JP2021019437A - Power supply regenerative converter and processing method therefor - Google Patents

Power supply regenerative converter and processing method therefor Download PDF

Info

Publication number
JP2021019437A
JP2021019437A JP2019133980A JP2019133980A JP2021019437A JP 2021019437 A JP2021019437 A JP 2021019437A JP 2019133980 A JP2019133980 A JP 2019133980A JP 2019133980 A JP2019133980 A JP 2019133980A JP 2021019437 A JP2021019437 A JP 2021019437A
Authority
JP
Japan
Prior art keywords
phase
voltage
power supply
current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019133980A
Other languages
Japanese (ja)
Other versions
JP2021019437A5 (en
JP7146705B2 (en
Inventor
俊祐 松永
Shunsuke Matsunaga
俊祐 松永
江鳴 毛利
Komei Mori
江鳴 毛利
山本 敏彦
Toshihiko Yamamoto
敏彦 山本
恒雅 鈴木
Tsuneo Suzuki
恒雅 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019133980A priority Critical patent/JP7146705B2/en
Priority to CN202080041642.XA priority patent/CN113950792B/en
Priority to PCT/JP2020/022624 priority patent/WO2021014803A1/en
Publication of JP2021019437A publication Critical patent/JP2021019437A/en
Publication of JP2021019437A5 publication Critical patent/JP2021019437A5/ja
Application granted granted Critical
Publication of JP7146705B2 publication Critical patent/JP7146705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency

Abstract

To provide a power supply regenerative converter and a processing method therefor, capable of quickly responding to abrupt phase fluctuation or frequency fluctuation.SOLUTION: A power supply regenerative converter is disposed between a three-phase AC power supply and an inverter for performing variable speed control on a motor, and regenerates induced electromotive force generated when the motor decelerates, in the three-phase AC power supply. The power supply regenerative converter includes: AC power supply terminals connected to the three-phase AC power supply; an AC voltage detection unit for detecting three-phase AC voltage at the AC power supply terminals; and a phase estimation unit for estimating phases of the three-phase AC power supply from the three-phase AC voltage detected by the AC voltage detection unit.SELECTED DRAWING: Figure 1

Description

本発明は、電源回生コンバータに関する。 The present invention relates to a power regenerative converter.

電源回生コンバータは、モータを可変速制御するインバータ装置と三相交流電源との間に配置され、モータの減速時に発生する誘導起電力を三相交流電源に回生する装置である。 The power supply regeneration converter is a device that is arranged between an inverter device that controls a motor at a variable speed and a three-phase AC power supply, and regenerates an induced electromotive force generated during deceleration of the motor to the three-phase AC power supply.

本技術分野の背景技術として、特許文献1がある。特許文献1には、電源回生装置は、電力変換部と、駆動制御部と、位相調整部とを備え、位相調整部は、交流電源側で検出した交流電源電圧に基づき、交流電源電圧の出力位相を、電力変換部と交流電源との間に流れる無効電流の増減に基づいて調整する点が記載されている。しかしながら、電源回生装置は、別体である電源の電圧を監視していたため、そのための配線が別途必要であり、また、その配線の誤配線や断線の可能性があり、原価の上昇や信頼性の低下をまねく可能性があった。 Patent Document 1 is a background technique in this technical field. In Patent Document 1, the power supply regeneration device includes a power conversion unit, a drive control unit, and a phase adjustment unit, and the phase adjustment unit outputs an AC power supply voltage based on the AC power supply voltage detected on the AC power supply side. It is described that the phase is adjusted based on the increase / decrease of the invalid current flowing between the power conversion unit and the AC power supply. However, since the power regenerative device monitors the voltage of the separate power supply, wiring for that purpose is required separately, and there is a possibility of incorrect wiring or disconnection of the wiring, resulting in increased cost and reliability. Could lead to a decline in

これに対して、特許文献2がある。特許文献2は、電源回生コンバータが交流電源に接続する交流電源端子を有し、その交流電源端子から供給される交流電源電圧に基づき、位相検出部は、三相交流電源の電圧位相を相電圧のゼロクロス検出により検出する点が記載されている。 On the other hand, there is Patent Document 2. Patent Document 2 has an AC power supply terminal in which a power supply regeneration converter is connected to an AC power supply, and based on the AC power supply voltage supplied from the AC power supply terminal, the phase detection unit sets the voltage phase of the three-phase AC power supply as the phase voltage. The points to be detected by the zero cross detection of are described.

特開2013−162543号公報Japanese Unexamined Patent Publication No. 2013-162543 特開2004−180427号公報Japanese Unexamined Patent Publication No. 2004-180427

小型の自立型発電機による電源では、負荷の急激な変化により、周波数変動が生じる。また、一般の商用電源であっても、系統事故等に起因する配電線ルート切り替え時には、電源電圧の位相跳躍などが発生し得る。 In a power source powered by a small self-supporting generator, frequency fluctuations occur due to sudden changes in load. Further, even with a general commercial power supply, a phase jump of the power supply voltage may occur when the distribution line route is switched due to a system accident or the like.

特許文献2では、電源電圧の位相の検出方法として電源電圧のゼロクロスを利用した点が記載されている。しかし、電源電圧のゼロクロスは1周期の中で1相あたり2回しか発生しない。そのため、急激な位相の変化や周波数の変動の発生に対して、即時に捉え応答することができない可能性がある。その結果、ゼロクロスを利用した電源電圧位相の検出方法では、急峻な位相変動や周波数変動の発生時において、ゲート信号のON/OFFの切り替わりのタイミングが通常の適正な位置からずれる可能性がある。この場合、交流電流の跳躍が生じ、過電流保護動作や素子への過大なストレスが生じる。また、特許文献2では、電圧振幅の検出に別途全波整流回路とA/D変換器を必要としており、価格が上昇するという問題もあった。 Patent Document 2 describes that a power supply voltage zero cross is used as a method for detecting the phase of the power supply voltage. However, zero crossing of the power supply voltage occurs only twice per phase in one cycle. Therefore, it may not be possible to immediately catch and respond to the occurrence of sudden phase changes or frequency fluctuations. As a result, in the power supply voltage phase detection method using zero cross, when a steep phase fluctuation or frequency fluctuation occurs, the timing of switching ON / OFF of the gate signal may deviate from the normal proper position. In this case, the alternating current jumps, causing an overcurrent protection operation and excessive stress on the element. Further, in Patent Document 2, a full-wave rectifier circuit and an A / D converter are separately required for detecting the voltage amplitude, and there is also a problem that the price increases.

本発明は、急峻な位相変動や周波数変動に即座に対応可能な電源回生コンバータ及びその処理方法を提供することである。 The present invention provides a power regenerative converter capable of immediately responding to steep phase fluctuations and frequency fluctuations, and a processing method thereof.

本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、モータを可変速制御するインバータと三相交流電源との間に配置され、モータの減速時に発生する誘導起電力を三相交流電源に回生する電源回生コンバータであって、三相交流電源と接続される交流電源端子と、交流電源端子での三相の交流電圧を検出する交流電圧検出部と、交流電圧検出部で検出した三相の交流電圧から三相交流電源の位相を推定する位相推定部を有する。 In view of the above background technology and problems, the present invention is arranged between an inverter that controls a motor at a variable speed and a three-phase AC power supply, and three-phase induced electromotive force generated when the motor is decelerated. A power supply regeneration converter that regenerates to an AC power supply, and is detected by an AC power supply terminal connected to a three-phase AC power supply, an AC voltage detector that detects the three-phase AC voltage at the AC power supply terminal, and an AC voltage detector. It has a phase estimation unit that estimates the phase of a three-phase AC power supply from the three-phase AC voltage.

本発明によれば、急峻な位相変動や周波数変動に即座に対応可能な電源回生コンバータ及びその処理方法を提供できる。 According to the present invention, it is possible to provide a power supply regenerative converter capable of immediately responding to steep phase fluctuations and frequency fluctuations, and a processing method thereof.

実施例1における電源回生コンバータの構成ブロック図である。It is a block diagram of the power supply regenerative converter in Example 1. FIG. 実施例1における三相交流電圧とゲートパルスの関係を示す図である。It is a figure which shows the relationship between the three-phase AC voltage and a gate pulse in Example 1. FIG. 実施例1における交流電流検出部の構成図である。It is a block diagram of the alternating current detection part in Example 1. FIG. 実施例1における交流電圧検出部の構成図である。It is a block diagram of the AC voltage detection part in Example 1. FIG. 実施例1における回生運転時の動作波形を示す図である。It is a figure which shows the operation waveform at the time of a regenerative operation in Example 1. FIG. 実施例1における0°≦θ≦60°の位相での電源回生コンバータの三相ブリッジにおける素子の導通状態を示す図である。It is a figure which shows the conduction state of the element in the three-phase bridge of the power supply regenerative converter in the phase of 0 ° ≤ θ ≤ 60 ° in Example 1. 実施例1における力行運転時の動作波形を示す図である。It is a figure which shows the operation waveform at the time of power running operation in Example 1. FIG. 実施例1における停止時の動作波形を示す図である。It is a figure which shows the operation waveform at the time of stop in Example 1. FIG. 実施例1における位相推定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the phase estimation part in Example 1. FIG. 実施例1における電源電圧の6つの位相区間と推定位相の式を示す表である。It is a table which shows the formula of the 6 phase intervals of the power supply voltage and the estimated phase in Example 1. 実施例1における位相演算部の構成図である。It is a block diagram of the phase calculation part in Example 1. FIG. 実施例1における電源電圧の6つの位相区間と電圧振幅の式を示す表である。It is a table which shows the formula of 6 phase sections of the power supply voltage and voltage amplitude in Example 1. 実施例2における電源電圧位相の検出に電流値を利用しない場合の電源回生コンバータの構成ブロック図である。It is a block diagram of the power supply regenerative converter in the case where the current value is not used for the detection of the power supply voltage phase in Example 2. 実施例2における位相推定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the phase estimation part in Example 2. 実施例3における電源回生コンバータに汎用インバータ側のダイオード整流モジュールを併用する場合の構成ブロック図である。It is a block diagram in the case where the diode rectifier module on the general-purpose inverter side is used together with the power supply regenerative converter in Example 3. FIG. 実施例3における回生運転時の動作波形を示す図である。It is a figure which shows the operation waveform at the time of a regenerative operation in Example 3. 実施例3における力行運転時の動作波形を示す図である。It is a figure which shows the operation waveform at the time of power running operation in Example 3. FIG. 実施例3における停止時の動作波形を示す図である。It is a figure which shows the operation waveform at the time of stop in Example 3. FIG.

