JP2021021599A - Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System - Google Patents

Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System Download PDF

Info

Publication number
JP2021021599A
JP2021021599A JP2019137166A JP2019137166A JP2021021599A JP 2021021599 A JP2021021599 A JP 2021021599A JP 2019137166 A JP2019137166 A JP 2019137166A JP 2019137166 A JP2019137166 A JP 2019137166A JP 2021021599 A JP2021021599 A JP 2021021599A
Authority
JP
Japan
Prior art keywords
polarization
light
time
target object
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019137166A
Other languages
Japanese (ja)
Inventor
青砥隆仁
Takahito Aoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optech Innovation
Optech Innovation LLC
Original Assignee
Optech Innovation
Optech Innovation LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optech Innovation, Optech Innovation LLC filed Critical Optech Innovation
Priority to JP2019137166A priority Critical patent/JP2021021599A/en
Publication of JP2021021599A publication Critical patent/JP2021021599A/en
Pending legal-status Critical Current

Links

Abstract

To provide a time polarization correlation imaging method capable of a new time correlation imaging that requires no high-speed voltage modulation on a light source and image sensor, and a system thereof.SOLUTION: In the time polarization correlation imaging method for imaging based on polarization correlation information obtained from reflected light by projecting light from a light source 5 onto a target object 6, the polarized state of the light from the light source 5 is modulated in time by active polarization optics 10 and projected to the target object 6. The reflected light on the target object 6 is detected with a detector 1 after passing through the active polarization optics 10 to thereby obtain polarization correlation information from the detection result.SELECTED DRAWING: Figure 2

Description

本発明は、光の速度が既知であることを利用し、対象物体から跳ね返ってきた光を受け、その遅れ時間を計算する。それにより、距離の測定、材質、3次元形状計測などを可能とした時間偏光相関イメージング法及び時間偏光相関イメージングシステムに関する。 The present invention utilizes the fact that the speed of light is known, receives the light bounced off from the target object, and calculates the delay time thereof. The present invention relates to a time polarization correlation imaging method and a time polarization correlation imaging system that enable distance measurement, material, and three-dimensional shape measurement.

計測の場面では、対象とする場に特定の入力を与えて応答を見ることがよく行われ、与えた入力に対して生じた応答から対象の情報を得る。代表的なものが、入出関係の相関検出である。従来、その応用は点センサによるものが多かったが、面的な検出手段として、撮像と相関検出を実時間で二次元的に可能にするか時間相関イメージセンサが知られている。 In the measurement scene, it is common to give a specific input to the target field and see the response, and obtain the target information from the response generated in response to the given input. A typical example is the correlation detection of the entry / exit relationship. Conventionally, the application has been mostly by a point sensor, but as a surface detection means, a time correlation image sensor is known as a two-dimensional enablement of imaging and correlation detection in real time.

時間相関イメージセンサを用いたカメラは、撮像画像の各画素に到達した光の時間変化を記録する能力があるため、普通のカメラとは異なる応用ができる。例えば、1枚の画像データから画像中の動いている部分の速度と方向を表示したり、物体を作っている材質、凹凸の変化やキズなどを表示したり、など計測や検査用として実用化を目指した研究開発が進んでいる。 A camera using a time-correlated image sensor has the ability to record the time change of the light that reaches each pixel of the captured image, so that it can be applied differently from a normal camera. For example, it can be put to practical use for measurement and inspection, such as displaying the speed and direction of a moving part in an image from one image data, displaying the material making an object, changes in unevenness, scratches, etc. Research and development aiming at is progressing.

例えば、明度のデータに依存するのではなく飛行時間データを用いてリアルタイムで距離と速度のデータを測るTime−OF−Flight(以下TOF)カメラが知られている。TOFカメラは、パルス発光する光源があり、撮像素子で時間変化を時系列信号とし記録する。そして、飛行時間を計測し、画素単位で独立して距離計測を行える手段として注目されている。 For example, a Time-OF-Flight (TOF) camera that measures distance and velocity data in real time using flight time data rather than relying on brightness data is known. The TOF camera has a light source that emits pulses, and the image sensor records the time change as a time-series signal. Then, it is attracting attention as a means for measuring flight time and independently measuring distance in pixel units.

光飛行時間計測法に用いる撮像素子としては、光電変換部と複数の電荷蓄積部とを備え、飛来する光により光電変換部で発生した電子を光の飛来するタイミングで弁別する。そして、弁別した電子を複数の電荷蓄積部に振り分けて蓄積するようにした電荷振り分け方式がある。電荷振り分け方式の撮像素子の画素構造は、例えば、特許文献1に記載されている。 The image sensor used in the optical flight time measurement method includes a photoelectric conversion unit and a plurality of charge storage units, and discriminates electrons generated in the photoelectric conversion unit by the incoming light at the timing of the incoming light. Then, there is a charge distribution method in which the discriminated electrons are distributed and accumulated in a plurality of charge storage units. The pixel structure of the charge distribution type image pickup device is described in, for example, Patent Document 1.

また、イメージセンサの各画素にTOFの機能を埋め込んだシステムは、位相が分かっている変調光エネルギーを放出し、対象物からTOFシステムに反射して戻って来る光信号の位相シフトを調べる。例えば、特許文献2は、対象物までの深度距離を確認する位相型TOFシステムを記載している。 In addition, the system in which the TOF function is embedded in each pixel of the image sensor emits modulated light energy whose phase is known, and examines the phase shift of the optical signal reflected from the object to the TOF system and returned. For example, Patent Document 2 describes a phase-type TOF system that confirms the depth distance to an object.

特許第5205002号公報Japanese Patent No. 5205002 特許第4533582号公報Japanese Patent No. 45333582 特開2016−153795号公報Japanese Unexamined Patent Publication No. 2016-153795 特開2019−015745号公報JP-A-2019-015745

特許文献1、2に記載のものは、光エネルギーを検出するCMOSコンパチブルの画素検出器と関連する処理回路構成の両方を一つのIC上に製作した撮像素子による時間相関イメージング装置である。しかし、TOFカメラは、光源を高速に変調する必要があるという制約上、理想的な発光波形を出力することが困難である。そのため、計測精度の向上が困難であった。 The ones described in Patent Documents 1 and 2 are time-correlation imaging devices using an image sensor in which both a CMOS compatible pixel detector for detecting light energy and a related processing circuit configuration are manufactured on one IC. However, it is difficult for the TOF camera to output an ideal emission waveform due to the restriction that the light source needs to be modulated at high speed. Therefore, it is difficult to improve the measurement accuracy.

