JP2021021539A - Cooling and heating gas flow passage forming system and cooling and heating system - Google Patents

Cooling and heating gas flow passage forming system and cooling and heating system Download PDF

Info

Publication number
JP2021021539A
JP2021021539A JP2019138898A JP2019138898A JP2021021539A JP 2021021539 A JP2021021539 A JP 2021021539A JP 2019138898 A JP2019138898 A JP 2019138898A JP 2019138898 A JP2019138898 A JP 2019138898A JP 2021021539 A JP2021021539 A JP 2021021539A
Authority
JP
Japan
Prior art keywords
flow path
gas flow
heating
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019138898A
Other languages
Japanese (ja)
Inventor
角田 正
Tadashi Tsunoda
正 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019138898A priority Critical patent/JP2021021539A/en
Publication of JP2021021539A publication Critical patent/JP2021021539A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a cooling and heating gas flow passage forming system and a cooling and heating system which suppress temperature unevenness.SOLUTION: A cooling and heating gas flow passage forming system 10 includes, on the rear side of a plate-like division member 30 that divides a cooling and heating target room R to be cooled or heated, a gas flow passage forming member 11 that is arranged so as to extend linearly along the plane of the division member 30 and also to form an annular shape, and forms a gas flow passage 11f through which temperature adjusted gas A is made to flow in cooperation with the division member 30 or independently. A cooling and heating system 100 includes: the cooling and heating gas flow passage forming system 10; the division member 30; a partition member 20 that partitions a space S on the rear side of the division member 30 and on the outside of the gas flow passage 11f into a supply space SS into which the temperature adjusted gas A is supplied and a recovery space RS into which the temperature adjusted gas A flows after the temperature of the gas comes close to the temperature inside the cooling and heating target room R; and a temperature adjusting device 61 that supplies the temperature adjusted gas A. The gas flow passage forming member 11 has an inflow port 121 formed at a portion located at the supply space SS.SELECTED DRAWING: Figure 1

Description

本発明は冷暖房用気体流路形成システム及び冷暖房システムに関し、特に温度むらの発生を抑制する冷暖房用気体流路形成システム及び冷暖房システムに関する。 The present invention relates to a gas flow path forming system for heating and cooling and a heating and cooling system, and more particularly to a gas flow path forming system for heating and cooling and a heating and cooling system that suppresses the occurrence of temperature unevenness.

大引鋼を複数本平行に配列し、この上に根太鋼を大引鋼に対して交差するように複数本平行に配列して、この根太鋼の上に床材(冷暖房対象室を区画する区画部材に相当)を敷設することで床面を形成する鋼製床がある。このような鋼製床を用いて、鋼製床上の空間の冷暖房を行うものとして、大引鋼及び根太鋼の内部に空気の流路を形成し、この内部の空気流路に温度調節済みの空気を流し、温度調節済みの空気の冷熱又は温熱を床材に伝達して、床材からの輻射熱で冷暖房を行うものがある(例えば、特許文献1参照。)。 A plurality of large steels are arranged in parallel, and a plurality of joist steels are arranged in parallel on the joist steels so as to intersect with the large steels. There is a steel floor that forms a floor surface by laying (corresponding to a partition member). As a means of heating and cooling the space on the steel floor using such a steel floor, an air flow path is formed inside the large steel and joist steel, and the temperature of the air flow path inside the air flow path has been adjusted. There is a method in which air is flowed, the cold or hot heat of the temperature-controlled air is transmitted to the floor material, and heating and cooling are performed by the radiant heat from the floor material (see, for example, Patent Document 1).

特開2010−112566号公報Japanese Unexamined Patent Publication No. 2010-12566

しかし、特許文献1に記載されたシステムでは、その構造上、床材に冷熱又は温熱を伝達できる空気が、主として根太鋼の内部を流れる空気及び根太鋼から床材の面に沿って流出した空気となり、大引鋼の内部を流れる空気の冷熱又は温熱は床材に直接伝達されにくく、床材に温度むらが生じると共に冷暖房室内にも温度むらが生じる可能性がある。 However, in the system described in Patent Document 1, due to its structure, air capable of transmitting cold heat or hot heat to the floor material mainly flows inside the joist steel and air that flows out from the joist steel along the surface of the floor material. Therefore, the cold or hot heat of the air flowing inside the large steel is difficult to be directly transmitted to the floor material, which may cause temperature unevenness in the floor material and also in the heating / cooling room.

本発明は上述の課題に鑑み、冷暖房のために温度変化させた区画部材に温度むらが生じることを抑制する冷暖房用気体流路形成システム及び冷暖房システムを提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a gas flow path forming system for heating and cooling and a heating and cooling system that suppress the occurrence of temperature unevenness in a partition member whose temperature has been changed for heating and cooling.

上記目的を達成するために、本発明の第1の態様に係る冷暖房用気体流路形成システムは、例えば図1に示すように、温度調節済気体Aを流す気体流路11fを形成する気体流路形成部材11であって、冷房又は暖房の対象となる冷暖房対象室Rを区画する板状の区画部材30の裏側に、区画部材30の面に沿って線状に延びると共に環状を形成するように設けられ、区画部材30と協働して又は単独で気体流路11fを形成する気体流路形成部材11を備える。 In order to achieve the above object, the gas flow path forming system for heating and cooling according to the first aspect of the present invention is, for example, as shown in FIG. 1, a gas flow forming a gas flow path 11f through which the temperature-controlled gas A flows. The road forming member 11 extends linearly along the surface of the partition member 30 and forms an annular shape on the back side of the plate-shaped partition member 30 that partitions the cooling / heating target chamber R to be cooled or heated. The gas flow path forming member 11 is provided in the above and forms the gas flow path 11f in cooperation with or independently of the partition member 30.

このように構成すると、温度調節済気体を流す気体流路が区画部材の面に沿って線状に延びつつ環状に形成されているので、環状の気体流路の大きさを適切に形成することで、温度変化させた区画部材に温度むらが生じることを抑制することができる。 With this configuration, the gas flow path through which the temperature-controlled gas flows is formed in an annular shape while extending linearly along the surface of the partition member. Therefore, the size of the annular gas flow path should be appropriately formed. Therefore, it is possible to suppress the occurrence of temperature unevenness in the compartment member whose temperature has been changed.

また、本発明の第2の態様に係る冷暖房用気体流路形成システムは、例えば図3に示すように、上記本発明の第1の態様に係る冷暖房用気体流路形成システム10において、気体流路形成部材11が、気体流路11fの交差点を形成するクロス流路形成部材12と、2つのクロス流路形成部材12の間を連絡するブリッジ流路形成部材13とを含んで構成され;区画部材30(例えば図1参照)を支持すると共にクロス流路形成部材12を支持する支持部材15をさらに備える。 Further, the gas flow path forming system for heating and cooling according to the second aspect of the present invention is, for example, as shown in FIG. 3, in the gas flow path forming system 10 for heating and cooling according to the first aspect of the present invention. The path forming member 11 is configured to include a cross flow path forming member 12 forming an intersection of gas flow paths 11f and a bridge flow path forming member 13 connecting between two cross flow path forming members 12; A support member 15 that supports the member 30 (see, for example, FIG. 1) and also supports the cross flow path forming member 12 is further provided.

このように構成すると、共通する部品の組み合わせで気体流路を形成することができると共に、流路形成部材を支持する部材と区画部材を支持する部材との共通化を図ることで部品点数を削減してシステムを簡素化することができる。 With this configuration, a gas flow path can be formed by combining common parts, and the number of parts can be reduced by standardizing the member that supports the flow path forming member and the member that supports the partition member. The system can be simplified.

また、本発明の第3の態様に係る冷暖房用気体流路形成システムは、例えば図2に示すように、上記本発明の第1の態様又は第2の態様に係る冷暖房用気体流路形成システム10において、気体流路形成部材11は、環状の気体流路11fが複数形成されると共に、複数の環状の気体流路11fのうちの隣接するものの気体流路11fの一部が共有されることで複数の環状の気体流路11fが連通するように構成されている。 Further, the gas flow path forming system for heating and cooling according to the third aspect of the present invention is, for example, as shown in FIG. 2, the gas flow path forming system for heating and cooling according to the first aspect or the second aspect of the present invention. In 10, the gas flow path forming member 11 is formed with a plurality of annular gas flow paths 11f, and a part of the gas flow paths 11f of the adjacent ones among the plurality of annular gas flow paths 11f is shared. It is configured so that a plurality of annular gas flow paths 11f communicate with each other.

このように構成すると、環状の気体流路を拡充することができて、区画部材の温度を変化させることが可能な範囲を拡大することができる。 With this configuration, the annular gas flow path can be expanded, and the range in which the temperature of the partition member can be changed can be expanded.

また、本発明の第4の態様に係る冷暖房システムは、例えば図1に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る冷暖房用気体流路形成システム10と;冷暖房対象室Rを区画する区画部材30と;区画部材30の裏側かつ気体流路の外側の空間Sを、温度調節済気体Aが供給される供給空間SSと、供給空間SSに供給された温度調節済気体Aが冷暖房対象室R内の温度に近づいてから流入する回収空間RSと、に仕切る仕切部材20と;温度調節済気体Aを供給空間SSに向けて供給する温度調節機器61とを備え;気体流路形成部材11は、供給空間SSに位置する部分に、供給空間SSに供給された温度調節済気体Aを気体流路に流入させる流入口121が形成されて構成されている。 Further, the heating / cooling system according to the fourth aspect of the present invention is, for example, as shown in FIG. 1, forming a gas flow path for heating / cooling according to any one of the first to third aspects of the present invention. The system 10; the partition member 30 for partitioning the heating / cooling target room R; the space S on the back side of the partition member 30 and outside the gas flow path into the supply space SS to which the temperature-controlled gas A is supplied and the supply space SS. A recovery space RS in which the supplied temperature-controlled gas A approaches the temperature in the heating / cooling target room R and then flows into the recovery space RS, and a partition member 20 that partitions the gas A; the temperature control that supplies the temperature-controlled gas A toward the supply space SS. A device 61 is provided; the gas flow path forming member 11 is configured by forming an inflow port 121 for flowing the temperature-controlled gas A supplied to the supply space SS into the gas flow path in a portion located in the supply space SS. Has been done.

このように構成すると、供給空間に供給された温度調節済気体を、気体流路を経由して回収空間に流入させることで、区画部材の温度を変化させて冷暖房室の冷暖房を行うことが可能になる。 With this configuration, the temperature-controlled gas supplied to the supply space is allowed to flow into the recovery space via the gas flow path, so that the temperature of the partition member can be changed to cool and heat the heating / cooling room. become.

また、本発明の第5の態様に係る冷暖房システムは、例えば図1、図3及び図4(B)に示すように、上記本発明の第4の態様に係る冷暖房システム100において、気体流路形成部材11は、回収空間RSに位置する部分に、気体流路11fに流入した温度調節済気体Aを区画部材30の面に沿って放出する放出口13f(図3及び図4(B)参照)が形成されて構成されている。 Further, the heating / cooling system according to the fifth aspect of the present invention is a gas flow path in the heating / cooling system 100 according to the fourth aspect of the present invention, for example, as shown in FIGS. 1, 3 and 4 (B). The forming member 11 discharges the temperature-controlled gas A flowing into the gas flow path 11f along the surface of the partition member 30 into a portion located in the recovery space RS (see FIGS. 3 and 4B). ) Is formed and configured.