以下、本発明の実施例について図面を用いて説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、本実施例における電源回生コンバータの構成例を示すブロック図である。まず、概略の動作を説明する。図1において、電源回生コンバータ1は、三相リアクトル3を介して、三相(R相、S相、T相)の交流電圧を発生する三相交流電源2と、交流電源端子11を介して接続される。電源回生コンバータ1は、電解コンデンサ20を備えた直流部を持ち、この直流部はインバータ4の直流部と接続される。このインバータ4は直流電力と交流電力を変換する変換器部分を持ち、交流電圧をモータ5に出力することでモータ5を駆動する。電源回生コンバータ1の交流電流検出部50は、接続された二相の電流検出器の信号から三相の電流信号を生成し位相推定部52へ出力する。交流電圧検出部51は、交流電源端子11を介して接続された三相の交流電圧を検出し、位相推定部52と電圧振幅演算部54に出力する。 FIG. 1 is a block diagram showing a configuration example of a power supply regenerative converter in this embodiment. First, a schematic operation will be described. In FIG. 1, the power regenerative converter 1 passes through a three-phase AC power supply 2 that generates three-phase (R-phase, S-phase, T-phase) AC voltage via a three-phase reactor 3 and an AC power supply terminal 11. Be connected. The power regenerative converter 1 has a DC unit provided with an electrolytic capacitor 20, and this DC unit is connected to the DC unit of the inverter 4. The inverter 4 has a converter portion that converts DC power and AC power, and drives the motor 5 by outputting an AC voltage to the motor 5. The AC current detection unit 50 of the power supply regeneration converter 1 generates a three-phase current signal from the signal of the connected two-phase current detector and outputs it to the phase estimation unit 52. The AC voltage detection unit 51 detects the three-phase AC voltage connected via the AC power supply terminal 11 and outputs the three-phase AC voltage to the phase estimation unit 52 and the voltage amplitude calculation unit 54.

電圧振幅演算部54では、三相の電圧信号の入力から電圧振幅VAを演算する。位相推定部52は、三相の交流電圧、及び、交流電流と内部演算位相θsから位相θeを推定して位相演算部53に入力する。位相演算部53では、推定位相θeから演算位相θsを出力する。駆動信号生成部55は、演算位相θsを入力とし、入力位相に応じた6つのゲートパルス信号を生成し、三相ブリッジ回路10へ出力する。 The voltage amplitude calculation unit 54 calculates the voltage amplitude VA from the input of the three-phase voltage signal. The phase estimation unit 52 estimates the phase θe from the three-phase AC voltage, the AC current, and the internally calculated phase θs, and inputs the phase θe to the phase calculation unit 53. The phase calculation unit 53 outputs the calculation phase θs from the estimated phase θe. The drive signal generation unit 55 receives the calculated phase θs as an input, generates six gate pulse signals according to the input phase, and outputs the six gate pulse signals to the three-phase bridge circuit 10.

三相ブリッジ回路10は、6個のスイッチング素子(Tr1〜Tr6)と6個のダイオード(D1〜D6)とで構成され、直列接続した上下ふたつの素子(以下、これを「アーム」という)を3つ並列に接続したものである。この三相ブリッジ回路10により交流電力と直流電力の変換を行う。このときの直流電力はコンデンサ20より供給される。 The three-phase bridge circuit 10 is composed of six switching elements (Tr1 to Tr6) and six diodes (D1 to D6), and has two upper and lower elements (hereinafter, referred to as "arms") connected in series. Three are connected in parallel. The three-phase bridge circuit 10 converts AC power and DC power. The DC power at this time is supplied from the capacitor 20.

ここで、位相推定部52、位相演算部53、電圧振幅演算部54、駆動信号生成部55は、CPUによるソフトウェア処理で実現する。すなわち、記憶装置に格納されたプログラムをCPUが実行することによりそれらの機能を実現する。 Here, the phase estimation unit 52, the phase calculation unit 53, the voltage amplitude calculation unit 54, and the drive signal generation unit 55 are realized by software processing by the CPU. That is, those functions are realized by the CPU executing the program stored in the storage device.

ここで、図2に、三相の交流電圧波形(a)と演算された電源位相θ(b)とゲートパルス信号(c)の関係を示す。図2において、(a)は三相(R相、S相、T相)の交流電圧波形を示しており、横軸のTは電源1周期の時間であり、電源周波数が50Hzと60Hzの場合、それぞれ20msと16.7msである。(b)において、電源位相θの0点は交流電圧波形に対して任意の位置にとることができる。図2の例では、R相電圧が最大となる点を位相の0点としている。この時、各相の相電圧(VgR、VgS、VgT)は、電源位相θを使って、相電圧の最大値をVaとすると、下記の式(1)、
VgR=Va×cos(θ−0°)
VgS=Va×cos(θ−120°)
VgT=Va×cos(θ−240°)
で表現できる。
Here, FIG. 2 shows the relationship between the three-phase AC voltage waveform (a), the calculated power supply phase θ (b), and the gate pulse signal (c). In FIG. 2, (a) shows three-phase (R-phase, S-phase, T-phase) AC voltage waveforms, T on the horizontal axis is the time of one power supply cycle, and the power supply frequencies are 50 Hz and 60 Hz. , 20 ms and 16.7 ms, respectively. In (b), the 0 point of the power supply phase θ can be set at an arbitrary position with respect to the AC voltage waveform. In the example of FIG. 2, the point where the R-phase voltage is maximized is defined as the 0 point of the phase. At this time, the phase voltage (VgR, VgS, VgT) of each phase is based on the following equation (1), where Va is the maximum value of the phase voltage using the power supply phase θ.
VgR = Va × cos (θ-0 °)
VgS = Va × cos (θ-120 °)
VgT = Va × cos (θ-240 °)
Can be expressed by.

次に、スイッチング素子(Tr1〜Tr6)の動きを説明する。図2(c)に示すように、各相とも、相電圧が三相のうちで最大となる120°の区間において上アームスイッチがONされ、相電圧が三相のうちで最小となる120°の区間において下アームスイッチがONされる、いわゆる120°通電方式である。上記以外の区間、すなわち、電圧が三相のうちで中間となる120°の区間においては上下両アームともにOFFとなる。例えば、R相の場合、R相電圧が最大となる5T/6からT/6の区間で上アームのスイッチ(Tr1)のみがONとなり、最小となるT/3から2T/3の区間で下アームのスイッチ(Tr2)のみがONとなり、それ以外の区間は上下両アームのスイッチともにOFFとなる。 Next, the movement of the switching elements (Tr1 to Tr6) will be described. As shown in FIG. 2C, in each phase, the upper arm switch is turned on in the section of 120 ° where the phase voltage is the maximum among the three phases, and the phase voltage is 120 ° which is the minimum among the three phases. This is a so-called 120 ° energization method in which the lower arm switch is turned on in the section of. In a section other than the above, that is, in a section where the voltage is 120 °, which is the middle of the three phases, both the upper and lower arms are turned off. For example, in the case of R phase, only the switch (Tr1) of the upper arm is turned on in the section from 5T / 6 to T / 6 where the R phase voltage is maximum, and lower in the section from T / 3 to 2T / 3 where it is the minimum. Only the arm switch (Tr2) is turned on, and the switches on both the upper and lower arms are turned off in the other sections.

次に、図1に戻って、交流電流や交流電圧の検出について述べる。三相交流電流をIR、IS、ITとする。以下、上記の電圧と電流は中性点Nから流れ出る方向を正として考える。このとき三相3線式の電流の和はゼロとなるので、下記の式(2)
IR+IS+IT=0 …(2)
が成立する。この関係を使うことで二相の電流値より残り一相の電流を算出することができる。
Next, returning to FIG. 1, the detection of AC current and AC voltage will be described. Let the three-phase alternating current be IR, IS, and IT. Hereinafter, the above voltage and current are considered to be positive in the direction in which they flow out from the neutral point N. At this time, the sum of the currents of the three-phase three-wire system becomes zero, so the following equation (2)
IR + IS + IT = 0 ... (2)
Is established. By using this relationship, the current of the remaining one phase can be calculated from the current values of the two phases.

図3は本実施例における交流電流検出部50の構成図である。図3において、電流検出器などで得た主回路の交流電流の瞬時値に比例する信号をA/D変換器に入力し、相当する二相のデジタル値、IRとITを得ている。S相は電流検出器やA/D変換器を設けていないが、式(2)より−(IR+IT)として計算でISを求めることができる。 FIG. 3 is a configuration diagram of the AC current detection unit 50 in this embodiment. In FIG. 3, a signal proportional to the instantaneous value of the alternating current of the main circuit obtained by a current detector or the like is input to the A / D converter to obtain corresponding two-phase digital values, IR and IT. Although the S phase is not provided with a current detector or an A / D converter, IS can be calculated as − (IR + IT) from equation (2).