また、撮像素子は、画素毎に複雑な回路が必要となり、受光面積の低下、それに伴う感度低下が必須であった。また、多画素化の困難さや製造コスト増という問題があった。さらに、従来技術は、光源に同期した時間窓(クロック)を用いたロックイン検出法であり、高速なスイッチングに伴うスイッチングノイズにより電荷の蓄積量に誤差を生じる。そして、暗電流、リセットノイズ、ショットノイズなどの対策が必要であった。 In addition, the image sensor requires a complicated circuit for each pixel, and it is indispensable to reduce the light receiving area and the sensitivity accordingly. In addition, there are problems such as difficulty in increasing the number of pixels and an increase in manufacturing cost. Further, the prior art is a lock-in detection method using a time window (clock) synchronized with a light source, and an error occurs in the amount of charge accumulated due to switching noise associated with high-speed switching. Then, measures such as dark current, reset noise, and shot noise were required.

さらに、特許文献3、4に記載のものは、時間相関イメージング装置における撮像素子を単純な回路で代替する装置である。回路上でロックイン検出を行うのではなく、受光部前部に偏光板を設置し、偏光板を通過した光を光源に同期した光位相変調器において偏光度を変化させ、偏光度を計測するシステムにより時間相関を算出している。しかし、光源を高速に変調する必要があるという制約上、理想的な発光波形を出力することが困難である。また、物体表面における反射光と対象物体内部における光の内部散乱の影響を分離することは原理的に困難であり、内部散乱の影響により時間相関の結果が乱される。 Further, those described in Patent Documents 3 and 4 are devices that replace the image pickup element in the time correlation imaging device with a simple circuit. Instead of performing lock-in detection on the circuit, a polarizing plate is installed in front of the light receiving part, and the degree of polarization is changed by an optical phase modulator that synchronizes the light passing through the polarizing plate with the light source to measure the degree of polarization. The time correlation is calculated by the system. However, it is difficult to output an ideal emission waveform due to the restriction that the light source needs to be modulated at high speed. Further, it is difficult in principle to separate the influence of the reflected light on the surface of the object and the internal scattering of the light inside the target object, and the influence of the internal scattering disturbs the result of the time correlation.

本発明の目的は、上記従来技術の課題を解決し、光源及び撮像素子上で高速な電圧変調を必要としない新しい時間相関イメージングとして時間偏光相関イメージング法及びそのシステムを提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a time polarization correlation imaging method and a system thereof as a new time correlation imaging that does not require high-speed voltage modulation on a light source and an image sensor.

上記目的を達成するため、本発明は、光源からの光を対象物体に投射し、反射光から得られる偏光相関情報を基にイメージングする時間偏光相関イメージング法であって、前記光源からの光の偏光状態を能動偏光光学系(第1能動偏光光学系)により時間的に変調して前記対象物体に投射し、前記対象物体上での反射光を能動偏光光学系(第2能動偏光光学系)に通過させた後、検出器で検出し、検出結果から偏光相関情報を得る。 In order to achieve the above object, the present invention is a time polarization correlation imaging method in which light from a light source is projected onto an object and imaging is performed based on polarization correlation information obtained from the reflected light, and the light from the light source is used. The polarization state is temporally modulated by the active polarization optical system (first active polarization optical system) and projected onto the target object, and the reflected light on the target object is projected onto the target object by the active polarization optical system (second active polarization optical system). After passing through the light, it is detected by a detector, and polarization correlation information is obtained from the detection result.

また、前記能動偏光光学系は、前記光源からの光を偏光板で直線偏光し、印加電圧に応じて位相を遅らせる電気光学素子を通過させ、1/4λ波長板上を通過させて前記対象物体に投射することが望ましい。 Further, in the active polarization optical system, the light from the light source is linearly polarized by a polarizing plate, passed through an electro-optical element whose phase is delayed according to an applied voltage, and passed on a 1 / 4λ wave plate to pass the target object. It is desirable to project to.

さらに、前記能動偏光光学系は、前記光源からの光を印加磁力に応じて直線偏光方向を操作可能な磁気光学素子を通過又は反射させて前記対象物体に投射することが望ましい。 Further, it is desirable that the active polarizing optical system projects light from the light source onto the target object by passing or reflecting light from a magnetic optical element capable of manipulating the linear polarization direction according to an applied magnetic force.

記能動偏光光学系により偏光状態が任意の方向とそれに対し直交する方向の二状態になるように印加電圧もしくは印加磁力を加えることが望ましい。 It is desirable to apply an applied voltage or an applied magnetic force so that the polarized state has two states, one in an arbitrary direction and the other in a direction orthogonal to the polarized state, by the active polarization optical system.

上記目的を達成するため、本発明は、光源からの光を対象物体に投射し、反射光から得られる偏光相関情報を基にイメージングする時間偏光相関イメージングシステムにおいて、前記光源からの光の偏光状態を時間的に変調する能動偏光光学系と、前記対象物体で反射した光を能動偏光光学系を通過させた後、検出する検出器と、を備え、前記能動偏光光学系で変調した前記光源からの光を前記対象物体に投射し、前記検出器による検出結果から偏光相関情報を得るものである。 In order to achieve the above object, the present invention is a time polarization correlation imaging system in which light from a light source is projected onto an object and imaging is performed based on polarization correlation information obtained from the reflected light. In the time polarization correlation imaging system, the polarization state of the light from the light source is achieved. From the light source modulated by the active polarization optical system, comprising an active polarization optical system that temporally modulates the light, and a detector that detects light reflected by the target object after passing through the active polarization optical system. The light of the above is projected onto the target object, and polarization correlation information is obtained from the detection result by the detector.