このように構成すると、区画部材の面の広範囲に温度調節済気体を接触させることができ、区画部材の温度を効率よく変化させることができる。 With this configuration, the temperature-controlled gas can be brought into contact with a wide range of the surface of the partition member, and the temperature of the partition member can be changed efficiently.

また、本発明の第6の態様に係る冷暖房システムは、例えば図6及び図7に示すように、上記本発明の第4の態様又は第5の態様に係る冷暖房システムにおいて、区画部材30A、30Bは、回収空間RS(例えば図1参照)に位置する部分において、気体流路の内部から外部へと通じる案内溝33が形成されて構成されている。 Further, the heating / cooling system according to the sixth aspect of the present invention is, for example, as shown in FIGS. 6 and 7, in the heating / cooling system according to the fourth or fifth aspect of the present invention, the partition members 30A and 30B. Is configured by forming a guide groove 33 leading from the inside to the outside of the gas flow path in a portion located in the recovery space RS (see, for example, FIG. 1).

このように構成すると、気体流路を流れる温度調節済気体が案内溝を経由して回収空間に至ることとなり、案内溝に沿って流れる温度調節済気体によって区画部材の温度を効率よく変化させることができる。 With this configuration, the temperature-controlled gas flowing through the gas flow path reaches the recovery space via the guide groove, and the temperature of the partition member is efficiently changed by the temperature-controlled gas flowing along the guide groove. Can be done.

本発明によれば、温度調節済気体を流す気体流路が区画部材の面に沿って線状に延びつつ環状に形成されているので、環状の気体流路の大きさを適切に形成することで、温度変化させた区画部材に温度むらが生じることを抑制することができる。 According to the present invention, since the gas flow path through which the temperature-controlled gas flows is formed in an annular shape while extending linearly along the surface of the partition member, the size of the annular gas flow path is appropriately formed. Therefore, it is possible to suppress the occurrence of temperature unevenness in the partition member whose temperature has been changed.

本発明の実施の形態に係る冷暖房システムの概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the heating and cooling system which concerns on embodiment of this invention. 本発明の実施の形態に係る流路部材システムの概略構成斜視図である。It is a schematic configuration perspective view of the flow path member system which concerns on embodiment of this invention. 本発明の実施の形態に係る流路部材システムの部分斜視図である。It is a partial perspective view of the flow path member system which concerns on embodiment of this invention. 本発明の実施の形態に係る流路部材システムの構成部材を示す図であり、(A)はクロス流路部材の斜視図、(B)はブリッジ流路部材の斜視図、(C)は支持脚の分解斜視図である。It is a figure which shows the constituent member of the flow path member system which concerns on embodiment of this invention, (A) is the perspective view of the cross flow path member, (B) is the perspective view of the bridge flow path member, (C) is support. It is an exploded perspective view of a leg. 本発明の実施の形態に係る流路部材システムが備えるブリッジ流路部材の変形例を示す図であり、(A)は連結部を示す部分斜視図、(B)は斜方ノズルの斜視図、(C)は二方ノズルの斜視図、(D)は三方ノズルの斜視図である。It is a figure which shows the modification of the bridge flow path member provided in the flow path member system which concerns on embodiment of this invention, (A) is the partial perspective view which shows the connection part, (B) is the perspective view of the oblique nozzle. (C) is a perspective view of a two-way nozzle, and (D) is a perspective view of a three-way nozzle. 本発明の実施の形態に係る冷暖房システムが備える区画部材の第1の変形例を示す図であり、(A)は表面図、(B)は側面図、(C)は裏面図である。It is a figure which shows the 1st modification of the partition member provided in the heating and cooling system which concerns on embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a back view. 本発明の実施の形態に係る冷暖房システムが備える区画部材の第2の変形例を示す図であり、(A)は表面図、(B)は側面図、(C)は裏面図である。It is a figure which shows the 2nd modification of the partition member provided in the heating and cooling system which concerns on embodiment of this invention, (A) is a front view, (B) is a side view, (C) is a back view.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same as or correspond to each other are designated by the same or similar reference numerals, and duplicate description will be omitted.

まず図1を参照して、本発明の実施の形態に係る冷暖房システム100を説明する。図1は、冷暖房システム100の概略構成を示す斜視図である。冷暖房システム100は、主として冷暖房対象室としての部屋Rの冷房又は暖房(以下「冷暖房」という。)を行うためのシステムである。冷暖房システム100は、部屋Rの輻射冷暖房に適した温度に調節した空気(温度調節済気体に相当し、以下「温調空気A」という。)の流路を部屋Rの裏側の空間Sに形成する本発明の実施の形態に係る流路部材システム10と、裏側空間Sを仕切る仕切部材20と、部屋Rと裏側空間Sとを区画する床パネル30と、温調空気Aを生成する温調機器61と、温調機器61から裏側空間Sへ温調空気Aを案内するダクト63とを備えている。温調空気Aは、典型的には、部屋Rの冷房時は冷やした空気、暖房時は暖めた空気となる。図1に示す冷暖房システム100は、裏側空間Sの構成を示すために、床パネル30の一部を取り外した状態を示しているが、部屋Rが使用される際(冷暖房システム100が完成した際)には床パネル30が敷き詰められることとなる。以下、冷暖房システム100を構成する各要素を説明する。 First, the heating / cooling system 100 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing a schematic configuration of the heating / cooling system 100. The cooling / heating system 100 is a system for cooling or heating (hereinafter, referred to as “cooling / heating”) of the room R as a room for heating / cooling. The heating / cooling system 100 forms a flow path of air adjusted to a temperature suitable for radiant heating / cooling of the room R (corresponding to a temperature-controlled gas, hereinafter referred to as “temperature-controlled air A”) in the space S behind the room R. The flow path member system 10 according to the embodiment of the present invention, the partition member 20 for partitioning the back side space S, the floor panel 30 for partitioning the room R and the back side space S, and the temperature control for generating the temperature control air A. A device 61 and a duct 63 for guiding the temperature control air A from the temperature control device 61 to the back space S are provided. The temperature-controlled air A is typically cold air when the room R is cooled and warm air when the room R is heated. The heating / cooling system 100 shown in FIG. 1 shows a state in which a part of the floor panel 30 is removed in order to show the configuration of the back side space S, but when the room R is used (when the heating / cooling system 100 is completed). ) Will be covered with floor panels 30. Hereinafter, each element constituting the heating / cooling system 100 will be described.

図2に、流路部材システム10の概略構成を示す。図3に、図2に示す流路部材システム10のうちの一部(一区画)を示す。流路部材システム10は、裏側空間Sにおいて温調空気Aの流路を形成するシステムであり、冷暖房用気体流路形成システムに相当する。流路部材システム10は、流路部材11と、支持脚15とを備えている。流路部材11は、温調空気Aの流路11f(気体流路に相当)を、床パネル30の裏面に沿って線状に延びるように形成するための部材であり、気体流路形成部材に相当する。流路11fは、本実施の形態では、正方形の外周を辿るような環状に形成されたものを基本単位として、複数が周囲に隣接して碁盤の目のように配列されつつ、隣接する正方形の辺を共有するようにして形成されている。ここでいう「環状」とは、線状の始点と終点とをつなげて連続させていれば足り、その外形が本実施の形態のように正方形であるもののほか、長方形等の矩形、菱形等の四角形や五角形あるいは六角形等の多角形でもよく、多角形以外の円や楕円であってもよく、典型的には床パネル30の輪郭に合わせた形とするとよい。 FIG. 2 shows a schematic configuration of the flow path member system 10. FIG. 3 shows a part (one section) of the flow path member system 10 shown in FIG. The flow path member system 10 is a system that forms a flow path of the temperature-controlled air A in the backside space S, and corresponds to a gas flow path forming system for heating and cooling. The flow path member system 10 includes a flow path member 11 and support legs 15. The flow path member 11 is a member for forming the flow path 11f (corresponding to the gas flow path) of the temperature-controlled air A so as to extend linearly along the back surface of the floor panel 30, and is a gas flow path forming member. Corresponds to. In the present embodiment, the flow path 11f is formed in an annular shape so as to follow the outer circumference of the square, and a plurality of the flow paths 11f are arranged adjacent to each other like a grid and are adjacent to each other. It is formed so as to share the sides. The term "annular" as used herein means that it is sufficient to connect the linear start point and the end point to make them continuous, and the outer shape thereof is a square as in the present embodiment, a rectangle such as a rectangle, a rhombus, or the like. It may be a polygon such as a quadrangle, a pentagon or a hexagon, or a circle or an ellipse other than the polygon, and is typically shaped to match the contour of the floor panel 30.

流路11fは、本実施の形態では、専ら同一仮想平面上に形成されている点で、従来の大引鋼と根太鋼とを用いた場合のような交差する辺が段違いになるものとは異なっている。また、流路11fは、本実施の形態では、内部の温調空気Aの流れ方向に直交する断面形状が矩形になっている。流路部材11は、本実施の形態では開渠として構成されており、開け放たれた部分を床パネル30で塞ぐことによって流路11fが形成されるようになっており、換言すれば床パネル30と協働して流路11fを形成している。本実施の形態では、流路部材11は、基本単位の正方形の角の部分を構成するクロス流路部材12と、正方形の一辺の部分を構成するブリッジ流路部材13とを有している。 In the present embodiment, the flow path 11f is formed exclusively on the same virtual plane, so that the intersecting sides of the flow path 11f are different from those in the case of using the conventional large pull steel and the joist steel. It's different. Further, in the present embodiment, the flow path 11f has a rectangular cross-sectional shape orthogonal to the flow direction of the internal temperature-controlled air A. The flow path member 11 is configured as an open ditch in the present embodiment, and the flow path 11f is formed by closing the open portion with the floor panel 30, in other words, the floor panel 30. The flow path 11f is formed in cooperation with. In the present embodiment, the flow path member 11 has a cross flow path member 12 that constitutes a square corner portion of the basic unit, and a bridge flow path member 13 that constitutes one side portion of the square.

図4(A)は、クロス流路部材12の斜視図である。クロス流路部材12は、流路11fの交差する部分を形成する部材であり、クロス流路形成部材に相当する。クロス流路部材12は、底板12tと側板12sとが組み合わさって形成されている。底板12t及び側板12sは、典型的には鋼板で形成されているが、樹脂板等で構成されていてもよい。底板12tは、矩形の四隅を小さな矩形で切り欠いて残った十字の形状を有している。底板12tは、十字の中央に、支持脚15が挿通される挿通孔(不図示)が形成されている。側板12sは、矩形の形状を有しており、底板12tを形成する際の大きな矩形から切り欠かれた小さな矩形の辺に対応する部分から、底板12tに直交して延びるように設けられている。側板12sは、合計8枚が、底板12tに対して同じ方向に延びている。クロス流路部材12は、側板12sの高さ(底板12tの面に直交する方向の長さ)であるクロス流路高さ12hが流路11fの高さに相当し、向かい合う側板12sの間の底板12tの幅であるクロス流路幅12wが流路11fの幅に相当することとなる。 FIG. 4A is a perspective view of the cross flow path member 12. The cross flow path member 12 is a member that forms an intersecting portion of the flow path 11f, and corresponds to a cross flow path forming member. The cross flow path member 12 is formed by combining a bottom plate 12t and a side plate 12s. The bottom plate 12t and the side plate 12s are typically made of a steel plate, but may be made of a resin plate or the like. The bottom plate 12t has a cross shape that remains after cutting out the four corners of the rectangle with small rectangles. The bottom plate 12t has an insertion hole (not shown) through which the support leg 15 is inserted at the center of the cross. The side plate 12s has a rectangular shape, and is provided so as to extend orthogonally to the bottom plate 12t from a portion corresponding to a side of a small rectangle cut out from the large rectangle when forming the bottom plate 12t. .. A total of eight side plates 12s extend in the same direction with respect to the bottom plate 12t. In the cross flow path member 12, the cross flow path height 12h, which is the height of the side plates 12s (the length in the direction orthogonal to the surface of the bottom plate 12t), corresponds to the height of the flow path 11f, and is between the side plates 12s facing each other. The cross flow path width 12w, which is the width of the bottom plate 12t, corresponds to the width of the flow path 11f.

