JP2021017969A - Tubular vibration isolation device - Google Patents

Tubular vibration isolation device Download PDF

Info

Publication number
JP2021017969A
JP2021017969A JP2019135587A JP2019135587A JP2021017969A JP 2021017969 A JP2021017969 A JP 2021017969A JP 2019135587 A JP2019135587 A JP 2019135587A JP 2019135587 A JP2019135587 A JP 2019135587A JP 2021017969 A JP2021017969 A JP 2021017969A
Authority
JP
Japan
Prior art keywords
main body
rubber elastic
elastic body
deformation control
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135587A
Other languages
Japanese (ja)
Other versions
JP7233331B2 (en
Inventor
拓大 池部
Takuhiro Ikebe
拓大 池部
雅也 服部
Masaya Hattori
雅也 服部
間山 昭宏
Akihiro Mayama
昭宏 間山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Nissan Motor Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Nissan Motor Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2019135587A priority Critical patent/JP7233331B2/en
Publication of JP2021017969A publication Critical patent/JP2021017969A/en
Application granted granted Critical
Publication of JP7233331B2 publication Critical patent/JP7233331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

To provide a tubular vibration isolation device having a novel structure which can achieve a degree of freedom of the tuning of a spring characteristic or the like while sufficiently securing the durability of a main body rubber elastic body.SOLUTION: In a tubular vibration isolation device 10 in which an inner shaft member 12 and an outer cylinder member 14 are connected to each other via a main body rubber elastic body 16, a hollow part 24 opened at an end face in an axial direction, and extending in the axial direction toward a plate-shaped part 18 of the inner shaft member 12 on an external peripheral face of the inner shaft member 12 is formed at the main body rubber elastic body 16. A deformation control face 34 protruding on the external peripheral face is formed at the inner shaft member 12. An overlapped region 36 expanding along an inner face 26 of the hollow part 24, and a release region 38 gradually separating from the inner face 26 of the hollow part 24 toward an opening side of the hollow part 24 from the overlapped region 36 are arranged at the deformation control face 34. An abutment region of the main body rubber elastic body 16 abutting on the deformation control face 34 is expanded toward the release region 38 from the overlapped region 36 following an increase of an input load.SELECTED DRAWING: Figure 1

Description

本発明は、例えば自動車のエンジンマウントなどに適用される筒型防振装置に関するものである。 The present invention relates to a tubular anti-vibration device applied to, for example, an engine mount of an automobile.

従来から、自動車のエンジンマウントやサブフレームマウントなどに適用される筒型防振装置が知られている。例えば、特開2018−071768号公報(特許文献1)では、上端部に板状部を有するインナ軸部材と、上端部に拡開状部を有するアウタ筒部材が、本体ゴム弾性体によって弾性連結された構造を有するエンジンマウントが開示されている。 Conventionally, tubular vibration isolators applied to automobile engine mounts, subframe mounts, and the like have been known. For example, in Japanese Patent Application Laid-Open No. 2018-071768 (Patent Document 1), an inner shaft member having a plate-shaped portion at the upper end and an outer cylinder member having an expanded portion at the upper end are elastically connected by a rubber elastic body of the main body. An engine mount having the above-mentioned structure is disclosed.

特開2018−071768号公報Japanese Unexamined Patent Publication No. 2018-071768

ところで、従来構造の筒型防振装置では、ばね特性の調節等の目的で、本体ゴム弾性体に対してすぐり穴を設けることがある。例えば、特許文献1等に記載されているように、本体ゴム弾性体の軸方向の片側の端面に開口して周方向に延びる凹所形状のすぐり穴が採用される。 By the way, in the tubular vibration isolator having a conventional structure, a hole may be provided in the rubber elastic body of the main body for the purpose of adjusting the spring characteristics and the like. For example, as described in Patent Document 1 and the like, a concave hole having an opening on one end surface of the main body rubber elastic body in the axial direction and extending in the circumferential direction is adopted.

しかしながら、特許文献1のようなすぐり穴を設けると、耐久性の確保が難しい場合があった。例えば入力荷重が大きい場合や、筒型防振装置の配設スペースなどを考慮して設定されるサイズ等の都合で本体ゴム弾性体の径方向厚さを確保しがたい場合などには、すぐり穴によるばね特性の実現と耐久性の確保とを、高度に両立して達成することが難しい場合もあった。 However, it may be difficult to ensure durability when the pits as in Patent Document 1 are provided. For example, when the input load is large, or when it is difficult to secure the radial thickness of the rubber elastic body of the main body due to the size set in consideration of the arrangement space of the tubular vibration isolator, etc. In some cases, it was difficult to achieve both the realization of spring characteristics by holes and the assurance of durability at a high level.

本発明の解決課題は、本体ゴム弾性体の耐久性を充分に確保しつつ、ばね特性等のチューニング自由度を達成できる、新規な構造の筒型防振装置を提供することにある。 An object of the present invention is to provide a tubular vibration isolator having a novel structure capable of achieving tuning flexibility such as spring characteristics while sufficiently ensuring the durability of the rubber elastic body of the main body.

以下、本発明を把握するための好ましい態様について記載するが、以下に記載の各態様は、例示的に記載したものであって、適宜に互いに組み合わせて採用され得るだけでなく、各態様に記載の複数の構成要素についても、可能な限り独立して認識及び採用することができ、適宜に別の態様に記載の何れかの構成要素と組み合わせて採用することもできる。それによって、本発明では、以下に記載の態様に限定されることなく、種々の別態様が実現され得る。 Hereinafter, preferred embodiments for grasping the present invention will be described, but each of the embodiments described below is described as an example, and not only can be appropriately combined with each other and adopted, but also described in each embodiment. The plurality of components of the above can be recognized and adopted independently as much as possible, and can be appropriately adopted in combination with any of the components described in another embodiment. Thereby, in the present invention, various other aspects can be realized without being limited to the aspects described below.