また、前記能動偏光光学系は、前記光源からの光の偏光状態を制御する偏光板と光の位相を制御する波長板と印加電圧もしくは印加磁力に応じて偏光状態を能動的に操作可能な電気光学素子もしくは磁気光学素子と、を備え、偏光状態を任意の時間の関数として制御した光を前記対象物体に投射することが望ましい。 Further, the active polarization optical system includes a polarizing plate that controls the polarization state of light from the light source, a wave plate that controls the phase of light, and electricity that can actively manipulate the polarization state according to an applied voltage or an applied magnetic force. It is desirable to project light on the target object, which includes an optical element or a magnetic optical element and whose polarization state is controlled as a function of an arbitrary time.

さらに、前記電気光学素子もしくは磁気光学素子は、偏光状態が水平方向と鉛直方向になるように印加電圧が加えられることが望ましい。 Further, it is desirable that an applied voltage is applied to the electro-optical element or the magneto-optical element so that the polarization state is in the horizontal direction and the vertical direction.

さらに、前記検出器は光電変換部がアレイ状に配置された撮像素子とされ、前記印加電圧と同期して時間の異なる前記偏光相関情報を得ることが望ましい。 Further, it is desirable that the detector is an imaging element in which the photoelectric conversion unit is arranged in an array, and the polarization correlation information having different times in synchronization with the applied voltage is obtained.

また、前記検出器は光電変換部がアレイ状に配置された撮像素子とされ、各光電変換部で観測される明るさの変化をイベントとして捉えその情報を出力する非同期検出器を用いて前記偏光相関情報を得ることが望ましい。 Further, the detector is an imaging element in which photoelectric conversion units are arranged in an array, and the polarization is detected by using an asynchronous detector that captures a change in brightness observed by each photoelectric conversion unit as an event and outputs the information. It is desirable to obtain correlation information.

さらに、前記撮像素子は、直線偏光の方向が異なる偏光子が付与された光電変換部と対応する電荷蓄積部とを備え、前記対象物体からの反射光により偏光方向の異なる光電変換部で発生した光電流を前記電荷蓄積部において蓄積することが望ましい。 Further, the image pickup element includes a photoelectric conversion unit to which a polarizer having a different direction of linear polarization is applied and a corresponding charge storage unit, and is generated by the photoelectric conversion unit having a different polarization direction due to the reflected light from the target object. It is desirable to store the photocurrent in the charge storage unit.

さらに、前記撮像素子は、前記光電変換部であるフォトダイオードと、前記フォトダイオードと前記電荷蓄積部との間に配置され、前記光電流を複数の前記電荷蓄積部への転送を制御するゲート構造と、を有するCMOSイメージセンサであることが望ましい。 Further, the image sensor is arranged between the photodiode, which is the photoelectric conversion unit, and the photodiode and the charge storage unit, and has a gate structure that controls the transfer of the photocurrent to the plurality of charge storage units. It is desirable that the CMOS image sensor has.

さらに、前記偏光相関情報は位相差であることが望ましい Further, it is desirable that the polarization correlation information is a phase difference.

本発明は、光源からの光の偏光状態を能動偏光光学系により時間的に変調して対象物体に投射する。そして、反射光は、能動偏光光学系を通過させた後、検出器で検出し、検出結果から時間偏光相関イメージングする。したがって、時間偏光相関イメージングは、光源及び撮像素子上で高速な電圧変調を必要としない。これにより、計測精度を向上することが容易で、光源と撮像素子の両方共に、高速な電圧変調に伴う半導体集積回路の問題が解消できる。 In the present invention, the polarization state of light from a light source is time-modulated by an active polarization optical system and projected onto a target object. Then, after passing the reflected light through the active polarization optical system, it is detected by a detector, and time polarization correlation imaging is performed from the detection result. Therefore, time polarization correlation imaging does not require high speed voltage modulation on the light source and the image sensor. As a result, it is easy to improve the measurement accuracy, and the problem of the semiconductor integrated circuit associated with high-speed voltage modulation can be solved for both the light source and the image sensor.

本発明による一実施形態に係る能動偏光光学系の基本構造を示すブロック図A block diagram showing a basic structure of an active polarizing optical system according to an embodiment of the present invention. 一実施形態による時間偏光相関計測光学系の基本構成を示すブロック図Block diagram showing the basic configuration of the time polarization correlation measurement optical system according to one embodiment 一実施形態による能動偏光光学系10の偏光状態を示す図The figure which shows the polarization state of the active polarization optical system 10 by one Embodiment. 一実施形態による各部の時間変化ダイヤグラムTime change diagram of each part according to one embodiment 周波数と距離を変化させた場合の時間偏光相関の相関値を示す図The figure which shows the correlation value of the time polarization correlation when the frequency and the distance are changed. 周波数と距離を変化させた場合の時間相関の相関値を示す図The figure which shows the correlation value of the time correlation when the frequency and the distance are changed.

以下に、本発明の一実施形態について図面を参照して詳細に説明する。図1は、能動偏光光学系10の基本構造を示すブロック図、図2は、時間偏光相関計測光学系の基本構成を示すブロック図である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the basic structure of the active polarization optical system 10, and FIG. 2 is a block diagram showing the basic configuration of the time polarization correlation measurement optical system.

一実施形態は、対象物体6から反射された光の撮影から得られる偏光相関情報を基にイメージングする新しい時間相関イメージング法である。新しい時間相関イメージング法は、電気駆動で偏光状態を変更可能な能動偏光光学系10を利用し、時間偏光相関情報を得る時間偏光相関イメージング法である。そして、新しい時間変更相関イメージング法は、光源5及び撮像素子上で高速な電圧変調を必要としない。 One embodiment is a new time correlation imaging method that performs imaging based on polarization correlation information obtained from photographing the light reflected from the target object 6. The new time correlation imaging method is a time polarization correlation imaging method that obtains time polarization correlation information by using an active polarization optical system 10 that can change the polarization state by electric drive. And the new time-altered correlation imaging method does not require high-speed voltage modulation on the light source 5 and the image sensor.

