JP2021021095A - Electrode for reductive reaction, and device of reducing carbon compound - Google Patents

Electrode for reductive reaction, and device of reducing carbon compound Download PDF

Info

Publication number
JP2021021095A
JP2021021095A JP2019136701A JP2019136701A JP2021021095A JP 2021021095 A JP2021021095 A JP 2021021095A JP 2019136701 A JP2019136701 A JP 2019136701A JP 2019136701 A JP2019136701 A JP 2019136701A JP 2021021095 A JP2021021095 A JP 2021021095A
Authority
JP
Japan
Prior art keywords
electrode
reduction reaction
carbon compound
reduction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019136701A
Other languages
Japanese (ja)
Inventor
直柔 坂本
Naoya Sakamoto
直柔 坂本
健男 荒井
Takeo Arai
健男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019136701A priority Critical patent/JP2021021095A/en
Publication of JP2021021095A publication Critical patent/JP2021021095A/en
Pending legal-status Critical Current

Links

Abstract

To provide an electrode for a reductive reaction, capable of at least controlling a production ratio of hydrogen resulting from a side reaction or enhancing the production ratio of a reduction product resulting from a reductive reaction of a carbon compound, in a reductive reaction of a carbon compound.SOLUTION: The electrode for a reductive reaction according to the present invention is an electrode for a reductive reduction to be used in a reductive reaction of a carbon compound and comprises an electrode body modified with a hydrophobic polymer.SELECTED DRAWING: None

Description

本発明は、還元反応用電極、炭素化合物還元装置に関する。 The present invention relates to an electrode for a reduction reaction and a carbon compound reducing device.

大気中の二酸化炭素(CO)濃度の上昇による地球温暖化やエネルギー資源、炭素資源の枯渇といった問題の解決に向けて、二酸化炭素等の炭素化合物の還元反応に用いられる還元反応用電極の研究が世界中で行われている。 Research on reduction reaction electrodes used in the reduction reaction of carbon compounds such as carbon dioxide to solve problems such as global warming due to an increase in the concentration of carbon dioxide (CO 2 ) in the atmosphere and depletion of energy resources and carbon resources. Is done all over the world.

例えば、特許文献1には、導電性部材と、前記導電性部材の表面に、吸着剤とを有し、前記吸着剤が、導電性及び細孔を有し、二酸化炭素を吸着可能な多孔性基材と、前記細孔内に、二酸化炭素を還元可能な中心金属を有する金属錯体とを有する、二酸化炭素還元用電極が開示されている。 For example, Patent Document 1 has a conductive member and an adsorbent on the surface of the conductive member, and the adsorbent has conductivity and pores and is porosity capable of adsorbing carbon dioxide. An electrode for carbon dioxide reduction having a base material and a metal complex having a central metal capable of reducing carbon dioxide in the pores is disclosed.

また、特許文献2には、二酸化炭素を還元可能な金属含有部材と、前記金属含有部材の表面に、二酸化炭素を吸着可能な吸着剤と、を有する二酸化炭素還元用電極が開示されている。 Further, Patent Document 2 discloses a carbon dioxide reducing electrode having a metal-containing member capable of reducing carbon dioxide and an adsorbent capable of adsorbing carbon dioxide on the surface of the metal-containing member.

また、特許文献3には、シランカップリング剤によって修飾された電極を備える還元反応用電極が開示されている。 Further, Patent Document 3 discloses a reduction reaction electrode including an electrode modified with a silane coupling agent.

また、非特許文献1には、金属電極による二酸化炭素還元技術が開示されている。 Further, Non-Patent Document 1 discloses a carbon dioxide reduction technique using a metal electrode.

また、非特許文献2には、親水性高分子によって修飾された銅金属電極が開示されている。 Further, Non-Patent Document 2 discloses a copper metal electrode modified with a hydrophilic polymer.

特開2017−125234号公報JP-A-2017-125234 特開2017−78190号公報JP-A-2017-78190 特開2017−101285号公報JP-A-2017-101285

堀善夫,「鋼電極による炭酸ガスの電解還元」,Electrochemistry,1990,11,p996−1002Yoshio Hori, "Electrolytic Reduction of Carbon Dioxide with Steel Electrodes", Electrochemistry, 1990, 11, p996-1002 Aya K.Buckley et al.,J.Am.Chem.Soc.,2019,141,p7355−7364,「Electrocatalysis at Organic−Metal Interfaces:Identification of Structure−Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces」Aya K. Buckley et al. , J. Am. Chem. Soc. , 2019, 141, p7355-7364, "Electrocatalyst at Organic-Metal Interfaces: Electrocatalyst of Structure-Reactivity Reaction Surfaces for CO2 Redox Surfaces"

ところで、二酸化炭素等の炭素化合物の還元反応において、副反応による水素生成を抑えること、炭素化合物の還元反応による還元生成物の生成を高めることができる還元反応用電極が望まれている。 By the way, in the reduction reaction of a carbon compound such as carbon dioxide, an electrode for a reduction reaction capable of suppressing hydrogen production by a side reaction and enhancing the production of a reduction product by the reduction reaction of a carbon compound is desired.

そこで、本発明の目的は、炭素化合物の還元反応において、副反応による水素の生成割合を抑えること、及び炭素化合物の還元反応による還元生成物の生成割合を向上させることのうちの少なくともいずれか一方を可能とする還元反応用電極及び炭素化合物還元装置を提供することにある。 Therefore, an object of the present invention is at least one of suppressing the production ratio of hydrogen by a side reaction and improving the production ratio of a reduction product by the reduction reaction of a carbon compound in the reduction reaction of a carbon compound. It is an object of the present invention to provide an electrode for a reduction reaction and a carbon compound reduction apparatus capable of the above.

本発明は、炭素化合物の還元反応に用いられる還元反応用電極であって、疎水性高分子によって修飾された電極体を備える還元反応用電極である。 The present invention is a reduction reaction electrode used for a reduction reaction of a carbon compound, and is a reduction reaction electrode including an electrode body modified with a hydrophobic polymer.

また、前記還元反応用電極において、前記疎水性高分子によって修飾された電極体の水接触角は89度以上であることが好ましい。 Further, in the electrode for reduction reaction, the water contact angle of the electrode body modified with the hydrophobic polymer is preferably 89 degrees or more.

また、前記還元反応用電極において、前記炭素化合物は二酸化炭素を含むことが好ましい。 Further, in the electrode for reduction reaction, the carbon compound preferably contains carbon dioxide.

また、本発明は、前記還元反応用電極と、前記還元反応用電極と電気的に接続され、酸化反応を生起する酸化反応用電極と、電解質を含む溶液である電解質溶液と、を備え、前記還元反応用電極及び前記酸化反応用電極が前記電解質溶液に浸漬されている炭素化合物還元装置である。 The present invention also comprises the reduction reaction electrode, an oxidation reaction electrode that is electrically connected to the reduction reaction electrode and causes an oxidation reaction, and an electrolyte solution that is a solution containing an electrolyte. It is a carbon compound reducing apparatus in which the electrode for a reduction reaction and the electrode for an oxidation reaction are immersed in the electrolyte solution.