第一の態様は、軸方向一方の端部に板状部を有するインナ軸部材と軸方向一方の端部に拡開状部を有するアウタ筒部材とが本体ゴム弾性体で連結された筒型防振装置において、前記本体ゴム弾性体には、軸方向他方の端面に開口して前記インナ軸部材の外周面上を前記板状部に向かって軸方向に延びる空洞部が設けられている一方、該インナ軸部材には、外周面上に突出する変形制御面が設けられていると共に、該変形制御面には、該空洞部の内面に沿って広がる重なり領域と、該重なり領域から該空洞部の開口側に向かって該空洞部の内面から次第に離れるリリース領域とが、設けられており、該本体ゴム弾性体の該変形制御面への当接領域が入力荷重の増大に伴って該重なり領域から該リリース領域に向けて広がるようになっているものである。 The first aspect is a tubular type in which an inner shaft member having a plate-shaped portion at one end in the axial direction and an outer tubular member having a spread-shaped portion at one end in the axial direction are connected by a main body rubber elastic body. In the vibration isolator, the rubber elastic body of the main body is provided with a cavity portion that opens at the other end face in the axial direction and extends axially toward the plate-shaped portion on the outer peripheral surface of the inner shaft member. The inner shaft member is provided with a deformation control surface protruding on the outer peripheral surface, and the deformation control surface has an overlapping region extending along the inner surface of the cavity portion and the cavity from the overlapping region. A release region that gradually separates from the inner surface of the cavity toward the opening side of the portion is provided, and the contact region of the main body rubber elastic body with the deformation control surface overlaps with the increase in the input load. It extends from the region toward the release region.

本態様に従う構造とされた筒型防振装置によれば、本体ゴム弾性体に空洞部が設けられていることにより、本体ゴム弾性体の自由表面の大きさや位置、本体ゴム弾性体のゴムボリュームなどを空洞部によって適宜設定等して、ばね特性等を調節することが可能になり、優れたチューニング自由度が確保され得る。 According to the tubular anti-vibration device having a structure according to this embodiment, the size and position of the free surface of the main body rubber elastic body and the rubber volume of the main body rubber elastic body are provided by providing the hollow portion in the main body rubber elastic body. It is possible to adjust the spring characteristics and the like by appropriately setting the above according to the cavity, and an excellent degree of freedom in tuning can be ensured.

インナ軸部材の外周面上に突出する変形制御面が設けられており、本体ゴム弾性体の弾性変形に際して、本体ゴム弾性体の空洞部の内面が変形制御面に当接することで、空洞部の内面の変形態様乃至は変形量が制御され得る。それ故、空洞部の内面において歪が局所的に集中するような変形態様を抑えることが可能になり、例えば従来構造の凹所形状のすぐり穴で問題になりやすかった穴底部における応力や歪の集中を回避して、本体ゴム弾性体の耐久性を向上させることができる。 A deformation control surface that protrudes on the outer peripheral surface of the inner shaft member is provided, and when the elastic deformation of the main body rubber elastic body occurs, the inner surface of the hollow portion of the main body rubber elastic body comes into contact with the deformation control surface, so that the cavity portion The deformation mode or the amount of deformation of the inner surface can be controlled. Therefore, it is possible to suppress a deformation mode in which strain is locally concentrated on the inner surface of the cavity, and for example, stress and strain at the bottom of a hole, which is likely to be a problem in a recessed hole of a conventional structure. Concentration can be avoided and the durability of the rubber elastic body of the main body can be improved.

インナ軸部材に設けられた変形制御面が重なり領域とリリース領域とを備えており、本体ゴム弾性体が弾性変形して空洞部が変形する際に、本体ゴム弾性体の変形制御面への当接領域が、入力荷重や弾性変形量の増大に伴って重なり領域からリリース領域に向けて広がるようになっている。これにより、本体ゴム弾性体の変形量が小さい場合には、変形制御面による本体ゴム弾性体の拘束領域を狭くして、本体ゴム弾性体の大きな自由表面によりばね定数の小さい柔らかいばね特性を実現することができる。本体ゴム弾性体の変形量が大きくなるに従って、本体ゴム弾性体の変形制御面に対する当接領域がリリース領域まで広がって、変形制御面による本体ゴム弾性体の拘束領域が広くなることにより、例えば本体ゴム弾性体の変形剛性を非線形的に向上させることも可能となる。 The deformation control surface provided on the inner shaft member has an overlapping region and a release region, and when the main body rubber elastic body is elastically deformed and the cavity is deformed, the main body rubber elastic body hits the deformation control surface. The tangent region expands from the overlapping region to the release region as the input load and the amount of elastic deformation increase. As a result, when the amount of deformation of the main body rubber elastic body is small, the restraint area of the main body rubber elastic body by the deformation control surface is narrowed, and the large free surface of the main body rubber elastic body realizes a soft spring characteristic with a small spring constant. can do. As the amount of deformation of the main body rubber elastic body increases, the contact region of the main body rubber elastic body with respect to the deformation control surface expands to the release region, and the restraint region of the main body rubber elastic body by the deformation control surface widens, for example, the main body. It is also possible to improve the deformation rigidity of the rubber elastic body non-linearly.

第二の態様は、第一の態様に記載された筒型防振装置において、前記変形制御面が、突出高さが段階的に異ならされた複数段が軸方向で滑らかにつながった湾曲面とされているものである。 In the second aspect, in the tubular anti-vibration device described in the first aspect, the deformation control surface is a curved surface in which a plurality of stages having stepwisely different protrusion heights are smoothly connected in the axial direction. It is what has been done.

本態様に従う構造とされた筒型防振装置によれば、本体ゴム弾性体の変形制御面への当接領域が入力荷重の増大に伴って段階的に増大することから、本体ゴム弾性体の変形量が小さい場合の柔らかいばね特性と、本体ゴム弾性体の変形量が大きい場合の歪の分散化とが、それぞれ効果的に実現される。 According to the tubular anti-vibration device having a structure according to this embodiment, the contact area of the main body rubber elastic body with the deformation control surface gradually increases as the input load increases, so that the main body rubber elastic body The soft spring characteristics when the amount of deformation is small and the dispersion of strain when the amount of deformation of the rubber elastic body of the main body is large are effectively realized.

第三の態様は、第一又は第二の態様に記載された筒型防振装置において、前記変形制御面が前記インナ軸部材に一体形成された大径部によって構成されているものである。 The third aspect is the tubular vibration isolator described in the first or second aspect, wherein the deformation control surface is formed of a large diameter portion integrally formed with the inner shaft member.

本態様に従う構造とされた筒型防振装置によれば、変形制御面を備えるインナ軸部材が部品点数の少ない簡単な構造によって実現される。 According to the tubular vibration isolator having a structure according to this aspect, the inner shaft member provided with the deformation control surface is realized by a simple structure having a small number of parts.