次に、交流電圧について、電源回生コンバータ側の電圧と電源電圧の関係について説明する。図4は、本実施例における交流電圧検出部51の構成例である。図4において、電源の中性点(N)を基準として、電源電圧の各相の相電圧をVgR、VgS、VgT、電源回生コンバータの交流電源端子11(電源回生コンバータ端)での三相交流電圧をVR、VS、VTとする。そして、三相リアクトル3が三相平衡していると仮定し1相のインダクタンスをL(H)、抵抗分をR(Ω)とする。この時、電源回生コンバータ端の三相交流電圧VR、VS、VTは、電源電圧に対してリアクトルの電圧降下を考慮し下記の式(3)、
VR=VgR−(R+L×d/dt)×IR
VS=VgS−(R+L×d/dt)×IS
VT=VgT−(R+L×d/dt)×IT
で表現できる。
Next, regarding the AC voltage, the relationship between the voltage on the power regenerative converter side and the power supply voltage will be described. FIG. 4 is a configuration example of the AC voltage detection unit 51 in this embodiment. In FIG. 4, with reference to the neutral point (N) of the power supply, the phase voltage of each phase of the power supply voltage is VgR, VgS, VgT, and the three-phase AC at the AC power supply terminal 11 (power supply regenerative converter end) of the power supply regenerative converter. Let the voltage be VR, VS, VT. Then, assuming that the three-phase reactor 3 is in three-phase equilibrium, the inductance of one phase is L (H) and the resistance is R (Ω). At this time, the three-phase AC voltages VR, VS, and VT at the end of the power regenerative converter take into consideration the voltage drop of the reactor with respect to the power supply voltage, and the following equation (3)
VR = VgR- (R + L x d / dt) x IR
VS = VgS- (R + L × d / dt) × IS
VT = VgT- (R + L x d / dt) x IT
Can be expressed by.

上記の式(3)をすべて加え、式(1)よりVgR+VgS+VgT=0、かつ式(2)のIR+IS+IT=0を考慮するとVR+VS+VT=0が成立する。よって、リアクトルが三相平衡している場合は、電源回生コンバータ端の電圧のうち二相がわかれば残りの一相も求めることが可能となる。 When all the above equations (3) are added and VgR + VgS + VgT = 0 from the equation (1) and IR + IS + IT = 0 of the equation (2) are taken into consideration, VR + VS + VT = 0 is established. Therefore, when the reactor is in three-phase equilibrium, if two phases of the voltage at the power supply regenerative converter end are known, the remaining one phase can also be obtained.

次に、交流電圧検出部51の動作について説明する。図4において、交流電圧検出部51には電源回生コンバータ側の電圧(VR、VS、VT)が入力される。この入力電圧は基準点L(基板上のグラウンド)間に設けられた抵抗R1とR2で分圧する。ここで、基準点Lは中性点からみてVLの電圧を持つと仮定する。基準点Lから見た三相それぞれの分圧値をVmR、VmS、VmTとする。図4ではこの分圧された電圧をボルテージフォロワへ入力している。ボルテージフォロワの出力の電圧は入力の電圧と一致し、ボルテージフォロワの出力電圧もVmR、VmS、VmTとする。ボルテージフォロワは、後段の回路のインピーダンスの影響が許容できれば無くすこともできる。分圧回路の抵抗をR1、R2とおくと、分圧比kは、k=R2/(R1+R2)で表される。その結果、図4のLを基準とする各相の分圧電圧は、
VmR=k(VR−VL)
VmS=k(VS−VL)
VmT=k(VT−VL)
となる。この分圧された電圧(VmR、VmS、VmT)は、まず、中性点電圧VmNの出力に使用される。
Next, the operation of the AC voltage detection unit 51 will be described. In FIG. 4, the voltage (VR, VS, VT) on the power supply regenerative converter side is input to the AC voltage detection unit 51. This input voltage is divided by resistors R1 and R2 provided between the reference points L (ground on the substrate). Here, it is assumed that the reference point L has a voltage of VL when viewed from the neutral point. Let the voltage dividing values of each of the three phases viewed from the reference point L be VmR, VmS, and VmT. In FIG. 4, this divided voltage is input to the voltage follower. The output voltage of the voltage follower matches the input voltage, and the output voltage of the voltage follower is also VmR, VmS, and VmT. The voltage follower can be eliminated if the influence of the impedance of the circuit in the subsequent stage is acceptable. Assuming that the resistors of the voltage divider circuit are R1 and R2, the voltage divider ratio k is represented by k = R2 / (R1 + R2). As a result, the voltage dividing voltage of each phase with reference to L in FIG. 4 is
VmR = k (VR-VL)
VmS = k (VS-VL)
VmT = k (VT-VL)
Will be. This divided voltage (VmR, VmS, VmT) is first used for the output of the neutral point voltage VmN.

ここで、図4のLを基準としてVmNの電圧は帆足−ミルマンの定理により、
VmN=(VmR+VmS+VmT)/6=k(VR+VS+VT−3VL)/6=−k*VL/2
となる。次に、R相とT相の分圧された電圧はオペアンプ回路を経由してA/D変換器に入力される。
このオペアンプ回路は差動増幅回路となっており、R相、T相のA/D変換器への入力電圧VadR、VadTは下記で表される。
VadR=2×VmN−VmR=−k×VL−k(VR−VL)=−kVR
VadT=2×VmN−VmT=−k×VL−k(VT−VL)=−kVT
よって、A/D変換器には基準点Lの電圧にはよらず中性点Nからの電圧VR、VS、VTを分圧(k倍)した電圧が入力される。このVadR、VadTをA/D変換し適当な係数を掛け合わせることでVRとVTのそれぞれに比例するデジタル値VdRとVdTが得られる。この比例ゲインをGとすると、
VdR=G×VR
VdT=G×VT
となり、よって、VdSはVdRとVdTにより、下記の式で表現できる。
VdS=G×VS=G×(−VR−VT)=−VdR−VdT
また、もちろんVadR、VadTと同様にVadSを生成してA/D変換して求めることも可能である。上記、図4の回路は最小限のコストで既存の主回路を構成する基板上に追加することができる。一方、抵抗分圧の代わりに計器用変圧器等を用いてその出力をA/D変換器への入力信号とすることも可能である。
Here, the voltage of VmN is based on the Hoashi-Millman's theorem with reference to L in FIG.
VmN = (VmR + VmS + VmT) / 6 = k (VR + VS + VT-3VL) / 6 = -k * VL / 2
Will be. Next, the divided voltage of the R phase and the T phase is input to the A / D converter via the operational amplifier circuit.
This operational amplifier circuit is a differential amplifier circuit, and the input voltages VadR and VadT to the R-phase and T-phase A / D converters are represented below.
VadR = 2 x VmN-VmR = -k x VL-k (VR-VL) = -kVR
VadT = 2 x VmN-VmT = -k x VL-k (VT-VL) = -kVT
Therefore, a voltage obtained by dividing (k times) the voltages VR, VS, and VT from the neutral point N is input to the A / D converter regardless of the voltage at the reference point L. By A / D converting these VadR and VadT and multiplying them by appropriate coefficients, digital values VdR and VdT proportional to each of VR and VT can be obtained. Let G be this proportional gain
VdR = G × VR
VdT = G × VT
Therefore, VdS can be expressed by the following equation by VdR and VdT.
VdS = G × VS = G × (-VR-VT) = -VdR-VdT
Further, of course, it is also possible to generate VadS and perform A / D conversion to obtain it in the same manner as VadR and VadT. The circuit of FIG. 4 can be added on the substrate constituting the existing main circuit at the minimum cost. On the other hand, it is also possible to use an instrument transformer or the like instead of the resistance voltage divider and use the output as an input signal to the A / D converter.

次に、位相推定部52の動作説明のために、運転状況毎に、電源電圧(VgR、VgS、VgT)と電源回生コンバータ端電圧(VR、VS、VT)と交流電流(IR、IS、IT)の関係を説明する。以下、図5、図7、図8では、電源の電圧の線間電圧実効値を200Vと仮定している。 Next, in order to explain the operation of the phase estimation unit 52, the power supply voltage (VgR, VgS, VgT), the power supply regenerative converter end voltage (VR, VS, VT), and the alternating current (IR, IS, IT) are used for each operating condition. ) Is explained. Hereinafter, in FIGS. 5, 7, and 8, it is assumed that the line voltage effective value of the power supply voltage is 200 V.

図5にインバータが回生運転している場合の電源回生コンバータ運転時の波形の例を示す。図5において、(a)は電源電圧、(b)は電源回生コンバータ端電圧、(c)は交流電流を示す。このとき、電源回生コンバータ1は図2示すTrのスイッチング動作を行っており、かつ、インバータ4は回生状態でモータを運転している。この際直流電圧は交流電圧の線間電圧の振幅以上となる。このため交流電圧の位相にかかわらずD1〜D6が導通することはない。一方、Tr1〜Tr6の導通は図2の指令に従いTrが導通する。ある位相に対して、上下アームともに導通していない相が存在するが、この場合、その相の電流は0となる(95で示す点線内を参照)。 FIG. 5 shows an example of the waveform during the operation of the power supply regenerative converter when the inverter is in the regenerative operation. In FIG. 5, (a) shows the power supply voltage, (b) shows the power supply regenerative converter end voltage, and (c) shows the alternating current. At this time, the power supply regeneration converter 1 is performing the Tr switching operation shown in FIG. 2, and the inverter 4 is operating the motor in the regenerative state. At this time, the DC voltage becomes equal to or larger than the amplitude of the line voltage of the AC voltage. Therefore, D1 to D6 do not conduct regardless of the phase of the AC voltage. On the other hand, the continuity of Tr1 to Tr6 is such that Tr conducts according to the command of FIG. For a certain phase, there is a phase in which neither the upper and lower arms are conducting, but in this case, the current of that phase becomes 0 (see the dotted line indicated by 95).

図6にインバータが回生運転時の三相ブリッジ回路の素子の導通状態と電流の状況を示す。図6ではR相が最大となる位相を0として、0°<θ<60°(T/6)の場合を示している。スイッチング素子もダイオードも導通していない部分は、わかりやすさのため×印を置き配線を省略している。位相θが0°<θ<60°の場合、図6に示すようにTr1とTr6が導通しIS=0で一定となる。その結果、式(3)のVSにIS=0とdIs/dt=0を代入することでVgS=VSとなり、S相は電源電圧と電源回生コンバータ側電圧が一致する。 FIG. 6 shows the conduction state and the current state of the elements of the three-phase bridge circuit when the inverter is in regenerative operation. FIG. 6 shows a case where 0 ° <θ <60 ° (T / 6), where 0 is the phase at which the R phase is maximized. For the sake of clarity, the parts where neither the switching element nor the diode are conducting are marked with a cross and the wiring is omitted. When the phase θ is 0 ° <θ <60 °, Tr1 and Tr6 are conductive as shown in FIG. 6 and become constant at IS = 0. As a result, by substituting IS = 0 and dIs / dt = 0 for VS in the equation (3), VgS = VS, and in the S phase, the power supply voltage and the power supply regenerative converter side voltage match.

