JP2021020866A - Surface modifier for lipid membrane structure - Google Patents

Surface modifier for lipid membrane structure Download PDF

Info

Publication number
JP2021020866A
JP2021020866A JP2019137439A JP2019137439A JP2021020866A JP 2021020866 A JP2021020866 A JP 2021020866A JP 2019137439 A JP2019137439 A JP 2019137439A JP 2019137439 A JP2019137439 A JP 2019137439A JP 2021020866 A JP2021020866 A JP 2021020866A
Authority
JP
Japan
Prior art keywords
lipid
pmpc
liposomes
membrane structure
liposome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019137439A
Other languages
Japanese (ja)
Other versions
JP7475024B2 (en
Inventor
裕治 寺村
Yuji Teramura
裕治 寺村
祐貴 井上
Suketaka Inoue
祐貴 井上
石原 一彦
Kazuhiko Ishihara
一彦 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2019137439A priority Critical patent/JP7475024B2/en
Priority to PCT/JP2020/028449 priority patent/WO2021020275A1/en
Publication of JP2021020866A publication Critical patent/JP2021020866A/en
Application granted granted Critical
Publication of JP7475024B2 publication Critical patent/JP7475024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a surface modifier for a lipid membrane structure that is not a PEG lipid, and a lipid membrane structure containing the modifier.SOLUTION: The present invention relates to a PMPC lipid obtained by binding a polymer comprising 2-methacryloyloxyethyl phosphorylcholine (MPC), and a lipid membrane structure comprising the PMPC lipid as a constituent lipid.SELECTED DRAWING: None

Description

本発明は、脂質膜構造体を修飾するための材料および当該材料で修飾した脂質膜構造体に関する。 The present invention relates to a material for modifying a lipid membrane structure and a lipid membrane structure modified with the material.

脂質膜構造体の1種であるリポソームは、薬物と複合化させることができ、薬物投与による薬物の毒性を減少させるなど薬物動態を調節する機能を有しており、ヒトへの投与において利用価値の高い担体の1つである。しかしながら、リポソームは、血中投与した際に肝臓や脾臓などの細網内皮系(reticuloendothelial system:RES)にある貪食細胞によって捕捉され、長時間血中に滞留させることが困難であった。 Liposomes, which are a type of lipid membrane structure, can be complexed with drugs and have the function of regulating pharmacokinetics such as reducing the toxicity of drugs due to drug administration, and are useful for human administration. It is one of the high carriers. However, when the liposome was administered in blood, it was captured by phagocytic cells in the reticuloendothelial system (RES) such as the liver and spleen, and it was difficult to retain it in the blood for a long time.

RESによるリポソームの取り込みを回避し、血中において長時間滞留させるため、Poly(ethylene glycol)(PEG)化した脂質(PEG脂質)をリポソームに導入し、リポソーム表面を立体的に安定化する方法が提唱された(非特許文献1)。リポソーム表面に親水性ポリマー(PEGなど)が存在すると、その表面に水の膜が形成され、リポソームに対するオプソニンの吸着を低減し、単核食細胞系(mononuclear phagocyte system:MPS)による捕捉の程度が減少する(非特許文献2)。リポソームが血中に長時間滞留することができれば、腫瘍や炎症部位への薬剤のターゲティングも可能となる。現在、長時間血中滞留型のリポソーム製剤、例えば、Doxil(登録商標)などがいくつか市販されている。このように、PEG化されたリポソームは、生体内投与した場合でも好ましい長時間の血中滞留が期待できる。 In order to avoid the uptake of liposomes by RES and to retain them in the blood for a long time, there is a method of introducing Poly (ethylene glycol) (PEG) -converted lipids (PEG lipids) into the liposomes to three-dimensionally stabilize the liposome surface. It was proposed (Non-Patent Document 1). The presence of hydrophilic polymers (such as PEG) on the surface of the liposomes forms a film of water on the surface, reducing the adsorption of opsonins to the liposomes and reducing the degree of capture by the mononuclear phagocyte system (MPS). Decrease (Non-Patent Document 2). If the liposomes can stay in the blood for a long time, the drug can be targeted to the tumor or the inflamed site. Currently, some long-term blood-retaining liposome preparations, such as Doxil®, are commercially available. As described above, the PEGylated liposome can be expected to have a preferable long-term retention in blood even when administered in vivo.

しかし、近年になり、PEG脂質を抗原とする抗体が産生されることがわかり、その結果、PEG化リポソームの2回以上の反復投与においては、投与後直ちに血中から排出されることが明らかとなってきた(非特許文献3)。この現象は、ABC(accelerated blood clearance)効果と呼ばれ、反復投与のためのPEG化リポソーム製剤の開発にとって大きな問題となっている。 However, in recent years, it has been found that antibodies using PEG lipid as an antigen are produced, and as a result, it is clear that PEGylated liposomes are excreted from the blood immediately after administration in two or more repeated administrations. (Non-Patent Document 3). This phenomenon is called the ABC (accelerated blood clearance) effect and has become a major problem for the development of PEGylated liposome preparations for repeated administration.

PEG化したリポソームの担体としての有用性に鑑み、ABC効果の改善が進められている一方、PEG脂質以外のリポソーム表面修飾材の開発も進められている(非特許文献4)。しかしながら、現状において、PEG脂質以外の修飾材はほとんど使用されておらず、利用性の高いリポソーム表面修飾材の開発が待たれている。 In view of its usefulness as a carrier for PEGylated liposomes, the ABC effect is being improved, while the development of liposome surface modifiers other than PEG lipids is also underway (Non-Patent Document 4). However, at present, almost no modifiers other than PEG lipids are used, and the development of highly usable liposome surface modifiers is awaited.

Klibanovら, FEBS Lett. 268:235-237 1990Klibanov et al., FEBS Lett. 268: 235-237 1990 Seniorら, Biochim. Biophys. Acta 1062:77-82 1991Senior et al., Biochim. Biophys. Acta 1062: 77-82 1991 Ishidaら, J. Controlled Release 105:305-317 2005Ishida et al., J. Controlled Release 105: 305-317 2005 AllenおよびCullis, Adv. Drug. Deliv. Rev. 65:36-48 2013Allen and Cullis, Adv. Drug. Deliv. Rev. 65: 36-48 2013

上記事情に鑑み、本発明は、PEG脂質以外の脂質膜構造体の表面修飾材および当該修飾材を含む脂質膜構造体の提供を課題とする。 In view of the above circumstances, it is an object of the present invention to provide a surface modifier of a lipid membrane structure other than PEG lipid and a lipid membrane structure containing the modifier.

発明者らは、生体適合性が高いとされるポリ(2-メタクリロイルオキシエチルホスホリルコリン)(poly(2-methacryloyloxyethyl phosphorylcholine):PMPC)(Ishiharaら, J Biomater Sci Polym Ed 28:884-899 2017)を結合した脂質をリポソームの脂質二重膜を構成脂質として含むリポソームを作製したところ、数ヶ月後まで高い分散安定度を示し、PMPCで修飾したリポソームは凝集しにくいことが確認された。
本発明は上記知見に基づいて完成された。
The inventors have developed poly (2-methacryloyloxyethyl liposomecholine): PMPC (Ishihara et al., J Biomater Sci Polym Ed 28: 884-899 2017), which is considered to be highly biocompatible. When a liposome containing the bound lipid as a constituent lipid of the lipid bilayer of the liposome was prepared, it showed high dispersion stability until several months later, and it was confirmed that the liposome modified with PMPC was difficult to aggregate.
The present invention has been completed based on the above findings.

すなわち、本発明の以下の(1)〜(6)である
(1)2-メタクリロイルオキシエチルホスホリルコリン(MPC)からなる重合体を結合してなるPMPC脂質。
(2)下記式(1)のポリ(2-メタクリロイルオキシエチルホスホリルコリン)(PMPC)を結合してなる上記(1)に記載のPMPC脂質。
(3)上記(1)または(2)に記載のPMPC脂質を構成脂質として含む脂質膜構造体。
(4)リポソームであることを特徴とする上記(3)に記載の脂質膜構造体。
(5)生体膜であることを特徴とする上記(3)に記載の脂質膜構造体。
(6)上記(1)または(2)に記載のPMPC脂質を含有する脂質膜構造体修飾剤。
That is, a PMPC lipid obtained by binding a polymer composed of (1) 2-methacryloyloxyethyl phosphorylcholine (MPC) according to the following (1) to (6) of the present invention.
(2) The PMPC lipid according to (1) above, which is obtained by binding poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) of the following formula (1).
(3) A lipid membrane structure containing the PMPC lipid according to (1) or (2) above as a constituent lipid.
(4) The lipid membrane structure according to (3) above, which is a liposome.
(5) The lipid membrane structure according to (3) above, which is a biological membrane.
(6) The lipid membrane structure modifier containing the PMPC lipid according to (1) or (2) above.