第四の態様は、第一又は第二の態様に記載された筒型防振装置において、前記変形制御面が前記インナ軸部材に外嵌固定された別部材によって構成されているものである。 The fourth aspect is the tubular anti-vibration device according to the first or second aspect, wherein the deformation control surface is formed by another member that is externally fitted and fixed to the inner shaft member.

本態様に従う構造とされた筒型防振装置によれば、例えば、本体ゴム弾性体の成形時に加硫接着されたインナ軸部材に対して、変形制御面を別部材の後付けによって設けることも可能になる。 According to the tubular anti-vibration device having a structure according to this aspect, for example, it is possible to provide a deformation control surface by retrofitting a separate member to the inner shaft member that has been vulcanized and adhered during molding of the rubber elastic body of the main body. become.

第五の態様は、第一〜第四の何れか1つの態様に記載された筒型防振装置において、前記インナ軸部材から前記空洞部内へ突出するストッパ突部が、該空洞部の深さ方向の中間部分において設けられているものである。 A fifth aspect is the depth of the cavity in the tubular vibration isolator described in any one of the first to fourth aspects, in which the stopper protrusion protruding from the inner shaft member into the cavity is the depth of the cavity. It is provided in the middle part of the direction.

本態様に従う構造とされた筒型防振装置によれば、空洞部を利用してインナ軸部材とアウタ筒部材との軸直角方向の相対変位量を緩衝的に制限するストッパ機構を実現することができる。 According to the tubular anti-vibration device having a structure according to this embodiment, it is possible to realize a stopper mechanism that bufferably limits the relative displacement amount of the inner shaft member and the outer cylinder member in the direction perpendicular to the axis by using the cavity. Can be done.

しかも、ストッパ突部が空洞部の内面に当接することにより、空洞部の内面が変形制御面を外れた部分においても変形を拘束されることから、大きな荷重の入力時における本体ゴム弾性体の歪量の抑制により、本体ゴム弾性体の耐久性の更なる向上が実現される。 Moreover, since the stopper protrusion abuts on the inner surface of the cavity, the deformation is restrained even when the inner surface of the cavity deviates from the deformation control surface, so that the rubber elastic body of the main body is distorted when a large load is input. By suppressing the amount, the durability of the rubber elastic body of the main body is further improved.

第六の態様は、第一〜第五の何れか1つの態様に記載された筒型防振装置において、前記重なり領域の外周側に位置する前記本体ゴム弾性体の外周面が、前記アウタ筒部材に固着されていない自由表面とされているものである。 In the sixth aspect, in the tubular anti-vibration device according to any one of the first to fifth aspects, the outer peripheral surface of the main body rubber elastic body located on the outer peripheral side of the overlapping region is the outer cylinder. It is a free surface that is not fixed to the member.

本態様に従う構造とされた筒型防振装置によれば、重なり領域の外周側に位置する本体ゴム弾性体の外周面が自由表面とされていることにより、本体ゴム弾性体の変形自由度が確保されて応力集中の緩和が図られると共に、例えば本体ゴム弾性体における空洞部の内面が重なり領域によって変形を拘束された状態においても、著しい高ばね化を回避することも容易となる。 According to the tubular anti-vibration device having a structure according to this embodiment, the outer peripheral surface of the main body rubber elastic body located on the outer peripheral side of the overlapping region is a free surface, so that the degree of freedom of deformation of the main body rubber elastic body is increased. In addition to being secured and alleviating stress concentration, it is also easy to avoid a significant increase in spring even in a state where the inner surface of the cavity portion of the main body rubber elastic body is overlapped and the deformation is restrained by the overlapping region.

第七の態様は、第一〜第六の何れか1つの態様に記載された筒型防振装置において、前記変形制御面が周方向の全周にわたって連続しており、該変形制御面の前記重なり領域が全周にわたって前記空洞部の内面に沿って広がっているものである。 A seventh aspect is the tubular anti-vibration device according to any one of the first to sixth aspects, wherein the deformation control surface is continuous over the entire circumference in the circumferential direction, and the deformation control surface is described. The overlapping region extends along the inner surface of the cavity over the entire circumference.

本態様に従う構造とされた筒型防振装置によれば、入力に対する本体ゴム弾性体の局所的な歪の集中が全周にわたって回避されて、本体ゴム弾性体の耐久性の向上が図られる。 According to the tubular anti-vibration device having a structure according to this aspect, the concentration of local strain of the main body rubber elastic body with respect to the input is avoided over the entire circumference, and the durability of the main body rubber elastic body can be improved.

第八の態様は、第一〜第七の何れか1つの態様に記載された筒型防振装置において、前記空洞部が略一定の内径で軸方向に延びているものである。 The eighth aspect is the tubular anti-vibration device according to any one of the first to seventh aspects, wherein the cavity portion extends in the axial direction with a substantially constant inner diameter.

本態様に従う構造とされた筒型防振装置によれば、本体ゴム弾性体が弾性変形する際に、空洞部の内面において歪の集中が生じ難い。 According to the tubular anti-vibration device having a structure according to this embodiment, when the elastic body rubber is elastically deformed, strain is unlikely to be concentrated on the inner surface of the cavity.

本発明によれば、筒型防振装置において、本体ゴム弾性体の耐久性を充分に確保しつつ、ばね特性等のチューニング自由度を達成することができる。 According to the present invention, in a tubular anti-vibration device, it is possible to achieve a degree of freedom in tuning such as spring characteristics while sufficiently ensuring the durability of the rubber elastic body of the main body.