以上より、図5に例が示されるような回生運転時は、電圧が三相の中間となる相(以降、中間相と称す)の電流は0となる。このとき電圧は電源側と電源回生コンバータ端で同一となる。また、Trのスイッチの切り替わりが発生する瞬間は急峻な電流変化が発生しており、この瞬間は電源側と電源回生コンバータ端の電圧は一致しない。 From the above, during the regenerative operation as shown in FIG. 5, the current of the phase in which the voltage is in the middle of the three phases (hereinafter referred to as the intermediate phase) becomes 0. At this time, the voltage is the same at the power supply side and the power supply regenerative converter end. Further, a steep current change occurs at the moment when the Tr switch is switched, and at this moment, the voltage on the power supply side and the voltage at the power supply regenerative converter end do not match.

次に、図7にインバータが力行運転している場合の電源回生コンバータ運転時の波形の例を示す。図7においても、図5と同様に、(a)は電源電圧、(b)は電源回生コンバータ端電圧、(c)は交流電流を示す。このとき、電源回生コンバータは図2に示すTrのスイッチング動作を行っており、かつ、インバータは力行状態でモータを運転している。この際、直流電圧は線間電圧振幅の波高値よりも低くなる。Tr1〜Tr6は回生運転と同じく図2の指令に従い導通する。D1〜D6は回生運転時とは異なり、線間電圧の瞬時値が直流電圧を超える位相で導通する。結果、上下アームともに導通していない相であっても、必ずしも電流は0とはならない。例えば、T/6からT/3の時間の電源電圧はR相が中間相となるが、本区間先頭において、D2とD5が導通しておりR相に電流が流れている。結果、本区間の先頭では電源電圧と電源回生コンバータ端電圧は一致しない。しかし、残りの部分は電流が0となり電源電圧と電源回生コンバータ端電圧は一致する。以上より、図7に例が示されるようなインバータが力行運転している場合の電源回生コンバータ運転時は、電圧が三相の中間となる相であっても、電流が0とはならない領域が存在する(96で示す点線内を参照)。ただし、電流が0となっている相の電圧は電源側と電源回生コンバータ端で一致する。また、中間の相の電流が0となっていないとき、三相のうちの二相の電圧が一致している。 Next, FIG. 7 shows an example of a waveform during power regenerative converter operation when the inverter is power running. In FIG. 7, similarly to FIG. 5, (a) shows the power supply voltage, (b) shows the power supply regenerative converter end voltage, and (c) shows the alternating current. At this time, the power supply regenerative converter is performing the Tr switching operation shown in FIG. 2, and the inverter is operating the motor in a power running state. At this time, the DC voltage becomes lower than the peak value of the line voltage amplitude. Tr1 to Tr6 conduct with each other according to the command shown in FIG. 2 as in the regenerative operation. Unlike during regenerative operation, D1 to D6 conduct in a phase in which the instantaneous value of the line voltage exceeds the DC voltage. As a result, the current does not necessarily become 0 even in the phase in which both the upper and lower arms are not conducting. For example, in the power supply voltage during the time from T / 6 to T / 3, the R phase is the intermediate phase, but at the beginning of this section, D2 and D5 are conducting and a current is flowing in the R phase. As a result, the power supply voltage and the power supply regenerative converter end voltage do not match at the beginning of this section. However, the current becomes 0 in the remaining portion, and the power supply voltage and the power supply regenerative converter end voltage match. From the above, during power regenerative converter operation when the inverter is power running as shown in FIG. 7, there is a region where the current does not become 0 even if the voltage is in the middle of the three phases. Exists (see inside the dotted line indicated by 96). However, the voltage of the phase in which the current is 0 coincides with the power supply side at the power supply regenerative converter end. Further, when the current of the intermediate phase is not 0, the voltages of two of the three phases are the same.

次に、図8に電源回生コンバータ停止時の波形の例を示す。図8においても、図5と同様に、(a)は電源電圧、(b)は電源回生コンバータ端電圧、(c)は交流電流を示す。電源回生コンバータ停止時、インバータは、力行運転は可能であるが、一方、回生運転は、直流電圧が上昇してしまい過電圧等の保護動作等をまねくので、通常の運転状態では発生しない。この図8では時間とともに直流側の負荷の消費が次第に小さくなっている。 Next, FIG. 8 shows an example of the waveform when the power regenerative converter is stopped. In FIG. 8, similarly to FIG. 5, (a) shows the power supply voltage, (b) shows the power supply regenerative converter end voltage, and (c) shows the alternating current. When the power regenerative converter is stopped, the inverter can be power-running, but on the other hand, the regenerative operation does not occur under normal operating conditions because the DC voltage rises and leads to protection operation such as overvoltage. In FIG. 8, the load consumption on the DC side gradually decreases with time.

電源回生コンバータが停止中である場合、スイッチングの指令を出しておらず、Tr1〜Tr6は導通していない。しかし、D1〜D6は力行運転時と同様に線間電圧の瞬時値が直流電圧を超える位相で導通する。よって、インバータが力行運転して直流電力が消費されている状態や、電源投入直後の主回路コンデンサの電圧が低い状態では、大きな電流が流れ、導通時間が長くなる。インバータが停止している場合は、直流電力の消費が少なく、ダイオードの導通時間は短くなる。図8(c)は主回路コンデンサが充電されていく際の電流波形を示しており、電圧の低い状態だった0からT/6の電流値の方が、ある程度充電された5T/6からTまでの電流値よりも大きい。 When the power regenerative converter is stopped, no switching command is issued and Tr1 to Tr6 are not conducting. However, D1 to D6 conduct in a phase in which the instantaneous value of the line voltage exceeds the DC voltage as in the power running operation. Therefore, in a state where the inverter is power-running and DC power is consumed, or when the voltage of the main circuit capacitor immediately after the power is turned on is low, a large current flows and the conduction time becomes long. When the inverter is stopped, the DC power consumption is low and the diode conduction time is short. FIG. 8C shows the current waveform when the main circuit capacitor is charged, and the current value from 0 to T / 6, which was in a low voltage state, is 5T / 6 to T, which is charged to some extent. Is greater than the current value up to.

中間相の電流と電圧については、コンデンサ電圧の低いT/6からT/3の領域では中間相であるR相に電流が流れており、結果、電源電圧と電源回生コンバータ側電圧は一致しない。しかし、コンデンサがある程度充電され、直流電力の負荷消費の小さい2T/3から5T/6の領域では、中間相であるR相に電流は流れておらず、結果、電源電圧と電源回生コンバータ側電圧は一致している。 Regarding the current and voltage of the intermediate phase, the current flows in the R phase, which is the intermediate phase, in the region from T / 6 to T / 3, where the capacitor voltage is low, and as a result, the power supply voltage and the power supply regenerative converter side voltage do not match. However, in the region of 2T / 3 to 5T / 6, where the capacitor is charged to some extent and the load consumption of DC power is small, no current flows in the R phase, which is the intermediate phase, and as a result, the power supply voltage and the power supply regenerative converter side voltage Are in agreement.

以上より、図8に例が示されるようなインバータが力行運転している場合の電源回生コンバータ停止時は、電圧が三相の中間となる相であっても、電流が0とはならない領域が存在する(97で示す点線内を参照)。ただし、電流が0となっている相の電圧は電源側と電源回生コンバータ端で同一となる。 From the above, when the power regenerative converter is stopped when the inverter is in power running as shown in FIG. 8, there is a region where the current does not become 0 even if the voltage is in the middle of the three phases. Exists (see inside the dotted line indicated by 97). However, the voltage of the phase in which the current is 0 is the same at the power supply side and the power supply regenerative converter end.

次に位相推定部52の動作を説明する。位相推定部52では、図1に示すように、電源回生コンバータ端の電圧(VR、VS、VT)、交流電流(IR、IS、IT)、電圧振幅(VA)、演算位相(θs)を入力として、電源回生コンバータ端の電圧から推定される推定位相(θe)を出力する。 Next, the operation of the phase estimation unit 52 will be described. As shown in FIG. 1, the phase estimation unit 52 inputs the voltage (VR, VS, VT), AC current (IR, IS, IT), voltage amplitude (VA), and calculated phase (θs) at the power supply regeneration converter end. As a result, the estimated phase (θe) estimated from the voltage at the end of the power supply regeneration converter is output.

図9は位相推定部52の動作例を示すフローチャートである。図9において、まず、電源の位相によって各相の相電圧の大小関係が入れ替わる。この大小関係の入れ替わりは60°毎に発生し、0°から360°までの全位相を六つの区間に分割する。また、図2に示したTr1からTr6の導通状態もこの領域で変化する。これを位相区間とし図10に示す。 FIG. 9 is a flowchart showing an operation example of the phase estimation unit 52. In FIG. 9, first, the magnitude relationship of the phase voltage of each phase is switched depending on the phase of the power supply. This change of magnitude relation occurs every 60 °, and the entire phase from 0 ° to 360 ° is divided into six sections. Further, the conduction state of Tr1 to Tr6 shown in FIG. 2 also changes in this region. This is taken as a phase interval and is shown in FIG.