また、電気駆動による偏光状態は、光源5を一定の輝度で点灯させ、高速で回転している偏光板に光を通過させても良い。そして、偏光板を通過した光は、対象物体6上で反射し、再び高速で回転している偏光板上を通過させる。この際、光の偏光状態は、出射時と入射時において異なる。そこで、時間偏光相関イメージングは、偏光板入射時に時間偏光相関情報を得て、撮像素子で観測することで可能となる。 Further, in the polarized state by electric drive, the light source 5 may be turned on with a constant brightness and light may be passed through a polarizing plate rotating at high speed. Then, the light that has passed through the polarizing plate is reflected on the target object 6 and is passed through the polarizing plate that is rotating at high speed again. At this time, the polarization state of the light is different between the time of emission and the time of incidence. Therefore, time-polarization correlation imaging is possible by obtaining time-polarization correlation information when the polarizing plate is incident and observing it with an image sensor.

しかし、光の移動速度を検出可能な速度で偏光板を機械的に回転させることは困難である。一実施形態は、電気駆動で偏光状態を高速に変更可能な能動偏光光学系10とも呼ぶべき光学系を用いて、作成された任意の方向に偏光した光を対象物体6に投射する。そして、対象物体6上での反射光を能動偏光光学系10を通過した後、検出器1で検出し、検出結果から時間偏光相関情報を獲得する。 However, it is difficult to mechanically rotate the polarizing plate at a speed at which the moving speed of light can be detected. In one embodiment, the created light polarized in an arbitrary direction is projected onto the target object 6 by using an optical system which can be called an active polarization optical system 10 which can change the polarization state at high speed by electric drive. Then, after passing the reflected light on the target object 6 through the active polarization optical system 10, the detector 1 detects it, and the time polarization correlation information is acquired from the detection result.

図1の能動偏光光学系10によって任意の方向に偏光した光を作り出し、作り出された任意の偏光を持った光は、図2に示すように対象物体6で反射する。そして反射光は、能動偏光光学系10を上通過した後、検出器1で観測される。なお、能動偏光光学系10は、対象物体6へ偏光を持った光を投射して送信する側を第1能動偏光光学系、反射光を受信する側を第2能動偏光光学系として、送信側と受信側で別の能動偏光光学系かつ変調も送信側と受信側で異なるものを使用しても良いし、同じものでも良い。 Light polarized in an arbitrary direction is produced by the active polarization optical system 10 of FIG. 1, and the produced light having an arbitrary polarization is reflected by the target object 6 as shown in FIG. Then, the reflected light is observed by the detector 1 after passing over the active polarizing optical system 10. In the active polarization optical system 10, the side that projects polarized light onto the target object 6 and transmits it is the first active polarization optical system, and the side that receives the reflected light is the second active polarization optical system. It is also possible to use different active polarizing optical systems on the receiving side and different modulations on the transmitting side and the receiving side, or the same ones.

能動偏光光学系10は、電圧駆動により任意の偏光方向状態を作り出すことが可能な光学系である。図1において、光源5から出た光は偏光板2で直線偏光され、直線偏光された光は電気光学素子3を通過する。電気光学素子3は、例えば、カーセルやポッケルスの偏光子であり、印加電圧に応じて遅相軸の位相を遅らせる素子である。電気光学素子3の遅相軸と直線偏光の方向は、45度に設定する。これにより、電気光学素子3を通過した光は任意の楕円偏光となる。 The active polarization optical system 10 is an optical system capable of creating an arbitrary polarization direction state by voltage driving. In FIG. 1, the light emitted from the light source 5 is linearly polarized by the polarizing plate 2, and the linearly polarized light passes through the electro-optical element 3. The electro-optical element 3 is, for example, a polarizer of Carcel or Pockels, and is an element that delays the phase of the slow-phase axis according to the applied voltage. The slow axis of the electro-optical element 3 and the direction of linearly polarized light are set to 45 degrees. As a result, the light that has passed through the electro-optical element 3 becomes arbitrary elliptically polarized light.

任意方向の直線偏光は、最後に元の直線偏光方向と遅相軸の方向が揃った1/4λ波長板4を通過させることで作り出すことができる。つまり、能動偏光光学系10は、位相遅延をコントロール可能な電気光学素子3にすることで任意の偏光状態を作り出すことができる。このことは、液晶などの位相遅延を計測するセルナモン法として知られている。 The linearly polarized light in an arbitrary direction can be created by finally passing through the 1 / 4λ wave plate 4 in which the original linearly polarized light direction and the direction of the slow phase axis are aligned. That is, the active polarization optical system 10 can create an arbitrary polarization state by using the electro-optical element 3 whose phase delay can be controlled. This is known as the Sernamon method for measuring the phase delay of liquid crystals and the like.

図3は、能動偏光光学系10の偏光状態を示す図であり、能動偏光光学系10の偏光状態は、図3に示すようにポアンカレ球の遷移として表現できる。ポアンカレ球は、偏光状態を球上の点で表し、赤道上の点は直線偏光状態、北極点、南極点は、円偏光を表す。x軸に直線偏光の出発点をとり、y軸を回転軸にすると緯度方向の回転角度は、位相遅延量に対応する。そして、ポアンカレ球は、位相遅延量を変えることで、直線偏光、楕円偏光、円偏光に変換されることを表す。 FIG. 3 is a diagram showing the polarization state of the active polarization optical system 10, and the polarization state of the active polarization optical system 10 can be expressed as a transition of Poincare spheres as shown in FIG. In the Poancare sphere, the polarized state is represented by points on the sphere, the points on the equator represent the linearly polarized state, and the North Pole and South Pole represent circularly polarized light. When the starting point of linear polarization is taken on the x-axis and the y-axis is the rotation axis, the rotation angle in the latitude direction corresponds to the phase delay amount. The Poincare sphere is converted into linearly polarized light, elliptically polarized light, and circularly polarized light by changing the phase delay amount.

光源5から出た光は偏光板2で直線偏光され、電気光学素子3を通過すると、y軸のまわりで緯度方向に電気光学素子3の相対位相遅延量ψだけ回転する。続いて、光が1/4λ波長板上を通過すると、図3のポアンカレ球上でx軸のまわりで90度(π/4)偏光が回転する。 The light emitted from the light source 5 is linearly polarized by the polarizing plate 2, and when it passes through the electro-optical element 3, it rotates around the y-axis by the relative phase delay amount ψ of the electro-optical element 3 in the latitude direction. Subsequently, when light passes over the 1 / 4λ wave plate, 90 degree (π / 4) polarized light rotates around the x-axis on the Poancare sphere of FIG.

