program
JP6861592B2 (en) Data thinning device, surveying device, surveying system and data thinning method
WO2023195394A1 (en) Imaging assistance device, moving body, imaging assistance method, and program

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201