本発明によると、生体適合性および分散安定度の高い脂質膜構造体を製造することができる。そのため、本発明にかかるPMPC脂質を含んでなるリポソーム製剤の血中滞留時間を大幅に延長することが可能である。 According to the present invention, a lipid membrane structure having high biocompatibility and dispersion stability can be produced. Therefore, it is possible to significantly prolong the blood retention time of the liposome preparation containing the PMPC lipid according to the present invention.

また、本発明にかかるPMPC脂質には所望の官能基を導入することができるため、当該PMPCを脂質構成要素として使用することで、所望の官能基で修飾した膜構造体を製造することができる(すなわち、脂質構造体表面の修飾剤としての用途を有する)。 Further, since a desired functional group can be introduced into the PMPC lipid according to the present invention, a membrane structure modified with a desired functional group can be produced by using the PMPC as a lipid component. (That is, it has a use as a modifier on the surface of a lipid structure).

さらに、本発明にかかるPMPC脂質は、生体内の脂質構造体を修飾することができるため、例えば、細胞膜などの生体膜に所望の官能基を結合させたPMPC脂質を導入することで、生体膜の修飾をすることができる(すなわち、生体膜の修飾剤としての用途を有する)。 Furthermore, since the PMPC lipid according to the present invention can modify the lipid structure in the living body, for example, by introducing a PMPC lipid in which a desired functional group is bound to a biological membrane such as a cell membrane, the biological membrane is introduced. (Ie, it has a use as a modifier for biological membranes).

1,2-dipalmitoyl-sn-glycerol (DPG)-PMPC(10, 20,50, 100)で修飾したリポソームの解析結果。作製した直後のリポソームの粒径(Liposome size)、PDI(polydispersity index)およびゼータ電位(zeta potential)を測定した結果を示す。コントロールとして、無修飾のリポソームおよびPEG修飾のリポソームについても同様に測定を行った。Analysis results of liposomes modified with 1,2-dipalmitoyl-sn-glycerol (DPG) -PMPC (10, 20, 50, 100). The results of measuring the particle size (Liposome size), PDI (polydispersity index) and zeta potential (zeta potential) of the liposome immediately after preparation are shown. As a control, the same measurement was performed for unmodified liposomes and PEG-modified liposomes. DPG-PMPC(10, 20,50, 100)で修飾したリポソームの解析結果。作製してから1ヶ月後のリポソームの粒径(Liposome size)、PDI(polydispersity index)およびゼータ電位(zeta potential)を測定した結果を示す。コントロールとして、無修飾のリポソームおよびPEG修飾のリポソームについても同様に測定を行った。Analysis results of liposomes modified with DPG-PMPC (10, 20, 50, 100). The results of measuring the particle size (Liposome size), PDI (polydispersity index) and zeta potential (zeta potential) of liposomes one month after preparation are shown. As a control, the same measurement was performed for unmodified liposomes and PEG-modified liposomes. DPG-PMPC(10, 20,50, 100)で修飾したリポソームの解析結果。作製してから3ヶ月後のリポソームの粒径(Liposome size)、PDI(polydispersity index)およびゼータ電位(zeta potential)を測定した結果を示す。コントロールとして、無修飾のリポソームおよびPEG修飾のリポソームについても同様に測定を行った。Analysis results of liposomes modified with DPG-PMPC (10, 20, 50, 100). The results of measuring the liposome size (Liposome size), PDI (polydispersity index) and zeta potential (zeta potential) 3 months after the preparation are shown. As a control, the same measurement was performed for unmodified liposomes and PEG-modified liposomes. 1,2-distearoyl-sn-glycerol (DSG)-PMPC(10, 20,50, 100)で修飾したリポソームの解析結果。作製した直後のリポソームの粒径(Liposome size)、PDI(polydispersity index)およびゼータ電位(zeta potential)を測定した結果を示す。コントロールとして、無修飾のリポソームついても同様に測定を行った。Analysis results of liposomes modified with 1,2-distearoyl-sn-glycerol (DSG) -PMPC (10, 20, 50, 100). The results of measuring the particle size (Liposome size), PDI (polydispersity index) and zeta potential (zeta potential) of the liposome immediately after preparation are shown. As a control, the same measurement was performed for unmodified liposomes. DSG-PMPC(10, 20,50, 100)で修飾したリポソームの解析結果。作製してから1ヶ月後のリポソームの粒径(Liposome size)、PDI(polydispersity index)およびゼータ電位(zeta potential)を測定した結果を示す。コントロールとして、無修飾のリポソームについても同様に測定を行った。Analysis results of liposomes modified with DSG-PMPC (10, 20, 50, 100). The results of measuring the particle size (Liposome size), PDI (polydispersity index) and zeta potential (zeta potential) of liposomes one month after preparation are shown. As a control, the same measurement was performed for unmodified liposomes. DSG-PMPC(10, 20,50, 100)で修飾したリポソームの解析結果。作製してから3ヶ月後のリポソームの粒径(Liposome size)、PDI(polydispersity index)およびゼータ電位(zeta potential)を測定した結果を示す。コントロールとして、無修飾のリポソームについても同様に測定を行った。Analysis results of liposomes modified with DSG-PMPC (10, 20, 50, 100). The results of measuring the liposome size (Liposome size), PDI (polydispersity index) and zeta potential (zeta potential) 3 months after the preparation are shown. As a control, the same measurement was performed for unmodified liposomes. 本発明のPMPC脂質を含む蛍光標識リポソームの作製と基板への吸着実験。PMPC脂質(DSG-PMPC:PMPC10、PMPC20、PMPC50、PMPC100)を含むリポソーム、無修飾リポソームおよびPEG修飾リポソームの基板(アミノ基を有する自己組織化単分子膜が表面に形成された基板)への吸着試験を行った結果を示す。Preparation of fluorescently labeled liposomes containing the PMPC lipid of the present invention and adsorption experiments on substrates. Adsorption of liposomes containing PMPC lipids (DSG-PMPC: PMPC10, PMPC20, PMPC50, PMPC100), unmodified liposomes, and PEG-modified liposomes to substrates (planets having a self-assembled monolayer having an amino group formed on the surface). The result of the test is shown. 本発明のフルオレセインで蛍光標識されたPMPC脂質で修飾した細胞の共焦点レーザー顕微鏡による観察結果。Observation results of cells modified with PMPC lipid fluorescently labeled with fluorescein of the present invention by a confocal laser scanning microscope.

本発明の第1の実施形態は、2-メタクリロイルオキシエチルホスホリルコリン(2-methacryloyloxyethyl phosphorylcholine:MPC)からなる重合体を結合してなるPMPC(ポリ(2-メタクリロイルオキシエチルホスホリルコリン)(poly(2-methacryloyloxyethyl phosphorylcholine):PMPC))脂質(以下「本発明のPMPC脂質」とも記載する)である。
より具体的には、本発明のPMPC脂質は、下記の式(1)で表されるPMPCが結合した構造(式(2)参照)を持つ脂質である。
式(1)および(2)中、Xは官能基、Yは脂質部分である。nは10以上300以下の整数、好ましくは10以上200以下の整数、より好ましくは、10以上150以下の整数である。
The first embodiment of the present invention is PMPC (poly (2-methacryloyloxyethyl)) (poly (2-methacryloyloxyethyl)) formed by binding a polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC). phosphorylcholine): PMPC)) lipid (hereinafter, also referred to as “PMPC lipid of the present invention”).
More specifically, the PMPC lipid of the present invention is a lipid having a structure (see formula (2)) to which PMPC represented by the following formula (1) is bound.
In formulas (1) and (2), X is a functional group and Y is a lipid moiety. n is an integer of 10 or more and 300 or less, preferably an integer of 10 or more and 200 or less, and more preferably an integer of 10 or more and 150 or less.

本発明のPMPC脂質の脂質部分は、単純脂質、複合脂質および誘導脂質など、いかなる脂質であってもよい。より具体的には、脂質の種類としては、例えば、アシルグリセロール、リン脂質、糖脂質、ステロール、長鎖脂肪酸、長鎖脂肪族アルコールまたはグリセリン脂肪酸エステルなどを挙げることができる。 The lipid portion of the PMPC lipid of the present invention may be any lipid, including simple lipids, complex lipids and inducible lipids. More specifically, examples of the type of lipid include acylglycerol, phospholipid, glycolipid, sterol, long chain fatty acid, long chain fatty alcohol, glycerin fatty acid ester and the like.