結果としてφ/2だけ回転した直線偏光が得られる。電気光学素子3の位相遅延量をφ(位相差ψ/2π)をとすると、能動偏光光学系10における偏光方向の回転角φは、ψ/2となる。そこで、電気光学素子3の進相軸と遅相軸の屈折率差を生じさせることで、任意の偏光状態を作り出すことができる。 As a result, linearly polarized light rotated by φ / 2 is obtained. Assuming that the phase delay amount of the electro-optical element 3 is φ (phase difference ψ / 2π), the rotation angle φ in the polarization direction in the active polarization optical system 10 is ψ / 2. Therefore, an arbitrary polarization state can be created by creating a difference in refractive index between the phase-advancing axis and the slow-phase axis of the electro-optical element 3.

電気光学素子3は、結晶性材料を用いた偏光素子であり、材料を構成する分子の位置、向き、又は形状を歪める力によって引き起こされる電気光学効果を利用する。一般的に、非線形光学材料(有機ポリマー、ニオブ酸リチウム、化合物半導体など)の結晶は電圧で、その屈折率が変調できる。 The electro-optical element 3 is a polarizing element using a crystalline material, and utilizes an electro-optical effect caused by a force that distorts the position, orientation, or shape of molecules constituting the material. In general, crystals of nonlinear optical materials (organic polymers, lithium niobate, compound semiconductors, etc.) can be modulated by voltage.

偏光はジョーンズベクトルで記述され、光が光学素子を通過するとき、その出射光の偏光は、光学素子のジョーンズ行列と入射光のジョーンズベクトルの積となる。そこで、検出器1で観測される光は、ジョーンズベクトルを用い反射光の偏光をEinとすると、観測される検出子に入射する偏光相関Eoutは以下のように表される。
Polarization is described by a Jones vector, and when light passes through an optical element, the polarization of the emitted light is the product of the Jones matrix of the optical element and the Jones vector of the incident light. Therefore, assuming that the light observed by the detector 1 uses the Jones vector and the polarization of the reflected light is Ein, the polarization correlation Eout incident on the observed detector is expressed as follows.

図4は、各部の時間変化ダイヤグラムであり、電気光学素子3に与えた印加電圧に対して、検出器1で観測される相関領域の時間tについての関係を示すグラフである。上図から電気光学素子3に与えた印加電圧、光源5からの光が反射前の偏光状態、反射後の偏光状態、検出器1で観測される相関領域を示している。 FIG. 4 is a time change diagram of each part, and is a graph showing the relationship between the applied voltage applied to the electro-optical element 3 and the time t of the correlation region observed by the detector 1. From the above figure, the applied voltage applied to the electro-optical element 3, the polarized state before the reflection of the light from the light source 5, the polarized state after the reflection, and the correlation region observed by the detector 1 are shown.

図4に示すように、電気光学素子3に偏光状態が水平方向と鉛直方向になるように印加電圧を加え、光源5からの光の偏光状態を能動偏光光学系10により時間的に変調して対象物体6に投射する。この場合、反射後の偏光状態は対象物体6までの距離をdとすると、2d/Cだけ(Cは光速であり、300,000Km/秒である)時間遅れを持って能動偏光光学系10に入射する。 As shown in FIG. 4, an applied voltage is applied to the electro-optical element 3 so that the polarization states are in the horizontal direction and the vertical direction, and the polarization state of the light from the light source 5 is temporally modulated by the active polarization optical system 10. Project onto the target object 6. In this case, the polarization state after reflection is such that the active polarization optical system 10 has a time delay of only 2d / C (C is the speed of light, which is 300,000 km / sec), where d is the distance to the target object 6. Incident.

そのため、相関領域は、時間軸上で0、1の二値状態をとる。TOFカメラなど一般的な時間相関イメージングは、光源5をパルス発光させ、パルス波のON状態と撮像素子の時間窓がONである状態の論理積が時間相関として出力される。なお、能動偏光光学系10により偏光状態が任意の方向とそれに対し直交する方向の二状態になるように印加電圧もしくは印加磁力を加えることでも良い。 Therefore, the correlation region takes a binary state of 0 and 1 on the time axis. In general time-correlation imaging such as a TOF camera, the light source 5 is made to emit a pulse, and the logical product of the ON state of the pulse wave and the time window of the image sensor is output as a time correlation. The active polarization optical system 10 may apply an applied voltage or an applied magnetic force so that the polarized state has two states, one in an arbitrary direction and the other in a direction orthogonal to the polarized state.

これに対し、一実施形態による時間偏光相関イメージングの場合は、偏光方向の相関値が出力される。そのため、相関情報は、偏光状態が直交する二値の場合、排他的論理和がとして出力される。これにより、時間相関イメージングと比較し、露光可能な時間が2倍多くなる。一実施形態は、同じ周期の電圧駆動で2倍のSN比を達成できる。 On the other hand, in the case of time polarization correlation imaging according to one embodiment, the correlation value in the polarization direction is output. Therefore, the correlation information is output as an exclusive OR when the polarization states are orthogonal binary values. This doubles the exposure time as compared to time-correlated imaging. In one embodiment, a double SN ratio can be achieved with voltage drive of the same period.

また、時間偏光相関値は、光源を時間領域において偏光変調し、対象の変化の様相を荷重積分によって観測する。つまり、時間偏光相関値は、時間領域において偏光状態が変化するので、参照信号(光源)と対象信号(対象物体上で反射しカメラ上で観測された信号)の類似性を求めることになる。 Further, for the time polarization correlation value, the light source is polarized and modulated in the time domain, and the aspect of the change of the object is observed by load integration. That is, since the polarization state of the time polarization correlation value changes in the time domain, the similarity between the reference signal (light source) and the target signal (the signal reflected on the target object and observed on the camera) is obtained.