図4(B)は、ブリッジ流路部材13の斜視図である。ブリッジ流路部材13は、2つのクロス流路部材12の間を連絡する流路を形成する部材であり、ブリッジ流路形成部材に相当する。ブリッジ流路部材13は、底板13tと側板13sとを有している。ブリッジ流路部材13は、典型的にはクロス流路部材12と同じ材料で形成されているが、クロス流路部材12とは異なる材料で形成されていてもよい。底板13tは、細長い長方形に形成されている。側板13sは、細長い長方形に形成されており、底板13の長方形の一対の長辺のそれぞれから、底板13tに直交して延びるように設けられている。側板13sは、合計2枚が、底板13tに対して同じ方向に延びている。各側板13sは、長手方向の一方の端部に、係止片13kが設けられている。係止片13kは、側板13sに直交して外側(流路11fの反対側)に延びている。係止片13kは、クロス流路部材12の側辺12s(図4(A)参照)の1つと概ね同じ大きさ(同じか一回り小さい大きさ)に形成されている。一対の側板13sにそれぞれ1つずつ設けられた係止片13kは、底板13tの長方形の対角に位置している。ブリッジ流路部材13は、側板13sの高さ(底板13tの面に直交する方向の長さ)であるブリッジ流路高さ13hが流路11fの高さに相当し、向かい合う側板13sの間の底板13tの幅であるブリッジ流路幅13wが流路11fの幅に相当することとなる。 FIG. 4B is a perspective view of the bridge flow path member 13. The bridge flow path member 13 is a member that forms a flow path that connects between the two cross flow path members 12, and corresponds to a bridge flow path forming member. The bridge flow path member 13 has a bottom plate 13t and a side plate 13s. The bridge flow path member 13 is typically made of the same material as the cross flow path member 12, but may be made of a material different from that of the cross flow path member 12. The bottom plate 13t is formed in an elongated rectangle. The side plates 13s are formed in an elongated rectangle, and are provided so as to extend orthogonally to the bottom plate 13t from each of the pair of long sides of the rectangle of the bottom plate 13. A total of two side plates 13s extend in the same direction with respect to the bottom plate 13t. Each side plate 13s is provided with a locking piece 13k at one end in the longitudinal direction. The locking piece 13k extends outward (opposite the flow path 11f) orthogonal to the side plate 13s. The locking piece 13k is formed to have substantially the same size (same or one size smaller) as one of the side sides 12s (see FIG. 4A) of the cross flow path member 12. One locking piece 13k provided on each of the pair of side plates 13s is located diagonally to the rectangle of the bottom plate 13t. In the bridge flow path member 13, the bridge flow path height 13h, which is the height of the side plates 13s (the length in the direction orthogonal to the surface of the bottom plate 13t), corresponds to the height of the flow path 11f, and is between the side plates 13s facing each other. The bridge flow path width 13w, which is the width of the bottom plate 13t, corresponds to the width of the flow path 11f.

ブリッジ流路部材13には、側板13sに吹出口13fが形成されているものもある。吹出口13fは、ブリッジ流路部材13の開放されている上部が床パネル30(図1参照)で塞がれたときに、流路11fの内部にある温調空気Aを床パネル30の裏面に沿って流路11fの外部へ放出するために形成された開口であり、放出口に相当する。吹出口13fは、本実施の形態では、側板13sの上辺(側板13sの、底板13tに接している長辺に対向する長辺)に、半円形状に切欠かれて形成されている。吹出口13fは、相互に隣接する吹出口13fから放出された温調空気A同士に重なり合う部分が生じる程度の距離を長手方向にあけて複数個(典型的には2個だが3個以上であってもよい)で1組を形成しつつ、ある組の各吹出口13fから放出された温調空気Aとこの組に隣接する組の各吹出口13fから放出された温調空気Aとが干渉しないように長手方向に間隔をあけて形成されている。吹出口13fがブリッジ流路部材13の長手方向の全体に対してどの位置に形成されるかは後述する。 Some of the bridge flow path members 13 have an air outlet 13f formed on the side plate 13s. When the open upper part of the bridge flow path member 13 is closed by the floor panel 30 (see FIG. 1), the air outlet 13f uses the temperature-controlled air A inside the flow path 11f as the back surface of the floor panel 30. It is an opening formed for discharging to the outside of the flow path 11f along the flow path 11f, and corresponds to a discharge port. In the present embodiment, the air outlet 13f is formed by being cut out in a semicircular shape on the upper side of the side plate 13s (the long side of the side plate 13s facing the long side in contact with the bottom plate 13t). There are a plurality of air outlets 13f (typically two but three or more) with a distance in the longitudinal direction such that overlapping portions are generated between the temperature-controlled air A discharged from the air outlets 13f adjacent to each other. The temperature-controlled air A discharged from each outlet 13f of a certain set interferes with the temperature-controlled air A discharged from each outlet 13f of a set adjacent to this set while forming one set. It is formed at intervals in the longitudinal direction so as not to prevent it. The position where the air outlet 13f is formed with respect to the entire longitudinal direction of the bridge flow path member 13 will be described later.

図4(C)は、支持脚15の分解斜視図である。なお、図4(C)では、支持脚15とクロス流路部材12との位置関係を説明するために、支持脚15の構成部材に加えてクロス流路部材12を示している。支持脚15は、クロス流路部材12を支持すると共に床パネル30を支持することができる部材であり、支持部材に相当する。支持脚15は、典型的には建築物の床スラブに載置されて用いられ、全ねじ16と、ゴム17と、受板18と、支持板19とを有している。全ねじ16は、床スラブから床パネル30が設置される高さまでの長さを有しており、床スラブに垂直になるように配置されるものである。ゴム17は、全ねじ16の床スラブ側の一端に取り付けられ、全ねじ16と床スラブとの間のクッションとして機能する。受板18は、クロス流路部材12の底板12tが載置される部材であり、本実施の形態では、矩形の板状に形成されている。受板18は、概ね中央部に全ねじ16が通過できる孔18pが形成されており、受板ナット185に支持されている。受板ナット185は、全ねじ16に螺合されて受板18の下方に位置している。受板18は、全ねじ16に対する受板ナット185の位置を調節することにより、高さを調節することができるようになっている。クロス流路部材12は、受板18の上部で、クロス流路部材12の挿通孔(不図示)に全ねじ16を挿通することにより、支持脚15に取り付けられている。支持板19は、クロス流路部材12の上方に設けられている。支持板19は、概ね中央部に全ねじ16が通過できる孔19pが形成されている。支持板19は、全ねじ16に螺合されて支持板19の下方に位置する支持板ナット(不図示)に支持されている。支持板19は、全ねじ16に対する支持板ナット185の位置を調節することにより、高さを調節することができるようになっている。支持脚15は、全ねじ16を用いていることにより、クロス流路部材12の高さ及び支持板19の高さを、それぞれ、全ねじ16の長さ全体にわたって調節することができるようになっている。 FIG. 4C is an exploded perspective view of the support leg 15. Note that FIG. 4C shows the cross flow path member 12 in addition to the constituent members of the support leg 15 in order to explain the positional relationship between the support leg 15 and the cross flow path member 12. The support leg 15 is a member capable of supporting the cross flow path member 12 and supporting the floor panel 30, and corresponds to the support member. The support leg 15 is typically used by being mounted on a floor slab of a building, and has a full screw 16, a rubber 17, a receiving plate 18, and a support plate 19. The full screws 16 have a length from the floor slab to the height at which the floor panel 30 is installed, and are arranged so as to be perpendicular to the floor slab. The rubber 17 is attached to one end of the full screw 16 on the floor slab side and functions as a cushion between the full screw 16 and the floor slab. The receiving plate 18 is a member on which the bottom plate 12t of the cross flow path member 12 is placed, and is formed in the shape of a rectangular plate in the present embodiment. The receiving plate 18 has a hole 18p formed in the central portion through which all the screws 16 can pass, and is supported by the receiving plate nut 185. The receiving plate nut 185 is screwed into all the screws 16 and is located below the receiving plate 18. The height of the receiving plate 18 can be adjusted by adjusting the position of the receiving plate nut 185 with respect to all the screws 16. The cross flow path member 12 is attached to the support leg 15 at the upper part of the receiving plate 18 by inserting all the screws 16 into the insertion holes (not shown) of the cross flow path member 12. The support plate 19 is provided above the cross flow path member 12. The support plate 19 is formed with a hole 19p in the central portion through which all the screws 16 can pass. The support plate 19 is screwed into all the screws 16 and is supported by a support plate nut (not shown) located below the support plate 19. The height of the support plate 19 can be adjusted by adjusting the position of the support plate nut 185 with respect to all the screws 16. By using the full screw 16 in the support leg 15, the height of the cross flow path member 12 and the height of the support plate 19 can be adjusted over the entire length of the full screw 16, respectively. ing.