図5、図7、図8で示したように、中間の相の電圧は特定な条件を除き電源回生コンバータ端の電圧と電源電圧が一致する。よって、電源回生コンバータ端の電圧から電源電圧の位相を推定するために、位相区間を特定し、その区間の中間相の電圧を考える。この位相区間を特定するために、後段の位相演算部53から入力される演算位相(θs)を使う。位相演算部53の動作は後述するが、この演算位相(θs)は、起動時や電源擾乱時になどにおける過渡応答時を除き、ほぼ正確な電源電圧の位相を検出している。よって、図10の表に示した位相の範囲をもとに位相区間が特定可能となる。ステップS10において位相区間を特定したら、次に、ステップS11において、位相区間の端部かを判断する。すなわち、図5の説明にて示した通り、位相区間の境界は急激な電流変化により電圧跳躍が発生する。この領域は演算位相(θs)が区間端部、すなわち、位相区間の境界の近傍かどうかで判定可能である。そして、位相区間の端部であった場合は、ステップS12で自身の演算位相(θs)を推定位相(θe)として処理を終了する。これによって、図5の各区間の境界で発生している不連続な電圧値での位相推定を避けることができる。 As shown in FIGS. 5, 7 and 8, the voltage of the intermediate phase coincides with the voltage at the end of the power regenerative converter and the power supply voltage except for specific conditions. Therefore, in order to estimate the phase of the power supply voltage from the voltage at the end of the power supply regenerative converter, a phase section is specified and the voltage of the intermediate phase in that section is considered. In order to specify this phase interval, the calculation phase (θs) input from the phase calculation unit 53 in the subsequent stage is used. The operation of the phase calculation unit 53 will be described later, but this calculation phase (θs) detects the phase of the power supply voltage with almost accuracy except at the time of transient response at the time of start-up or power supply disturbance. Therefore, the phase interval can be specified based on the phase range shown in the table of FIG. After specifying the phase interval in step S10, it is then determined in step S11 whether it is the end of the phase interval. That is, as shown in the explanation of FIG. 5, a voltage jump occurs at the boundary of the phase section due to a sudden current change. This region can be determined by whether or not the calculated phase (θs) is near the end of the section, that is, the boundary of the phase section. If it is the end of the phase interval, the process ends in step S12 with its own calculated phase (θs) as the estimated phase (θe). This makes it possible to avoid phase estimation with discontinuous voltage values occurring at the boundaries of each section in FIG.

ステップS11で位相区間の端部でない場合は、ステップS13において、各区間で決まる中間相の電流が0かどうかを判定する。中間相の電流が0でなければ、ステップS12で自身の演算位相(θs)を推定位相(θe)として処理を終了する。 If it is not the end of the phase section in step S11, it is determined in step S13 whether or not the current of the intermediate phase determined in each section is zero. If the current of the intermediate phase is not 0, the process ends in step S12 with its own calculated phase (θs) as the estimated phase (θe).

中間相の電流が0であれば、前記したように、その相の電源電圧と電源回生コンバータ端電圧は一致している。このとき、式(1)から逆三角関数を用いて位相を算出することができる。例えば、位相区間1の場合、Sが中間相となるのでS相の電流ISが0かどうかを判定する。もし、IS=0の場合は、VgS=VSが成立しこれを(1)式のS相の式に代入する。すると、
VS=VAcos(θ−120°)
となる。これを、θについて解くと、
θ=cos−1(VS/VA)+120°
上記の解は2つ得られるが、区間1の0°≦θ<60を満足するものを推定位相とする。
If the current of the intermediate phase is 0, the power supply voltage of that phase and the end voltage of the power supply regenerative converter are the same as described above. At this time, the phase can be calculated from the equation (1) using the inverse trigonometric function. For example, in the case of the phase section 1, since S is the intermediate phase, it is determined whether or not the current IS of the S phase is 0. If IS = 0, VgS = VS is established and this is substituted into the S phase equation of equation (1). Then
VS = VAcos (θ-120 °)
Will be. When this is solved for θ,
θ = cos -1 (VS / VA) + 120 °
Two of the above solutions can be obtained, but the one that satisfies 0 ° ≤ θ <60 in the interval 1 is defined as the estimated phase.

このように、電源電圧に一致する中間の相は60°毎に常時入れ替わるものの、特定の条件を除き常に連続して存在する。この中間の相の電圧信号から位相を推定することが可能である。あるいは、マイコンによる離散処理の場合は任意の周期で演算が可能である。 As described above, the intermediate phase corresponding to the power supply voltage is constantly replaced every 60 °, but is always continuously present except for specific conditions. It is possible to estimate the phase from the voltage signal of this intermediate phase. Alternatively, in the case of discrete processing by a microcomputer, calculation can be performed at an arbitrary cycle.

従って、上記のように、位相区間から推定位相を算出した図10に従い、ステップ14から16において、位相区間を判断し、ステップ17から19において、その位相区間に応じた推定位相を出力し処理を終了する。 Therefore, according to FIG. 10 in which the estimated phase is calculated from the phase interval as described above, the phase interval is determined in steps 14 to 16, and the estimated phase corresponding to the phase interval is output in steps 17 to 19 for processing. finish.

なお、インバータが力行で運転されている場合など、位相推定が不可能な領域が存在する。ただし、これは各区間端部のせいぜい一部の領域であり、後述のように現在の位相と周波数から演算される位相を出力することで、電源が定常状態であれば適切に位相同期を保持可能である。このように、電源回生コンバータの運転/停止にかかわらず、電源との位相同期を可能とする。特に、電源回生コンバータが運転中はインバータの運転状態の如何にもかかわらない。 In addition, there is a region where phase estimation is impossible, such as when the inverter is operated by power running. However, this is at most a part of the end of each section, and by outputting the phase calculated from the current phase and frequency as described later, the phase synchronization is properly maintained if the power supply is in the steady state. It is possible. In this way, it is possible to synchronize the phase with the power supply regardless of whether the power supply regeneration converter is started or stopped. In particular, while the power regenerative converter is in operation, it does not depend on the operating state of the inverter.

図11は位相演算部53のブロック構成図である。位相演算部53は推定された推定位相(θe)を入力として、電源位相に一致する演算位相(θs)を算出するブロックである。この制御ブロックでは、内部に周波数(ω)と位相(θs)を保持しているが、この周波数(ω)と演算位相(θs)は電源の周波数と位相に一致するように位相同期処理が行われている。本ブロックでは、まず、演算位相(θs)と推定位相(θe)が比較され、差分(誤差)が比例積分補償機(PI)に入力される。このときこの比例積分補償機(PI)の出力は周波数となっている。演算位相(θs)と推定位相(θe)が一致している場合は、比例積分補償機(PI)への入力は0となり、現状の周波数(積分値)が維持される。演算位相(θs)と推定位相(θe)にずれがある場合は、差分が比例積分補償機(PI)に入力され、その結果、ずれが小さくなる方向に周波数が調整される。例えば、推定位相(θe)が演算位相(θs)よりも大きい場合は、正の差分(誤差)により、周波数が大きくなる。逆に、推定位相(θe)が演算位相(θs)よりも小さい場合は、負の差分(誤差)により、周波数が小さくなるように補正がかかる。演算位相(θs)は現在の位相に周波数と時間に比例する増分値を加えることで、次の位相が決定される。このようにして、このブロックの周波数(ω)と演算位相(θs)は電源の周波数と位相に一致する値へと収束する。 FIG. 11 is a block configuration diagram of the phase calculation unit 53. The phase calculation unit 53 is a block that calculates an calculation phase (θs) that matches the power supply phase by using the estimated estimated phase (θe) as an input. In this control block, the frequency (ω) and the phase (θs) are held internally, and the phase synchronization processing is performed so that the frequency (ω) and the calculated phase (θs) match the frequency and phase of the power supply. It has been In this block, first, the calculated phase (θs) and the estimated phase (θe) are compared, and the difference (error) is input to the proportional integration compensator (PI). At this time, the output of this proportional integration compensator (PI) is a frequency. When the calculated phase (θs) and the estimated phase (θe) match, the input to the proportional integration compensator (PI) becomes 0, and the current frequency (integrated value) is maintained. If there is a deviation between the calculated phase (θs) and the estimated phase (θe), the difference is input to the proportional integration compensator (PI), and as a result, the frequency is adjusted in the direction in which the deviation becomes smaller. For example, when the estimated phase (θe) is larger than the calculated phase (θs), the frequency becomes large due to the positive difference (error). On the contrary, when the estimated phase (θe) is smaller than the calculated phase (θs), correction is applied so that the frequency becomes smaller due to a negative difference (error). The calculated phase (θs) is determined by adding an increment value proportional to frequency and time to the current phase. In this way, the frequency (ω) and the calculated phase (θs) of this block converge to a value that matches the frequency and phase of the power supply.

次に、電圧振幅演算部54の動作を説明する。位相推定部52と同様に区間を特定し、その区間で与えられる電源電圧に注目する。この時、この信号を微分することで傾きが得られる。例えば、区間1の場合に成立しているVSの式は、θ=ωtとすると、
VS=Va×cos(ωt−120°)
dVS/dt=−ωVasin(ωt−120°)
△Tの時間でVSの変化が△Vだったとすると、
△V/△T=−ωVa×sin(ω(t+△T)−120°)
△V/△T=−ωVa×sin(θ+△Tω−120°)
ここで、簡単のためVSのゼロクロスにて演算を行うことを考える。区間1の場合は、θ=π/6の地点でゼロクロスが発生するのでθ=30°を代入して、
△V/△T=−ωVa×sin(30°+△Tω−120°)
よって、
△V/△T=ωVa×cos(△Tω)
ここで、△Tが十分小さければ、cos(△Tω)=1と近似できるので、
△V/△T=ωVa、よって、Va=△V/(△Tω)となる。
Next, the operation of the voltage amplitude calculation unit 54 will be described. Similar to the phase estimation unit 52, a section is specified, and attention is paid to the power supply voltage given in that section. At this time, the slope can be obtained by differentiating this signal. For example, if the VS equation that holds for section 1 is θ = ωt,
VS = Va × cos (ωt-120 °)
dVS / dt = -ωVasin (ωt-120 °)
If the change in VS is ΔV at the time of ΔT,
ΔV / ΔT = −ωVa × sin (ω (t + ΔT) −120 °)
ΔV / ΔT = −ωVa × sin (θ + ΔTω−120 °)
Here, for the sake of simplicity, it is considered that the calculation is performed by the zero cross of VS. In the case of interval 1, zero cross occurs at the point of θ = π / 6, so substitute θ = 30 ° and substitute.
ΔV / ΔT = −ωVa × sin (30 ° + ΔTω−120 °)
Therefore,
ΔV / ΔT = ωVa × cos (ΔTω)
Here, if ΔT is sufficiently small, it can be approximated as cos (ΔTω) = 1, so that
ΔV / ΔT = ωVa, thus Va = ΔV / (ΔTω).