つまり、参照する偏光状態が既知の光照射信号とシャッター開放中の偏光度の時間変化との時間領域における偏光相関を算出することで時間偏光相関イメージングを行う。そして、時間偏光相関値あるいは遅れ時間、位相シフトなどを計算することで、距離の測定、材質の光散乱度合い、3次元形状計測などが可能となる。例えば、物体内部で光が散乱する場合は、照射した光信号と受光した光信号との相関情報に基づき材質推定を行う。 That is, time polarization correlation imaging is performed by calculating the polarization correlation in the time domain between the light irradiation signal whose reference polarization state is known and the time change of the degree of polarization while the shutter is open. Then, by calculating the time polarization correlation value, the delay time, the phase shift, etc., it is possible to measure the distance, the degree of light scattering of the material, and the three-dimensional shape measurement. For example, when light is scattered inside an object, the material is estimated based on the correlation information between the irradiated light signal and the received light signal.

イメージングにおいて、検出器1は、撮像素子とし、各ピクセル(画素)に到達した光を記録する。通常、それぞれのピクセル(画素)が、各ピクセルの光強度に依存する信号(光電流)を生成する光電変換部(例えば、フォトダイオード又はフォトトランジスタ、図2では検出器1)を複数有する。複数のピクセルは、アレイ状に配置され、一次元又は二次元アレイであってよく、ピクセルのアレイは矩形境界を有しても有さなくてもよい。 In imaging, the detector 1 serves as an image sensor and records the light that reaches each pixel. Usually, each pixel has a plurality of photoelectric conversion units (for example, a photodiode or a phototransistor, a detector 1 in FIG. 2) that generates a signal (photocurrent) depending on the light intensity of each pixel. The plurality of pixels are arranged in an array and may be a one-dimensional or two-dimensional array, and the array of pixels may or may not have a rectangular boundary.

検出器1で観測される相関領域で得た光のイメージングは、例えば、検出器1は、光電変換部と複数の電荷蓄積部とを備え、相関領域で得た対象物体6からの反射光により光電変換部で発生した光電流を複数の電荷蓄積部に振り分けて蓄積する撮像素子を用いる。つまり、検出器1は、フォトダイオードと電荷蓄積部との間に配置され、光電流を複数の電荷蓄積部への転送を制御するゲート構造を有する撮像素子(イメージセンサ)を用いる。例えば、ピクセルごとに増幅器を持ち、電圧値に変換して1画素ずつ選択して読み出すCMOSイメージセンサが挙げられる。 For imaging of light obtained in the correlation region observed by the detector 1, for example, the detector 1 includes a photoelectric conversion unit and a plurality of charge storage units, and is based on the reflected light from the target object 6 obtained in the correlation region. An image sensor is used in which the photocurrent generated in the photoelectric conversion unit is distributed and stored in a plurality of charge storage units. That is, the detector 1 uses an image sensor (image sensor) that is arranged between the photodiode and the charge storage unit and has a gate structure that controls the transfer of the photocurrent to the plurality of charge storage units. For example, a CMOS image sensor that has an amplifier for each pixel, converts it into a voltage value, and selects and reads out one pixel at a time.

また、通常の二次元の写真と、距離画像のデータを合わせることで、対象を立体的に撮影することができる。さらに、動きの検知は、短い時間間隔で距離を測定することで可能であり、動きを推定できる。 In addition, the object can be photographed three-dimensionally by combining the data of the distance image with the normal two-dimensional photograph. Furthermore, motion detection is possible by measuring the distance at short time intervals, and motion can be estimated.

また、上記の時間偏光相関イメージング法において、能動偏光光学系は、光の偏光状態を操作するために、既知の偏光状態の光源もしくは偏光板2が付与された光源を用い、カー効果やポッケルス効果など印加電圧に応じて通過した光の特定方向の位相を遅らせる電気光学素子3と任意の波長板を組み合わせることによって、偏光状態を時間の関数として任意に変調し投射又は受光するシステムとすることができる。 Further, in the above-mentioned time polarization correlation imaging method, the active polarization optical system uses a light source having a known polarization state or a light source to which a polarizing plate 2 is applied in order to manipulate the polarization state of light, and has a Kerr effect or a Pockels effect. By combining an electro-optical element 3 that delays the phase of light passing in a specific direction according to an applied voltage and an arbitrary wave plate, it is possible to make a system that arbitrarily modulates the polarization state as a function of time and projects or receives light. it can.

さらに、上記の時間偏光相関イメージング法において、能動偏光光学系10は、光の偏光状態を操作するために、既知の偏光状態の光源もしくは偏光板2が付与された光源を用い、ファラデー効果や磁気カー効果など印加磁力に応じて透過又は反射した光の偏光状態を操作する磁気光学素子によって、偏光状態を時間の関数として任意に変調し投射又は受光するシステムとすることもできる。 Further, in the above-mentioned time polarization correlation imaging method, the active polarization optical system 10 uses a light source having a known polarization state or a light source to which a polarizing plate 2 is applied in order to manipulate the polarization state of light, and has a Faraday effect or magnetism. It is also possible to make a system in which the polarization state is arbitrarily modulated as a function of time and projected or received by a magnetic optical element that manipulates the polarization state of the light transmitted or reflected according to the applied magnetic force such as the car effect.

さらに、上記の時間偏光相関イメージング法において、能動偏光光学系10は、光の偏光状態を操作するために、偏光状態を直接操作する液晶素子によって、偏光状態を時間の関数として任意に変調し投射又は受光するシステムとすることもできる。 Further, in the above-mentioned time polarization correlation imaging method, the active polarization optical system 10 arbitrarily modulates and projects the polarization state as a function of time by a liquid crystal element that directly manipulates the polarization state in order to manipulate the polarization state of light. Alternatively, it may be a system that receives light.

また、上記の時間偏光相関イメージングシステムにおいて、検出器1は光電変換部がアレイ状に配置された撮像素子とされ、印加電圧と同期して時間の異なる偏光相関情報を得るものを含む。 Further, in the above-mentioned time polarization correlation imaging system, the detector 1 includes an imaging element in which photoelectric conversion units are arranged in an array, and obtains polarization correlation information having different times in synchronization with an applied voltage.