図3に示すような環状の流路部材11を構成するには、クロス流路部材12の底板12tの上に、ブリッジ流路部材13の一端の底板13tが載置されるように、クロス流路部材12にブリッジ流路部材13を組み込む。詳細には、ブリッジ流路部材13の一端の係止片13kが、クロス流路部材12の底板12tの上に載置されつつ、そのブリッジ流路部材13を挟んでいるクロス流路部材12の側板12sに連接している側板12sに流路11fの側から接する態様となっている。これを、クロス流路部材12の4つの開口のうちの必要な部分に対して行うと、図3に示すような1つの正方形の外縁に沿った環状の流路11fを形成することができ、これをさらに拡張することでひいては図2に示すような碁盤の目のように広がる流路11fの網を形成することができる。このとき、クロス流路部材12の間隔、すなわち支持脚15の間隔は、床パネル30を安定的に支持することができる間隔とするのが好ましく、この間隔に合わせてブリッジ流路部材13の長さを決定するとよい。あるいは、床パネル30の支持には必要であるがブリッジ流路部材13を設ける必要がない部分が存在する場合は、支持脚15から受板18及び受板ナット185を省いたうえで支持脚15にクロス流路部材12を組み込まないようにしてもよい。流路部材システム10では、クロス流路部材12及びブリッジ流路部材13の2種類の部材の組み合わせによって、任意の大きさの流路11fの網を形成することができ、構成を簡便にしつつ生成コストを抑制することができる。また、各クロス流路部材12の間に設置されるブリッジ流路部材13の基本構造が共通であるので、流路11fの幅が各所で均一となり、各所で圧力損失の差が生じることを抑制することができる。また、各所のブリッジ流路部材13が、クロス流路部材12の同じ高さにある4つの開口に組み込まれていることで、流路部材11が同一仮想平面上に広がることとなり、この構成も各所で圧力損失の差が生じることを抑制することに寄与している。 In order to form the annular flow path member 11 as shown in FIG. 3, the cross flow is formed so that the bottom plate 13t at one end of the bridge flow path member 13 is placed on the bottom plate 12t of the cross flow path member 12. The bridge flow path member 13 is incorporated into the road member 12. Specifically, the locking piece 13k at one end of the bridge flow path member 13 is placed on the bottom plate 12t of the cross flow path member 12, and the cross flow path member 12 sandwiching the bridge flow path member 13 is sandwiched. The side plate 12s connected to the side plate 12s is contacted from the side of the flow path 11f. When this is done for the required portion of the four openings of the cross flow path member 12, an annular flow path 11f along the outer edge of one square as shown in FIG. 3 can be formed. By further expanding this, it is possible to form a net of the flow path 11f that spreads like a grid as shown in FIG. At this time, the interval between the cross flow path members 12, that is, the interval between the support legs 15 is preferably an interval that can stably support the floor panel 30, and the length of the bridge flow path member 13 is adjusted to this interval. You should decide. Alternatively, if there is a portion that is necessary for supporting the floor panel 30 but does not require the bridge flow path member 13, the support leg 15 is provided after omitting the receiving plate 18 and the receiving plate nut 185 from the supporting leg 15. The cross flow path member 12 may not be incorporated in the cross flow path member 12. In the flow path member system 10, a net of a flow path 11f having an arbitrary size can be formed by combining two types of members, the cross flow path member 12 and the bridge flow path member 13, and the network can be generated while simplifying the configuration. Cost can be suppressed. Further, since the basic structure of the bridge flow path member 13 installed between the cross flow path members 12 is common, the width of the flow path 11f becomes uniform in each place, and the difference in pressure loss is suppressed in each place. can do. Further, since the bridge flow path members 13 at various places are incorporated into the four openings at the same height of the cross flow path member 12, the flow path member 11 spreads on the same virtual plane, and this configuration is also possible. It contributes to suppressing the difference in pressure loss in various places.

流路部材11が床スラブに設置されるのに際し、クロス流路部材12が支持脚15によって床スラブから浮いた位置で支持されているので、流路部材11全体は床スラブから浮いており、換言すれば流路部材11全体と床スラブとの間に空間が形成されていることになる。図2に示すような碁盤の目のように広がる流路部材11を有する流路部材システム10に、床パネル30を敷設することで、床パネル30と床スラブとの間に、空気等の流体が流通可能で床下チャンバとして機能する裏側空間Sが形成されることとなる。 When the flow path member 11 is installed on the floor slab, the cross flow path member 12 is supported by the support legs 15 at a position floating from the floor slab, so that the entire flow path member 11 is floating from the floor slab. In other words, a space is formed between the entire flow path member 11 and the floor slab. By laying the floor panel 30 in the flow path member system 10 having the flow path member 11 that spreads like a grid as shown in FIG. 2, a fluid such as air is placed between the floor panel 30 and the floor slab. Will be circulated and a backside space S will be formed that functions as an underfloor chamber.

引き続き、図1を主に参照し、適宜図2〜図4を参照して、流路部材システム10以外の冷暖房システム100の構成を説明する。仕切部材20は、裏側空間Sを、供給空間SSと回収空間RSとに仕切るための部材である。供給空間SSは、温調機器61から供給された温調空気Aを、流路11fに流入させる前に導入する空間である。回収空間RSは、流路11fから、本実施の形態では吹出口13f(図4(B)参照)を介して放出された温調空気Aが受け入れられる空間である。本実施の形態では、碁盤の目のように広がった流路部材11全体の、外周部分に供給空間SSが形成され、供給空間SSよりも内側の部分に回収空間RSが形成されている。仕切部材20は、板状の部材で形成されており、床スラブに載置されたときの上端が、支持脚15の支持板19の上面と同じ高さになるように構成されている。仕切部材20は、典型的には、床スラブの面が広がる方向に適宜の大きさで分割されたものがつなげられて構成されている。仕切部材20は、流路11fの内部には入り込んでおらず、流路部材11と干渉する部分は流路部材11を回避するように切り欠かれている。 Subsequently, the configuration of the heating / cooling system 100 other than the flow path member system 10 will be described with reference to FIG. 1 mainly and with reference to FIGS. 2 to 4 as appropriate. The partition member 20 is a member for partitioning the back side space S into the supply space SS and the recovery space RS. The supply space SS is a space in which the temperature control air A supplied from the temperature control device 61 is introduced before flowing into the flow path 11f. The recovery space RS is a space in which the temperature-controlled air A discharged from the flow path 11f via the air outlet 13f (see FIG. 4B) in the present embodiment is received. In the present embodiment, the supply space SS is formed in the outer peripheral portion of the entire flow path member 11 that spreads like a grid, and the recovery space RS is formed in the portion inside the supply space SS. The partition member 20 is formed of a plate-shaped member, and is configured so that the upper end when placed on the floor slab is at the same height as the upper surface of the support plate 19 of the support legs 15. The partition member 20 is typically formed by connecting members that are divided into appropriate sizes in the direction in which the surface of the floor slab spreads. The partition member 20 does not enter the inside of the flow path member 11f, and the portion that interferes with the flow path member 11 is cut out so as to avoid the flow path member 11.

供給空間SSに配置されているクロス流路部材12のうちの最外部のものには、向かい合う側板12sに挟まれて形成された4つの流路11fのうち、ブリッジ流路部材13が組み込まれないで開口となっている部分があり、この開口部分が、供給空間SSから流路部材11に温調空気Aが流入する流入口121となっている。流入口121は、典型的には最外部に配置されているクロス流路部材12のすべてに形成されているが、任意の開口を塞いで流入口121の数を限定することとしてもよい。ブリッジ流路部材13に関し、前述した吹出口13fは、回収空間RSに面している側板13sに形成されている。吹出口13fは、各ブリッジ流路部材13について、長手方向で見たときに中央よりも一方の側に形成されており、本実施の形態では、流路11fから側板13s越しに回収空間RSの方を見たときの中央よりも右側に形成されている。このような構成により、1つのブリッジ流路部材13における吹出口13fを介して流路11f内から回収空間RSに放出された温調空気Aは、平面視における4つのブリッジ流路部材13で囲まれた正方形の回収空間RSの1/4の面積の部分に主として供給されることとなり、回収空間RSの外縁を構成する4つのブリッジ流路部材13の吹出口13fからそれぞれ放出された温調空気Aが協働して、1つの正方形の回収空間RS全体に温調空気Aを供給することとなる。 Of the four flow paths 11f formed between the side plates 12s facing each other, the bridge flow path member 13 is not incorporated into the outermost cross flow path member 12 arranged in the supply space SS. There is a portion that is an opening, and this opening portion is an inflow port 121 in which the temperature-controlled air A flows into the flow path member 11 from the supply space SS. The inflow port 121 is typically formed in all of the cross flow path members 12 arranged on the outermost side, but an arbitrary opening may be closed to limit the number of inflow ports 121. Regarding the bridge flow path member 13, the above-mentioned outlet 13f is formed on the side plate 13s facing the recovery space RS. The outlet 13f is formed on one side of the center of each bridge flow path member 13 when viewed in the longitudinal direction. In the present embodiment, the recovery space RS is formed from the flow path 11f through the side plate 13s. It is formed on the right side of the center when looking toward. With such a configuration, the temperature-controlled air A discharged from the inside of the flow path 11f to the recovery space RS through the outlet 13f in one bridge flow path member 13 is surrounded by the four bridge flow path members 13 in a plan view. The temperature-controlled air is mainly supplied to a portion of 1/4 of the area of the square recovery space RS, and is discharged from the outlets 13f of the four bridge flow path members 13 constituting the outer edge of the recovery space RS. A will work together to supply the temperature-controlled air A to the entire recovery space RS of one square.

床パネル30は、前述のように部屋Rと裏側空間Sとを区画するものであり、区画部材に相当する。床パネル30は、典型的には、床スラブに設置された流路部材11の隣り合うクロス流路部材12間の長さを一辺の長さとする矩形の板状に形成されている。床パネル30は、典型的には、フローリングやフリーアクセスフロア用のパネルが用いられ、仕上材と下地材とに分割可能に構成されている場合もある。床パネル30は、本実施の形態では、表面及び裏面共に、概ね平坦に形成されている。ここでいう平坦とは、床材として一般に平坦と認識される範囲であれば足り、例えばフローリングにおける複数の板材の接続部分に表れるわずかな隙間がある場合も平坦の範囲に含まれる。部屋Rの床面を構成する各床パネル30は、ほとんどが開口等の形成されていない全体を覆うことができるように構成されたものであるが、いくつかは、供給パネル30pと回収パネル30qとに交換されている。供給パネル30pは、ダクト63が接続されている開口が形成されたものであり、その開口が供給空間SSに連絡する位置に配置されている。回収パネル30qは、回収空間RSの空気を部屋Rに導くことができる開口である還流口30qhが形成されたものであり、その還流口30qhが回収空間RSに連絡する位置に配置されている。回収パネル30qの還流口30qhには、グリル(格子)が設置されている。 The floor panel 30 partitions the room R and the backside space S as described above, and corresponds to a partition member. The floor panel 30 is typically formed in a rectangular plate shape having a length between adjacent cross flow path members 12 of the flow path members 11 installed on the floor slab as one side length. The floor panel 30 is typically a panel for flooring or raised floor, and may be configured to be divisible into a finishing material and a base material. In the present embodiment, the floor panel 30 is formed to be substantially flat on both the front surface and the back surface. The term "flatness" as used herein is sufficient as long as it is generally recognized as flat as a flooring material, and for example, a case where there is a slight gap appearing at a connecting portion of a plurality of plate materials in a flooring is also included in the flat range. Most of the floor panels 30 constituting the floor surface of the room R are configured to cover the entire floor without openings or the like, but some of them are the supply panel 30p and the recovery panel 30q. Has been exchanged for. The supply panel 30p is formed with an opening to which the duct 63 is connected, and is arranged at a position where the opening communicates with the supply space SS. The recovery panel 30q is formed with a return port 30qh which is an opening capable of guiding the air of the recovery space RS to the room R, and the return port 30qh is arranged at a position where the return port 30qh communicates with the recovery space RS. A grill (lattice) is installed at the return port 30qh of the recovery panel 30q.