アシルグリセロールとしては、例えば、ジオレオイルグリセロール、ジラウロイルグリセロール、ジミリストイルグリセロール、ジパルミトイルグリセロールおよびジステアロイルグリセロールなどを挙げることができる。
リン脂質としては、例えば、ジオレオイルホスファチジルコリン、ジラウロイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリンおよびジステアロイルホスファチジルコリンなどのホスファチジルコリン、ジオレオイルホスファチジルグリセロール、ジラウロイルホスファチジルグリセロール、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファチジルグリセロールおよびジステアロイルホスファチジルグリセロールなどのホスファチジルグリセロール、ジオレオイルホスファチジルエタノールアミン、ジラウロイルホスファチジルエタノールアミン、ジミリストイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン、ジステアロイルホスファチジルエタノールアミンなどのホスファチジルグリセロール、ジオレオイルグリセロフォスフォエタノールアミン、ホスファチジルイノシトールなどを挙げることができる。
また、糖脂質としては、スフィンゴミエリン、ジグリコシルグリセリドおよびジガラクトシルジグリセリドなどのグリセロ脂質、ガラクトシルセレブロシドおよびガングリオシドなどのスフィンゴ糖脂質などを挙げることができる。
Examples of the acylglycerol include dioleoylglycerol, dilauroylglycerol, dimyristoylationglycerol, dipalmitoylglycerol and distearoylglycerol.
Examples of phospholipids include phosphatidylcholine such as dioleoil phosphatidylcholine, dilauroylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine, dioleoil phosphatidylglycerol, dilauroylphosphatidylglycerol, dipalmitoylphosphatidylglycerol, and dipalmitoylphosphatidylglycerol. Phosphatidylglycerols such as glycerol and distearoylphosphatidylglycerol, phosphatidylglycerols such as dioleoil phosphatidylethanolamine, dilauroylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, distearoylphosphatidylethanolamine, dioleoil glycero Phosphoethanolamine, phosphatidylinositol and the like can be mentioned.
Examples of glycolipids include glycolipids such as sphingomyelin, diglycosyl glyceride and digalactosyl diglyceride, and glycosphingolipids such as galactosyl cerebroside and ganglioside.

ステロールとしては、例えば、コレステロール、ジヒドロコレステロール、ラノステロール、スチグマステロールおよびシトステロールなどを挙げることができる。
長鎖脂肪酸または長鎖脂肪族アルコールとしては、炭素数10〜20の脂肪酸またはそのアルコールを挙げることができ、具体的には、例えば、パルミチン酸、ステアリン酸、ラウリン酸、ミリスチン酸、ペンダデシル酸、パルミトレイン酸などの脂肪酸、オレイルアルコール、ステアリルアルコール、ラウリルアルコール、ミリスチルアルコールなどの脂肪族アルコールを挙げることができる。
Examples of sterols include cholesterol, dihydrocholesterol, lanosterol, stigmasterol and sitosterol.
Examples of the long-chain fatty acid or long-chain fatty alcohol include fatty acids having 10 to 20 carbon atoms or their alcohols, and specific examples thereof include palmitic acid, stearic acid, lauric acid, myristic acid, and pendadesilic acid. Examples include fatty acids such as palmitoleic acid, fatty alcohols such as oleyl alcohol, stearyl alcohol, lauric alcohol, and myristic alcohol.

本発明のPMPC脂質は、脂質部分に対し、2-メタクリロイルオキシエチルホスホリルコリン(2-methacryloyloxyethyl phosphorylcholine:MPC)をモノマーとして重合させることにより合成することができる。ここで、MPCに対して少量の任意のモノマー成分が含まれていても良い。重合反応は、付加重合反応から選択できる任意の方法により実施することができる。例えば、重合方法として、リビングラジカル重合法の1つである原子移動ラジカル重合(Atom Transfer Radical Polymerization:ATRP)法などにより実施することができる。ここで使用する開始剤としては、活性化剤が定常的に再生する開始剤(Initiators for Continuous Activator Regeneration:ICAR)、電子移動により生成する活性化剤(Activators Generated by Electron Transfer:AGET)、電子移動により再生する活性化剤(Activators ReGenerated by Electron Transfer:ARGET)が該当する。また、グリセロール骨格に限らず、飽和型あるいは不飽和型のアルキル鎖を有する化合物が利用できる。
ATRP法で重合反応を実施する場合、開始基として、例えば、α-ブロモ-イソブチル基、クロロメチル基、N-クロロスルホンアミド基などが、金属触媒として、例えば、臭化銅、塩化銅、ヨウ化銅などの金属銅が、配位子としては、窒素を含む配位子が好ましく、特に、ATRP平衡定数が大きいもの、例えば、TPMA(Tris(2-pyridylmethyl)amine)、Me6TREN(Tris[2-(dimethylamino)ethyl]amine)、Me4cyclam(1,4,8,11-tetramethyl- 1,4,8,11-tetraazacyclotetradecane)などが使用できる。
以下、脂質部分がアシルグリセロールである下記式(3)のPMPC脂質について、説明する。
The PMPC lipid of the present invention can be synthesized by polymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC) as a monomer on the lipid moiety. Here, a small amount of any monomer component may be contained with respect to MPC. The polymerization reaction can be carried out by any method that can be selected from the addition polymerization reactions. For example, as a polymerization method, it can be carried out by an atom transfer radical polymerization (ATRP) method, which is one of the living radical polymerization methods. The initiators used here include initiators for continuous activator regeneration (ICAR), activators generated by electron transfer (AGET), and electron transfer. Activators ReGenerated by Electron Transfer (ARGET) is applicable. Further, not limited to the glycerol skeleton, a compound having a saturated or unsaturated alkyl chain can be used.
When the polymerization reaction is carried out by the ATRP method, for example, α-bromo-isobutyl group, chloromethyl group, N-chlorosulfoneamide group and the like are used as starting groups, and as metal catalysts, for example, copper bromide, copper chloride and iodine. Metallic copper such as copper oxide is preferably a ligand containing nitrogen as the ligand, and in particular, one having a large ATRP equilibrium constant, for example, TPMA (Tris (2-pyridylmethyl) amine), Me 6 TREN (Tris). [2- (dimethylamino) ethyl] amine), Me 4 cyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), etc. can be used.
Hereinafter, the PMPC lipid of the following formula (3) in which the lipid portion is acylglycerol will be described.

ここでは、原子移動ラジカル重合法による合成について説明する。重合の開始剤を作製するために、ジアシルグリセロースにα-ブロモ-イソブチルブロマイドを添加し、ジシクロメタン/TEA中で反応後、反応物をヘキサン中に添加して沈殿に回収し、水で洗浄後、精製し、真空乾燥して、開始剤を得ることができる(スキーム1)。 Here, synthesis by the atom transfer radical polymerization method will be described. In order to prepare a polymerization initiator, α-bromo-isobutyl bromide is added to diacylglycerose, the reaction is carried out in dicyclomethane / TEA, the reaction product is added to hexane, the precipitate is recovered, and the mixture is washed with water. , Purified and vacuum dried to obtain an initiator (Scheme 1).

開始剤および2-メタクリロイルオキシエチルホスホリルコリンを、CuBr2、L(+)アスコルビン酸およびトリス(2-ピリジルメチル)アミンを含むメタノール/ジオキサン中に添加し、アルゴン雰囲気下にて、40℃、24時間程度、重合反応を行う(スキーム2)。反応温度は、15℃から45℃の範囲で利用可能である。また、反応時間は、24時間以内でも可能である。CuBr2以外に、ヨウ化銅など金属銅が使用可能である。また、トリス(2-ピリジルメチル)アミン以外にも、窒素を含む配位子が使用でき、トリス[2-(ジメチルアミノ)エチル]アミンや1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecaneなどが利用できる。 The initiator and 2-methacryloyloxyethyl phosphorylcholine are added to methanol / dioxane containing CuBr2, L (+) ascorbic acid and tris (2-pyridylmethyl) amine, and the temperature is 40 ° C. for about 24 hours under an argon atmosphere. , Carry out a polymerization reaction (Scheme 2). Reaction temperatures are available in the range 15 ° C to 45 ° C. The reaction time can be within 24 hours. In addition to CuBr2, metallic copper such as copper iodide can be used. In addition to tris (2-pyridylmethyl) amines, nitrogen-containing ligands can also be used, such as tris [2- (dimethylamino) ethyl] amines and 1,4,8,11-tetramethyl-1,4, 8,11-tetraazacyclotetradecane etc. can be used.