上記の時間偏光相関イメージングシステムにおいて、検出器1は光電変換部がアレイ状に配置された撮像素子とされ、Dynamic Vision Sensorなど各光電変換部で観測される明るさの変化をイベントとして捉えその情報を出力する非同期検出器を用いて偏光相関情報を得るものを含む。 In the above-mentioned time polarization correlation imaging system, the detector 1 is an image sensor in which the photoelectric conversion units are arranged in an array, and the change in brightness observed by each photoelectric conversion unit such as the Dynamic Vision Sensor is captured as an event and the information thereof. Includes those that obtain polarization correlation information using an asynchronous detector that outputs.

上記の時間偏光相関イメージングシステムにおいて、検出器1は光電変換部がアレイ状に配置された撮像素子とされ各検出器上に同一方向もしくは異なる方向の直線偏光素子を配列した偏光カメラを用いるものを含む。 In the above-mentioned time polarization correlation imaging system, the detector 1 is an imaging element in which photoelectric conversion units are arranged in an array, and uses a polarizing camera in which linear polarization elements in the same direction or different directions are arranged on each detector. Including.

さらに、上記の時間偏光相関イメージングシステムにおいて、偏光相関情報は直線偏光の偏光方向の差であることが望ましい。 Further, in the above-mentioned time polarization correlation imaging system, it is desirable that the polarization correlation information is the difference in the polarization direction of linearly polarized light.

以下に、時間偏光相関イメージングによる相関値を推定した実施例について説明する。 An example in which the correlation value is estimated by time polarization correlation imaging will be described below.

図5は、周波数と距離を変化させた場合の時間偏光相関の相関値をシミュレーションにより求めた図であり、図6は、同様に時間相関の相関値である。時間偏光相関の場合は、図4で説明したように時間相関と比較して相関値の露光時間が2倍長い。そのため、時間偏光相関イメージングは、同じ周期の電圧駆動で2倍のSN比の観測が可能であり推定精度を向上することが可能である。 FIG. 5 is a diagram obtained by simulating the correlation value of the time polarization correlation when the frequency and the distance are changed, and FIG. 6 is a diagram showing the correlation value of the time correlation in the same manner. In the case of the time polarization correlation, the exposure time of the correlation value is twice as long as that of the time correlation as described in FIG. Therefore, in the time polarization correlation imaging, it is possible to observe twice the SN ratio by voltage driving with the same period, and it is possible to improve the estimation accuracy.

1…検出器
2…偏光板
3…電気光学素子
4…1/4λ波長板
5…光源
6…対象物体
10…能動偏光光学系
1 ... Detector 2 ... Polarizing plate 3 ... Electro-optical element 4 ... 1 / 4λ Wave plate 5 ... Light source 6 ... Target object 10 ... Active polarization optical system

Claims (12)

光源からの光を対象物体に投射し、反射光から得られる偏光相関情報を基にイメージングする時間偏光相関イメージング法であって、
前記光源からの光の偏光状態を能動偏光光学系により時間的に変調して前記対象物体に投射し、
前記対象物体上での反射光を能動偏光光学系に通過させた後、検出器で検出し、検出結果から偏光相関情報を得ることを特徴とする時間偏光相関イメージング法。
This is a time-polarization correlation imaging method in which light from a light source is projected onto a target object and imaging is performed based on the polarization correlation information obtained from the reflected light.
The polarization state of the light from the light source is time-modulated by the active polarization optical system and projected onto the target object.
A time-polarization correlation imaging method characterized in that the reflected light on the target object is passed through an active polarization optical system, detected by a detector, and polarization correlation information is obtained from the detection result.
前記能動偏光光学系は、前記光源からの光を偏光板で直線偏光し、印加電圧に応じて位相を遅らせる電気光学素子を通過させ、1/4λ波長板上を通過させて前記対象物体に投射することを特徴とする請求項1に記載の時間偏光相関イメージング法。 In the active polarization optical system, light from the light source is linearly polarized by a polarizing plate, passed through an electro-optical element whose phase is delayed according to an applied voltage, passed over a 1 / 4λ wave plate, and projected onto the target object. The time polarization correlation imaging method according to claim 1, wherein the method is performed. 前記能動偏光光学系は、前記光源からの光を印加磁力に応じて直線偏光方向を操作可能な磁気光学素子を通過又は反射させて前記対象物体に投射することを特徴とする請求項1に記載の時間偏光相関イメージング法。 The active polarization optical system according to claim 1, wherein the light from the light source passes or is reflected by a magneto-optical element capable of manipulating the linear polarization direction according to an applied magnetic force and projected onto the target object. Time polarization correlation imaging method. 前記能動偏光光学系により偏光状態が任意の方向とそれに対し直交する方向の二状態になるように印加電圧もしくは印加磁力を加えることを特徴とする請求項2又は3に記載の時間偏光相関イメージング法。 The time polarization correlation imaging method according to claim 2 or 3, wherein an applied voltage or an applied magnetic force is applied so that the polarized state becomes two states in an arbitrary direction and a direction orthogonal to the polarized state by the active polarizing optical system. .. 光源からの光を対象物体に投射し、反射光から得られる偏光相関情報を基にイメージングする時間偏光相関イメージングシステムにおいて、
前記光源からの光の偏光状態を時間的に変調する能動偏光光学系と、
前記対象物体で反射した光を前記能動偏光光学系を通過させた後、検出する検出器と、
を備え、
前記能動偏光光学系で変調した前記光源からの光を前記対象物体に投射し、前記検出器による検出結果から偏光相関情報を得ることを特徴とする時間偏光相関イメージングシステム。
In a time polarization correlation imaging system that projects light from a light source onto a target object and images based on the polarization correlation information obtained from the reflected light.
An active polarized optical system that temporally modulates the polarization state of light from the light source,
A detector that detects light reflected by the target object after passing it through the active polarizing optical system.
With
A time-polarization correlation imaging system characterized in that light from the light source modulated by the active polarization optical system is projected onto the target object and polarization correlation information is obtained from the detection result by the detector.
前記能動偏光光学系は、
前記光源からの光の偏光状態を制御する偏光板と光の位相を制御する波長板と印加電圧もしくは印加磁力に応じて偏光状態を能動的に操作可能な電気光学素子もしくは磁気光学素子と、
を備え、偏光状態を任意の時間の関数として制御した光を前記対象物体に投射することを特徴とする請求項5に記載の時間偏光相関イメージングシステム。
The active polarization optical system is
A polarizing plate that controls the polarization state of light from the light source, a wave plate that controls the phase of light, an electro-optical element or a magnetic optical element that can actively control the polarization state according to an applied voltage or an applied magnetic force.
The time polarization correlation imaging system according to claim 5, wherein light is projected onto the target object in which the polarization state is controlled as a function of an arbitrary time.
前記電気光学素子もしくは磁気光学素子は、偏光状態が任意の方向とそれに対し直交する方向の二状態になるように印加電圧が加えられることを特徴とする請求項6に記載の時間偏光相関イメージングシステム。 The time polarization correlation imaging system according to claim 6, wherein an applied voltage is applied to the electro-optical element or the magneto-optical element so that the polarization state is in two states of an arbitrary direction and a direction orthogonal to the arbitrary direction. .. 前記検出器は光電変換部がアレイ状に配置された撮像素子とされ、前記印加電圧と同期して時間の異なる前記偏光相関情報を得ることを特徴とする請求項7に記載の時間偏光相関イメージングシステム。 The time polarization correlation imaging according to claim 7, wherein the detector is an imaging element in which photoelectric conversion units are arranged in an array, and obtains polarization correlation information having different times in synchronization with the applied voltage. system. 前記検出器は光電変換部がアレイ状に配置された撮像素子とされ、各光電変換部で観測される明るさの変化をイベントとして捉え、その情報を出力する非同期検出器を用いて前記偏光相関情報を得ることを特徴とする請求項7に記載の時間偏光相関イメージングシステム。 The detector is an imaging element in which the photoelectric conversion units are arranged in an array, and the polarization correlation is performed by using an asynchronous detector that captures the change in brightness observed by each photoelectric conversion unit as an event and outputs the information. The time polarization correlation imaging system according to claim 7, wherein information is obtained. 前記撮像素子は、直線偏光の方向が異なる偏光子が付与された光電変換部と対応する電荷蓄積部とを備え、前記対象物体からの反射光により偏光方向の異なる光電変換部で発生した光電流を電荷蓄積部において蓄積することを特徴とする請求項8又は9に記載の時間偏光相関イメージングシステム。 The imaging element includes a photoelectric conversion unit to which a polarizer having different directions of linearly polarized light is applied and a corresponding charge storage unit, and a photocurrent generated in the photoelectric conversion unit having different polarization directions due to reflected light from the target object. The time-polarized light correlation imaging system according to claim 8 or 9, wherein the light is stored in the charge storage unit. 前記撮像素子は、
前記光電変換部であるフォトダイオードと、
前記フォトダイオードと前記電荷蓄積部との間に配置され、前記光電流を複数の前記電荷蓄積部への転送を制御するゲート構造と、
を有するCMOSイメージセンサであることを特徴とする請求項10に記載の時間偏光相関イメージングシステム。
The image sensor is
The photodiode, which is the photoelectric conversion unit, and
A gate structure that is arranged between the photodiode and the charge storage unit and controls the transfer of the photocurrent to the plurality of charge storage units.
The time polarization correlation imaging system according to claim 10, further comprising a CMOS image sensor.
前記偏光相関情報は位相差であることを特徴とする請求項5から11のいずれか1項に記載の時間偏光相関イメージングシステム。 The time polarization correlation imaging system according to any one of claims 5 to 11, wherein the polarization correlation information is a phase difference.
JP2019137166A 2019-07-25 2019-07-25 Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System Pending JP2021021599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019137166A JP2021021599A (en) 2019-07-25 2019-07-25 Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019137166A JP2021021599A (en) 2019-07-25 2019-07-25 Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System