本発明によれば、炭素化合物の還元反応において、副反応による水素の生成割合を抑えること、炭素化合物の還元反応による還元生成物の生成割合を向上させることのうちの少なくともいずれか一方を可能とする還元反応用電極及び炭素化合物還元装置を提供することができる。 According to the present invention, in the reduction reaction of a carbon compound, at least one of suppressing the production ratio of hydrogen by a side reaction and improving the production ratio of a reduction product by the reduction reaction of a carbon compound is possible. It is possible to provide an electrode for a reduction reaction and a carbon compound reducing device.

本実施形態に係る還元反応用電極の一例の概略構成図である。It is a schematic block diagram of an example of the electrode for reduction reaction which concerns on this embodiment. 本実施形態に係る炭素化合物還元装置の一例の概略構成図である。It is a schematic block diagram of an example of the carbon compound reduction apparatus which concerns on this embodiment. 還元反応用電極A〜Dの赤外線吸収スペクトルである。It is an infrared absorption spectrum of electrodes A to D for a reduction reaction. 還元反応用電極A〜DのSEM画像である。It is an SEM image of electrodes A to D for a reduction reaction. 還元反応用電極A〜Dの水接触角測定を示す図である。It is a figure which shows the water contact angle measurement of the reduction reaction electrode A to D. 実施例及び比較例で用いた電気化学セルの概略構成図である。It is a schematic block diagram of the electrochemical cell used in an Example and a comparative example. 還元反応用電極E〜Hの赤外線吸収スペクトルである。It is an infrared absorption spectrum of electrodes E to H for a reduction reaction. 還元反応用電極E〜HのSEM画像である。It is an SEM image of electrodes E to H for a reduction reaction.

以下に、本実施形態に係る還元反応用電極及び炭素化合物還元装置の一例について説明する。 An example of the electrode for reduction reaction and the carbon compound reduction apparatus according to the present embodiment will be described below.

[還元反応用電極]
図1に、本実施形態に係る還元反応用電極の一例の概略構成図を示す。図1に示す還元反応用電極1は、金属電極体10と、金属電極体10の表面を修飾する修飾層12と、を有する。なお、図1に示す還元反応用電極1では、導線16が、接点部材14により、金属電極体10に接続されている。
[Electrodes for reduction reaction]
FIG. 1 shows a schematic configuration diagram of an example of a reduction reaction electrode according to the present embodiment. The reduction reaction electrode 1 shown in FIG. 1 has a metal electrode body 10 and a modification layer 12 that modifies the surface of the metal electrode body 10. In the reduction reaction electrode 1 shown in FIG. 1, the lead wire 16 is connected to the metal electrode body 10 by the contact member 14.

金属電極体10は、特に限定されるものではないが、銀(Ag)、金(Au)、銅(Cu)、亜鉛(Zn)、インジウム(In)、カドミウム(Cd)、スズ(Sn)、パラジウム(Pd)、鉛(Pd)、鉄(Fe)、タンタル(Ta)を含む金属であることが好ましい。また、金属電極体10は、例えば、カーボン材料を含む基材に金属層を形成した構成等でもよい。カーボン材料は、例えば、カーボンナノチューブ、グラフェン、カーボンブラック、カーボンクロス、カーボンペーパー、グラッシーカーボン、グラファイト等が挙げられる。また、炭素化合物の還元電位より負側に伝導体下端の電位を有するP型半導体を含んでいてもよい。P型半導体としては、例えば、珪素(Si)、酸化銅(CuO)、亜鉛ドープ酸化鉄(Fe)等の酸化物、インジウムリン(InP)、ガリウムリン(GaP)、インジウムガリウムリン(InGaP)等のリン化合物、窒化ガリウム(GaN)、C等の窒素化合物、CIGS、CZTSSe等のセレン化合物等が挙げられる。 The metal electrode body 10 is not particularly limited, but silver (Ag), gold (Au), copper (Cu), zinc (Zn), indium (In), cadmium (Cd), tin (Sn), and the like. A metal containing palladium (Pd), lead (Pd), iron (Fe), and tantalum (Ta) is preferable. Further, the metal electrode body 10 may have, for example, a configuration in which a metal layer is formed on a base material containing a carbon material. Examples of the carbon material include carbon nanotubes, graphene, carbon black, carbon cloth, carbon paper, glassy carbon, graphite and the like. Further, a P-type semiconductor having a potential at the lower end of the conductor on the negative side of the reduction potential of the carbon compound may be contained. Examples of the P-type semiconductor include oxides such as silicon (Si), copper oxide (Cu 2 O) and zinc-doped iron oxide (Fe 2 O 3 ), indium phosphide (InP), gallium phosphide (GaP), and gallium phosphide. phosphorus compounds such as phosphorus (InGaP), gallium nitride (GaN), nitrogen compounds such as C 3 N 4, CIGS, selenium compounds such as CZTSSe like.

修飾層12は、疎水性高分子を含む。疎水性高分子とは、水に難溶または不溶である高分子であり、20℃の純水100gに対する溶解度が1g未満のことをいう。疎水性高分子としては、例えば、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)、ポリメチルペンテン(PMP)、ポリ乳酸(PLA)、環状オレフィンコポリマー(COC)及び環状オレフィンポリマー(COP)等が挙げられる。 The modified layer 12 contains a hydrophobic polymer. The hydrophobic polymer is a polymer that is poorly soluble or insoluble in water, and has a solubility of less than 1 g in 100 g of pure water at 20 ° C. Examples of the hydrophobic polymer include polystyrene (PS), polymethylmethacrylate (PMMA), polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET), polyethylene (PE), polyvinylidene fluoride (PVDF), and poly. Examples thereof include methylpentene (PMP), polylactic acid (PLA), cyclic olefin copolymer (COC) and cyclic olefin polymer (COP).

修飾層12は、例えば、疎水性高分子を有機溶媒に溶解させた溶液を金属電極体10に塗布したり、金属電極体10を当該溶液に浸漬したりすることにより形成される。このような方法により、例えば、金属電極体10上に修飾された疎水性高分子が凝集した領域(島)と金属電極体が露出した領域(海)とを有する海島構造の還元反応用電極が得られる。有機溶媒は、疎水性高分子が溶解するものであればよく、例えば、テトラヒドロフラン、アセトン、2−プロパノール、エタノール等が挙げられる。 The modified layer 12 is formed, for example, by applying a solution of a hydrophobic polymer in an organic solvent to the metal electrode body 10 or immersing the metal electrode body 10 in the solution. By such a method, for example, a reduction reaction electrode having a sea-island structure having a region (island) in which the modified hydrophobic polymer is aggregated on the metal electrode body 10 and a region (sea) in which the metal electrode body is exposed can be obtained. can get. The organic solvent may be one in which a hydrophobic polymer is dissolved, and examples thereof include tetrahydrofuran, acetone, 2-propanol, ethanol and the like.