本発明の第一の実施形態としてのエンジンマウントを示す断面図Sectional drawing which shows the engine mount as the 1st Embodiment of this invention. 図1に示すエンジンマウントを構成する一体加硫成形品の断面図Cross-sectional view of the integrally vulcanized molded product constituting the engine mount shown in FIG. 図1に示すエンジンマウントの本体ゴム弾性体に軸方向の圧縮荷重が作用した状態を示す断面図A cross-sectional view showing a state in which an axial compressive load is applied to the rubber elastic body of the main body of the engine mount shown in FIG. 本発明の第二の実施形態としてのエンジンマウントを示す断面図Sectional drawing which shows the engine mount as the 2nd Embodiment of this invention. 図4に示すエンジンマウントを構成する一体加硫成形品の断面図Cross-sectional view of the integrally vulcanized molded product constituting the engine mount shown in FIG. 図4に示すエンジンマウントの本体ゴム弾性体に軸方向の圧縮荷重が作用した状態を示す断面図A cross-sectional view showing a state in which an axial compressive load is applied to the rubber elastic body of the main body of the engine mount shown in FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本発明に従う構造とされた筒型防振装置の第一の実施形態として、自動車用のエンジンマウント10が示されている。エンジンマウント10は、インナ軸部材12とアウタ筒部材14が本体ゴム弾性体16によって連結された構造を有している。以下の説明において、上下方向とは、マウント中心軸方向である図1中の上下方向を言う。 FIG. 1 shows an engine mount 10 for an automobile as a first embodiment of a tubular vibration isolator having a structure according to the present invention. The engine mount 10 has a structure in which the inner shaft member 12 and the outer cylinder member 14 are connected by a main body rubber elastic body 16. In the following description, the vertical direction means the vertical direction in FIG. 1 which is the direction of the central axis of the mount.

インナ軸部材12は、金属や合成樹脂などで形成されている。インナ軸部材12は、円環板形状の板状部18が、上下方向に直線的に延びる略円筒形状の軸本体20の上面に重ね合わされて設けられた構造を有している。 The inner shaft member 12 is made of metal, synthetic resin, or the like. The inner shaft member 12 has a structure in which a ring plate-shaped plate-shaped portion 18 is superposed on the upper surface of a substantially cylindrical shaft body 20 extending linearly in the vertical direction.

アウタ筒部材14は、インナ軸部材12と同様に、金属や合成樹脂などで形成されている。アウタ筒部材14は、薄肉大径の略円筒形状とされている。アウタ筒部材14は、略一定の直径で上下方向に直線的に延びる筒状部21の上側に、上方へ向けて大径となる拡開状部22が設けられている。また、筒状部21の下側には、内周側へ向かって突出する内フランジ状部23が設けられている。 The outer cylinder member 14 is made of metal, synthetic resin, or the like, like the inner shaft member 12. The outer cylinder member 14 has a thin-walled large-diameter substantially cylindrical shape. The outer cylinder member 14 is provided with an expanded portion 22 having a substantially constant diameter and having a large diameter upward above the tubular portion 21 extending linearly in the vertical direction. Further, on the lower side of the tubular portion 21, an inner flange-shaped portion 23 projecting toward the inner peripheral side is provided.

インナ軸部材12の上端部に設けられた板状部18とアウタ筒部材14とが、上下に離れて配置されて、本体ゴム弾性体16によって弾性連結されている。本体ゴム弾性体16は、円筒状とされて、径方向の中央部分に空洞部24を備えている。空洞部24は、内面26が略一定の内径寸法で上下方向に直線的に延びており、本体ゴム弾性体16の下面に開口部28を有している。空洞部24は、内面26の下端の開口部28が下方に向けて拡開していると共に、上端部が部分的に小径とされている。そして、本体ゴム弾性体16の上面がインナ軸部材12の板状部18の下面に固着されていると共に、本体ゴム弾性体16の外周面がアウタ筒部材14の内周面に固着されている。本体ゴム弾性体16は、図2に示すように、板状部18とアウタ筒部材14を備える一体加硫成形品として形成されており、板状部18とアウタ筒部材14は、本体ゴム弾性体16に対して、本体ゴム弾性体16の成形時に加硫接着される。 The plate-shaped portion 18 provided at the upper end portion of the inner shaft member 12 and the outer cylinder member 14 are arranged vertically apart from each other and are elastically connected by the main body rubber elastic body 16. The main body rubber elastic body 16 has a cylindrical shape and has a hollow portion 24 at a central portion in the radial direction. The inner surface 26 of the cavity 24 extends linearly in the vertical direction with a substantially constant inner diameter, and has an opening 28 on the lower surface of the main body rubber elastic body 16. In the hollow portion 24, the opening 28 at the lower end of the inner surface 26 is widened downward, and the upper end portion has a partially small diameter. The upper surface of the main body rubber elastic body 16 is fixed to the lower surface of the plate-shaped portion 18 of the inner shaft member 12, and the outer peripheral surface of the main body rubber elastic body 16 is fixed to the inner peripheral surface of the outer cylinder member 14. .. As shown in FIG. 2, the main body rubber elastic body 16 is formed as an integrally vulcanized molded product including a plate-shaped portion 18 and an outer cylinder member 14, and the plate-shaped portion 18 and the outer cylinder member 14 are formed as an integrally vulcanized molded product. It is vulcanized and adhered to the body 16 when the main body rubber elastic body 16 is molded.

本体ゴム弾性体16の上部30は、インナ軸部材12の板状部18とアウタ筒部材14の拡開状部22との上下方向間に位置しており、外周面31にアウタ筒部材14が固着されていない。これにより、本体ゴム弾性体16の上部30の外周面31は、板状部18と拡開状部22の間で外周へ露出する自由表面とされている。露出した本体ゴム弾性体16の上部30の外周面31は、外周へ向けて凹となる断面形状を有している。 The upper portion 30 of the main body rubber elastic body 16 is located between the plate-shaped portion 18 of the inner shaft member 12 and the expanded portion 22 of the outer cylinder member 14 in the vertical direction, and the outer cylinder member 14 is located on the outer peripheral surface 31. Not stuck. As a result, the outer peripheral surface 31 of the upper portion 30 of the main body rubber elastic body 16 is a free surface exposed to the outer circumference between the plate-shaped portion 18 and the expanded-shaped portion 22. The outer peripheral surface 31 of the upper portion 30 of the exposed main body rubber elastic body 16 has a cross-sectional shape that is concave toward the outer circumference.

インナ軸部材12の軸本体20は、本体ゴム弾性体16の空洞部24に対して、板状部18の固着側と反対側にある開口部28から挿入される。そして、軸本体20の上面が、本体ゴム弾性体16の一体加硫成形品を構成する板状部18の内周部分の下面に突き当てられて重ね合わされる。軸本体20の下端部は、軸本体20の上面が板状部18に突き当てられた状態において、空洞部24の開口部28から下方へ突出している。 The shaft body 20 of the inner shaft member 12 is inserted into the hollow portion 24 of the rubber elastic body 16 from the opening 28 on the side opposite to the fixed side of the plate-shaped portion 18. Then, the upper surface of the shaft main body 20 is abutted against the lower surface of the inner peripheral portion of the plate-shaped portion 18 constituting the integrally vulcanized molded product of the main body rubber elastic body 16 and overlapped. The lower end of the shaft body 20 projects downward from the opening 28 of the cavity 24 in a state where the upper surface of the shaft body 20 is abutted against the plate-shaped portion 18.