他の区間に対しても同様の演算を行うことで図12に示す振幅の演算式が得られる。上記の式中のωは位相演算部で保持されているものを使えばよい。cos(△Tω)=1の誤差は、電源が50Hzの場合、1msだと4.9%、400μsの場0.8%程度となる。このように、ゼロクロス点での検出に限定すれば上記のように簡潔な演算で振幅を求められる。 By performing the same calculation for other sections, the amplitude calculation formula shown in FIG. 12 can be obtained. As ω in the above equation, the one held by the phase calculation unit may be used. The error of cos (ΔTω) = 1 is about 4.9% at 1 ms and 0.8% at 400 μs when the power supply is 50 Hz. In this way, if the detection is limited to the zero cross point, the amplitude can be obtained by a simple calculation as described above.

このように、本実施例によれば、電源回生コンバータ端の三相交流電圧の瞬時電圧に比例する信号をA/D変換器へ入力することで電源電圧信号を検出し、CPUによるソフトウェア処理で、三角関数を用いた位相推定を行う。その結果、連続的な位相検出を可能として電源との位相同期が得られ、連続的な電圧監視が可能となり、電源位相跳躍や周波数擾乱に対して早い応答が可能となる。同時に、追加の全波整流回路等を必要とせず、交流電圧振幅を検出可能とする。さらに、二相の交流電圧のみで各相の交流電圧振幅を推定でき、交流電圧振幅は三相個別に求めることができ、電源電圧の不平衡状態も把握することが可能である。また、リアクトルを介して電源に接続される電源回生コンバータにおいて、交流電源電圧の検出を電源回生コンバータの交流電源端子に入力された電源に基づき行うため、別体である電源の電圧を監視する場合に必要となる配線が不要となる。その結果、線材や端子台といった部品の削減、および、誤配線や断線故障の可能性がなくなることによる信頼性の向上を可能とする。 As described above, according to the present embodiment, the power supply voltage signal is detected by inputting a signal proportional to the instantaneous voltage of the three-phase AC voltage at the power supply regeneration converter end to the A / D converter, and the software processing by the CPU is performed. , Perform phase estimation using a triangular function. As a result, continuous phase detection is possible, phase synchronization with the power supply is obtained, continuous voltage monitoring is possible, and a quick response to power supply phase jump and frequency disturbance is possible. At the same time, the AC voltage amplitude can be detected without the need for an additional full-wave rectifier circuit or the like. Furthermore, the AC voltage amplitude of each phase can be estimated only from the two-phase AC voltage, the AC voltage amplitude can be obtained for each of the three phases, and the unbalanced state of the power supply voltage can be grasped. In addition, in the power supply regenerative converter connected to the power supply via the reactor, the AC power supply voltage is detected based on the power supply input to the AC power supply terminal of the power supply regeneration converter, so when monitoring the voltage of a separate power supply. The wiring required for is not required. As a result, it is possible to reduce parts such as wire rods and terminal blocks, and improve reliability by eliminating the possibility of incorrect wiring or disconnection failure.

本実施例では、電源電圧位相の検出に電流値を利用しない例について説明する。 In this embodiment, an example in which the current value is not used for detecting the power supply voltage phase will be described.

図13は、本実施例における電源回生コンバータの構成例を示すブロック図である。図13において、図1と同じ構成は同じ符号を付し、その説明は省略する。図13において図1と異なる点は、交流電流検出部50がなく、交流電流入力が不要である位相推定部56を有する点である。 FIG. 13 is a block diagram showing a configuration example of the power supply regenerative converter in this embodiment. In FIG. 13, the same configurations as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The difference from FIG. 1 in FIG. 13 is that there is no AC current detection unit 50 and a phase estimation unit 56 that does not require an AC current input.

図14は、本実施例における位相推定部56の動作を説明するフローチャートである。図14において、図9と同じ構成は同じ符号を付し、その説明は省略する。本実施例における位相推定部56は、位相推定部52とは異なり電流の入力を必要としない。 FIG. 14 is a flowchart illustrating the operation of the phase estimation unit 56 in this embodiment. In FIG. 14, the same configurations as those in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted. Unlike the phase estimation unit 52, the phase estimation unit 56 in this embodiment does not require a current input.

まず、ステップS20で、入力である電源回生コンバータ端電圧の三相電圧から三つの電圧差に着目する。すなわち、三つの電圧差のいずれかが一定値を下回る場合は、中間相に電流が流れていると判断する。そしてその場合は、ステップS12で自身の演算位相(θs)を推定位相として出力し処理を終了する。この時の閾値としては、電圧検出の誤差等を考慮し、例えば、定格の交流電圧の数%程度とすればよい。 First, in step S20, attention is paid to three voltage differences from the three-phase voltage of the input power supply regenerative converter end voltage. That is, when any of the three voltage differences falls below a certain value, it is determined that a current is flowing in the intermediate phase. In that case, the operation phase (θs) of itself is output as the estimated phase in step S12, and the process is terminated. The threshold value at this time may be, for example, about several% of the rated AC voltage in consideration of an error in voltage detection and the like.

三つの電圧差のいずれも一定値以上の差がある場合は、ステップS21からステップS23で、電圧が他の二つの間となる中間相を特定し、この中間相がどの相かによって、推定位相を決定する。すなわち、中間相の電圧は電源の電圧に一致しているので、図9でのステップS17からS19と同様に、式(1)を利用することで位相の推定が可能となる。なおステップS17からS19の推定位相の決定にあたっては、二つの解のうち、現在の演算位相(θs)に近い値を選択する。 If any of the three voltage differences is greater than or equal to a certain value, the intermediate phase in which the voltage is between the other two is specified in steps S21 to S23, and the estimated phase depends on which phase the intermediate phase is. To determine. That is, since the voltage of the intermediate phase matches the voltage of the power supply, the phase can be estimated by using the equation (1) as in steps S17 to S19 in FIG. In determining the estimated phase in steps S17 to S19, a value close to the current calculation phase (θs) is selected from the two solutions.

位相推定部52と位相推定部56との違いについて説明する。各位相区間のほぼ中央部では、電源回生コンバータやインバータの運転状態に依らず、電源側の電圧(VgR、VgS、VgT)と電源回生コンバータ端の電圧(VR、VS、VT)との大小関係は一致し、かつ、選択される中間相に電流も流れていないことから位相推定部52と位相推定部56の動作に違いはない。一方、各区間の境界では、運転状態によっては電源側の電圧(VgR、VgS、VgT)と電源回生コンバータ端の電圧(VR、VS、VT)とで大小の関係が一致しない。この時の両者の動作の違いを考慮する。 The difference between the phase estimation unit 52 and the phase estimation unit 56 will be described. In the central part of each phase section, the magnitude relationship between the voltage on the power supply side (VgR, VgS, VgT) and the voltage at the end of the power supply regenerative converter (VR, VS, VT) does not depend on the operating state of the power supply regenerative converter or inverter. There is no difference in the operation of the phase estimation unit 52 and the phase estimation unit 56 because they match and no current is flowing in the selected intermediate phase. On the other hand, at the boundary of each section, the magnitude relationship between the voltage on the power supply side (VgR, VgS, VgT) and the voltage at the power supply regenerative converter end (VR, VS, VT) does not match depending on the operating state. Consider the difference between the two operations at this time.

まず、図7の力行運転時の各区間の開始端については、中間相に電流が残っており結果、二相の電圧が等しくなっている。結果、位相推定部56は演算位相(θs)を出力する。位相推定部52の場合は、VT<VR≦VSという条件で正しく区間2を判別するが、中間相に電流が流れているために、結局、演算位相(θs)を出力する。このため、位相推定部56と位相推定部52の出力は一致する。 First, at the start end of each section during power running operation in FIG. 7, a current remains in the intermediate phase, and as a result, the voltages of the two phases are equal. As a result, the phase estimation unit 56 outputs the calculated phase (θs). In the case of the phase estimation unit 52, the section 2 is correctly determined under the condition of VT <VR ≦ VS, but since the current is flowing in the intermediate phase, the calculated phase (θs) is output after all. Therefore, the outputs of the phase estimation unit 56 and the phase estimation unit 52 match.

次に図8の停止時のT/6の直後(区間2の開始部分)を考える。電源回生コンバータ端の電圧は電源電圧とは大小関係が異なり、VT<VS<VRとなっている。位相推定部52の場合は、区間2を判別するが、中間相に電流が流れているために、結局、演算位相(θs)を出力する。位相推定部56は大小関係から区間1と判定するが、中間相の電圧はやはり電源の電圧と一致しているため、式(1)による推定は可能である。このとき、式(1)の二つの解のうち正しい位相は区間2の開始部分となり、区間1の位相範囲を超えるため注意が必要である。図14のフローチャートに示すように、現在位相θsに近いものを選択するか、或は、区間1の位相区間を30°程度広げた領域に存在するものを選択すればよい。本条件では、位相推定部56と位相推定部52の動作は若干異なるものの、どちらも、電源が定常状態であれば適切に位相同期を保持可能である。 Next, consider immediately after T / 6 at the time of stop in FIG. 8 (starting portion of section 2). The voltage at the end of the power regenerative converter differs in magnitude from the power supply voltage, and VT <VS <VR. In the case of the phase estimation unit 52, the section 2 is determined, but since the current is flowing in the intermediate phase, the calculated phase (θs) is output after all. The phase estimation unit 56 determines that the section 1 is based on the magnitude relationship, but since the voltage of the intermediate phase also matches the voltage of the power supply, the estimation by the equation (1) is possible. At this time, it should be noted that the correct phase of the two solutions of the equation (1) is the start portion of the section 2 and exceeds the phase range of the section 1. As shown in the flowchart of FIG. 14, one that is close to the current phase θs may be selected, or one that exists in a region in which the phase section of section 1 is widened by about 30 ° may be selected. Under this condition, although the operations of the phase estimation unit 56 and the phase estimation unit 52 are slightly different, both of them can appropriately maintain the phase synchronization if the power supply is in the steady state.