また。修飾層12は、例えば、純水、超純水等の水の上に、疎水性高分子を有機溶媒に溶解させた溶液を展開した液体を金属電極体10に塗布したり、金属電極体10を当該液体に浸漬させたりすることにより形成してもよい。水の上に、疎水性高分子を有機溶媒に溶解させた溶液を展開した液体を用いることにより、疎水性高分子が自己組織化するため、金属電極体10上に疎水性高分子のマイクロ粒子(数μm程度の粒径)を形成することができる。すなわち、金属電極体10上に疎水性高分子のマイクロ粒子が分散した還元反応用電極が得られる。水の上に、疎水性高分子を有機溶媒に溶解させた溶液を展開した液体は、調製後直ちに使用してもよいし、数時間〜数日放置した後に使用してもよい。 Also. For the modified layer 12, for example, a liquid obtained by developing a solution of a hydrophobic polymer in an organic solvent on water such as pure water or ultra-pure water is applied to the metal electrode body 10, or the metal electrode body 10 is used. May be formed by immersing the water in the liquid. By using a liquid obtained by developing a solution of a hydrophobic polymer in an organic solvent on water, the hydrophobic polymer self-assembles, so that the hydrophobic polymer microparticles are placed on the metal electrode body 10. (Particle size of about several μm) can be formed. That is, a reduction reaction electrode in which microparticles of a hydrophobic polymer are dispersed on the metal electrode body 10 can be obtained. The liquid obtained by developing a solution of a hydrophobic polymer in an organic solvent on water may be used immediately after preparation, or may be used after being left for several hours to several days.

なお、金属電極体10の表面全体を覆うように疎水性高分子を修飾してもよいが、炭素化合物の還元反応性等の点で、上記のような海島構造やマイクロ粒子が分散している方がよい。 The hydrophobic polymer may be modified so as to cover the entire surface of the metal electrode body 10, but the sea-island structure and microparticles as described above are dispersed in terms of the reduction reactivity of the carbon compound and the like. Better.

接点部材14は、導線16を金属電極体10に接続できる部材であればよく、特に限定されないが、例えば、銅テープ、インジウム、カーボンテープ、鉛、スズ、タンタル等が挙げられる。 The contact member 14 may be a member capable of connecting the lead wire 16 to the metal electrode body 10, and is not particularly limited, and examples thereof include copper tape, indium, carbon tape, lead, tin, and tantalum.

導線16は、通電可能な部材であればよく、特に限定されないが、例えば、銅線、アルミニウム線等が挙げられる。 The lead wire 16 may be any member as long as it can be energized, and is not particularly limited, and examples thereof include a copper wire and an aluminum wire.

還元反応用電極1に電圧が印加されると、金属電極体10に生じた電子が、炭素化合物の還元反応に利用される。炭素化合物が二酸化炭素の場合、二酸化炭素の還元反応により、例えば、CO、HCOOH等の2電子還元生成物、CH(8電子還元生成物)、C(12電子還元生成物)、COH(12電子還元生成物)等の2電子を超える多電子還元生成物等の還元生成物が生成される。炭素化合物は、大気中の二酸化炭素(CO)濃度の上昇による地球温暖化等を抑制する等の点から、二酸化炭素を含むことが好ましいが、二酸化炭素に限定されず、例えば、CO等、還元反応用電極1で還元反応が生じる炭素化合物であればよい。 When a voltage is applied to the reduction reaction electrode 1, the electrons generated in the metal electrode body 10 are used for the reduction reaction of the carbon compound. When the carbon compound is carbon dioxide, due to the reduction reaction of carbon dioxide, for example, 2-electron reduction products such as CO and HCOOH, CH 4 (8-electron reduction products), C 2 H 4 (12-electron reduction products), A reduction product such as a multi-electron reduction product having more than two electrons such as C 2 H 5 OH (12-electron reduction product) is produced. The carbon compound preferably contains carbon dioxide from the viewpoint of suppressing global warming due to an increase in the concentration of carbon dioxide (CO 2 ) in the atmosphere, but is not limited to carbon dioxide, for example, CO or the like. Any carbon compound that causes a reduction reaction at the reduction reaction electrode 1 may be used.

ここで、還元反応用電極1では、水分解等の副反応による水素生成も生じる。しかし、還元反応用電極1によれば、金属電極体10の表面を修飾する疎水性高分子(修飾層12)により、金属電極体10の表面への水分子の接触が抑えられ、炭素化合物が接触し易くなっている。その結果、疎水性高分子を修飾していない金属電極体に比べて、副反応による水素の生成割合を抑えること、炭素化合物の還元反応による還元生成物の生成割合を向上させること、或いはその両方を達成することができる。 Here, in the reduction reaction electrode 1, hydrogen generation also occurs due to a side reaction such as water decomposition. However, according to the reduction reaction electrode 1, the hydrophobic polymer (modifying layer 12) that modifies the surface of the metal electrode body 10 suppresses the contact of water molecules with the surface of the metal electrode body 10, and the carbon compound is formed. It is easy to contact. As a result, as compared with the metal electrode body in which the hydrophobic polymer is not modified, the production ratio of hydrogen due to the side reaction is suppressed, the production ratio of the reduction product due to the reduction reaction of the carbon compound is improved, or both. Can be achieved.

還元反応用電極1において、疎水性高分子によって修飾された金属電極体10の水接触角は、副反応による水素の生成割合を抑えること、炭素化合物の還元反応による還元生成物の生成割合を向上させること等の点で、89度以上であることが好ましく、95度以上であることがより好ましい。 In the reduction reaction electrode 1, the water contact angle of the metal electrode body 10 modified with the hydrophobic polymer suppresses the production rate of hydrogen by the side reaction and improves the production rate of the reduction product by the reduction reaction of the carbon compound. It is preferably 89 degrees or higher, and more preferably 95 degrees or higher, in terms of allowing the temperature to rise.

水接触角は、接触角計(協和界面化学、DM−501)を用いて、水滴0.5μLを試料表面(疎水性高分子によって修飾された電極体表面)に滴下し、滴下直後の水滴の形状を撮影して、得られた画像から、θ/2法を用いて測定することにより求められる。ここで、例えば、カーボンクロス、カーボンペーパー等の基材に金属層を形成した多孔性の金属電極体の場合、疎水性高分子によって修飾された多孔性の電極体表面に水滴を滴下しても、水滴が内部に浸透して水接触角を測定できない。この場合、平滑な基板(例えば、ガラス基板)の上に、同様の条件で金属層を形成し、さらに金属層上に、同様の条件で疎水性高分子を修飾したものを試料として、当該試料で測定された水接触角を、疎水性高分子によって修飾された電極体表面の水接触角とする。 For the water contact angle, 0.5 μL of water droplet was dropped on the sample surface (the surface of the electrode body modified by the hydrophobic polymer) using a contact angle meter (Kyowa Surface Chemistry, DM-501), and the water droplet immediately after the drop was dropped. It is obtained by photographing the shape and measuring from the obtained image using the θ / 2 method. Here, for example, in the case of a porous metal electrode body in which a metal layer is formed on a base material such as carbon cloth or carbon paper, even if water droplets are dropped on the surface of the porous electrode body modified by a hydrophobic polymer. , Water droplets penetrate inside and the water contact angle cannot be measured. In this case, a metal layer is formed on a smooth substrate (for example, a glass substrate) under the same conditions, and a hydrophobic polymer is further modified on the metal layer under the same conditions as a sample. The water contact angle measured in 1 is defined as the water contact angle on the surface of the electrode body modified with the hydrophobic polymer.