重合反応後、反応物をエーテルで沈殿させ、得られた沈殿を純水に溶解し、透析後、凍結乾燥させ、目的のPMPC脂質を得ることができる(スキーム3)。 After the polymerization reaction, the reactant is precipitated with ether, the obtained precipitate is dissolved in pure water, dialyzed and then freeze-dried to obtain the desired PMPC lipid (Scheme 3).

本発明のPMPC脂質は、上記式(3)の「X」に所望の官能基を導入することができる。例えば、「X」の位置に臭素、塩素、アジド基、アミノ基、カルボキシル基、水酸基、チオール基、反応性の置換基を導入しておくことで、例えば、蛍光標識化合物(例えば、蛍光タンパク質など)、ペプチド、タンパク質、核酸、多糖類などを容易に導入することができる(Ishiharaら, React. Funct. Polymers 119 125-133 2017)。 The PMPC lipid of the present invention can introduce a desired functional group into "X" of the above formula (3). For example, by introducing a bromine, chlorine, azide group, amino group, carboxyl group, hydroxyl group, thiol group, or reactive substituent at the position of "X", for example, a fluorescent labeling compound (for example, a fluorescent protein, etc.) ), Peptides, proteins, nucleic acids, polysaccharides, etc. can be easily introduced (Ishihara et al., React. Funct. Polymers 119 125-133 2017).

本発明の第2の実施形態は、本発明のPMPC脂質を構成脂質として含む脂質膜構造体(以下「本発明の脂質膜構造体」とも記載する)である。
ここで「脂質膜」とは、脂質を主たる構成成分とする膜のことであり、脂質分子が疎水性部分同士を会合させて二層に並んで形成する脂質二重層、あるいは脂質二重層を基本構造として数回積層されている多層からなるものでもよく、疎水性部分を内部または外側に向けて形成する脂質一重層からなるものであってもよい。
また、本発明の脂質膜構造体は、いかなるものであってもよく、特に限定はしないが、例えば、人工的に調製した、例えば、リポソームなどであってもよく、天然に存在する脂質膜構造体、例えば、生体膜(例えば、細胞膜(原形質膜)や、リソソーム膜、小胞体膜、ミトコンドリア内膜・外膜、ゴルジ体膜などの細胞内小器官)などであってもよい。
上述の通り、本発明のPMPC脂質は、脂質膜構造体に取り込まれることで、脂質膜構造体表面を修飾することができる。従って、本発明のPMPC脂質を含有する剤は、脂質膜構造体の修飾剤としての用途を有している。
A second embodiment of the present invention is a lipid membrane structure containing the PMPC lipid of the present invention as a constituent lipid (hereinafter, also referred to as “lipid membrane structure of the present invention”).
Here, the "lipid membrane" is a membrane containing lipid as a main component, and is basically a lipid bilayer or a lipid bilayer formed by associating hydrophobic portions with each other and forming two layers. The structure may consist of multiple layers that are laminated several times, or may consist of a single lipid layer that forms a hydrophobic portion inward or outward.
Further, the lipid membrane structure of the present invention may be any, and is not particularly limited, and may be, for example, an artificially prepared lipid membrane structure such as a liposome, which is a naturally occurring lipid membrane structure. It may be a body, for example, a biological membrane (for example, an intracellular small organ such as a cell membrane (primary plasma membrane), a lysosomal membrane, a follicular membrane, a mitochondrial inner / outer membrane, or a Gordi body membrane).
As described above, the PMPC lipid of the present invention can modify the surface of the lipid membrane structure by being incorporated into the lipid membrane structure. Therefore, the agent containing the PMPC lipid of the present invention has a use as a modifier of the lipid membrane structure.

本発明の脂質構造体は、所望の脂質と本発明のPMPC脂質を使用して、周知の方法によって製造することができる。そのような方法として、特に限定はしないが、例えば、水和法、超音波処理法、エタノール注入法、エーテル注入法、逆相蒸発法、界面活性剤法、凍結・融解法などを挙げることができる。 The lipid structure of the present invention can be produced by a well-known method using the desired lipid and the PMPC lipid of the present invention. Such a method is not particularly limited, and examples thereof include a hydration method, an ultrasonic treatment method, an ethanol injection method, an ether injection method, a reverse phase evaporation method, a surfactant method, and a freezing / thawing method. it can.

本明細書が英語に翻訳されて、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数も含むものとする。
以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
If this specification is translated into English and contains the singular words "a", "an", and "the", not only the singular, unless the context clearly indicates otherwise. It shall include more than one.
Hereinafter, the present invention will be described with reference to examples, but the present examples are merely examples of embodiments of the present invention, and do not limit the scope of the present invention.

1.長鎖アルキル基を有する原子移動ラジカル重合開始剤の合成
前出のスキーム1に従い、1,2-dimyristoyl-sn-glycerol (DMG)、1,2-dipalmitoyl-sn-glycerol (DPG)および1,2-distearoyl-sn-glycerol (DSG)と2-bromoisobutyryl bromide (BIBB)を反応させることで、鎖長の異なる長鎖アルキル基を有する3種類の原子移動ラジカル重合(ATRP)開始剤(それぞれDMG-Br、DPG-BrおよびDSG-Br)を合成した。
ナスフラスコにスターラーチップを入れ、500 mgの各長鎖アルキルグリセロールを量り取り(DMG:0.98 mmol、DPG:0.88 mmol、DSG:0.80 mmol)、4.0 mLのジクロロメタンに溶解させ、1.1等量のtriethylamine(TEA、101.19)(DMGの合成時:110 mg、DPG:98.0 mg、DSG:89.0 mg)を加えた。1.0等量のBIBB(DMGの合成時:230 mg、DPG:200 mg、DSG:180 mg)を1.0 mLのジクロロメタンに溶解させた溶液を、室温でナスフラスコ内に滴下し、一晩攪拌した。ナスフラスコ内に過剰量のヘキサンを加え、氷上で1時間静置することで、生成した塩および未反応の長鎖アルキルグリセロールを析出させ、吸引濾過により、これらの析出物を除去した。得られた有機層を10 mmol/Lの塩酸水(200 mL)および飽和NaCl水(200 mLを2回)で洗浄した。得られた有機層に無水硫酸マグネシウムを加え、一時間静置することで水分を完全に除去した。吸引濾過により沈殿物を除去した後、エバポレーターを用いて濃縮し、減圧下に静置することにより、残留溶媒を完全に除去した。NMR測定による構造解析により、得られた物質がDMG-Br、DPG-BrおよびDSG-Br であることを同定した。DMG-Brは白色ろう状、DPG-BrおよびDSG-Brは白色固体であった。収率はどれもおよそ60%程度であり、純度はすべて100%であった。
得られたDMG-Br、DPG-BrおよびDSG-Brは、NMRにより構造式の確認を行った。下記表1にDMG-Br、DPG-BrおよびDSG-BrのNMRデータを示す。
1. 1. Synthesis of Atom Transfer Radical Polymerization Initiator with Long Chain Alkyl Group 1,2-dimyristoyl-sn-glycerol (DMG), 1,2-dipalmitoyl-sn-glycerol (DPG) and 1,2 according to Scheme 1 above. By reacting -distearoyl-sn-glycerol (DSG) with 2-bromoisobutyryl bromide (BIBB), three types of atom transfer radical polymerization (ATRP) initiators having long-chain alkyl groups with different chain lengths (DMG-Br respectively) , DPG-Br and DSG-Br) were synthesized.
Place the stirrer chip in an eggplant flask, weigh 500 mg of each long chain alkyl glycerol (DMG: 0.98 mmol, DPG: 0.88 mmol, DSG: 0.80 mmol), dissolve in 4.0 mL of dichloromethane, and dissolve 1.1 equivalents of triethylamine ( TEA, 101.19) (DMG synthesis: 110 mg, DPG: 98.0 mg, DSG: 89.0 mg) was added. A solution of 1.0 equal volume of BIBB (DMG synthesis: 230 mg, DPG: 200 mg, DSG: 180 mg) dissolved in 1.0 mL of dichloromethane was added dropwise to an eggplant flask at room temperature, and the mixture was stirred overnight. An excess amount of hexane was added to the eggplant flask, and the mixture was allowed to stand on ice for 1 hour to precipitate the produced salt and unreacted long-chain alkyl glycerol, and these precipitates were removed by suction filtration. The obtained organic layer was washed with 10 mmol / L hydrochloric acid water (200 mL) and saturated NaCl water (200 mL twice). Anhydrous magnesium sulfate was added to the obtained organic layer, and the mixture was allowed to stand for 1 hour to completely remove water. After removing the precipitate by suction filtration, it was concentrated using an evaporator and allowed to stand under reduced pressure to completely remove the residual solvent. Structural analysis by NMR measurement identified the resulting substances as DMG-Br, DPG-Br and DSG-Br. DMG-Br was white waxy and DPG-Br and DSG-Br were white solids. The yields were all about 60% and the purity was 100%.
The structural formulas of the obtained DMG-Br, DPG-Br and DSG-Br were confirmed by NMR. Table 1 below shows the NMR data of DMG-Br, DPG-Br and DSG-Br.