温調機器61は、部屋Rの輻射冷暖房を行うことができる温度に調節した温調空気Aを生成する機器であり、温度調節機器に相当する。温調機器61は、典型的にはパッケージ型空調機が用いられるが、エアハンドリングユニットやルームエアコン等が用いられることとしてもよい。温調機器61は、本実施の形態では、部屋Rの外に配置されており、温調機器61で生成された温調空気Aがダクト63及び供給パネル30pを介して供給空間SSに導かれるように構成されている。なお、温調機器61は、部屋Rの中の供給パネル30pの近傍に設置されることとしてもよく、このとき、温調機器61から流出した温調空気Aを供給空間SSに直接供給できる場合は、ダクト63を設けなくてもよい。 The temperature control device 61 is a device that generates temperature control air A adjusted to a temperature at which radiant cooling and heating of the room R can be performed, and corresponds to the temperature control device. As the temperature control device 61, a package type air conditioner is typically used, but an air handling unit, a room air conditioner, or the like may be used. In the present embodiment, the temperature control device 61 is arranged outside the room R, and the temperature control air A generated by the temperature control device 61 is guided to the supply space SS via the duct 63 and the supply panel 30p. It is configured as follows. The temperature control device 61 may be installed in the vicinity of the supply panel 30p in the room R, and at this time, when the temperature control air A flowing out from the temperature control device 61 can be directly supplied to the supply space SS. Does not have to provide the duct 63.

引き続き、図1乃至図4を参照して、流路部材システム10及び冷暖房システム100の作用を説明する。以下では、流路部材システム10の作用は、冷暖房システム100の作用の一環として説明する。温調機器61では、部屋Rを輻射冷暖房するのに適した温度(設定温度によるが、例えば、冷房時18〜23℃、暖房時30〜35℃)に調節された温調空気Aが生成される。輻射冷暖房は、一般に、対流のみによる冷暖房(温度調節された空気を冷暖房室内に供給して行う冷暖房)に比べて、温度調節された空気の温度と外気温との差が小さくなるように設計されるため、温調空気Aを生成するためのエネルギーが少なくて済む。温調機器61で生成された温調空気Aは、ダクト63及び供給パネル30pの開口を介して供給空間SSに流入する。供給パネル30pの開口から供給空間SSに流入した温調空気Aは、供給空間SS全体に拡散して行き、流入口121から流路部材11の内部に形成された流路11f内に流入する。流入口121から流路11f内に流入した温調空気Aは、碁盤の目のように広がる流路部材11を構成する各流路11fの幅が各所で均一で同じ高さにあることで圧力損失の差が生じることを抑制していることから、碁盤の目のように広がる流路部材11の流路11f全体に概ね均一に拡散して行く。 Subsequently, the operations of the flow path member system 10 and the heating / cooling system 100 will be described with reference to FIGS. 1 to 4. In the following, the operation of the flow path member system 10 will be described as a part of the operation of the heating / cooling system 100. The temperature control device 61 generates temperature control air A adjusted to a temperature suitable for radiant cooling and heating of the room R (for example, 18 to 23 ° C during cooling and 30 to 35 ° C during heating, depending on the set temperature). To. Radiant heating and cooling is generally designed so that the difference between the temperature of the temperature-controlled air and the outside air temperature is smaller than that of heating and cooling using only convection (cooling and heating performed by supplying temperature-controlled air to the heating and cooling room). Therefore, less energy is required to generate the temperature-controlled air A. The temperature control air A generated by the temperature control device 61 flows into the supply space SS through the openings of the duct 63 and the supply panel 30p. The temperature-controlled air A that has flowed into the supply space SS from the opening of the supply panel 30p diffuses throughout the supply space SS and flows into the flow path 11f formed inside the flow path member 11 from the inflow port 121. The temperature-controlled air A that has flowed into the flow path 11f from the inflow port 121 has a pressure because the width of each flow path 11f constituting the flow path member 11 that spreads like a grid is uniform and at the same height in each place. Since the difference in loss is suppressed, the diffusion is substantially uniformly spread over the entire flow path 11f of the flow path member 11 that spreads like a grid.

流路11f全体に行き渡った温調空気Aは、吹出口13fから流出して回収空間RSに放出される。このとき、吹出口13fは、床パネル30と接する側板13sの上辺に形成されているので、床パネル30の裏面に沿って流れる。このように、温調空気Aが床パネル30の裏面に沿って流れるとき、温調空気Aは床パネル30に接触しながら流れて床パネル30に冷熱(冷房時)又は温熱(暖房時)を伝達する。このことにより、床パネル30は冷やされ又は温められる。ここで、吹出口13fを形成する切欠きの大きさは、流出した温調空気Aが床パネル30との間に形成される境膜(流体が相対運動をしている場合に相境界に存在する、層流状態が保たれている極薄い領域)を破壊する風速で流れる開口面積に形成するのが好ましい。一般に、床パネル30と温調空気Aの流れとの間に空気が滞留する境膜が存在すると表面熱伝達抵抗が大きくなって温調空気Aが保有する冷熱又は温熱が効率よく床パネル30に伝達されなくなるが、境膜を破壊することによって熱伝達率を向上させることができる。また、吹出口13fは、1つの組を構成する相互に隣接するものから放出された温調空気A同士が重なり合うように形成されているので、重なり合う部分の気流の速度が増加して、到達距離が延びると共に強制熱伝達が大きくなり、温調空気Aから床パネル30に伝達する熱量を増加させることができる。温調空気Aによって床パネル30が冷やされ又は温められると、冷やされ又は温められた床パネル30から部屋Rに冷熱又は温熱が輻射され、部屋Rの冷房又は暖房が行われる。 The temperature-controlled air A that has spread throughout the flow path 11f flows out from the outlet 13f and is discharged into the recovery space RS. At this time, since the air outlet 13f is formed on the upper side of the side plate 13s in contact with the floor panel 30, it flows along the back surface of the floor panel 30. In this way, when the temperature-controlled air A flows along the back surface of the floor panel 30, the temperature-controlled air A flows while contacting the floor panel 30, and heats (cools) or heats (heats) to the floor panel 30. introduce. As a result, the floor panel 30 is cooled or warmed. Here, the size of the notch forming the air outlet 13f exists at the boundary film (phase boundary when the fluid is in relative motion) formed between the outflow temperature-controlled air A and the floor panel 30. It is preferable to form an opening area that flows at a wind speed that destroys the ultra-thin region where the laminar flow state is maintained. In general, if there is a boundary film in which air stays between the floor panel 30 and the flow of the temperature-controlled air A, the surface heat transfer resistance becomes large and the cold or hot heat possessed by the temperature-controlled air A is efficiently transferred to the floor panel 30. Although it is not transmitted, the heat transfer coefficient can be improved by destroying the boundary film. Further, since the air outlet 13f is formed so that the temperature-controlled air A discharged from the adjacent ones constituting one set overlap each other, the velocity of the airflow in the overlapping portion increases, and the reach distance The forced heat transfer increases as the temperature is extended, and the amount of heat transferred from the temperature-controlled air A to the floor panel 30 can be increased. When the floor panel 30 is cooled or warmed by the temperature-controlled air A, cold or hot heat is radiated from the cooled or warmed floor panel 30 to the room R, and the room R is cooled or heated.

床パネル30に冷熱又は温熱を伝達した温調空気Aは、冷房時は温度が上昇して暖房時は温度が低下している。床パネル30と熱交換して回収空間RSに存在する温調空気Aは、回収パネル30qに形成された還流口30qhを介して部屋R内に流入し、部屋R内を対流する。部屋R内に流入した温調空気Aは、床パネル30の温度と同等あるいは冷房時は床パネル30よりも低温で暖房時は床パネル30よりも高温であるので、部屋Rの冷暖房に寄与することとなる。還流口30qhを介して部屋Rに流入した温調空気Aは、その後、ドアガラリ(不図示)等から外部に流出する。外部に流出した分の温調空気Aは、温調機器61からダクト63及び供給パネル30pの開口を介して供給空間SSに流入し、以降、上述の作用を繰り返す。 The temperature of the temperature-controlled air A that has transmitted cold heat or hot heat to the floor panel 30 rises during cooling and decreases during heating. The temperature-controlled air A that exchanges heat with the floor panel 30 and exists in the recovery space RS flows into the room R through the return port 30qh formed in the recovery panel 30q and convects in the room R. The temperature-controlled air A that has flowed into the room R is equal to the temperature of the floor panel 30, or is lower than the floor panel 30 during cooling and higher than the floor panel 30 during heating, and thus contributes to the cooling and heating of the room R. It will be. The temperature-controlled air A that has flowed into the room R through the return port 30qh then flows out from a door garage (not shown) or the like. The temperature-controlled air A that has flowed out to the outside flows into the supply space SS from the temperature-controlled device 61 through the openings of the duct 63 and the supply panel 30p, and thereafter repeats the above-mentioned operation.

以上で説明したように、本実施の形態に係る冷暖房システムによれば、この冷暖房システムを構成する要素の1つである本実施の形態に係る流路部材システム10の流路11fが、正方形の環状に形成されたものが連なって碁盤の目のように広がると共に各所の幅が均一で同じ高さにあるので、吹出口13fから放出された温調空気Aからの熱伝達によって温度変化する床パネル30に温度むらが生じることを抑制することができ、部屋Rの概ね均一な冷暖房を行うことができる。また、流路部材11は、その構成部材であるクロス流路部材12及びブリッジ流路部材13がそれぞれ基本的に共通の部材で形成されていてこれらを組み合わせて構成されているので、構成を簡便にしつつ生成コストを抑制することができる。 As described above, according to the heating / cooling system according to the present embodiment, the flow path 11f of the flow path member system 10 according to the present embodiment, which is one of the elements constituting the heating / cooling system, is square. Since the rings formed in a row spread like a grid and the widths of each part are uniform and at the same height, the floor changes in temperature due to heat transfer from the temperature-controlled air A discharged from the outlet 13f. It is possible to suppress the occurrence of temperature unevenness on the panel 30, and it is possible to perform substantially uniform heating and cooling of the room R. Further, the flow path member 11 has a simple structure because the cross flow path member 12 and the bridge flow path member 13 which are the constituent members are basically formed of common members and are configured by combining them. It is possible to suppress the generation cost while keeping it.

次に図5を参照して、変形例に係るブリッジ流路部材13Aを説明する。図5(A)は、ブリッジ流路部材13Aの部分斜視図であり、側板13sの一部を示している。ブリッジ流路部材13Aでは、前述のブリッジ流路部材13(図4(B)参照)において側板13sに半円形状で形成されていた吹出口13f(図4(B)参照)の代わりに、連結部70が設けられている。連結部70は、側板13sの上辺から底板13tの方に向けて矩形に切り欠いて形成された連結孔71を含んでいる。連結孔71は、本実施の形態では、底板13tまでは到達しておらず、ブリッジ流路高さ13hの概ね1/2〜2/3の深さ分が切り込まれている。連結孔71の左右両側(ブリッジ流路部材13Aの長手方向両隣)には、連結ガイド72が形成されている。連結ガイド72は、後述する部品を連結部70に取り付けるためのスリット(細長い切り込み)である。連結ガイド72は、連結孔71と同じ深さに形成されている。連結部70は、前述のブリッジ流路部材13(図4(B)参照)に形成された吹出口13fの1組が、連結部70の1つに対応するため、図5(A)では1つの連結部70のみを示しているが、典型的にはブリッジ流路部材13(図4(B)参照)に形成されている吹出口13fの組の数と同数の連結部70がブリッジ流路部材13Aに形成されている。 Next, the bridge flow path member 13A according to the modified example will be described with reference to FIG. FIG. 5A is a partial perspective view of the bridge flow path member 13A, showing a part of the side plate 13s. In the bridge flow path member 13A, instead of the air outlet 13f (see FIG. 4B) formed in the side plate 13s in a semicircular shape in the above-mentioned bridge flow path member 13 (see FIG. 4B), the bridge flow path member 13A is connected. A part 70 is provided. The connecting portion 70 includes a connecting hole 71 formed by cutting out a rectangular shape from the upper side of the side plate 13s toward the bottom plate 13t. In the present embodiment, the connecting hole 71 does not reach the bottom plate 13t, and is cut to a depth of approximately 1/2 to 2/3 of the bridge flow path height 13h. Connecting guides 72 are formed on both the left and right sides of the connecting hole 71 (on both sides of the bridge flow path member 13A in the longitudinal direction). The connecting guide 72 is a slit (elongated notch) for attaching a component described later to the connecting portion 70. The connecting guide 72 is formed at the same depth as the connecting hole 71. The connecting portion 70 is 1 in FIG. 5 (A) because one set of outlets 13f formed in the bridge flow path member 13 (see FIG. 4 (B)) described above corresponds to one of the connecting portions 70. Although only one connecting portion 70 is shown, typically, the same number of connecting portions 70 as the number of pairs of outlets 13f formed in the bridge flow path member 13 (see FIG. 4B) are the bridge flow path. It is formed on the member 13A.