「炭素化合物還元装置」
図2に、本実施形態に係る炭素化合物還元装置の一例の概略構成図を示す。図2に示す炭素化合物還元装置3は、既述の還元反応用電極である第1電極(陰極)1と、第1電極1と電気的に接続され、酸化反応を生起する酸化反応用電極としての第2電極(陽極)20と、陰極室電解質溶液30及び陽極室電解質溶液32を含む電解質溶液と、を有する。
"Carbon compound reduction device"
FIG. 2 shows a schematic configuration diagram of an example of the carbon compound reducing device according to the present embodiment. The carbon compound reducing device 3 shown in FIG. 2 is an electrode for an oxidation reaction that is electrically connected to the first electrode (cathode) 1 which is the electrode for the reduction reaction described above and the first electrode 1 to cause an oxidation reaction. It has a second electrode (anode) 20 of the above, and an electrolyte solution containing a cathode chamber electrolyte solution 30 and an anode chamber electrolyte solution 32.

図2に示す炭素化合物還元装置3では、例えば、収容容器26内が隔膜28により陰極室22と陽極室24とに分離され、陰極室22には、陰極室電解質を含む溶液である陰極室電解質溶液30が収容され、陽極室24には、陽極室電解質を含む溶液である陽極室電解質溶液32が収容されている。そして、既述の還元反応用電極である第1電極1が、陰極室電解質溶液30に浸漬され、第2電極20が陽極室電解質溶液32に浸漬されている。陰極室電解質溶液30には、二酸化炭素等の炭素化合物を含有させている。 In the carbon compound reducing device 3 shown in FIG. 2, for example, the inside of the storage container 26 is separated into a cathode chamber 22 and an anode chamber 24 by a diaphragm 28, and the cathode chamber 22 is a cathode chamber electrolyte which is a solution containing a cathode chamber electrolyte. The solution 30 is contained, and the anode chamber electrolyte solution 32, which is a solution containing the anode chamber electrolyte, is contained in the anode chamber 24. Then, the first electrode 1 which is the electrode for the reduction reaction described above is immersed in the cathode chamber electrolyte solution 30, and the second electrode 20 is immersed in the anode chamber electrolyte solution 32. The cathode chamber electrolyte solution 30 contains a carbon compound such as carbon dioxide.

第1電極1と第2電極20との間を電気的に接続し、適切なバイアス電圧を印加した状態とすることで、第2電極20においては、酸化反応が生起されるとともに、電位が得られる。第1電極1においては、酸化反応を生起する電極から電位を得ることによって、二酸化炭素等の炭素化合物の還元反応が進行する。 By electrically connecting the first electrode 1 and the second electrode 20 and applying an appropriate bias voltage, an oxidation reaction occurs and a potential is obtained in the second electrode 20. Be done. In the first electrode 1, the reduction reaction of a carbon compound such as carbon dioxide proceeds by obtaining an electric potential from an electrode that causes an oxidation reaction.

バイアス電圧を印加する手段は、特に限定されるものではなく、化学的電池(一次電池、二次電池等を含む)、定電圧源、太陽電池等が挙げられる。 The means for applying the bias voltage is not particularly limited, and examples thereof include a chemical battery (including a primary battery, a secondary battery, etc.), a constant voltage source, a solar cell, and the like.

バイアス電圧を印加する手段として太陽電池セルを用いることにより、図2に示す炭素化合物還元装置3と、第1電極1及び第2電極20に供給される電力を生成する太陽電池セルと、を備える人工光合成装置とすることができる。本実施形態に係る人工光合成装置は、炭素化合物還元装置3の第1電極1と第2電極20が太陽電池を介して接続され、太陽光をエネルギー源として駆動される。 By using a solar cell as a means for applying a bias voltage, the carbon compound reducing device 3 shown in FIG. 2 and a solar cell that generates electric power supplied to the first electrode 1 and the second electrode 20 are provided. It can be an artificial photosynthesis device. In the artificial photosynthesis apparatus according to the present embodiment, the first electrode 1 and the second electrode 20 of the carbon compound reducing apparatus 3 are connected via a solar cell, and are driven by using sunlight as an energy source.

陰極室電解質としては、塩化カリウム(KCl)、炭酸水素カリウム(KHCO)、硫酸カリウム(KSO)、炭酸カリウム(KCO)、四ホウ酸カリウム(K)、リン酸水素二カリウム(KHPO)、リン酸二水素カリウム(KHPO)等が挙げられ、電極表面近傍をより塩基性にするほど副反応のH生成を抑制できる等の点から、塩化カリウム(KCl)、炭酸水素カリウム(KHCO)等が好ましい。 Potassium chloride chamber electrolytes include potassium chloride (KCl), potassium hydrogen carbonate (KHCO 3 ), potassium sulfate (K 2 SO 4 ), potassium carbonate (K 2 CO 3 ), potassium tetraborate (K 2 B 4 O 7 ). , Potassium hydrogen phosphate (K 2 HPO 4 ), Potassium dihydrogen phosphate (KH 2 PO 4 ), etc., and the more basic the vicinity of the electrode surface, the more the side reaction H 2 production can be suppressed. From this point of view, potassium chloride (KCl), potassium hydrogen carbonate (KHCO 3 ) and the like are preferable.

陽極室電解質としては、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、炭酸カリウム(KCO)、硫酸カリウム(KSO)、四ホウ酸カリウム(K)、リン酸水素二カリウム(KHPO)、リン酸二水素カリウム(KHPO)、水酸化カリウム(KOH)等が挙げられ、電極表面近傍をより塩基性にするほど水の酸化反応によるO生成が進行しやすくなる等の点から、炭酸水素カリウム(KHCO)、四ホウ酸カリウム(K)、水酸化カリウム(KOH)等が好ましい。 As the anode chamber electrolyte, sodium hydrogen carbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ), potassium carbonate (K 2 CO 3 ), potassium sulfate (K 2 SO 4 ), potassium tetraborate (K 2 B 4 O) 7 ), dipotassium hydrogen phosphate (K 2 HPO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), potassium hydroxide (KOH), etc., and water is used to make the vicinity of the electrode surface more basic. Potassium hydrogen carbonate (KHCO 3 ), potassium tetraborate (K 2 B 4 O 7 ), potassium hydroxide (KOH) and the like are preferable from the viewpoint that O 2 production by the oxidation reaction facilitates.

陰極室電解質溶液30、陽極室電解質溶液32の溶媒としては、水の他に、アセトニトリル、N,N−ジメチルホルムアミド(DMF)等の有機溶媒等が挙げられる。 Examples of the solvent for the cathode chamber electrolyte solution 30 and the anode chamber electrolyte solution 32 include organic solvents such as acetonitrile and N, N-dimethylformamide (DMF) in addition to water.

陰極室電解質溶液30の電解質の濃度は、例えば、0.01mol/L〜3mol/Lの範囲であり、0.1mol/L〜1.0mol/Lの範囲であることが好ましい。 The concentration of the electrolyte in the cathode chamber electrolyte solution 30 is, for example, in the range of 0.01 mol / L to 3 mol / L, and preferably in the range of 0.1 mol / L to 1.0 mol / L.

陽極室電解質溶液32の電解質の濃度は、例えば、0.01mol/L〜3mol/Lの範囲であり、0.1mol/L〜1.0mol/Lの範囲であることが好ましい。 The concentration of the electrolyte in the anode chamber electrolyte solution 32 is, for example, in the range of 0.01 mol / L to 3 mol / L, and preferably in the range of 0.1 mol / L to 1.0 mol / L.