2.末端に長鎖アルキル基を有するリン脂質ポリマーの合成
前出のスキーム2および3に従い、合成したATRP開始剤を用いたactivators regenerated by electron transfer (ARGET)型のATRPにより、末端に長鎖アルキル基を有するリン脂質ポリマー(poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) (PMPC)脂質)を合成した。
モノマーとしてMPCを、開始剤としてDMG-Br、DPG-BrまたはDSG-Brを、金属触媒として臭化銅(II) (CuBr2)を、配位子としてtris(2-pyridylmethyl)amine (TPMA)を、還元剤としてascorbic acid (Asc)を用いた。MPCを重合管に300 mg量り取り、1.7 mLのメタノールと1,4-ジオキサンの混合溶媒(3/2 by volume)に溶解させ、モノマー濃度を0.5 mol/Lとした。また、重合開始剤、CuBr2、TPMAおよびAcsを、重合開始剤 / CuBr2 / TPMA / ascorbic acid = 1 / 0.01 / 0.1 / 1.0のモル比となるように添加した。ここで、重合度を制御するため、MPCと重合開始剤のモル比を10、20、50および100とした。具体的には、重合開始剤の質量は、DMG-PMPC10-Br:66.2 mg、DMG-PMPC20-Br:33.1 mg、DMG-PMPC50-Br:13.2 mg、DMG-PMPC100-Br:6.6 mg、DPG-PMPC10-Br:71.8 mg、DPG-PMPC20-Br:35.9 mg、DPG-PMPC50-Br:14.4 mg、DPG-PMPC100-Br:7.2 mg、DPG-PMPC10-Br:77.4 mg、DPG-PMPC20-Br:38.7 mg、DPG-PMPC50-Br:15.5 mg、DPG-PMPC100-Br:7.7 mgであり、CuBr2、TPMAおよびAcsの質量は開始剤の種類に関係なく、モノマーと重合開始剤の比で決まり、モノマー/重合開始剤が10の時、CuBr2:0.22 mg、TPMA:2.9 mg、Acs:17.6 mg、20の時、CuBr2:0.11 mg、TPMA:1.5 mg、Acs:8.8 mg、50の時、CuBr2:0.045 mg、TPMA:0.58 mg、Acs:3.5 mg、100の時、CuBr2:0.022 mg、TPMA:0.29 mg、Acs:1.8 mgである。アルゴンバブリングにより溶存酸素を除去し、栓をした後、40℃で24時間攪拌し、重合反応を進行させた。
得られた各PMPC脂質はNMRにより構造式の確認を行った。
表2、表3および表4に、各々、DMG-PMPC(10、20、50、100)、DPG-PMPC(10、20、50、100)およびDSG-PMPC(10、20、50、100)を示す。
2. 2. Synthesis of phospholipid polymer having long-chain alkyl group at the end According to the above schemes 2 and 3, activators regenerated by electron transfer (ARGET) type ATRP using the synthesized ATRP initiator is used to add a long-chain alkyl group at the end. A phospholipid polymer (poly (2-methacryloyloxyethyl phosphorylcholine (MPC)) (PMPC) lipid) was synthesized.
MPC as a monomer, DMG-Br, DPG-Br or DSG-Br as an initiator, copper (II) bromide (CuBr 2 ) as a metal catalyst, and tris (2-pyridylmethyl) amine (TPMA) as a ligand. Ascorbic acid (Asc) was used as a reducing agent. 300 mg of MPC was weighed in a polymerization tube and dissolved in 1.7 mL of a mixed solvent of methanol and 1,4-dioxane (3/2 by volume) to adjust the monomer concentration to 0.5 mol / L. In addition, the polymerization initiators CuBr 2 , TPMA and Acs were added so as to have a molar ratio of polymerization initiator / CuBr 2 / TPMA / ascorbic acid = 1 / 0.01 / 0.1 / 1.0. Here, in order to control the degree of polymerization, the molar ratio of MPC to the polymerization initiator was set to 10, 20, 50 and 100. Specifically, the mass of the polymerization initiator is DMG-PMPC10-Br: 66.2 mg, DMG-PMPC20-Br: 33.1 mg, DMG-PMPC50-Br: 13.2 mg, DMG-PMPC100-Br: 6.6 mg, DPG- PMPC10-Br: 71.8 mg, DPG-PMPC20-Br: 35.9 mg, DPG-PMPC50-Br: 14.4 mg, DPG-PMPC100-Br: 7.2 mg, DPG-PMPC10-Br: 77.4 mg, DPG-PMPC20-Br: 38.7 mg, DPG-PMPC50-Br: 15.5 mg, DPG-PMPC100-Br: 7.7 mg, and the mass of CuBr 2 , TPMA and Acs is determined by the ratio of the monomer to the polymerization initiator regardless of the type of initiator. / When the polymerization initiator is 10, CuBr 2 : 0.22 mg, TPMA: 2.9 mg, Acs: 17.6 mg, when 20, CuBr 2 : 0.11 mg, TPMA: 1.5 mg, Acs: 8.8 mg, 50, CuBr 2 : 0.045 mg, TPMA: 0.58 mg, Acs: 3.5 mg, at 100, CuBr 2 : 0.022 mg, TPMA: 0.29 mg, Acs: 1.8 mg. Dissolved oxygen was removed by argon bubbling, the mixture was plugged, and the mixture was stirred at 40 ° C. for 24 hours to allow the polymerization reaction to proceed.
The structural formula of each of the obtained PMPC lipids was confirmed by NMR.
Table 2, Table 3 and Table 4 show DMG-PMPC (10, 20, 50, 100), DPG-PMPC (10, 20, 50, 100) and DSG-PMPC (10, 20, 50, 100), respectively. Is shown.

3.PMPC脂質末端への蛍光分子の導入
下記スキーム4および5に従い、上記手法で合成したPMPC脂質の末端に、クリック反応によってフルオレセイン分子を導入した。
3. 3. Introduction of Fluorescent Molecule to PMPC Lipid Terminal According to the following schemes 4 and 5, a fluorescein molecule was introduced into the terminal of PMPC lipid synthesized by the above method by a click reaction.

プロパルギル基を有するフルオレセイン(Prop-F)は、以下に示す手法で合成した。50 mLのナスフラスコに118 mgのFITCを秤量し、22 mLのTHFに溶解させた。そこに、プロパルギルアミンを73 L加え、室温で24時間攪拌した。エバポレーターを用いて、THFおよび未反応のプロパルギルアミンを取り除き、減圧下にてこれらを完全に除去した。NMR測定による構造解析により、得られた橙色固体がprop-Fであることを同定した。収率は90%程度、純度は100%であった。
7.8 mgのアジ化ナトリウム(NaN3)を0.4 mLのメタノールに溶解させることで、300 mmol/Lの濃度の溶液を作製し、これを上記2.で示した重合直後の溶液に、終濃度が50 mmol/Lになるようにアルゴン雰囲気下で添加し、再び蓋をして、40℃で24時間攪拌した。析出した沈澱物を遠心分離により除去した後、上清をジメチルホルムアミドで再沈澱した。沈澱物をジエチルエーテルで洗浄し、減圧乾燥することで淡黄色固体を得た。FT-IR測定による構造解析により、得られた淡黄色固体が末端にアジド基を有するPMPC脂質(N3-PMPC-脂質)であることを同定した。
Fluorescein (Prop-F) having a propargyl group was synthesized by the method shown below. 118 mg of FITC was weighed in a 50 mL eggplant flask and dissolved in 22 mL of THF. 73 L of propargylamine was added thereto, and the mixture was stirred at room temperature for 24 hours. THF and unreacted propargylamine were removed using an evaporator and these were completely removed under reduced pressure. Structural analysis by NMR measurement identified the obtained orange solid as prop-F. The yield was about 90% and the purity was 100%.
A solution having a concentration of 300 mmol / L was prepared by dissolving 7.8 mg of sodium azide (NaN 3 ) in 0.4 mL of methanol. The solution immediately after polymerization shown in (1) was added under an argon atmosphere so that the final concentration was 50 mmol / L, the lid was closed again, and the mixture was stirred at 40 ° C. for 24 hours. After removing the precipitated precipitate by centrifugation, the supernatant was reprecipitated with dimethylformamide. The precipitate was washed with diethyl ether and dried under reduced pressure to give a pale yellow solid. By structural analysis by FT-IR measurement, it was identified that the obtained pale yellow solid was a PMPC lipid (N 3- PMPC-lipid) having an azide group at the end.