Publications (1)

Publication Number Publication Date
JP2021021599A true JP2021021599A (en) 2021-02-18

Family

ID=74574787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019137166A Pending JP2021021599A (en) 2019-07-25 2019-07-25 Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System

Country Status (1)

Country Link
JP (1) JP2021021599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286024A (en) * 2021-11-15 2022-04-05 北京理工大学 Optical polarization information model construction method and device based on dynamic vision sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286024A (en) * 2021-11-15 2022-04-05 北京理工大学 Optical polarization information model construction method and device based on dynamic vision sensor

Similar Documents

Publication Publication Date Title
US8242428B2 (en) Method and system for lidar using spatial information from a light source in combination with nonspatial information influenced by the subject to derive an image
US20190141227A1 (en) Optical filter opacity control in motion picture capture
US8811763B2 (en) Method and system for producing image frames using quantum properties
US8982363B2 (en) Method and apparatus to determine depth information for a scene of interest
EP3195042B1 (en) Linear mode computational sensing ladar
Kirmani et al. Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor
US8587686B1 (en) Hybrid differential optical sensing imager
EP2073035A1 (en) Recording of 3D images of a scene
CN101846745B (en) Laser radar based on highly-correlated quantum imaging principle
JP3747471B2 (en) Polarization direction detection type two-dimensional light reception timing detection device and surface shape measurement device using the same
CN109791205A (en) For the method from the exposure value of the pixel unit in imaging array subduction bias light and for the pixel unit of this method
JP3695188B2 (en) Shape measuring apparatus and shape measuring method
GB2585437A (en) Energy efficient, high resolution light detection and ranging imaging receiver with large field-of-view
US11880114B2 (en) Ferroelectric liquid crystals Dammann grating for light detection and ranging devices
US20210109223A1 (en) Mechanically Resonant Photoelastic Modulator for Time-of-Flight Imaging
KR101424665B1 (en) Range Measuring Apparatus
Yuan et al. Fast LiDAR systems based on ferroelectric liquid crystal Dammann grating
CN105472237A (en) Imaging apparatus and imaging method
JP2021021599A (en) Time Polarization Correlation Imaging Method and Time Polarization Correlation Imaging System
US3970842A (en) Automatic focus control device
JP3711808B2 (en) Shape measuring apparatus and shape measuring method
US11733385B1 (en) Broadening the measurement range of optical shutter-gated light detection and ranging (LIDAR)
Jawad et al. Measuring object dimensions and its distances based on image processing technique by analysis the image using sony camera
Heredia Conde et al. Phase-Shift-Based Time-of-Flight Imaging Systems
KR20180121586A (en) Electromagnetic field imaging device