本実施例では、電源回生コンバータに汎用インバータ用ダイオードモジュールをあわせて利用する例について説明する。 In this embodiment, an example in which a general-purpose inverter diode module is used together with the power regenerative converter will be described.

図15は、本実施例における、電源回生コンバータに汎用インバータのダイオードモジュールを併用する場合の構成ブロック図である。 FIG. 15 is a block diagram of the case where the diode module of the general-purpose inverter is used together with the power supply regenerative converter in this embodiment.

図15に示すように、汎用インバータのダイオードモジュール6は電源回生コンバータ1に接続される三相リアクトル3の電源2側に接続される。この汎用インバータのダイオードモジュール6は力行での電力変換しかできず、回生方向の電流が流れることはない。ここで、汎用インバータ用ダイオードモジュール6を通して供給される力行方向の電流の一部は、電源回生コンバータ1の回生方向の電流として電源側に回生されてしまう。この電流を、以下、循環電流と呼ぶ。 As shown in FIG. 15, the diode module 6 of the general-purpose inverter is connected to the power supply 2 side of the three-phase reactor 3 connected to the power supply regenerative converter 1. The diode module 6 of this general-purpose inverter can only convert power by power running, and current in the regenerative direction does not flow. Here, a part of the current in the power running direction supplied through the general-purpose inverter diode module 6 is regenerated to the power supply side as the current in the regeneration direction of the power supply regeneration converter 1. This current is hereinafter referred to as a circulating current.

本実施例での電流波形を図16、図17、図18に示す。図16は回生運転時の動作波形を示す図、図17は力行運転時の動作波形を示す図、図18は停止時の動作波形を示す図である。図16、図17、図18の何れも、図5と同様に、(a)は電源電圧、(b)は電源回生コンバータ端電圧、(c)は交流電流を示す。 The current waveforms in this embodiment are shown in FIGS. 16, 17, and 18. 16 is a diagram showing an operation waveform during regenerative operation, FIG. 17 is a diagram showing an operation waveform during power running operation, and FIG. 18 is a diagram showing an operation waveform during stop operation. In each of FIGS. 16, 17, and 18, similarly to FIG. 5, (a) shows the power supply voltage, (b) shows the power supply regenerative converter end voltage, and (c) shows the alternating current.

図16の回生運転時の電流波形(c)は、上記循環分の電流増加が発生するが、実施例1の回生運転時の電流波形である図5(c)とほぼ同じ波形となる。そのため、実施例1や実施例2と同じ処理が利用可能である。 The current waveform (c) during the regenerative operation of FIG. 16 is substantially the same as that of FIG. 5 (c), which is the current waveform during the regenerative operation of the first embodiment, although the current increases by the circulation. Therefore, the same processing as in the first and second embodiments can be used.

図17の力行運転時の電流電流(c)は、上記循環電流のため、インバータが力行している場合においても、電源回生コンバータ1部分に流れる電流は回生方向となる。そのため、実施例1の力行運転時の電流波形である図7(c)とは一致せず、むしろ、図5の回生運転時の電流波形(c)に近くなる。また、図16から図18で示される通り、本実施例における電源回生コンバータに汎用インバータのダイオードモジュールが組み合わさった場合は、中間の相に電流が流れていないことがわかる。 Since the current (c) during power running operation in FIG. 17 is the circulating current, the current flowing through the power supply regenerative converter 1 portion is in the regenerative direction even when the inverter is power running. Therefore, it does not match the current waveform (c) of the power running operation of the first embodiment, but rather is closer to the current waveform (c) of the regenerative operation of FIG. Further, as shown in FIGS. 16 to 18, when the diode module of the general-purpose inverter is combined with the power supply regenerative converter in this embodiment, it can be seen that no current flows in the intermediate phase.

図18(c)はインバータが力行運転している時で、電源回生コンバータは運転をしていない場合の電流波形である。この場合、電源回生コンバータ側に回生方向の電流が流れることはない。ただし、インバータの力行方向の電力の大部分は汎用インバータのダイオードモジュールから供給されが、ごく小さい力行方向の電流が電源回生コンバータ側にも発生している。結果、実施例1の図8(c)の力行電力が小さくなった部分と同様の波形となる。 FIG. 18C is a current waveform when the inverter is in power running operation and the power supply regenerative converter is not in operation. In this case, the current in the regeneration direction does not flow to the power supply regeneration converter side. However, most of the power in the power running direction of the inverter is supplied from the diode module of the general-purpose inverter, but a very small current in the power running direction is also generated on the power regenerative converter side. As a result, the waveform is the same as that of the portion where the power running power of FIG. 8C of Example 1 is reduced.

このように、本実施例の構成であっても、特に位相推定処理を考えた場合、前記の実施例と同様となることがわかる。実施例1の位相同期を行う場合は、この場合中間に選択された相に電流は流れないことにより、位相推定部52のフローチャート上の中間に選択された相の電流の有無判定は常に無しと判定される。ただし、位相推定動作に問題はなく当該フローチャートに従い実施例1と同様の位相同期が可能である。 As described above, it can be seen that the configuration of this embodiment is the same as that of the above embodiment, especially when the phase estimation process is considered. When the phase synchronization of the first embodiment is performed, in this case, no current flows in the phase selected in the middle, so that there is always no determination of the presence or absence of the current in the phase selected in the middle on the flowchart of the phase estimation unit 52. It is judged. However, there is no problem in the phase estimation operation, and the same phase synchronization as in the first embodiment can be performed according to the flowchart.

また、実施例2の位相同期も図16、図17、図18に示される波形に対して同様に可能である。また、実施例1で示した振幅演算も図16、図17、図18に示される波形に対して同様に適応できる。 Further, the phase synchronization of the second embodiment can be similarly performed for the waveforms shown in FIGS. 16, 17, and 18. Further, the amplitude calculation shown in the first embodiment can be similarly applied to the waveforms shown in FIGS. 16, 17, and 18.

以上、実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。 Although the examples have been described above, the present invention is not limited to the above-mentioned examples, and various modifications are included. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration. Further, each of the above configurations, functions, processing units, processing means and the like may be realized by hardware by designing a part or all of them by, for example, an integrated circuit.

1:電源回生コンバータ、2:三相交流電源、3:三相リアクトル、4:インバータ、5:モータ、6:ダイオードモジュール、10:三相ブリッジ回路、11:交流電源端子、20:電解コンデンサ、50:交流電流検出部、51:交流電圧検出部、52:位相推定部、53、56:位相演算部、54:電圧振幅演算部、55:駆動信号生成部。 1: Power supply regenerative converter, 2: Three-phase AC power supply, 3: Three-phase reactor, 4: Inverter, 5: Motor, 6: Diode module, 10: Three-phase bridge circuit, 11: AC power supply terminal, 20: Electrolytic capacitor, 50: AC current detection unit, 51: AC voltage detection unit, 52: Phase estimation unit, 53, 56: Phase calculation unit, 54: Voltage amplitude calculation unit, 55: Drive signal generation unit.

Claims (10)