N3-PMPC-脂質を10 mol秤量し、CuSO4・5H2Oを2.0 mmol/Lの濃度で含む0.5 mLのメタノールに溶解させた。ここに、prop-Fを25 mmol/Lの濃度で含む0.4 mLのDMSO溶液およびアスコルビン酸ナトリウムを100 mmol/Lの濃度で含む0.1 mLの純水溶液をこの順で添加し、室温で一晩攪拌した。反応溶液を、20 mLのジエチルエーテルに滴下し、ポリマーを沈澱させた。上清をデカンテーションし、DMSOで十分洗浄した後、純水に溶解させて所定日数透析した。得られた溶液を凍結乾燥することで、橙色固体を得た。FT-IR測定による構造解析により、得られた固体が末端にフルオレセインを有するPMPC脂質であることを同定した。 The N 3 -PMPC- lipids were weighed 10 mol, it was dissolved in 0.5 mL of methanol containing CuSO 4 · 5H 2 O at a concentration of 2.0 mmol / L. To this, 0.4 mL of DMSO solution containing prop-F at a concentration of 25 mmol / L and 0.1 mL of a pure aqueous solution containing sodium ascorbate at a concentration of 100 mmol / L were added in this order, and the mixture was stirred overnight at room temperature. did. The reaction solution was added dropwise to 20 mL of diethyl ether to precipitate the polymer. The supernatant was decanted, thoroughly washed with DMSO, dissolved in pure water, and dialyzed for a predetermined number of days. The obtained solution was freeze-dried to obtain an orange solid. Structural analysis by FT-IR measurement identified the resulting solid as a PMPC lipid with fluorescein at the end.

4.ポリマーの構造解析
上記2.で得られた重合溶液100 Lを重メタノール500 Lで希釈しNMR測定用のサンプルを作製した。積算回数16回でNMR測定を行い、重合溶液内に含まれるモノマーとポリマーの比から、モノマー転化率を算出した。上記2.で得られたポリマーの分子量を、10 mmol/Lの濃度でsodium trifluoroacetic acidを含むHFIPを溶離液としたGPC測定により見積もった。標準試料としてpoly(methyl methacrylate) (Shodex, Tokyo, Japan)を、カラムとしてHFIP-804 (Shodex, Tokyo, Japan)を用いた。流速は0.5 mL/min、温度は40℃とした。
4. Structural analysis of polymer 2. 100 L of the polymerization solution obtained in 1) was diluted with 500 L of deuterated methanol to prepare a sample for NMR measurement. The NMR measurement was performed 16 times, and the monomer conversion rate was calculated from the ratio of the monomer and the polymer contained in the polymerization solution. Above 2. The molecular weight of the polymer obtained in 1 was estimated by GPC measurement using HFIP containing sodium trifluoroacetic acid at a concentration of 10 mmol / L as an eluent. Poly (methylcrylic) (Shodex, Tokyo, Japan) was used as a standard sample, and HFIP-804 (Shodex, Tokyo, Japan) was used as a column. The flow velocity was 0.5 mL / min and the temperature was 40 ° C.

5.DPH(1,6-diphenyl-1,3,5-hexatriene)法により臨界ミセル濃度の測定
得られたPMPC脂質(DMG-PMPC、DPG-PMPC、DSG-PMPC)をPBSに溶解し、10、1、0.1、0.01、0.001、0.0001、0.00001mg/mLの溶液を調製した。DPHをTHFに溶解し30μMの溶液を調製した。このDPH溶液を、PMPC脂質(DMG-PMPC、DPG-PMPC、DSG-PMPC)PBS溶液(1mL)に対して、1μLずつ添加して混合した後、遮光下で、37℃で2時間インキュベートした。その後、それぞれのPMPC脂質溶液の蛍光強度を測定した(FP spectrophotometer (FP8500, Jasco, Tokyo, Japan))(励起波長:357nm、蛍光波長:430nm)。
5. Measurement of Critical Micelle Concentration by DPH (1,6-diphenyl-1,3,5-hexatriene) Method The obtained PMPC lipids (DMG-PMPC, DPG-PMPC, DSG-PMPC) were dissolved in PBS and 10,1 , 0.1, 0.01, 0.001, 0.0001, 0.00001 mg / mL solutions were prepared. DPH was dissolved in THF to prepare a 30 μM solution. This DPH solution was added to and mixed with 1 μL each of PMPC lipid (DMG-PMPC, DPG-PMPC, DSG-PMPC) PBS solution (1 mL), and then incubated at 37 ° C. for 2 hours under shading. Then, the fluorescence intensity of each PMPC lipid solution was measured (FP spectrophotometer (FP8500, Jasco, Tokyo, Japan)) (excitation wavelength: 357 nm, fluorescence wavelength: 430 nm).

6.ミセルの粒径測定
PMPC脂質(DMG-PMPC、DPG-PMPC、DSG-PMPC)を1mg/mLとなるようにPBSに溶解し、Zetasizer nano ZS (Malvern Instruments Co., Ltd., Worcestershire, U.K.)を用いて、サイズを測定した。結果を表5に示す。
6. Micelle particle size measurement
Dissolve PMPC lipids (DMG-PMPC, DPG-PMPC, DSG-PMPC) in PBS to 1 mg / mL and size using Zetasizer nano ZS (Malvern Instruments Co., Ltd., Worcestershire, UK). It was measured. The results are shown in Table 5.

7.リポソーム作製
DPPC(dipalmitoyl phosphatidylcholine)とコレステロールを基本的なリポソームの構成脂質とした。そこに、PMPC脂質(DPG-PMPC、DSG-PMPC)を添加して、PMPC脂質で修飾したリポソーム(PMPC修飾リポソーム)を作製し、実験に使用した。DPPC(10mg)とコレステロール(5.3 mg)に対して、DPG-PMPC(10, 20,50, 100)をそれぞれ、1.0mg、1.9mg、4.3mg、8.4mgを混合して、エタノールに溶解させた。その後、ロータリーエバポレータで、エタノールを減圧留去した。その後、全脂質濃度が10mg/mLとなるようにPBSを添加して、スターラーバーを入れて室温で3時間撹拌した後、エクストリュージョン法によりリポソームの粒径を制御し、リポソームを作製した。エクストルーダーは、Avanti社から購入し、使用したフィルター孔径は、0.8μm, 0.45μm, 0.22μm, 0.1μm(Avanti社)である。無修飾のDPPCとコレステロールのみから構成されるリポソームも用意した。また、PEG修飾したリポソームとして、DPPC(10mg)とコレステロール(5.3 mg)に対して、PEG(5k)-DPPE(1.6mg)を混合して、同様の操作で作成した。
7. Liposomal preparation
DPPC (dipalmitoyl phosphatidylcholine) and cholesterol were used as basic liposomal constituent lipids. PMPC lipids (DPG-PMPC, DSG-PMPC) were added thereto to prepare liposomes modified with PMPC lipids (PMPC-modified liposomes), which were used in the experiment. DPG-PMPC (10, 20, 50, 100) was mixed with DPPC (10 mg) and cholesterol (5.3 mg) at 1.0 mg, 1.9 mg, 4.3 mg and 8.4 mg, respectively, and dissolved in ethanol. .. Then, ethanol was distilled off under reduced pressure with a rotary evaporator. Then, PBS was added so that the total lipid concentration became 10 mg / mL, a stirrer bar was added, and the mixture was stirred at room temperature for 3 hours, and then the liposome size was controlled by an extraction method to prepare liposomes. The extruder was purchased from Avanti and the filter pore diameters used were 0.8 μm, 0.45 μm, 0.22 μm and 0.1 μm (Avanti). Liposomes composed only of unmodified DPPC and cholesterol were also prepared. Further, as PEG-modified liposomes, PEG (5k) -DPPE (1.6 mg) was mixed with DPPC (10 mg) and cholesterol (5.3 mg), and the liposomes were prepared in the same manner.