本体ゴム弾性体16の空洞部24は、下端の開口部28からインナ軸部材12の軸本体20の外周面上を板状部18に向かって軸方向に延びている。インナ軸部材12の軸本体20が本体ゴム弾性体16の空洞部24に挿通されて軸方向に延びており、軸本体20の外周面が空洞部24の内面26に対して内周に離れている。 The hollow portion 24 of the main body rubber elastic body 16 extends axially from the opening 28 at the lower end on the outer peripheral surface of the shaft main body 20 of the inner shaft member 12 toward the plate-shaped portion 18. The shaft body 20 of the inner shaft member 12 is inserted into the cavity 24 of the rubber elastic body 16 and extends in the axial direction, and the outer peripheral surface of the shaft body 20 is separated from the inner surface 26 of the cavity 24 inwardly. There is.

空洞部24に差し入れられた軸本体20の上部には、大径部32が一体形成されている。大径部32は、軸本体20の外周面から空洞部24の内面26に向かって外周へ突出しており、空洞部24の上端に位置している。大径部32の外周面は、滑らかに連続する変形制御面34とされている。変形制御面34は、全周にわたって略一定の断面形状で連続する湾曲面とされている。変形制御面34は、上部が重なり領域36とされていると共に、下部がリリース領域38とされている。 A large diameter portion 32 is integrally formed on the upper portion of the shaft body 20 inserted into the cavity portion 24. The large diameter portion 32 projects from the outer peripheral surface of the shaft body 20 toward the inner surface 26 of the cavity portion 24 toward the outer circumference, and is located at the upper end of the cavity portion 24. The outer peripheral surface of the large diameter portion 32 is a smoothly continuous deformation control surface 34. The deformation control surface 34 is a curved surface that is continuous with a substantially constant cross-sectional shape over the entire circumference. The upper portion of the deformation control surface 34 is an overlapping region 36, and the lower portion is a release region 38.

重なり領域36は、略円筒面とされており、軸本体20が空洞部24に挿入配置された状態において、全周にわたって空洞部24の内面26に沿って広がっている。本実施形態の重なり領域36は、空洞部24の内面26に当接している。重なり領域36は、空洞部24の内面26に対して当接圧が略0とされた0タッチ状態で接していても良いし、空洞部24の内面26に0より大きい所定の当接圧で押し付けられていても良い。また、重なり領域36は、空洞部24の内面26に沿って広がっていれば、空洞部24の内面26に対して部分的に又は略全体に亘って隙間があっても良い。 The overlapping region 36 has a substantially cylindrical surface, and extends along the inner surface 26 of the cavity 24 over the entire circumference in a state where the shaft body 20 is inserted and arranged in the cavity 24. The overlapping region 36 of the present embodiment is in contact with the inner surface 26 of the cavity 24. The overlapping region 36 may be in contact with the inner surface 26 of the cavity 24 in a 0-touch state in which the contact pressure is substantially 0, or the overlapping region 36 may be in contact with the inner surface 26 of the cavity 24 at a predetermined contact pressure greater than 0. It may be pressed. Further, as long as the overlapping region 36 extends along the inner surface 26 of the cavity portion 24, there may be a gap with respect to the inner surface 26 of the cavity portion 24 partially or substantially entirely.

リリース領域38は、重なり領域36の下方に連続して設けられている。リリース領域38は、重なり領域36から下方へ向けて次第に小径となる第一のテーパ面40と、第一のテーパ面40の下方において略一定の径寸法で広がる筒状面42と、筒状面42から下方へ向けて次第に小径となる第二のテーパ面44とを備えている。このように、リリース領域38は、途中に径寸法が略一定になる部分を含んでいるが、全体として下方へ向けて小径となっている。これにより、リリース領域38は、空洞部24の内面26に対して、内周へ離れている。リリース領域38と空洞部24の内面26との距離は、重なり領域36から空洞部24の開口部28に向かって次第に大きくなっている。 The release region 38 is continuously provided below the overlapping region 36. The release region 38 includes a first tapered surface 40 whose diameter gradually decreases downward from the overlapping region 36, a tubular surface 42 extending below the first tapered surface 40 with a substantially constant diameter, and a tubular surface. It is provided with a second tapered surface 44 whose diameter gradually decreases downward from 42. As described above, the release region 38 includes a portion in which the diameter dimension becomes substantially constant, but the diameter becomes smaller as a whole downward. As a result, the release region 38 is separated from the inner surface 26 of the cavity 24 toward the inner circumference. The distance between the release region 38 and the inner surface 26 of the cavity 24 gradually increases from the overlapping region 36 toward the opening 28 of the cavity 24.

リリース領域38が筒状面42を有することにより、重なり領域36とリリース領域38の筒状面42とが段差状に設けられている。これにより、変形制御面34は、軸本体20からの突出高さが段階的に異ならされた複数段を有する段付き形状とされている。段差状に設けられた重なり領域36と筒状面42は、第一のテーパ面40によって、折れ点のない滑らかな形状で軸方向につながって連続的に設けられており、変形制御面34が滑らかな湾曲面とされている。 Since the release region 38 has the tubular surface 42, the overlapping region 36 and the tubular surface 42 of the release region 38 are provided in a stepped shape. As a result, the deformation control surface 34 has a stepped shape having a plurality of steps in which the height of protrusion from the shaft body 20 is stepwise different. The overlapping region 36 and the tubular surface 42 provided in a stepped shape are continuously provided by being connected in the axial direction in a smooth shape without break points by the first tapered surface 40, and the deformation control surface 34 is provided. It has a smooth curved surface.

インナ軸部材12におけるリリース領域38よりも下側部分は、空洞部24の内面26に対して内周へ離れている。これにより、インナ軸部材12と空洞部24の内面26との間には、軸方向に延びる凹所が全周にわたって環状に形成されている。 The portion of the inner shaft member 12 below the release region 38 is separated from the inner surface 26 of the cavity portion 24 inwardly. As a result, between the inner shaft member 12 and the inner surface 26 of the cavity 24, a recess extending in the axial direction is formed in an annular shape over the entire circumference.