第2電極20は、酸化反応によって物質を酸化するために利用される電極である。第2電極20としては、白金、金、カーボン、水銀、フッ素含有酸化錫(FTO)、錫ドープ酸化インジウム(ITO)、半導体の基板上に酸化イリジウム(IrOx:x=1〜2)又はコバルト化合物を修飾させた電極等を用いることができる。半導体の基板は、酸化タングステン(WO)、バナジン酸ビスマス(BiVO)、酸化鉄(Fe)、シリコン(Si)、酸窒化タンタル(TaON)等が挙げられる。 The second electrode 20 is an electrode used to oxidize a substance by an oxidation reaction. The second electrode 20 includes platinum, gold, carbon, mercury, fluorine-containing tin oxide (FTO), tin-doped indium oxide (ITO), iridium oxide (IrOx: x = 1-2) or a cobalt compound on a semiconductor substrate. An electrode modified from the above can be used. Examples of the semiconductor substrate include tungsten oxide (WO 3 ), bismuth vanadate (BiVO 4 ), iron oxide (Fe 2 O 3 ), silicon (Si), and tantalum nitride (TaON).

隔膜28としては、例えば、プロトン交換膜、陰イオン交換膜、バイポーラーメンブレン、多孔性ガラス膜等が挙げられ、プロトン交換膜であるナフィオン(登録商標)等を好適に用いることができる。第1電極1(還元反応用電極)での炭素化合物の還元反応を効率的に進行させる等の点で、隔膜28を設けることが好ましいが、隔膜28を設けなくてもよい。 Examples of the diaphragm 28 include a proton exchange membrane, an anion exchange membrane, a bipolar membrane, a porous glass membrane, and the like, and Nafion (registered trademark), which is a proton exchange membrane, can be preferably used. It is preferable to provide the diaphragm 28 from the viewpoint of efficiently advancing the reduction reaction of the carbon compound at the first electrode 1 (reduction reaction electrode), but the diaphragm 28 may not be provided.

収容容器26としては、例えば、金属製、プラスチック製、ガラス製等の密閉容器、およびガスを流通する機構を有する反応容器等を用いることができる。 As the storage container 26, for example, a closed container made of metal, plastic, glass, or the like, a reaction container having a mechanism for circulating gas, or the like can be used.

図2に示す炭素化合物還元装置3は、還元反応用電極及び酸化反応用電極を用いた二電極式であるが、これに限定されず、参照極を組み合わせた三電極式でもよい。図2に示すように、隔膜を備える炭素化合物還元装置では、参照極は、陰極室側に設置される。 The carbon compound reducing device 3 shown in FIG. 2 is a two-electrode type using a reduction reaction electrode and an oxidation reaction electrode, but is not limited to this, and may be a three-electrode type in which reference electrodes are combined. As shown in FIG. 2, in the carbon compound reducing device provided with a diaphragm, the reference electrode is installed on the cathode chamber side.

以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited to these Examples.

<還元反応用電極A>
超純水(MiLLIQ)40mLの水面に、1mg/Lのポリスチレン(Mw:2.7×103、PDI:1.16)を溶解させたテトラヒドロフラン(富士フィルム和光純薬、超脱水)溶液100μLを展開した液体に、銀箔を浸漬させた後、これを乾燥した。そして、銀箔にタンタル箔(接点部材)を接続した。これを還元反応用電極Aとした。
<Electrode A for reduction reaction>
Develop 100 μL of a tetrahydrofuran (Fuji Film Wako Pure Chemical Industries, Ltd., ultra-dehydration) solution in which 1 mg / L polystyrene (Mw: 2.7 × 103, PDI: 1.16) is dissolved on the water surface of 40 mL of ultrapure water (MiLLIQ). After immersing the silver foil in the liquid, it was dried. Then, a tantalum foil (contact member) was connected to the silver foil. This was used as the electrode A for the reduction reaction.

<還元反応用電極B>
超純水(MiLLIQ)1mLの水面に、1mg/Lのポリスチレン(Mw:2.7×103、PDI:1.16)を溶解させたテトラヒドロフラン(富士フィルム和光純薬、超脱水)溶液1mLを展開した液体を、室温で2日間放置して、ポリスチレンのマイクロ粒子を作製した(Self−ORganized Precipitation:SORP法)。作製したマイクロ粒子を含む液体100μLを、銀箔にドロップキャスト法により塗布した後、乾燥した。そして、銀箔にタンタル箔を接続した。これを還元反応用電極Bとした。
<Electrode B for reduction reaction>
Develop 1 mL of a tetrahydrofuran (Fuji Film Wako Pure Chemical Industries, Ltd., ultra-dehydrated) solution in which 1 mg / L polystyrene (Mw: 2.7 × 103, PDI: 1.16) is dissolved on the water surface of 1 mL of ultrapure water (MiLLIQ). The liquid was left at room temperature for 2 days to prepare polystyrene microparticles (Self-ORganized Prescription: SORP method). 100 μL of the prepared liquid containing the microparticles was applied to the silver foil by the drop casting method, and then dried. Then, the tantalum foil was connected to the silver foil. This was used as the electrode B for the reduction reaction.

<還元反応用電極C>
1mg/Lのポリスチレン(Mw:2.7×103、PDI:1.16)を溶解させたテトラヒドロフラン(富士フィルム和光純薬、超脱水)溶液100μLを、銀箔にドロップキャスト法により塗布した後、乾燥した。そして、銀箔にタンタル箔を接続した。これを還元反応用電極Cとした。
<Electrode C for reduction reaction>
100 μL of a tetrahydrofuran (Fuji Film Wako Pure Chemical Industries, Ltd., ultra-dehydration) solution in which 1 mg / L polystyrene (Mw: 2.7 × 103, PDI: 1.16) is dissolved is applied to silver foil by the drop cast method and then dried. did. Then, the tantalum foil was connected to the silver foil. This was used as the electrode C for the reduction reaction.

<還元反応用電極D>
銀箔にタンタル箔を接続した。これを還元反応用電極Dとして用いた。
<Electrode D for reduction reaction>
A tantalum foil was connected to the silver foil. This was used as the electrode D for the reduction reaction.

図3は、還元反応用電極A〜Dの赤外線吸収スペクトルである。還元反応用電極A〜Dの赤外線吸収スペクトルは、フーリエ変換赤外分光分析装置(Thermo Fisher Scientific:iS50 FT−IR)にGe基板のATRユニットを装着して測定した。(測定波長:4000〜800cm−1、積算回数:32)。図3に示すように、ポリスチレンは、1500cm−1付近に特徴的なCHのC−H変角振動と芳香環のC=C伸縮振動に起因するピークを有するが、当該ピークは、還元反応用電極A〜Cにおいて観察され、還元反応用電極Dにおいては観察されなかった。したがって、還元反応用電極A〜Cにおいては、銀箔上にポリスチレンが修飾されていることが示唆された。 FIG. 3 is an infrared absorption spectrum of the reduction reaction electrodes A to D. The infrared absorption spectra of the reduction reaction electrodes A to D were measured by mounting an ATR unit on a Ge substrate on a Fourier transform infrared spectroscopic analyzer (Thermo Fisher Scientific: iS50 FT-IR). (Measurement wavelength: 4000-800 cm -1 , total number of times: 32). As shown in FIG. 3, polystyrene has a peak due to the characteristic CH 2 C—H variable angle vibration and the C = C expansion and contraction vibration of the aromatic ring near 1500 cm -1 , and the peak is a reduction reaction. It was observed on the electrodes A to C, but not on the reduction reaction electrodes D. Therefore, it was suggested that polystyrene was modified on the silver foil in the electrodes A to C for the reduction reaction.