Zetasizer nano ZS (Malvern Instruments Co., Ltd., Worcestershire, U.K)を用いたDLS法により、リポソームの粒径を測定した。また、PBS溶液中で、1ヶ月、3ヶ月間保存し(4℃)、粒径を測定し、長期安定性試験を行った(図1〜3)。
作製直後において、DPG-PMPC脂質を導入したリポソームは、凝集抑制が可能になり、低いPDI(多分散指数)を示した(PEG修飾リポソームと同じ程度)(図1)。DPG-PMPC脂質を導入したリポソームは、1ヶ月後も凝集せず、ほぼPDIは変化しせず、高い分散安定度を保っていた。1ヶ月後から3ヶ月後にかけて、PDIが、0.1から0.2までわずかに上昇し、粒径も少し増加傾向にあるもののPMPC修飾リポソームは安定に分散していた(PEG修飾リポソームと同程度)(図3)。
さらに、DSG-PMPCを用いたリポソーム作製と粒径測定も同様に行った(図4〜6)。なお仕込みに関しては次の通りである。DPPC(10mg)とコレステロール(5.3 mg)に対して、DSG―PMPC(10, 20,50, 100)をそれぞれ、1.1mg、2.1mg、4.6mg、9.2mgを混合し、リポソームを測定した。リポソームの作製については、上述した通り、Extruderを利用して作製した(フィルター孔径は、0.8μm, 0.45μm, 0.22μm, 0.1μm)。
DSG-PMPC10では、PDIが、1ヶ月後から3ヶ月後にかけて、0.16から0.25までわずかに上昇しており、粒径が若干増加していたものの、安定に分散していた(10%程度)(図5および図6)。DSG-PMPC20、50、100では、PDIが、1ヶ月後から3ヶ月後にかけて、0.10から0.14までしか上昇しておらず、リポソームの凝集が起きていないことが示され、粒径もほぼ同じであった(図5および図6)。
The particle size of liposomes was measured by the DLS method using Zetasizer nano ZS (Malvern Instruments Co., Ltd., Worcestershire, UK). In addition, it was stored in a PBS solution for 1 month and 3 months (4 ° C.), the particle size was measured, and a long-term stability test was performed (FIGS. 1 to 3).
Immediately after preparation, the liposomes into which the DPG-PMPC lipid was introduced were capable of suppressing aggregation and showed a low PDI (polydispersion index) (similar to PEG-modified liposomes) (Fig. 1). The liposomes into which the DPG-PMPC lipid was introduced did not aggregate even after 1 month, the PDI did not change, and high dispersion stability was maintained. From 1 month to 3 months, PDI increased slightly from 0.1 to 0.2 and the particle size tended to increase slightly, but PMPC-modified liposomes were stably dispersed (similar to PEG-modified liposomes) (Fig.). 3).
Furthermore, liposome preparation and particle size measurement using DSG-PMPC were also performed in the same manner (FIGS. 4 to 6). The preparation is as follows. DSG-PMPC (10, 20, 50, 100) was mixed with DPPC (10 mg) and cholesterol (5.3 mg) at 1.1 mg, 2.1 mg, 4.6 mg and 9.2 mg, respectively, and liposomes were measured. Liposomes were prepared using Extruder as described above (filter pore sizes are 0.8 μm, 0.45 μm, 0.22 μm, 0.1 μm).
In DSG-PMPC10, PDI increased slightly from 0.16 to 0.25 from 1 month to 3 months, and although the particle size increased slightly, it was stably dispersed (about 10%) (about 10%). 5 and 6). In DSG-PMPC20, 50, 100, PDI increased only from 0.10 to 0.14 from 1 month to 3 months, indicating that liposome aggregation did not occur, and the particle size was almost the same. There were (FIGS. 5 and 6).

8.蛍光標識リポソームの作製と基板への吸着実験
DPPCとコレステロールを基本的なリポソームの構成脂質とした。そこに、PMPC脂質(DSG-PMPC)を添加して、PMPC脂質で修飾したリポソームを作製し、実験に使用した。DPPC(10mg)とコレステロール(5.3 mg)に対して、DSG-PMPC(10, 20,50, 100)をそれぞれ、1.1mg、2.1mg、4.6mg、9.2mgを混合して、エタノールに溶解させた。その後、ロータリーエバポレータで、エタノールを減圧留去した。無修飾のリポソームも用意した。また、PEG修飾したリポソームとして、DPPC(10mg)とコレステロール(5.3 mg)に対して、PEG-DPPE(1.6mg)を混合して、作成した。
その後、カルボキシフルオレセイン水溶液(0.5 mM)を添加して(全脂質濃度:10mg/mL)、スターラーバーを入れて室温で3時間撹拌した後、エクストリュージョン法によりリポソームの粒径を制御し、リポソームを作製した。使用したフィルターは、前項に記載の通りである。このリポソーム懸濁液を、超遠心分離(25000rpm 60 min 4 ℃)により2回洗浄し、未封入のカルボキシフルオレセインを分離し、蛍光標識したリポソームを作成した。
次に、11-amino-1-undecanthiol, hydrochlorideのエタノール溶液(1mM)中に、金蒸着基板を浸せきした後(12時間(室温))、エタノールで洗浄し、アミノ基を表面に有する自己組織化単分子膜(NH2-SAM)を作成した。その基板へ対して、リポソーム懸濁液(脂質濃度:5mg/mL)を添加し、室温で1時間インキュベートした。その後、PBSで洗浄して、蛍光顕微鏡(IX83, Olympus, Tokyo, Japan)で観察した。得られた画像を、ImageJで解析し、蛍光強度を算出した。
その結果、無修飾リポソームでは、基板へ吸着したのに対して、PMPC修飾リポソームでは、どのサンプルも吸着が抑制され、PEG修飾リポソームと同程度であった。この結果から、PMPCによるコーティング効果が実証された。
8. Preparation of Fluorescently Labeled Liposomes and Adsorption Experiments on Substrates
DPPC and cholesterol were used as the basic liposomal constituent lipids. PMPC lipid (DSG-PMPC) was added thereto to prepare liposomes modified with PMPC lipid, which were used in the experiment. DSG-PMPC (10, 20, 50, 100) was mixed with DPPC (10 mg) and cholesterol (5.3 mg) at 1.1 mg, 2.1 mg, 4.6 mg and 9.2 mg, respectively, and dissolved in ethanol. .. Then, ethanol was distilled off under reduced pressure with a rotary evaporator. Unmodified liposomes were also prepared. In addition, as PEG-modified liposomes, DPPC (10 mg) and cholesterol (5.3 mg) were mixed with PEG-DPPE (1.6 mg) to prepare a liposome.
Then, an aqueous solution of carboxyfluorescein (0.5 mM) was added (total lipid concentration: 10 mg / mL), a stirrer bar was added, and the mixture was stirred at room temperature for 3 hours, and then the particle size of the liposome was controlled by the extraction method to control the liposome. Was produced. The filters used are as described in the previous section. This liposome suspension was washed twice by ultracentrifugation (25000 rpm 60 min 4 ° C.) to separate unencapsulated carboxyfluorescein to prepare fluorescently labeled liposomes.
Next, the gold-deposited substrate was immersed in an ethanol solution (1 mM) of 11-amino-1-undecanthiol, hydrochloride (12 hours (room temperature)), washed with ethanol, and self-assembled with amino groups on the surface. A monolayer (NH 2- SAM) was prepared. A liposome suspension (lipid concentration: 5 mg / mL) was added to the substrate, and the mixture was incubated at room temperature for 1 hour. Then, it was washed with PBS and observed with a fluorescence microscope (IX83, Olympus, Tokyo, Japan). The obtained image was analyzed by ImageJ, and the fluorescence intensity was calculated.
As a result, the unmodified liposomes adsorbed to the substrate, whereas the PMPC-modified liposomes suppressed the adsorption of all the samples, which was similar to that of the PEG-modified liposomes. From this result, the coating effect by PMPC was demonstrated.

9.細胞
フルオレセイン標識されたPMPC脂質を5.0 mg/mLの濃度でリン酸緩衝溶液(PBS)に溶解させた。6.0×105 cells/mLの濃度に培養したCCRF-CEM懸濁液100 Lをエッペンドルフチューブに採取し、150 gで遠心し上澄みを破棄することでCCRF-CEMを回収した。そこに上記のポリマー溶液50 Lを加えて、30分間接触させた。その後、細胞懸濁液を遠心して上澄みを破棄し、沈殿した細胞を100 LのPBSに懸濁させることで洗浄した。溶液内の細胞の様子を、共焦点レーザー顕微鏡(LSM510, Carl Zeiss Microscopy Co., Ltd., Jena Germany)で観察した。
その結果、細胞表面が蛍光標識されていることが確認できた(図8)。従って、本発明のPMPC脂質は、リポソームのような人工的な脂質膜構造体のみならず、天然に存在する細胞膜のような生体膜の修飾も可能であることが確認できた。
9. Cell Fluorescein-labeled PMPC lipids were dissolved in phosphate buffered solution (PBS) at a concentration of 5.0 mg / mL. 100 L of CCRF-CEM suspension cultured at a concentration of 6.0 × 10 5 cells / mL was collected in an Eppendorf tube, centrifuged at 150 g, and the supernatant was discarded to recover CCRF-CEM. 50 L of the above polymer solution was added thereto, and the mixture was contacted for 30 minutes. The cell suspension was then centrifuged to discard the supernatant and the precipitated cells were washed by suspending them in 100 L PBS. The state of the cells in the solution was observed with a confocal laser scanning microscope (LSM510, Carl Zeiss Microscopy Co., Ltd., Jena Germany).
As a result, it was confirmed that the cell surface was fluorescently labeled (Fig. 8). Therefore, it was confirmed that the PMPC lipid of the present invention can modify not only artificial lipid membrane structures such as liposomes but also biological membranes such as naturally occurring cell membranes.