なお、図1に2点鎖線で示すように、インナ軸部材12におけるリリース領域38よりも下側部分に対して、空洞部24内へ突出するストッパ突部46を大径部32とは別に設けることもできる。ストッパ突部46は、例えば、空洞部24の深さ方向(軸方向)の中間部分において、軸本体20の外周面から空洞部24の内面26に向かって外周へ突出するように設けられる。ストッパ突部46は、インナ軸部材12に対して一体形成されていても良いし、インナ軸部材12とは別部材とされて、インナ軸部材12に固定されていても良い。 As shown by the alternate long and short dash line in FIG. 1, a stopper protrusion 46 projecting into the cavity 24 is provided separately from the large diameter portion 32 with respect to a portion of the inner shaft member 12 below the release region 38. You can also do it. The stopper protrusion 46 is provided, for example, so as to project from the outer peripheral surface of the shaft body 20 toward the inner surface 26 of the cavity 24 toward the outer periphery in the intermediate portion in the depth direction (axial direction) of the cavity 24. The stopper protrusion 46 may be integrally formed with the inner shaft member 12, or may be a separate member from the inner shaft member 12 and fixed to the inner shaft member 12.

このようなストッパ突部46が空洞部24の深さ方向の中間部分に設けられていれば、ストッパ突部46が本体ゴム弾性体16を介してアウタ筒部材14に当接することによって、本体ゴム弾性体16の変形量が制限されて耐久性の向上が図られる。しかも、ストッパ突部46が空洞部24の内面26に当接して、空洞部24の内面26が変形を拘束されることにより、本体ゴム弾性体16の内面26における歪の集中が防止されて、本体ゴム弾性体16の耐久性の更なる向上が実現される。 If such a stopper protrusion 46 is provided in the middle portion of the cavity 24 in the depth direction, the stopper protrusion 46 abuts on the outer cylinder member 14 via the main body rubber elastic body 16 to cause the main body rubber. The amount of deformation of the elastic body 16 is limited to improve durability. Moreover, the stopper protrusion 46 abuts on the inner surface 26 of the cavity 24, and the inner surface 26 of the cavity 24 is restrained from being deformed, so that the concentration of strain on the inner surface 26 of the main body rubber elastic body 16 is prevented. Further improvement in the durability of the main body rubber elastic body 16 is realized.

大径部32は、重なり領域36がアウタ筒部材14よりも上側に位置しており、重なり領域36が本体ゴム弾性体16の上部30の内周に配置されている。これにより、本体ゴム弾性体16において重なり領域36の外周側に位置する部分の外周面が、アウタ筒部材14に固着されていない自由表面とされている。本実施形態では、大径部32におけるリリース領域38の上半部分も、本体ゴム弾性体16の上部30の内周に配置されている。 In the large diameter portion 32, the overlapping region 36 is located above the outer cylinder member 14, and the overlapping region 36 is arranged on the inner circumference of the upper portion 30 of the main body rubber elastic body 16. As a result, the outer peripheral surface of the portion of the main body rubber elastic body 16 located on the outer peripheral side of the overlapping region 36 is a free surface that is not fixed to the outer cylinder member 14. In the present embodiment, the upper half portion of the release region 38 in the large diameter portion 32 is also arranged on the inner circumference of the upper portion 30 of the main body rubber elastic body 16.

エンジンマウント10は、インナ軸部材12が図示しないパワーユニットに取り付けられると共に、アウタ筒部材14が図示しない車両ボデーに取り付けられて、パワーユニットと車両ボデーがエンジンマウント10を介して防振連結されている。 In the engine mount 10, the inner shaft member 12 is attached to a power unit (not shown), and the outer cylinder member 14 is attached to a vehicle body (not shown), and the power unit and the vehicle body are vibration-proof connected via the engine mount 10.

このようなエンジンマウント10の車両への装着状態において、インナ軸部材12とアウタ筒部材14の間に振動が入力されて、インナ軸部材12がアウタ筒部材14に対して変位すると、本体ゴム弾性体16が弾性変形する。本体ゴム弾性体16のばね定数は、本体ゴム弾性体16に空洞部24が設けられていることによって適宜に調節されており、優れた防振性能が発揮される。 In such a state where the engine mount 10 is mounted on the vehicle, when vibration is input between the inner shaft member 12 and the outer cylinder member 14 and the inner shaft member 12 is displaced with respect to the outer cylinder member 14, the main body rubber elasticity The body 16 is elastically deformed. The spring constant of the main body rubber elastic body 16 is appropriately adjusted by providing the hollow portion 24 in the main body rubber elastic body 16, and excellent vibration isolation performance is exhibited.

インナ軸部材12とアウタ筒部材14の間に上下方向の大荷重が入力されて、本体ゴム弾性体16が大きく弾性変形する場合に、本体ゴム弾性体16の耐久性が確保される。即ち、インナ軸部材12の板状部18とアウタ筒部材14の拡開状部22及び内フランジ状部23との間で本体ゴム弾性体16が圧縮されると、図3に示すように、本体ゴム弾性体16が空洞部24の内面26と上部30の外周面31とにおいてそれぞれ膨らむように弾性変形する。そして、空洞部24の内面26が大径部32の変形制御面34に当接する当接領域が、重なり領域36からリリース領域38に向けて広がって、本体ゴム弾性体16が変形制御面34の重なり領域36だけでなく、リリース領域38にも当接する。これにより、空洞部24の内面26の変形が大径部32の変形制御面34によって非線形的に制御されることから、空洞部24の内面26において局所的な歪の集中が防止されて、本体ゴム弾性体16の耐久性の向上が図られる。 When a large load in the vertical direction is input between the inner shaft member 12 and the outer cylinder member 14 and the main body rubber elastic body 16 is greatly elastically deformed, the durability of the main body rubber elastic body 16 is ensured. That is, when the main body rubber elastic body 16 is compressed between the plate-shaped portion 18 of the inner shaft member 12, the expanded-shaped portion 22 of the outer cylinder member 14, and the inner flange-shaped portion 23, as shown in FIG. The rubber elastic body 16 of the main body is elastically deformed so as to bulge on the inner surface 26 of the cavity 24 and the outer peripheral surface 31 of the upper portion 30, respectively. Then, the contact region where the inner surface 26 of the cavity portion 24 abuts on the deformation control surface 34 of the large diameter portion 32 expands from the overlapping region 36 toward the release region 38, and the main body rubber elastic body 16 of the deformation control surface 34 It contacts not only the overlapping region 36 but also the release region 38. As a result, the deformation of the inner surface 26 of the cavity 24 is non-linearly controlled by the deformation control surface 34 of the large diameter portion 32, so that local strain concentration is prevented on the inner surface 26 of the cavity 24, and the main body The durability of the rubber elastic body 16 is improved.