図4は、還元反応用電極A〜DのSEM画像である。走査電子顕微鏡SU3500(日立ハイテクノロジーズ社製)を用いて、還元反応用電極A〜DのSEM画像を撮影した。図4に示すように、還元反応用電極Cでは、銀箔上にポリスチレンが凝集していることが確認され、還元反応用電極A及びBでは、銀箔上に、ポリスチレンのマイクロ粒子が形成されていることが確認された。なお、還元反応用電極Aでは、ポリスチレンのマイクロ粒子の一部が凝集していたが、還元反応用電極Bでは、ポリスチレンのマイクロ粒子の凝集はほとんど観察されず、マイクロ粒子構造が維持されていた。 FIG. 4 is an SEM image of the reduction reaction electrodes A to D. Using a scanning electron microscope SU3500 (manufactured by Hitachi High-Technologies Corporation), SEM images of reduction reaction electrodes A to D were taken. As shown in FIG. 4, it was confirmed that polystyrene was aggregated on the silver foil in the reduction reaction electrode C, and polystyrene microparticles were formed on the silver foil in the reduction reaction electrodes A and B. It was confirmed that. In the reduction reaction electrode A, some of the polystyrene microparticles were agglomerated, but in the reduction reaction electrode B, the aggregation of the polystyrene microparticles was hardly observed, and the microparticle structure was maintained. ..

図5は、還元反応用電極A〜Dの水接触角測定を示す図である。水接触角は、接触角計(協和界面化学、DM−501)を用いて、水滴0.5μLを試料表面に滴下し、接触角を10点測定し(n=10)、その平均値を採用した。還元反応用電極Aの水接触角は90.2±1.5度であり、還元反応用電極Bの水接触角は98.6±1.7度であり、還元反応用電極Cの水接触角は89.2±0.9度であり、還元反応用電極Dの水接触角は78.6±1.5度であった。すなわち、銀箔上にポリスチレンを修飾した還元反応用電極A〜Cは、銀箔である還元反応用電極Dより高い水接触角を有した。還元反応用電極A〜Cの中では、ポリスチレンのマイクロ粒子が形成された還元反応用電極Bが最も高い水接触角を有した。これは、ポリスチレンのマイクロ粒子により形成される凹凸構造がロータス効果のような撥水性を向上させる構造となっているためであると推察される。 FIG. 5 is a diagram showing water contact angle measurement of the reduction reaction electrodes A to D. For the water contact angle, 0.5 μL of water droplet was dropped on the sample surface using a contact angle meter (Kyowa Surface Chemistry, DM-501), the contact angle was measured at 10 points (n = 10), and the average value was adopted. did. The water contact angle of the reduction reaction electrode A is 90.2 ± 1.5 degrees, the water contact angle of the reduction reaction electrode B is 98.6 ± 1.7 degrees, and the water contact of the reduction reaction electrode C is 98.6 ± 1.7 degrees. The angle was 89.2 ± 0.9 degrees, and the water contact angle of the reduction reaction electrode D was 78.6 ± 1.5 degrees. That is, the reduction reaction electrodes A to C in which polystyrene was modified on the silver foil had a higher water contact angle than the reduction reaction electrodes D, which are silver foils. Among the reduction reaction electrodes A to C, the reduction reaction electrode B on which polystyrene microparticles were formed had the highest water contact angle. It is presumed that this is because the uneven structure formed by the polystyrene microparticles has a structure that improves water repellency such as the Lotus effect.

<還元反応用電極A〜Dを用いたCO電解>
(実施例1)
電気化学測定は、図6に示す電気化学セル(二室セル)を用いた。電気化学測定システム42(Bio−Logic Science Instruments、SP−50)を使用し、作用極44として還元反応用電極A、対極46として白金箔(ニラコ社)、参照極48としてAg/AgCl電極(イーシーフロンティア社)を用いた、三電極方式で行った。電気化学セルの二室間を隔膜50(プロトン交換膜(Aldrich製、Nafion(登録商標)117))で分離し、陰極室54に作用極44(還元反応用電極A)と参照極48を、陽極室56に対極46を設置した。陰極室54及び陽極室56には、電解質溶液58として、0.5mol/Lの炭酸水素カリウム水溶液を入れた。測定は、陰極室54にCOガスを20分流通後、COガスを流通したまま電流−電圧測定を行い、その後、COガスを20mL/minで流しながら、−1.6V vsAg/AgClの電位を3時間印加した後、セル内の気相をガスクロマトグラフィ(島津製作所製、GC−2014)で測定し、還元生成物の同定及び定量を行った。
<CO 2 electrolysis using electrodes A to D for reduction reaction>
(Example 1)
For the electrochemical measurement, the electrochemical cell (two-chamber cell) shown in FIG. 6 was used. Using an electrochemical measurement system 42 (Bio-Logic Science Instruments, SP-50), the working electrode 44 is the reduction reaction electrode A, the counter electrode 46 is the platinum foil (Niraco), and the reference electrode 48 is the Ag / AgCl electrode (EC). The three-electrode method using Frontier) was used. The two chambers of the electrochemical cell are separated by a diaphragm 50 (proton exchange membrane (manufactured by Aldrich, Nafion® 117)), and the working electrode 44 (reduction reaction electrode A) and the reference electrode 48 are placed in the cathode chamber 54. A counter electrode 46 was installed in the anode chamber 56. A 0.5 mol / L potassium hydrogen carbonate aqueous solution was placed in the cathode chamber 54 and the anode chamber 56 as the electrolyte solution 58. Measurements after the CO 2 gas 20 minutes circulation in the cathode chamber 54, the current still flows through the CO 2 gas - performs voltage measurement, then, under a stream of CO 2 gas at 20mL / min, -1.6V vsAg / AgCl After applying the potential of No. 3 for 3 hours, the gas phase in the cell was measured by gas chromatography (manufactured by Shimadzu Corporation, GC-2014) to identify and quantify the reduction product.

(実施例2)
作用極44として、還元反応用電極Aに代えて還元反応用電極Bを用いたこと以外は、実施例1と同様に測定を行った。
(Example 2)
The measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode B was used instead of the reduction reaction electrode A as the working electrode 44.

(実施例3)
作用極44として、還元反応用電極Aに代えて還元反応用電極Cを用いたこと以外は、実施例1と同様に測定を行った。
(Example 3)
The measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode C was used instead of the reduction reaction electrode A as the working electrode 44.

(比較例1)
作用極44として、還元反応用電極Aに代えて還元反応用電極Dを用いたこと以外は、実施例1と同様に測定を行った。
(Comparative Example 1)
The measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode D was used instead of the reduction reaction electrode A as the working electrode 44.

表1に、実施例1〜3及び比較例1のCO電解により生成したH及びCOのファラデー効率及び生成量を示す。 Table 1 shows the Faraday efficiency and the amount of H 2 and CO produced by the CO 2 electrolysis of Examples 1 to 3 and Comparative Example 1.