本発明は、生体適合性の高いPMPCで修飾した膜構造体を提供する。従って、リポソーム製剤などの調製に使用することが可能で、創薬、医療分野における利用が期待される。 The present invention provides a highly biocompatible PMPC-modified membrane structure. Therefore, it can be used for the preparation of liposome preparations and the like, and is expected to be used in the drug discovery and medical fields.

Claims (6)

2-メタクリロイルオキシエチルホスホリルコリン(MPC)からなる重合体を結合してなるPMPC脂質。 2-PMPC lipid formed by binding a polymer consisting of methacryloyloxyethyl phosphorylcholine (MPC). 下記式(1)のポリ(2-メタクリロイルオキシエチルホスホリルコリン)(PMPC)を結合してなる請求項1に記載のPMPC脂質。
(式(1)中、Xは官能基、nは10以上の整数)
The PMPC lipid according to claim 1, which is obtained by binding poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) of the following formula (1).
(In formula (1), X is a functional group and n is an integer of 10 or more)
請求項1または2に記載のPMPC脂質を構成脂質として含む脂質膜構造体。 A lipid membrane structure containing the PMPC lipid according to claim 1 or 2 as a constituent lipid. リポソームであることを特徴とする請求項3に記載の脂質膜構造体。 The lipid membrane structure according to claim 3, which is a liposome. 生体膜であることを特徴とする請求項3に記載の脂質膜構造体。 The lipid membrane structure according to claim 3, wherein the lipid membrane structure is a biological membrane. 請求項1または2に記載のPMPC脂質を含有する脂質膜構造体修飾剤。 The lipid membrane structure modifier containing the PMPC lipid according to claim 1 or 2.
JP2019137439A 2019-07-26 2019-07-26 Surface modification material for lipid membrane structures Active JP7475024B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019137439A JP7475024B2 (en) 2019-07-26 2019-07-26 Surface modification material for lipid membrane structures
PCT/JP2020/028449 WO2021020275A1 (en) 2019-07-26 2020-07-22 Surface modifying material for lipid membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019137439A JP7475024B2 (en) 2019-07-26 2019-07-26 Surface modification material for lipid membrane structures

Publications (2)

Publication Number Publication Date
JP2021020866A true JP2021020866A (en) 2021-02-18
JP7475024B2 JP7475024B2 (en) 2024-04-26

Family

ID=74228607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019137439A Active JP7475024B2 (en) 2019-07-26 2019-07-26 Surface modification material for lipid membrane structures

Country Status (2)

Country Link
JP (1) JP7475024B2 (en)
WO (1) WO2021020275A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129190A (en) * 1984-11-27 1986-06-17 Nippon Oil & Fats Co Ltd Polymerizable glycerophospholipid
JPH1180187A (en) * 1997-09-12 1999-03-26 Nof Corp (meth)acrylic acid-based ester, its polymer and use
JP2005239988A (en) * 2004-02-24 2005-09-08 Kazuhiko Ishihara Water soluble reactive polymer, method for producing the same and biological sample modifier
WO2008011812A1 (en) * 2006-07-18 2008-01-31 Shanghai Cancer Institute Biomimetic cell membrane of phospholipid polymer, preparation method and use thereof
JP2009145049A (en) * 2007-12-11 2009-07-02 Konica Minolta Holdings Inc Liposome particle dispersion for detecting test substance, method for producing the same and method for detection by fluorescence photometry using the same
WO2018150429A1 (en) * 2017-02-16 2018-08-23 Yeda Research And Development Co. Ltd. Liposomic drug-delivery vehicles
US20190002609A1 (en) * 2015-12-22 2019-01-03 Yeda Research And Development Co. Ltd. Lipid analogs and liposomes comprising same
WO2020256722A1 (en) * 2019-06-19 2020-12-24 Becton, Dickenson And Company Biodegradable drug-eluting embolic particles for delivery of therapeutic agents

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129190A (en) * 1984-11-27 1986-06-17 Nippon Oil & Fats Co Ltd Polymerizable glycerophospholipid
JPH1180187A (en) * 1997-09-12 1999-03-26 Nof Corp (meth)acrylic acid-based ester, its polymer and use
JP2005239988A (en) * 2004-02-24 2005-09-08 Kazuhiko Ishihara Water soluble reactive polymer, method for producing the same and biological sample modifier
WO2008011812A1 (en) * 2006-07-18 2008-01-31 Shanghai Cancer Institute Biomimetic cell membrane of phospholipid polymer, preparation method and use thereof
JP2009145049A (en) * 2007-12-11 2009-07-02 Konica Minolta Holdings Inc Liposome particle dispersion for detecting test substance, method for producing the same and method for detection by fluorescence photometry using the same
US20190002609A1 (en) * 2015-12-22 2019-01-03 Yeda Research And Development Co. Ltd. Lipid analogs and liposomes comprising same
WO2018150429A1 (en) * 2017-02-16 2018-08-23 Yeda Research And Development Co. Ltd. Liposomic drug-delivery vehicles
WO2020256722A1 (en) * 2019-06-19 2020-12-24 Becton, Dickenson And Company Biodegradable drug-eluting embolic particles for delivery of therapeutic agents

Also Published As

Publication number Publication date
WO2021020275A1 (en) 2021-02-04
JP7475024B2 (en) 2024-04-26

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis and characterization of PEGylated bolaamphiphiles with enhanced retention in liposomes
US10357454B2 (en) Substance-encapsulating vesicle and process for producing the same
Yin et al. Biocompatible, pH-sensitive AB 2 miktoarm polymer-based polymersomes: preparation, characterization, and acidic pH-activated nanostructural transformation
US20150050330A1 (en) Compositions and methods for polymer-caged liposomes
Yao et al. Platinum-incorporating poly (N-vinylpyrrolidone)-poly (aspartic acid) pseudoblock copolymer nanoparticles for drug delivery
US20090220614A1 (en) Thermo-Responsive Block Co-Polymers, and Use Thereof
Li et al. Dual pH-responsive micelles with both charge-conversional property and hydrophobic–hydrophilic transition for effective cellular uptake and intracellular drug release
JP5679357B2 (en) Electrostatic coupling type vesicle
Yin et al. Effects of cholesterol incorporation on the physicochemical, colloidal, and biological characteristics of pH-sensitive AB2 miktoarm polymer-based polymersomes
Zhang et al. Amphiphilic polypeptoids serve as the connective glue to transform liposomes into multilamellar structures with closely spaced bilayers
WO2019055996A1 (en) Polymer nanodiscs for biotechnology and medical applications
Martin et al. Cholesteryl to improve the cellular uptake of polymersomes within HeLa cells
US20110027347A1 (en) Polymersomes and methods of making and using thereof
WO2021020275A1 (en) Surface modifying material for lipid membrane structure
Augustine et al. Chimeric poly (N-isopropylacrylamide)-b-poly (3, 4-dihydroxy-L-phenylalanine) nanocarriers for temperature/pH dual-stimuli-responsive theranostic application
CN113975244B (en) Bionic magnetic targeting cationic liposome and preparation method and application thereof
CN107296790B (en) Mixed drug-loaded micelle based on polyphosphate ester, preparation method thereof and active targeting group modified mixed drug-loaded micelle
JPH07173079A (en) Amphiphatic polyethylene glycol derivative and its use
CN112843244B (en) Intelligent drug-loaded nanocluster system with variable size and preparation method and application thereof
JPH07291853A (en) Liposome and medicine carrier
Sivakumar et al. Stable polymerized cholesteryl methacrylate liposomes for vincristine delivery
EP4368657A1 (en) Ph-responsive lipid derivative
US20240101733A1 (en) Monoglycerol acrylate based polymer and uses thereof
Luo et al. Polymer Vesicles and Lipid Nanoparticles
Kowalczuk Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7475024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150