大径部32の変形制御面34は、重なり領域36とリリース領域38を備えており、本体ゴム弾性体16が弾性変形する際に、本体ゴム弾性体16の変形制御面34への当接領域が、入力荷重の増大に伴って重なり領域36からリリース領域38に向けて広がるようになっている。これにより、入力荷重が小さく、本体ゴム弾性体16の変形量が小さい場合には、変形制御面34による本体ゴム弾性体16の拘束領域が狭く、静ばね定数の小さい柔らかいばね特性を実現することができる。入力荷重が大きく、本体ゴム弾性体16の変形量が大きい場合には、変形制御面34による本体ゴム弾性体16の拘束領域がリリース領域38まで広がって広くなり、本体ゴム弾性体16における局所的な歪の集中が回避される。このように、本体ゴム弾性体16の耐久性に支障がない小荷重の入力時に、柔らかいばね特性による優れた防振性能が実現されると共に、本体ゴム弾性体16の損傷が懸念される大荷重の入力時には、本体ゴム弾性体16の変形がより広い範囲で変形制御面34によって制限されて、本体ゴム弾性体16の耐久性が確保される。 The deformation control surface 34 of the large diameter portion 32 includes an overlapping region 36 and a release region 38, and when the main body rubber elastic body 16 is elastically deformed, the main body rubber elastic body 16 is in contact with the deformation control surface 34. However, as the input load increases, it expands from the overlapping region 36 toward the release region 38. As a result, when the input load is small and the amount of deformation of the main body rubber elastic body 16 is small, the restraint region of the main body rubber elastic body 16 by the deformation control surface 34 is narrow, and a soft spring characteristic with a small static spring constant is realized. Can be done. When the input load is large and the amount of deformation of the main body rubber elastic body 16 is large, the restraint region of the main body rubber elastic body 16 by the deformation control surface 34 expands and widens to the release region 38, and is localized in the main body rubber elastic body 16. Concentration of distortion is avoided. As described above, when a small load that does not affect the durability of the main body rubber elastic body 16 is input, excellent vibration isolation performance is realized due to the soft spring characteristics, and a large load that may damage the main body rubber elastic body 16 is feared. At the time of input, the deformation of the main body rubber elastic body 16 is restricted by the deformation control surface 34 in a wider range, and the durability of the main body rubber elastic body 16 is ensured.

変形制御面34は、重なり領域36とリリース領域38の筒状面42とが、突出高さが段階的に異ならされた複数段状に設けられている。更に、重なり領域36とリリース領域38の筒状面42は、第一のテーパ面40によって軸方向で滑らかにつながっており、変形制御面34が全体として滑らかな湾曲面とされている。これにより、本体ゴム弾性体16の変形制御面34への当接領域が、入力荷重の増大に伴って段階的に増大する。それ故、本体ゴム弾性体16の変形量が小さい場合の柔らかいばね特性と、本体ゴム弾性体16の変形量が大きい場合の歪の分散化とが、それぞれ効果的に実現される。しかも、変形制御面34が滑らかな湾曲面とされることにより、変形制御面34が押し当てられることによる本体ゴム弾性体16への応力集中も生じ難い。 The deformation control surface 34 is provided with a plurality of steps in which the overlapping region 36 and the tubular surface 42 of the release region 38 are stepwise different in protrusion height. Further, the tubular surface 42 of the overlapping region 36 and the release region 38 is smoothly connected in the axial direction by the first tapered surface 40, and the deformation control surface 34 is a smooth curved surface as a whole. As a result, the contact region of the main body rubber elastic body 16 with the deformation control surface 34 gradually increases as the input load increases. Therefore, the soft spring characteristics when the deformation amount of the main body rubber elastic body 16 is small and the strain dispersion when the deformation amount of the main body rubber elastic body 16 is large are effectively realized. Moreover, since the deformation control surface 34 is a smooth curved surface, stress concentration on the main body rubber elastic body 16 due to the deformation control surface 34 being pressed is unlikely to occur.

変形制御面34を構成する大径部32は、インナ軸部材12の軸本体20に一体形成されている。これにより、変形制御面34を備えるインナ軸部材12を、部品点数の少ない簡単な構造によって実現することができる。 The large diameter portion 32 constituting the deformation control surface 34 is integrally formed with the shaft body 20 of the inner shaft member 12. As a result, the inner shaft member 12 provided with the deformation control surface 34 can be realized by a simple structure having a small number of parts.

重なり領域36の外周側に位置する本体ゴム弾性体16の上部30の外周面31が、アウタ筒部材14に固着されていない自由表面とされている。これにより、本体ゴム弾性体16における空洞部24の内面26が、重なり領域36によって変形を拘束された状態においても、柔らかいばね特性を実現し易くなる。 The outer peripheral surface 31 of the upper portion 30 of the main body rubber elastic body 16 located on the outer peripheral side of the overlapping region 36 is a free surface that is not fixed to the outer cylinder member 14. As a result, even when the inner surface 26 of the cavity 24 in the main body rubber elastic body 16 is restrained from being deformed by the overlapping region 36, it becomes easy to realize a soft spring characteristic.

変形制御面34が周方向の全周にわたって連続しており、変形制御面34の重なり領域36が全周にわたって空洞部24の内面26に沿って広がっている。それ故、大荷重の入力に対して、本体ゴム弾性体16の局所的な歪の集中が全周にわたって回避されて、本体ゴム弾性体16の耐久性の向上が図られる。 The deformation control surface 34 is continuous over the entire circumference in the circumferential direction, and the overlapping region 36 of the deformation control surface 34 extends along the inner surface 26 of the cavity 24 over the entire circumference. Therefore, local strain concentration of the main body rubber elastic body 16 is avoided over the entire circumference in response to a large load input, and the durability of the main body rubber elastic body 16 is improved.