モータを可変速制御するインバータと三相交流電源との間に配置され、前記モータの減速時に発生する誘導起電力を前記三相交流電源に回生する電源回生コンバータであって、
前記三相交流電源と接続される交流電源端子と、
前記交流電源端子での三相の交流電圧を検出する交流電圧検出部と、
前記交流電圧検出部で検出した前記三相の交流電圧から前記三相交流電源の位相を推定する位相推定部を有することを特徴とする電源回生コンバータ。
A power regenerative converter that is arranged between an inverter that controls a motor at variable speed and a three-phase AC power supply, and regenerates the induced electromotive force generated during deceleration of the motor to the three-phase AC power supply.
An AC power supply terminal connected to the three-phase AC power supply,
An AC voltage detector that detects three-phase AC voltage at the AC power supply terminal,
A power supply regeneration converter having a phase estimation unit that estimates the phase of the three-phase AC power supply from the three-phase AC voltage detected by the AC voltage detection unit.
請求項1に記載の電源回生コンバータであって、
前記三相交流電源と接続された前記交流電源端子での二相の電流値から三相の交流電流を検出する交流電流検出部を有し、
前記位相推定部は、前記三相の交流電圧の位相区間を特定し、該位相区間での電圧が三相の中間となる中間相に電流が流れていない場合に、前記三相の交流電圧から前記三相交流電源の位相を推定することを特徴とする電源回生コンバータ。
The power regenerative converter according to claim 1.
It has an AC current detector that detects three-phase AC current from the two-phase current value at the AC power supply terminal connected to the three-phase AC power supply.
The phase estimation unit identifies a phase section of the three-phase AC voltage, and when no current is flowing in the intermediate phase in which the voltage in the phase section is in the middle of the three phases, the phase estimation unit is used from the three-phase AC voltage. A power supply regeneration converter characterized by estimating the phase of the three-phase AC power supply.
請求項1に記載の電源回生コンバータであって、
前記位相推定部は、前記三相の交流電圧の三つの電圧差が所定以上である場合に、位相区間を特定し、該位相区間での電圧が三相の中間となる中間相に電流が流れていない場合に、前記三相の交流電圧から前記三相交流電源の位相を推定することを特徴とする電源回生コンバータ。
The power regenerative converter according to claim 1.
The phase estimation unit identifies a phase section when the three voltage differences between the three-phase AC voltages are equal to or greater than a predetermined value, and a current flows through an intermediate phase in which the voltage in the phase section is intermediate between the three phases. A power supply regeneration converter characterized in that the phase of the three-phase AC power supply is estimated from the three-phase AC voltage when the three-phase AC voltage is not used.
請求項2または3に記載の電源回生コンバータであって、
前記交流電圧検出部は、前記交流電源端子での三相の交流電圧をA/D変換器を介してデジタル変換し、デジタル値の前記三相の交流電圧を検出し、
前記位相推定部は、ソフトウェア処理で実行することを特徴とする電源回生コンバータ。
The power regenerative converter according to claim 2 or 3.
The AC voltage detection unit digitally converts the three-phase AC voltage at the AC power supply terminal via an A / D converter, and detects the digital value of the three-phase AC voltage.
The phase estimation unit is a power supply regenerative converter characterized in that it is executed by software processing.
請求項2または3に記載の電源回生コンバータであって、
三相ブリッジ回路と、
前記三相の交流電圧から電圧振幅を演算する電圧振幅演算部とを有し、
前記位相推定部は、前記三相の交流電圧と前記三相の交流電流と前記電圧振幅と演算位相θsから推定位相θeを出力し、
前記推定位相θeから前記演算位相θsを出力し、前記位相推定部へ前記演算位相θsをフィードバックする位相演算部と、
前記演算位相θsを入力とし、入力位相に応じた6つのゲートパルス信号を生成し、前記三相ブリッジ回路へ出力する駆動信号生成部とを有することを特徴とする電源回生コンバータ。
The power regenerative converter according to claim 2 or 3.
Three-phase bridge circuit and
It has a voltage amplitude calculation unit that calculates the voltage amplitude from the three-phase AC voltage.
The phase estimation unit outputs an estimated phase θe from the three-phase AC voltage, the three-phase AC current, the voltage amplitude, and the calculated phase θs.
A phase calculation unit that outputs the calculation phase θs from the estimated phase θe and feeds back the calculation phase θs to the phase estimation unit.
A power supply regenerative converter characterized by having a drive signal generator that takes the calculated phase θs as an input, generates six gate pulse signals according to the input phase, and outputs the six gate pulse signals to the three-phase bridge circuit.
モータを可変速制御するインバータと三相交流電源との間に配置され、三相ブリッジ回路に前記三相交流電源からの電圧が印加され、前記モータの減速時に発生する誘導起電力を前記三相交流電源に回生する電源回生コンバータの処理方法であって、
前記三相ブリッジ回路に印加される前記三相交流電源からの三相の交流電圧を検出し、
前記検出した前記三相の交流電圧から前記三相交流電源の位相を推定することを特徴とする電源回生コンバータの処理方法。
It is arranged between the inverter that controls the motor at variable speed and the three-phase AC power supply, the voltage from the three-phase AC power supply is applied to the three-phase bridge circuit, and the induced electromotive force generated during deceleration of the motor is applied to the three-phase bridge circuit. It is a processing method of a power supply regeneration converter that regenerates to an AC power supply.
Detecting the three-phase AC voltage from the three-phase AC power supply applied to the three-phase bridge circuit,
A processing method of a power supply regenerative converter, characterized in that the phase of the three-phase AC power supply is estimated from the detected three-phase AC voltage.
請求項6に記載の電源回生コンバータの処理方法であって、
前記三相ブリッジ回路に印加される前記三相交流電源からの二相の電流値から三相の交流電流を検出し、
前記三相の交流電圧の位相区間を特定し、該位相区間での電圧が三相の中間となる中間相に電流が流れていない場合に、前記三相の交流電圧から前記三相交流電源の位相を推定することを特徴とする電源回生コンバータの処理方法。
The processing method of the power regenerative converter according to claim 6.
The three-phase AC current is detected from the two-phase current value from the three-phase AC power supply applied to the three-phase bridge circuit.
When the phase section of the three-phase AC voltage is specified and no current is flowing in the intermediate phase in which the voltage in the phase section is in the middle of the three phases, the three-phase AC power supply is converted from the three-phase AC voltage. A processing method for a power regenerative converter, which comprises estimating the phase.
請求項6に記載の電源回生コンバータの処理方法であって、
前記三相の交流電圧の三つの電圧差が所定以上である場合に、位相区間を特定し、該位相区間での電圧が三相の中間となる中間相に電流が流れていない場合に、前記三相の交流電圧から前記三相交流電源の位相を推定することを特徴とする電源回生コンバータの処理方法。
The processing method of the power regenerative converter according to claim 6.
When the three voltage differences between the three-phase AC voltages are equal to or greater than a predetermined value, a phase section is specified, and when no current is flowing in the intermediate phase in which the voltage in the phase section is in the middle of the three phases, the above. A processing method of a power supply regeneration converter, characterized in that the phase of the three-phase AC power supply is estimated from a three-phase AC voltage.
請求項7または8に記載の電源回生コンバータの処理方法であって、
前記三相ブリッジ回路に印加される前記三相交流電源からの三相の交流電圧をA/D変換器を介してデジタル変換し、前記三相の交流電圧はデジタル値であり、
前記位相の推定を、ソフトウェア処理で実行することを特徴とする電源回生コンバータの処理方法。
The processing method of the power regenerative converter according to claim 7 or 8.
The three-phase AC voltage from the three-phase AC power supply applied to the three-phase bridge circuit is digitally converted via an A / D converter, and the three-phase AC voltage is a digital value.
A processing method of a power regenerative converter, characterized in that the phase estimation is performed by software processing.
請求項7または8に記載の電源回生コンバータの処理方法であって、
前記三相の交流電圧から電圧振幅を演算し、
前記位相の推定は、前記三相の交流電圧と前記三相の交流電流と前記電圧振幅と演算位相θsから推定位相θeを出力し、
前記推定位相θeから前記演算位相θsを演算し、前記推定位相θeを推定するための前記演算位相θsへフィードバックし、
前記演算位相θsを入力とし、入力位相に応じた6つのゲートパルス信号を生成し、該6つのゲートパルス信号を前記三相ブリッジ回路へ出力することを特徴とする電源回生コンバータの処理方法。
The processing method of the power regenerative converter according to claim 7 or 8.
The voltage amplitude is calculated from the three-phase AC voltage,
In the phase estimation, the estimated phase θe is output from the three-phase AC voltage, the three-phase AC current, the voltage amplitude, and the calculated phase θs.
The calculated phase θs is calculated from the estimated phase θe and fed back to the calculated phase θs for estimating the estimated phase θe.
A processing method of a power supply regeneration converter, characterized in that six gate pulse signals corresponding to the input phase are generated with the calculated phase θs as an input, and the six gate pulse signals are output to the three-phase bridge circuit.
JP2019133980A 2019-07-19 2019-07-19 Power regeneration converter and its processing method Active JP7146705B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019133980A JP7146705B2 (en) 2019-07-19 2019-07-19 Power regeneration converter and its processing method
CN202080041642.XA CN113950792B (en) 2019-07-19 2020-06-09 Power regeneration converter and processing method thereof
PCT/JP2020/022624 WO2021014803A1 (en) 2019-07-19 2020-06-09 Power regeneration converter and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133980A JP7146705B2 (en) 2019-07-19 2019-07-19 Power regeneration converter and its processing method

Publications (3)

Publication Number Publication Date
JP2021019437A true JP2021019437A (en) 2021-02-15
JP2021019437A5 JP2021019437A5 (en) 2021-11-04
JP7146705B2 JP7146705B2 (en) 2022-10-04

Family

ID=74193366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133980A Active JP7146705B2 (en) 2019-07-19 2019-07-19 Power regeneration converter and its processing method

Country Status (3)

Country Link
JP (1) JP7146705B2 (en)
CN (1) CN113950792B (en)
WO (1) WO2021014803A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022244381A1 (en) * 2021-05-19 2022-11-24

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163752A (en) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm controlled self-excited rectifier
JP2004180427A (en) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp Regenerative power supply converter
JP2011101473A (en) * 2009-11-04 2011-05-19 Sanyo Denki Co Ltd Power unit for motor drive
JP2013225987A (en) * 2012-04-20 2013-10-31 Yaskawa Electric Corp Power supply regeneration device and power conversion device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310617B2 (en) * 2002-11-26 2009-08-12 株式会社安川電機 Power regeneration converter
JP2009100558A (en) * 2007-10-17 2009-05-07 Panasonic Corp Motor driving inverter controller
JP5377398B2 (en) * 2010-04-09 2013-12-25 日立アプライアンス株式会社 Motor control device and phase current detection method therefor
KR101621994B1 (en) * 2011-12-30 2016-05-17 엘에스산전 주식회사 Control apparatus for regenerative medium voltage inverter
JP5724903B2 (en) * 2012-02-20 2015-05-27 株式会社安川電機 Power regeneration device and power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163752A (en) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm controlled self-excited rectifier
JP2004180427A (en) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp Regenerative power supply converter
JP2011101473A (en) * 2009-11-04 2011-05-19 Sanyo Denki Co Ltd Power unit for motor drive
JP2013225987A (en) * 2012-04-20 2013-10-31 Yaskawa Electric Corp Power supply regeneration device and power conversion device

Also Published As

Publication number Publication date
CN113950792B (en) 2023-09-08
WO2021014803A1 (en) 2021-01-28
JP7146705B2 (en) 2022-10-04
CN113950792A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP5154660B2 (en) System and method for controlling UPS operation
US6771522B2 (en) Inverter parallel operation system
US11075540B2 (en) Uninterruptible power supply device
JP5377604B2 (en) Power converter
JP5377603B2 (en) Power converter
CN100399697C (en) Controller for a wound-rotor induction motor
EP3609069B1 (en) Converter system
JP6816307B1 (en) Abnormality detection method for power supply and AC power supply
WO2021014803A1 (en) Power regeneration converter and processing method thereof
JPH09275685A (en) Power supply harmonic suppression device
US11342878B1 (en) Regenerative medium voltage drive (Cascaded H Bridge) with reduced number of sensors
JP4712148B2 (en) Power converter
CN114113994A (en) Power switch fault detection method and detection circuit thereof
JP5302905B2 (en) Power converter
JPS6210109B2 (en)
JP4893113B2 (en) Control device for rectifier circuit
JP3041661B2 (en) Inverter parallel operation control method and device, and uninterruptible power supply
CN112710901A (en) Direct current bus capacitance detection circuit and method
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JP5452259B2 (en) Power regeneration converter
Zhou et al. Design of dc link current observer for a 3-phase active rectifier with feedforward control
JPWO2019239628A1 (en) Converter and motor control device
JPH11289767A (en) Power failure detector for power converter
JP5140618B2 (en) Three-phase power converter
JPH10164845A (en) Pwm rectifier

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7146705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150