表1に示すように、実施例1〜3は、比較例1に比べて、Hの電流効率が低下した。また、実施例1〜3は、比較例1に比べて、CO電流効率が同程度またはそれ以上であり、CO生成量も増加した。したがって、疎水性高分子であるポリスチレンによって修飾された銀箔(金属電極体)を還元反応用電極として用いることで、H生成の割合を低下させ、COの生成割合を増加させることができた。 As shown in Table 1, in Examples 1 to 3, the current efficiency of H 2 was lower than that in Comparative Example 1. Further, in Examples 1 to 3 as compared with Comparative Example 1, the CO current efficiency was about the same or higher, and the amount of CO produced was also increased. Therefore, by using a silver foil (metal electrode body) modified with polystyrene, which is a hydrophobic polymer, as an electrode for a reduction reaction, the rate of H 2 production could be reduced and the rate of CO production could be increased.

<還元反応用電極E>
カーボンペーパー(東レ社、TGP−H−060)上に銀を成膜した電極体に、ポリスチレンを修飾して、還元反応用電極Eとした。カーボンペーパー上への銀の成膜には、RFマグネトロンスパッタリング法を用いた。可動マスク機構付スパッタリング装置(キャノントッキ、SPK−404L)内においてアルゴン(Ar)ガスを流量50sccm、圧力0.5Paで導入して、出力100Wの条件下において、銀を約200nmの膜厚で製膜した。得られた電極体へのポリスチレン修飾は、還元反応用電極Aと同様の方法で行った。
<Electrode E for reduction reaction>
An electrode body in which silver was formed on carbon paper (Toray Industries, Inc., TGP-H-060) was modified with polystyrene to obtain an electrode E for a reduction reaction. The RF magnetron sputtering method was used to form silver on carbon paper. Argon (Ar) gas is introduced at a flow rate of 50 sccm and a pressure of 0.5 Pa in a sputtering device with a movable mask mechanism (Canon Tokki, SPK-404L) to produce silver with a film thickness of about 200 nm under the condition of an output of 100 W. Filmed. Polystyrene modification of the obtained electrode body was carried out in the same manner as in the reduction reaction electrode A.

<還元反応用電極F>
上記と同様に作製した、カーボンペーパー上に銀を成膜した電極体に、還元反応用電極Bと同様の方法で、ポリスチレンを修飾した。これを、還元反応用電極Fとした。
<Electrode F for reduction reaction>
Polystyrene was modified on an electrode body in which silver was formed on carbon paper, which was produced in the same manner as above, in the same manner as in the reduction reaction electrode B. This was used as the electrode F for the reduction reaction.

<還元反応用電極G>
上記と同様に作製した、カーボンペーパー上に銀を成膜した電極体に、還元反応用電極Cと同様の方法で、ポリスチレンを修飾した。これを、還元反応用電極Gとした。
<Electrode G for reduction reaction>
Polystyrene was modified on an electrode body in which silver was formed on carbon paper, which was produced in the same manner as above, in the same manner as in the reduction reaction electrode C. This was used as the electrode G for the reduction reaction.

<還元反応用電極H>
上記と同様にして作製した、カーボンペーパー上に銀を成膜した電極体を還元反応用電極Hとして用いた。
<Electrode H for reduction reaction>
An electrode body in which silver was formed on carbon paper produced in the same manner as described above was used as the electrode H for the reduction reaction.

図7は、還元反応用電極E〜Hの赤外線吸収スペクトルである。図7に示すように、1500cm−1付近のポリスチレン由来のピーク(CHのC−H変角振動と芳香環のC=C伸縮振動に起因するピーク)は、還元反応用電極E〜Gにおいて観察され、還元反応用電極Hにおいては観察されなかった。したがって、還元反応用電極E〜Gにおいては、カーボンペーパー上に銀を成膜した電極体上にポリスチレンが修飾されていることが示唆された。 FIG. 7 is an infrared absorption spectrum of the reduction reaction electrodes E to H. As shown in FIG. 7, polystyrene-derived peaks (peaks caused by CH 2 C—H variable angle vibration and aromatic ring C = C expansion / contraction vibration) near 1500 cm -1 are found in the reduction reaction electrodes E to G. It was observed, but not on the reduction reaction electrode H. Therefore, in the reduction reaction electrodes E to G, it was suggested that polystyrene was modified on the electrode body in which silver was formed on carbon paper.

図8は、還元反応用電極E〜HのSEM画像である。図8に示すように、還元反応用電極Gでは、銀を成膜したカーボンペーパー上にポリスチレンが凝集していることが確認された。還元反応用電極Eは、その作製過程で、電極体(銀を成膜したカーボンペーパー)上でポリスチレンの自己組織化が生起されたものであるが、このような還元反応用電極Eでは、図8に示すように、電極体上に、ポリスチレンのマイクロ粒子が形成されていることが確認された。還元反応用電極Fは、その作製過程で、予め数μm程度のポリスチレンのマイクロ粒子を形成した液体を電極体上に塗布したものであるが、このような還元反応用電極Fでは、図8に示すように、ポリスチレンのマイクロ粒子の一部はマイクロ粒子構造を保っているが、多くのマイクロ粒子は凝集していた。 FIG. 8 is an SEM image of the reduction reaction electrodes E to H. As shown in FIG. 8, in the reduction reaction electrode G, it was confirmed that polystyrene was aggregated on the carbon paper on which silver was formed. In the reduction reaction electrode E, self-assembly of polystyrene occurs on the electrode body (carbon paper on which silver is formed) in the manufacturing process. In such a reduction reaction electrode E, the figure is shown. As shown in No. 8, it was confirmed that polystyrene microparticles were formed on the electrode body. The reduction reaction electrode F is obtained by applying a liquid on which polystyrene microparticles of about several μm are formed in advance on the electrode body in the manufacturing process. In such a reduction reaction electrode F, FIG. As shown, some of the polystyrene microparticles retained their microparticle structure, but many microparticles were agglomerated.

<還元反応用電極E〜Hを用いたCO電解>
(実施例4)
電気化学測定は、図6に示す電気化学セル(二室セル)を用いた。そして、作用極44として、還元反応用電極Aに代えて還元反応用電極Eを用いたこと以外は、実施例1と同様に測定を行った。
<CO 2 electrolysis using reduction reaction electrodes E to H>
(Example 4)
For the electrochemical measurement, the electrochemical cell (two-chamber cell) shown in FIG. 6 was used. Then, the measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode E was used instead of the reduction reaction electrode A as the working electrode 44.

(実施例5)
作用極44として、還元反応用電極Aに代えて還元反応用電極Fを用いたこと以外は、実施例1と同様に測定を行った。
(Example 5)
The measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode F was used instead of the reduction reaction electrode A as the working electrode 44.

(実施例6)
作用極44として、還元反応用電極Aに代えて還元反応用電極Gを用いたこと以外は、実施例1と同様に測定を行った。
(Example 6)
The measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode G was used instead of the reduction reaction electrode A as the working electrode 44.

(比較例2)
作用極44として、還元反応用電極Aに代えて還元反応用電極Hを用いたこと以外は、実施例1と同様に測定を行った。
(Comparative Example 2)
The measurement was carried out in the same manner as in Example 1 except that the reduction reaction electrode H was used instead of the reduction reaction electrode A as the working electrode 44.