図5(B)は、連結部70に取り付けられる部品の一例である斜方ノズル73の斜視図である。斜方ノズル73は、ノズル部73nを含む塞板73cと、レール73rとを有している。塞板73cは、斜方ノズル73を連結部70に取り付けたときに連結孔71が塞がるように、連結孔71と概ね同じ大きさに形成されている。塞板73cに設けられているノズル部73nは、塞板73cが切り込まれて形成された矩形の開口を囲む一対の脇板73eと1枚の斜板73sとで構成されている。一対の脇板73eは、塞板73cの左右の辺に平行で、塞板73cの面に直交して延びている。斜板73sは、一対の脇板73eの間の空間の下方に設けられている。ノズル部73nは、典型的には、矩形の薄板に対して、上辺から下方に垂直に延びる切り込みを、水平方向に間隔をあけて一対形成し、この一対の切り込みの下端同士を結んだ仮想直線で切り込みに挟まれた部分を外側に(例えば30°や45°等で)折り曲げ、この折り曲げた部分を斜板73sとし、斜板73sを折り曲げたことによって生じた塞板73cと斜板73cとの隙間を塞ぐように一対の脇板73eを取り付けた態様で構成されている。このように構成されたノズル部73nは、塞板73cの側から先端の側に進むにつれて、断面の開口面積が小さくなるように形成されており、塞板73cに対して最遠部分において吐出口73pが形成されている。吐出口73pは、放出口に相当する。この構成により、ノズル部73nの吐出口73pから放出される気体が噴流となるように構成されている。レール73rは、細長い部材でその断面がL字状に構成され、塞板73cの左右両側にそれぞれ設けられている。塞板73cの左右両側に設けられた一対のレール73rの間隔は、連結部70に設けられている一対の連結ガイド72の間隔に等しい。ここでの斜方ノズル73の説明では、便宜上、塞板73cとレール73rとに分けて説明しているが、典型的には、1枚の薄板が折り曲げられて一体に形成されている。レール73rと塞板73cとの間に形成された隙間は、ブリッジ流路部材13Aの側板13sの厚さと概ね同じになっている。斜方ノズル73を連結部70に取り付けるには、塞板73cの吐出口73pが形成された側とは反対側の辺を、ブリッジ流路部材13Aの側板13sの上辺に対向するように配置し、一対のレール73rを、連結ガイド72の一対のスリットに嵌め込んで、斜方ノズル73を底板13tに近づけていくことで行われる。 FIG. 5B is a perspective view of the oblique nozzle 73, which is an example of a component attached to the connecting portion 70. The oblique nozzle 73 has a closing plate 73c including a nozzle portion 73n and a rail 73r. The closing plate 73c is formed to have substantially the same size as the connecting hole 71 so that the connecting hole 71 is closed when the oblique nozzle 73 is attached to the connecting portion 70. The nozzle portion 73n provided on the closing plate 73c is composed of a pair of side plates 73e surrounding a rectangular opening formed by cutting the closing plate 73c and one swash plate 73s. The pair of side plates 73e are parallel to the left and right sides of the closing plate 73c and extend orthogonal to the plane of the closing plate 73c. The swash plate 73s is provided below the space between the pair of side plates 73e. The nozzle portion 73n typically forms a pair of cuts extending vertically downward from the upper side of a rectangular thin plate at intervals in the horizontal direction, and connects the lower ends of the pair of cuts with each other. The portion sandwiched between the notches is bent outward (for example, at 30 ° or 45 °), the bent portion is used as the swash plate 73s, and the closing plate 73c and the swash plate 73c generated by bending the swash plate 73s. It is configured in a manner in which a pair of side plates 73e are attached so as to close the gap between the two. The nozzle portion 73n configured in this way is formed so that the opening area of the cross section becomes smaller as it advances from the side of the closing plate 73c to the side of the tip, and the discharge port is located at the farthest portion from the closing plate 73c. 73p is formed. The discharge port 73p corresponds to the discharge port. With this configuration, the gas discharged from the discharge port 73p of the nozzle portion 73n is configured to be a jet stream. The rail 73r is an elongated member having an L-shaped cross section, and is provided on both the left and right sides of the closing plate 73c. The distance between the pair of rails 73r provided on the left and right sides of the closing plate 73c is equal to the distance between the pair of connecting guides 72 provided in the connecting portion 70. In the description of the oblique nozzle 73 here, for convenience, the closing plate 73c and the rail 73r are described separately, but typically, one thin plate is bent and integrally formed. The gap formed between the rail 73r and the closing plate 73c is substantially the same as the thickness of the side plate 13s of the bridge flow path member 13A. In order to attach the oblique nozzle 73 to the connecting portion 70, the side of the closing plate 73c opposite to the side on which the discharge port 73p is formed is arranged so as to face the upper side of the side plate 13s of the bridge flow path member 13A. , The pair of rails 73r is fitted into the pair of slits of the connecting guide 72, and the oblique nozzle 73 is brought closer to the bottom plate 13t.

図5(C)は、連結部70に取り付けられる部品の別の例である二方ノズル75Aの斜視図である。二方ノズル75Aは、ノズル部75nを含む塞板75cと、レール75rとを有している。二方ノズル75Aは、斜方ノズル73(図5(B)参照)と比較して、斜方ノズル73で設けられていたノズル部73n(図5(B)参照)に代えて、半割状の短管を複数有するノズル部75nが設けられている点が異なっている。したがって、二方ノズル75Aの塞板75cは斜方ノズル73の塞板73cに相当し、二方ノズル75Aのレール75rは斜方ノズル73のレール73rと同じ構成となっている。二方ノズル75Aの塞板75cは、吹出口13f(図4(B)参照)と同様の半円状の切欠きが上辺に形成されており、その切欠きから塞板75cの面に垂直に延びるように半割状の短管が取り付けられている。この半割状の短管の先端は、放出口に相当する。このように構成された二方ノズル75Aは、斜方ノズル73(図5(B)参照)と同様の要領でブリッジ流路部材13Aに取り付けられる。二方ノズル75Aが取り付けられたブリッジ流路部材13Aでは、流路11fから回収空間RSに向けて流出する温調空気Aが、ノズル部75nの半割管によって流路が制限された後に回収空間RSに流出するので、吹出口13fから放出された温調空気Aに比べて、指向性が増し、到達距離が長くなって、効率的な冷暖房を行うことができる。 FIG. 5C is a perspective view of a two-way nozzle 75A, which is another example of a component attached to the connecting portion 70. The two-way nozzle 75A has a closing plate 75c including a nozzle portion 75n and a rail 75r. Compared with the oblique nozzle 73 (see FIG. 5 (B)), the two-way nozzle 75A has a half-split shape in place of the nozzle portion 73n (see FIG. 5 (B)) provided in the oblique nozzle 73. The difference is that the nozzle portion 75n having a plurality of short tubes is provided. Therefore, the closing plate 75c of the two-way nozzle 75A corresponds to the closing plate 73c of the oblique nozzle 73, and the rail 75r of the two-way nozzle 75A has the same configuration as the rail 73r of the oblique nozzle 73. The closing plate 75c of the two-way nozzle 75A has a semicircular notch formed on the upper side similar to the outlet 13f (see FIG. 4B), and the notch is perpendicular to the surface of the closing plate 75c. A semicircular short tube is attached so as to extend. The tip of this half-split short tube corresponds to the outlet. The two-way nozzle 75A configured in this way is attached to the bridge flow path member 13A in the same manner as the oblique nozzle 73 (see FIG. 5B). In the bridge flow path member 13A to which the two-way nozzle 75A is attached, the temperature-controlled air A flowing out from the flow path 11f toward the recovery space RS is collected after the flow path is restricted by the half-split pipe of the nozzle portion 75n. Since the air flows out to the RS, the directivity is increased and the reach is longer than that of the temperature-controlled air A discharged from the outlet 13f, so that efficient heating and cooling can be performed.

図5(D)は、連結部70に取り付けられる部品のさらに別の例である三方ノズル75Bの斜視図である。三方ノズル75Bは、二方ノズル75A(図5(C)参照)の構成に加えて、ノズル部75nの下方に斜管75sが加えられている点で、二方ノズル75Aと異なっている。斜管75sは、ノズル部75nを構成する半割管と同程度の直径を有する短管で構成されており、塞板75cから離れるに連れてノズル部75nの半割管に近づくように塞板75cの面に対して斜めに取り付けられている。斜管75sは、塞板75cに対して約30°〜45°の角度で傾いている。三方ノズル75Bでは、半割状の短管の先端に加えて斜管75sの先端も放出口に相当する。このように構成された三方ノズル75Bは、斜方ノズル73(図5(B)参照)及び二方ノズル75A(図5(C)参照)と同様の要領でブリッジ流路部材13Aに取り付けられる。三方ノズル75Bが取り付けられたブリッジ流路部材13Aでは、流路11fから回収空間RSに向けて流出する温調空気Aが流出する際に、ノズル部75nの半割管から指向性が増加して流出した温調空気Aと、斜管75sから流出した温調空気Aと、に重なりが生じ、指向性を増加させながら強制熱伝達を大きくすることができて、温調空気Aから床パネル30に伝達する熱量を増加させることができる。なお、前述の、斜方ノズル73、二方ノズル75A、三方ノズル75Bは、典型的には、樹脂成型品又は金属プレス品で構成されている。 FIG. 5D is a perspective view of a three-way nozzle 75B, which is still another example of a component attached to the connecting portion 70. The three-way nozzle 75B is different from the two-way nozzle 75A in that, in addition to the configuration of the two-way nozzle 75A (see FIG. 5C), an oblique tube 75s is added below the nozzle portion 75n. The oblique pipe 75s is composed of a short pipe having a diameter similar to that of the half-split pipe constituting the nozzle portion 75n, and the closing plate approaches the half-split pipe of the nozzle portion 75n as the distance from the closing plate 75c increases. It is mounted diagonally to the 75c surface. The oblique pipe 75s is tilted at an angle of about 30 ° to 45 ° with respect to the closing plate 75c. In the three-way nozzle 75B, the tip of the oblique tube 75s corresponds to the discharge port in addition to the tip of the half-split short tube. The three-way nozzle 75B configured in this way is attached to the bridge flow path member 13A in the same manner as the oblique nozzle 73 (see FIG. 5B) and the two-way nozzle 75A (see FIG. 5C). In the bridge flow path member 13A to which the three-way nozzle 75B is attached, the directivity increases from the half-split tube of the nozzle portion 75n when the temperature-controlled air A flowing out from the flow path 11f toward the recovery space RS flows out. The outflowing temperature-controlled air A and the temperature-controlled air A flowing out from the oblique pipe 75s overlap each other, and forced heat transfer can be increased while increasing the directivity, and the temperature-controlled air A to the floor panel 30 The amount of heat transferred to the air can be increased. The oblique nozzle 73, the two-way nozzle 75A, and the three-way nozzle 75B described above are typically made of a resin molded product or a metal pressed product.

次に図6を参照して第1の変形例に係る床パネル30Aを説明する。図6(A)は床パネル30Aの表面図、図6(A)は床パネル30Aの側面図、図6(A)は床パネル30Aの裏面図である。床パネル30Aは、典型的には、冷暖房システム100(図1参照)において床パネル30(図1参照)の代わりに設置されるものである。床パネル30Aは、床パネル30(図1参照)の裏面(裏側空間Sに面する面)に、複数の細長い案内溝33を形成して構成されたものとなっている。案内溝33は、本実施の形態では、矩形のパネルの各辺から対向する辺に向かって当該対向する辺までの距離の約半分の位置まで延び、かつ、床パネル30Aを支持脚15に載置した状態で始点となる辺から対向する辺を見たときに当該始点となる辺の中央よりも右側に形成されている。このため、床パネル30Aを側面から見たときに、当該始点となる辺の端面には中央よりも右側に複数の案内溝33の端部が表れていることとなる(図6(B)参照)。このような構成により、案内溝33は、矩形の床パネル30Aを相似形で4等分したそれぞれに、隣接した部分に対しては直交する方向に延びるように、形成されている。このように構成された床パネル30Aを、床パネル30に代えて冷暖房システム100に組み込んだときは、ブリッジ流路部材13に吹出口13f(図4(B)参照)が形成されていなくてもよい(し、吹出口13fが形成されていてもよい)。ブリッジ流路部材13に吹出口13fが形成されていない場合でも、床パネル30Aを支持脚15に載置すると、ブリッジ流路部材13の側板13sの上辺とこれに接した床パネル30Aとの間には、案内溝33の部分に隙間が形成されることとなる。冷暖房システム100が作動した際、流路11fを流れる温調空気Aは、案内溝33の部分の隙間を介して流路11fから回収空間RSに流出し、その後、対向する辺に向かって延びる案内溝33を辿って床パネル30Aの裏面に沿って流れることとなる。このように、床パネル30Aが採用されている場合は、温調空気Aが案内溝33を辿って流れるので、温調空気Aが拡散するのが抑制されて速い流速を維持することができ、床パネル30Aへの熱伝達を大きくすることができる。 Next, the floor panel 30A according to the first modification will be described with reference to FIG. 6 (A) is a front view of the floor panel 30A, FIG. 6 (A) is a side view of the floor panel 30A, and FIG. 6 (A) is a back view of the floor panel 30A. The floor panel 30A is typically installed in place of the floor panel 30 (see FIG. 1) in the heating and cooling system 100 (see FIG. 1). The floor panel 30A is configured by forming a plurality of elongated guide grooves 33 on the back surface (the surface facing the back side space S) of the floor panel 30 (see FIG. 1). In the present embodiment, the guide groove 33 extends from each side of the rectangular panel toward the opposite side to a position of about half of the distance to the opposite side, and the floor panel 30A is mounted on the support leg 15. When the opposite side is viewed from the side that is the starting point in the placed state, it is formed on the right side of the center of the side that is the starting point. Therefore, when the floor panel 30A is viewed from the side surface, the end surfaces of the plurality of guide grooves 33 appear on the right side of the center on the end surface of the side serving as the starting point (see FIG. 6B). ). With such a configuration, the guide groove 33 is formed so as to extend in a direction orthogonal to each of the rectangular floor panels 30A divided into four equal parts in a similar shape with respect to the adjacent portions. When the floor panel 30A configured in this way is incorporated into the heating / cooling system 100 instead of the floor panel 30, even if the air outlet 13f (see FIG. 4B) is not formed in the bridge flow path member 13. It may be (and the outlet 13f may be formed). Even when the air outlet 13f is not formed in the bridge flow path member 13, when the floor panel 30A is placed on the support leg 15, between the upper side of the side plate 13s of the bridge flow path member 13 and the floor panel 30A in contact with the upper side. A gap is formed in the portion of the guide groove 33. When the heating / cooling system 100 is activated, the temperature-controlled air A flowing through the flow path 11f flows out from the flow path 11f to the recovery space RS through the gap of the guide groove 33, and then guides extending toward the opposite sides. It follows the groove 33 and flows along the back surface of the floor panel 30A. As described above, when the floor panel 30A is adopted, the temperature-controlled air A flows along the guide groove 33, so that the temperature-controlled air A is suppressed from diffusing and a high flow velocity can be maintained. The heat transfer to the floor panel 30A can be increased.

図7(A)は第2の変形例に係る床パネル30Bの表面図、図7(B)は床パネル30Bの側面図、図7(C)は床パネル30Bの裏面図である。床パネル30Bは、床材となるパネルが仕上材と下地材とで構成される際の下地材となる部材であり、仕上材39(図7(B)参照)と接する面(回収空間RSに面する面の裏側の面)に、床パネル30A(図6参照)に形成されるのと同様の案内溝33の群が形成されている。そして、床パネル30Bでは、案内溝33の始点となる辺の側とは反対側の案内溝33の端部において、裏側の面に貫通する貫通孔33hが形成されている。また、本実施の形態では、始点となる辺の側の案内溝33の端部においても、裏側の面に到達するように案内溝33が延びている。すなわち、本実施の形態では、床パネル30Bを裏側(案内溝33が形成されている面の裏側)から見ると、表面に形成されている案内溝33の両端に対応する位置で、案内溝33に通じる空間(隙間)が表れている。このように構成された床パネル30Bを、床パネル30に代えて冷暖房システム100に組み込んだときは、ブリッジ流路部材13に吹出口13f(図4(B)参照)が形成されないようにするとよい。吹出口13fが形成されないようにすると、流路11f内の温調空気Aが回収空間RSに流出するために、仕上材39に覆われた案内溝33を通過することになり、温調空気Aが保有する冷熱又は温熱を効率よく部屋Rの床材となるパネルに伝達することができる。 7 (A) is a front view of the floor panel 30B according to the second modification, FIG. 7 (B) is a side view of the floor panel 30B, and FIG. 7 (C) is a back view of the floor panel 30B. The floor panel 30B is a member that serves as a base material when the panel to be the floor material is composed of the finishing material and the base material, and is a surface (in the recovery space RS) in contact with the finishing material 39 (see FIG. 7B). A group of guide grooves 33 similar to those formed on the floor panel 30A (see FIG. 6) is formed on the surface on the back side of the facing surface). Then, in the floor panel 30B, a through hole 33h penetrating the back surface is formed at the end of the guide groove 33 on the side opposite to the side that is the starting point of the guide groove 33. Further, in the present embodiment, the guide groove 33 extends so as to reach the back surface even at the end of the guide groove 33 on the side serving as the starting point. That is, in the present embodiment, when the floor panel 30B is viewed from the back side (the back side of the surface on which the guide groove 33 is formed), the guide groove 33 is located at a position corresponding to both ends of the guide groove 33 formed on the surface. The space (gap) leading to is appearing. When the floor panel 30B configured in this way is incorporated into the heating / cooling system 100 instead of the floor panel 30, it is preferable that the air outlet 13f (see FIG. 4B) is not formed in the bridge flow path member 13. .. If the air outlet 13f is not formed, the temperature-controlled air A in the flow path 11f flows out to the recovery space RS, so that the temperature-controlled air A passes through the guide groove 33 covered with the finishing material 39. The cold or hot heat possessed by the room R can be efficiently transferred to the panel serving as the floor material of the room R.

以上の説明では、流路部材11が開渠として構成されていて床パネル30と協働して流路11fを形成しているとしたが、流路部材11が暗渠に構成されていて単独で(床パネル30の助けを借りずに)流路11fを形成してもよい。流路部材11が暗渠に構成されている場合、流路部材11を床パネル30に接触させて流路11fを流れる温調空気Aから流路部材11を介して床パネル30に熱伝達させるようにするとよい。また、吹出口13fは、切欠きではなく側板13sを貫通させればよい。 In the above description, it is assumed that the flow path member 11 is configured as an open culvert and forms the flow path 11f in cooperation with the floor panel 30, but the flow path member 11 is configured as an underdrain and is used alone. The flow path 11f may be formed (without the help of the floor panel 30). When the flow path member 11 is configured as an underdrain, the flow path member 11 is brought into contact with the floor panel 30 so that heat is transferred from the temperature-controlled air A flowing through the flow path 11f to the floor panel 30 via the flow path member 11. It is good to set it to. Further, the outlet 13f may penetrate the side plate 13s instead of the notch.

以上の説明では、流路部材システム10において、流路部材11を構成する環状の1単位が矩形に形成されていて、これを碁盤の目のように連結させることで流路部材11の全体を構成することとしたが、1単位の環状を六角形で形成して全体として蜂の巣状に形成してもよく、あるいは1単位の環状を菱形や適切な多角形で形成してこれらを各辺を共有させて連結させることとしてもよい。また、以上の説明では、それぞれの環状の1単位が同じ大きさであるとしたが、冷暖房負荷が大きくなるペリメータゾーンや発熱機器が集中する領域には流路11fが比較的密になるように構成し、冷暖房負荷が少ない場合は流路11fが比較的疎になるように構成してもよい。このとき、ブリッジ流路部材13がまったく関与しない支持脚15にはクロス流路部材12を設けなくてよく、ブリッジ流路部材13が例えばクロス流路部材12の4つの端部のうちの2箇所に接続される場合は残りの2箇所の端部を閉塞すればよい。 In the above description, in the flow path member system 10, one annular unit constituting the flow path member 11 is formed in a rectangular shape, and by connecting these in a grid pattern, the entire flow path member 11 can be formed. Although it was decided to construct it, one unit of ring may be formed as a hexagon to form a honeycomb as a whole, or one unit of ring may be formed as a rhombus or an appropriate polygon, and these may be formed on each side. It may be shared and linked. Further, in the above description, it is assumed that one unit of each ring has the same size, but the flow path 11f is relatively dense in the perimeter zone where the heating / cooling load is large and the region where the heat generating equipment is concentrated. It may be configured so that the flow path 11f is relatively sparse when the heating / cooling load is small. At this time, the cross flow path member 12 does not have to be provided on the support leg 15 in which the bridge flow path member 13 is not involved at all, and the bridge flow path member 13 is provided at two of the four ends of the cross flow path member 12, for example. If it is connected to, the remaining two ends may be closed.