表2に、実施例4〜6及び比較例2のCO電解により生成したH及びCOのファラデー効率及び生成量を示す。 Table 2 shows the Faraday efficiency and the amount of H 2 and CO produced by the CO 2 electrolysis of Examples 4 to 6 and Comparative Example 2.

表2に示すように、実施例4〜6は、比較例2に比べて、Hの電流効率が低下し、また、COの電流効率が増加した。実施例4〜6の中では、還元反応用電極Eを用いた実施例4が、Hの電流効率及び生成量が抑えられ、また、COの電流効率及び生成量を増加させることができた。還元反応用電極Eは、前述したように、その作製過程で、電極体(銀を成膜したカーボンペーパー)上でポリスチレンの自己組織化が生起され、電極体上に、ポリスチレンのマイクロ粒子が形成されたものであるが、この場合、電極体がポリスチレンで完全に覆われず、マイクロ粒子の凹凸構造がロータス効果のような撥水性を向上させる構造となっているため、電極上にCOを選択的に吸着させることができ、COの生成割合が増加したものと推察される。 As shown in Table 2, in Examples 4 to 6, the current efficiency of H 2 decreased and the current efficiency of CO increased as compared with Comparative Example 2. Among Examples 4-6, is the fourth embodiment using the reduction electrode E, the current efficiency and the amount of H 2 is suppressed, also was able to increase the current efficiency and the generation amount of CO .. As described above, in the process of producing the reduction reaction electrode E, polystyrene self-assembly occurs on the electrode body (carbon paper on which silver is formed), and polystyrene microparticles are formed on the electrode body. However, in this case, the electrode body is not completely covered with polystyrene, and the uneven structure of the microparticles has a structure that improves water repellency such as the lotus effect, so CO 2 is placed on the electrode. It can be selectively adsorbed, and it is presumed that the CO production rate has increased.

1 還元反応用電極(第1電極)、3 炭素化合物還元装置、10 金属電極体、12修飾層、14 接点部材、16 導線、20 第2電極、22,54 陰極室、24,56 陽極室、26 収容容器、28,50 隔膜、30 陰極室電解質溶液、32 陽極室電解質溶液、42 電気化学測定システム、44 作用極、46 対極、48 参照極、58 電解質溶液。
1 Electrode for reduction reaction (1st electrode), 3 Carbon compound reducing device, 10 Metal electrode body, 12 Modified layer, 14 Contact member, 16 Lead wire, 20 2nd electrode, 22,54 Cathode chamber, 24,56 Anode chamber, 26 Containment vessel, 28,50 diaphragm, 30 cathode chamber electrolyte solution, 32 anode chamber electrolyte solution, 42 electrochemical measurement system, 44 working electrode, 46 counter electrode, 48 reference electrode, 58 electrolyte solution.

Claims (4)

炭素化合物の還元反応に用いられる還元反応用電極であって、
疎水性高分子によって修飾された電極体を備えることを特徴とする還元反応用電極。
An electrode for reduction reaction used in the reduction reaction of carbon compounds.
An electrode for a reduction reaction, which comprises an electrode body modified with a hydrophobic polymer.
前記疎水性高分子によって修飾された電極体の水接触角は89度以上であることを特徴とする請求項1に記載の還元反応用電極。 The electrode for a reduction reaction according to claim 1, wherein the electrode body modified with the hydrophobic polymer has a water contact angle of 89 degrees or more. 前記炭素化合物は二酸化炭素を含むことを特徴とする請求項1又は2に記載の還元反応用電極。 The electrode for a reduction reaction according to claim 1 or 2, wherein the carbon compound contains carbon dioxide. 請求項1〜3のいずれか1項に記載の還元反応用電極と、
前記還元反応用電極と電気的に接続され、酸化反応を生起する酸化反応用電極と、
電解質を含む溶液である電解質溶液と、を備え、
前記還元反応用電極及び前記酸化反応用電極が前記電解質溶液に浸漬されていることを特徴とする炭素化合物還元装置。
The electrode for reduction reaction according to any one of claims 1 to 3 and
An oxidation reaction electrode that is electrically connected to the reduction reaction electrode and causes an oxidation reaction,
With an electrolyte solution, which is a solution containing an electrolyte,
A carbon compound reducing apparatus, wherein the reduction reaction electrode and the oxidation reaction electrode are immersed in the electrolyte solution.
JP2019136701A 2019-07-25 2019-07-25 Electrode for reductive reaction, and device of reducing carbon compound Pending JP2021021095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136701A JP2021021095A (en) 2019-07-25 2019-07-25 Electrode for reductive reaction, and device of reducing carbon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136701A JP2021021095A (en) 2019-07-25 2019-07-25 Electrode for reductive reaction, and device of reducing carbon compound

Publications (1)

Publication Number Publication Date
JP2021021095A true JP2021021095A (en) 2021-02-18

Family

ID=74573576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136701A Pending JP2021021095A (en) 2019-07-25 2019-07-25 Electrode for reductive reaction, and device of reducing carbon compound

Country Status (1)

Country Link
JP (1) JP2021021095A (en)

Similar Documents

Publication Publication Date Title
Zang et al. Co9S8 nanosheet coupled Cu2S nanorod heterostructure as efficient catalyst for overall water splitting
EP3375907B1 (en) Carbon dioxide electrolytic device
Pi et al. Dynamic structure evolution of composition segregated iridium-nickel rhombic dodecahedra toward efficient oxygen evolution electrocatalysis
US10738387B2 (en) Electrochemical cell containing a graphene coated electrode
Tang et al. Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte
US8932977B2 (en) Spinel catalysts for water and hydrocarbon oxidation
JP7029420B2 (en) An electrode catalyst layer for a carbon dioxide electrolytic cell, and an electrolytic cell and an electrolytic device for carbon dioxide electrolysis provided with the electrode catalyst layer.
RU2603772C2 (en) Breathable electrode and method for use in water splitting
CN103370130B (en) Palladium base core nano particle is prepared the method for full platinum individual layer
US10344388B2 (en) CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
JP2022515169A (en) A method of converting carbon dioxide (CO2) into CO by an electrolytic reaction
US10358727B2 (en) Nickel phosphides electrocatalysts for hydrogen evolution and oxidation reactions
CN113493917B (en) Electrode catalyst layer for carbon dioxide electrolytic cell, electrolytic cell provided with same, and electrolytic device for carbon dioxide electrolysis
JP2002100373A (en) Manufacturing method of catalyzed porous carbon electrode for fuel cell
US20230183869A1 (en) Electrochemical CO2 Reduction to Methane
WO2006082801A1 (en) Process for producing gas, process for producing acidic water and alkaline water, and apparatus for producing the same
WO2010146849A1 (en) Photoelectrochemical cell
Li et al. CuO nanosheets grown on cupper foil as the catalyst for H2O2 electroreduction in alkaline medium
Zhang et al. Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide
JP2019518869A (en) Metal / metal chalcogenide electrode with high specific surface area
Sukanya et al. Recent developments in the applications of 2D transition metal dichalcogenides as electrocatalysts in the generation of hydrogen for renewable energy conversion
US20180265994A1 (en) Electrochemical reaction device
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
Khan et al. Robust electrocatalysts decorated three-dimensional laser-induced graphene for selective alkaline OER and HER
Ribeiro et al. MOF-derived PtCo/Co 3 O 4 nanocomposites in carbonaceous matrices as high-performance ORR electrocatalysts synthesized via laser ablation techniques