以上の説明では、碁盤の目のように広がった流路部材11全体の、外周部分に供給空間SSが形成され、供給空間SSよりも内側の部分に回収空間RSが形成されていることとしたが、供給空間SS及び回収空間RSの大きさ及び配置は、状況に応じて適宜変更することができる。 In the above description, it is assumed that the supply space SS is formed in the outer peripheral portion of the entire flow path member 11 that spreads like a grid, and the recovery space RS is formed in the portion inside the supply space SS. However, the size and arrangement of the supply space SS and the recovery space RS can be appropriately changed depending on the situation.

以上の説明では、供給空間SSから流路部材11内の流路11fに温調空気Aが入るための流入口121が、最外部に配置されているクロス流路部材12に形成されているとしたが、これに限らず、例えば供給空間SSに位置する部分のブリッジ流路部材13の側板13sに形成されていてもよい。 In the above description, it is assumed that the inflow port 121 for entering the temperature-controlled air A from the supply space SS into the flow path 11f in the flow path member 11 is formed in the cross flow path member 12 arranged on the outermost side. However, the present invention is not limited to this, and may be formed on the side plate 13s of the bridge flow path member 13 at the portion located in the supply space SS, for example.

以上の説明では、区画部材が床パネル30であるとしたが、床以外の部屋Rを区画する壁や天井等にも採用してもよい。 In the above description, the floor panel 30 is used as the partition member, but it may be used for a wall, a ceiling, or the like that partitions the room R other than the floor.

10 流路部材システム
11 流路部材
11f 流路
12 クロス流路部材
13 ブリッジ流路部材
13f 吹出口
15 支持脚
20 仕切部材
30 床パネル
33 案内溝
61 温調機器
100 冷暖房システム
121 流入口
A 温調空気
R 部室
S 裏側空間
RS 回収空間
SS 供給空間
10 Flow path member system 11 Flow path member 11f Flow path 12 Cross flow path member 13 Bridge flow path member 13f Outlet 15 Support leg 20 Partition member 30 Floor panel 33 Guide groove 61 Temperature control device 100 Air conditioning system 121 Inflow port A Temperature control Air R Department room S Backside space RS Recovery space SS Supply space

Claims (6)

温度調節済気体を流す気体流路を形成する気体流路形成部材であって、冷房又は暖房の対象となる冷暖房対象室を区画する板状の区画部材の裏側に、前記区画部材の面に沿って線状に延びると共に環状を形成するように設けられ、前記区画部材と協働して又は単独で前記気体流路を形成する気体流路形成部材を備える;
冷暖房用気体流路形成システム。
A gas flow path forming member that forms a gas flow path through which a temperature-controlled gas flows, and is located on the back side of a plate-shaped partition member that partitions a cooling / heating target room to be cooled or heated, along the surface of the partition member. It is provided so as to extend linearly and form an annular shape, and includes a gas flow path forming member that forms the gas flow path in cooperation with or independently of the partition member;
Gas flow path formation system for heating and cooling.
前記気体流路形成部材が、前記気体流路の交差点を形成するクロス流路形成部材と、2つの前記クロス流路形成部材の間を連絡するブリッジ流路形成部材とを含んで構成され;
前記区画部材を支持すると共に前記クロス流路形成部材を支持する支持部材をさらに備える;
請求項1に記載の冷暖房用気体流路形成システム。
The gas flow path forming member is configured to include a cross flow path forming member forming an intersection of the gas flow paths and a bridge flow path forming member connecting between the two cross flow path forming members;
A support member that supports the partition member and also supports the cross flow path forming member is further provided;
The gas flow path forming system for heating and cooling according to claim 1.
前記気体流路形成部材は、前記環状の気体流路が複数形成されると共に、前記複数の環状の気体流路のうちの隣接するものの前記気体流路の一部が共有されることで前記複数の環状の気体流路が連通するように構成された;
請求項1又は請求項2に記載の冷暖房用気体流路形成システム。
The plurality of gas flow path forming members are formed by forming a plurality of the annular gas flow paths and sharing a part of the gas flow paths of adjacent ones among the plurality of annular gas flow paths. The annular gas flow path was configured to communicate;
The gas flow path forming system for heating and cooling according to claim 1 or 2.
請求項1乃至請求項3のいずれか1項に記載の冷暖房用気体流路形成システムと;
前記冷暖房対象室を区画する前記区画部材と;
前記区画部材の裏側かつ前記気体流路の外側の空間を、前記温度調節済気体が供給される供給空間と、前記供給空間に供給された前記温度調節済気体が前記冷暖房対象室内の温度に近づいてから流入する回収空間と、に仕切る仕切部材と;
前記温度調節済気体を前記供給空間に向けて供給する温度調節機器とを備え;
前記気体流路形成部材は、前記供給空間に位置する部分に、前記供給空間に供給された前記温度調節済気体を前記気体流路に流入させる流入口が形成されて構成された;
冷暖房システム。
With the gas flow path forming system for heating and cooling according to any one of claims 1 to 3.
With the partition member for partitioning the heating / cooling target room;
In the space behind the partition member and outside the gas flow path, the supply space to which the temperature-controlled gas is supplied and the temperature-controlled gas supplied to the supply space approach the temperature of the heating / cooling target room. The collection space that flows in after the operation and the partition member that divides it into
It is equipped with a temperature control device that supplies the temperature-controlled gas toward the supply space;
The gas flow path forming member is configured by forming an inflow port for flowing the temperature-controlled gas supplied to the supply space into the gas flow path in a portion located in the supply space;
Air conditioning system.
前記気体流路形成部材は、前記回収空間に位置する部分に、前記気体流路に流入した前記温度調節済気体を前記区画部材の面に沿って放出する放出口が形成されて構成された;
請求項4に記載の冷暖房システム。
The gas flow path forming member is configured by forming a discharge port for discharging the temperature-controlled gas flowing into the gas flow path along the surface of the partition member in a portion located in the recovery space;
The heating and cooling system according to claim 4.
前記区画部材は、前記回収空間に位置する部分において、前記気体流路の内部から外部へと通じる案内溝が形成されて構成された;
請求項4又は請求項5に記載の冷暖房システム。
The partition member was configured by forming a guide groove leading from the inside to the outside of the gas flow path in a portion located in the recovery space;
The heating and cooling system according to claim 4 or 5.
JP2019138898A 2019-07-29 2019-07-29 Cooling and heating gas flow passage forming system and cooling and heating system Pending JP2021021539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138898A JP2021021539A (en) 2019-07-29 2019-07-29 Cooling and heating gas flow passage forming system and cooling and heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138898A JP2021021539A (en) 2019-07-29 2019-07-29 Cooling and heating gas flow passage forming system and cooling and heating system

Publications (1)

Publication Number Publication Date
JP2021021539A true JP2021021539A (en) 2021-02-18

Family

ID=74573739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138898A Pending JP2021021539A (en) 2019-07-29 2019-07-29 Cooling and heating gas flow passage forming system and cooling and heating system

Country Status (1)

Country Link
JP (1) JP2021021539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186210A1 (en) * 2021-03-01 2022-09-09 株式会社エコ・パワー Radiant panel and radiant heating/cooling system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161632A (en) * 2000-11-22 2002-06-04 Sanyo Industries Ltd Floor laying structure
JP2008309398A (en) * 2007-06-14 2008-12-25 Eco Power:Kk Partitioning material and heating/cooling system
JP2009036510A (en) * 2008-11-19 2009-02-19 Tadashi Tsunoda Heating-cooling system
JP2009114658A (en) * 2007-11-02 2009-05-28 Toyota Motor Corp Ventilation facility of building
JP2010112566A (en) * 2008-11-04 2010-05-20 Eco Power:Kk Supporting member set and heating/cooling system
JP2010223538A (en) * 2009-03-25 2010-10-07 Eco Power:Kk Heating and cooling system
JP2012097921A (en) * 2010-10-29 2012-05-24 Eco Power:Kk Partition material unit and heating and cooling system
US20180334811A1 (en) * 2017-05-20 2018-11-22 William Randolf Collier Method for Improving the Ventilation Effectiveness of Large Conditioned Air Plenum Environments Including Such Environments in Multilevel Raised Floor Electro-Mechanical Distribution Systems
JP2020051080A (en) * 2018-09-26 2020-04-02 角田 正 Support member set and heating/cooling system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161632A (en) * 2000-11-22 2002-06-04 Sanyo Industries Ltd Floor laying structure
JP2008309398A (en) * 2007-06-14 2008-12-25 Eco Power:Kk Partitioning material and heating/cooling system
JP2009114658A (en) * 2007-11-02 2009-05-28 Toyota Motor Corp Ventilation facility of building
JP2010112566A (en) * 2008-11-04 2010-05-20 Eco Power:Kk Supporting member set and heating/cooling system
JP2009036510A (en) * 2008-11-19 2009-02-19 Tadashi Tsunoda Heating-cooling system
JP2010223538A (en) * 2009-03-25 2010-10-07 Eco Power:Kk Heating and cooling system
JP2012097921A (en) * 2010-10-29 2012-05-24 Eco Power:Kk Partition material unit and heating and cooling system
US20180334811A1 (en) * 2017-05-20 2018-11-22 William Randolf Collier Method for Improving the Ventilation Effectiveness of Large Conditioned Air Plenum Environments Including Such Environments in Multilevel Raised Floor Electro-Mechanical Distribution Systems
JP2020051080A (en) * 2018-09-26 2020-04-02 角田 正 Support member set and heating/cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186210A1 (en) * 2021-03-01 2022-09-09 株式会社エコ・パワー Radiant panel and radiant heating/cooling system

Similar Documents

Publication Publication Date Title
JP6198404B2 (en) Radiant panel and air conditioning system
JP2021021539A (en) Cooling and heating gas flow passage forming system and cooling and heating system
JP7149145B2 (en) Support member set and air conditioning system
JP5431760B2 (en) Air conditioning system
JPH09222231A (en) Panel device for floor cooling/heating operation
JP5335376B2 (en) Air conditioning system
JP6829588B2 (en) Chamber air supply type air conditioning system
JP6150346B2 (en) HEAT EXCHANGE STRUCTURE AND METHOD OF CONSTRUCTING HEAT EXCHANGE STRUCTURE
JP2022016346A (en) Heat transfer member and cooling/heating system
WO2015025855A1 (en) Partition member and heating/cooling system
JP2022113280A (en) Floor radiation/convention-type heating system
JP5346768B2 (en) Air conditioning system for computer room
JP7429395B1 (en) Support legs, support member set and heating and cooling system
JP7421779B1 (en) Support members and heating and cooling systems
JP4327792B2 (en) Radiant air conditioning system
JP2022113281A (en) Floor radiation/convention-type heating system
JP6153203B2 (en) HEAT EXCHANGE STRUCTURE AND METHOD OF CONSTRUCTING HEAT EXCHANGE STRUCTURE
JP7286830B2 (en) personal air conditioning system
JP5675201B2 (en) Heat medium diffusing member and air conditioning system
RU2675715C2 (en) Diffusion device with corrugated inserts and convection fan comprising such device
JP2015034641A (en) Air conditioning system
JP7470940B2 (en) Floor underlayment set and radiant heating and cooling system
JP2023159597A (en) Gas induction unit and cooling/heating system
JP2012097921A (en) Partition material unit and heating and cooling system
JP7033486B2 (en) Personal air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401