空洞部24が略一定の内径で軸方向に延びていることにより、本体ゴム弾性体16が弾性変形する際に、空洞部24の内面26において歪の集中が生じ難い。 Since the cavity 24 extends in the axial direction with a substantially constant inner diameter, strain is less likely to be concentrated on the inner surface 26 of the cavity 24 when the main body rubber elastic body 16 is elastically deformed.

図4には、本発明に従う構造とされた筒型防振装置の第二の実施形態として、自動車用のエンジンマウント50が示されている。エンジンマウント50は、インナ軸部材52とアウタ筒部材14が本体ゴム弾性体16によって連結された構造を有している。以下の説明において、第一の実施形態と実質的に同一の部材及び部位については、図中に同一の符号を付すことで、説明を省略する。 FIG. 4 shows an engine mount 50 for an automobile as a second embodiment of a tubular anti-vibration device having a structure according to the present invention. The engine mount 50 has a structure in which the inner shaft member 52 and the outer cylinder member 14 are connected by a main body rubber elastic body 16. In the following description, the members and parts substantially the same as those in the first embodiment are designated by the same reference numerals in the drawings, and the description thereof will be omitted.

インナ軸部材52は、板状部18と、板状部18の内周端部から下方へ向けて延び出す軸本体54とを、有している。軸本体54は、上下方向に直線的に延びる小径の円筒形状とされている。軸本体54の上端部には、外周へ突出するフランジ状部56が全周にわたって設けられており、軸本体54と板状部18の固定強度が確保されている。 The inner shaft member 52 has a plate-shaped portion 18 and a shaft main body 54 extending downward from the inner peripheral end portion of the plate-shaped portion 18. The shaft body 54 has a small-diameter cylindrical shape that extends linearly in the vertical direction. A flange-shaped portion 56 projecting to the outer periphery is provided at the upper end of the shaft main body 54 over the entire circumference, and the fixing strength between the shaft main body 54 and the plate-shaped portion 18 is secured.

インナ軸部材52の軸本体54には、変形制御部材58が取り付けられている。変形制御部材58は、インナ軸部材52とは別部材とされている。変形制御部材58は、環状とされて、軸本体54に外嵌固定されている。変形制御部材58の外周面は、重なり領域60とリリース領域62を有する変形制御面34とされている。 A deformation control member 58 is attached to the shaft body 54 of the inner shaft member 52. The deformation control member 58 is a separate member from the inner shaft member 52. The deformation control member 58 has an annular shape and is externally fitted and fixed to the shaft body 54. The outer peripheral surface of the deformation control member 58 is a deformation control surface 34 having an overlapping region 60 and a release region 62.

重なり領域60は、本体ゴム弾性体16の空洞部24の内面26に沿って広がる円筒状面とされている。重なり領域60は、変形制御部材58の上下方向の中間部分に設けられている。 The overlapping region 60 is a cylindrical surface extending along the inner surface 26 of the cavity 24 of the main body rubber elastic body 16. The overlapping region 60 is provided in an intermediate portion in the vertical direction of the deformation control member 58.

リリース領域62は、下方に向けて次第に小径となるテーパ状面とされている。本実施形態のリリース領域62は、外周へ向けて凸となる湾曲面とされている。第一の実施形態では、重なり領域36とリリース領域38が段階的な形状を有していたが、本実施形態では、重なり領域60とリリース領域62が段階的ではなく連続的な形状で設けられている。リリース領域62は、重なり領域60から下方へ行くに従って本体ゴム弾性体16の空洞部24の内面26から内周へ次第に離れている。 The release region 62 has a tapered surface that gradually decreases in diameter toward the bottom. The release region 62 of the present embodiment is a curved surface that is convex toward the outer circumference. In the first embodiment, the overlapping region 36 and the release region 38 have a stepwise shape, but in the present embodiment, the overlapping region 60 and the release region 62 are provided in a continuous shape instead of a stepwise shape. ing. The release region 62 is gradually separated from the inner surface 26 of the cavity 24 of the main body rubber elastic body 16 toward the inner circumference as it goes downward from the overlapping region 60.

変形制御部材58は、インナ軸部材52を構成する軸本体54の外周面に嵌め合わされて、軸本体54に固定されている。変形制御部材58の内周端部には、上方へ向けて突出する当接部64が設けられており、当接部64が軸本体54のフランジ状部56に下方から当接状態で重ね合わされることにより、変形制御部材58が軸本体54に対して上下方向で位置決めされている。 The deformation control member 58 is fitted to the outer peripheral surface of the shaft main body 54 constituting the inner shaft member 52 and fixed to the shaft main body 54. An abutting portion 64 projecting upward is provided at the inner peripheral end portion of the deformation control member 58, and the abutting portion 64 is superposed on the flange-shaped portion 56 of the shaft body 54 in a contact state from below. As a result, the deformation control member 58 is positioned in the vertical direction with respect to the shaft main body 54.

図5に示すように、本体ゴム弾性体16は、インナ軸部材52の板状部18とアウタ筒部材14だけでなく、インナ軸部材52の軸本体54を備える一体加硫成形品として形成されている。板状部18と軸本体54は、例えば、本体ゴム弾性体16の加硫成形前に、予め溶接などの手段で相互に固定される。 As shown in FIG. 5, the main body rubber elastic body 16 is formed as an integrally vulcanized molded product including not only the plate-shaped portion 18 of the inner shaft member 52 and the outer cylinder member 14 but also the shaft main body 54 of the inner shaft member 52. ing. The plate-shaped portion 18 and the shaft main body 54 are fixed to each other by means such as welding in advance before vulcanization molding of the main body rubber elastic body 16, for example.

そして、本体ゴム弾性体16に加硫接着されたインナ軸部材52の軸本体54に対して、別体の変形制御部材58が取り付けられる。変形制御部材58は、本体ゴム弾性体16の空洞部24に対して下側の開口部28から差し入れられて、図4に示すように、インナ軸部材52から外周へ向けて突出するように設けられる。軸本体54に取り付けられた変形制御部材58の重なり領域60は、空洞部24の内面26に沿った筒状とされており、空洞部24の内面26に当接状態で重ね合わされている。変形制御部材58のリリース領域62は、空洞部24の内面26よりも内周に位置しており、リリース領域62と空洞部24の内面26との間に隙間が設けられている。 Then, a separate deformation control member 58 is attached to the shaft body 54 of the inner shaft member 52 that has been vulcanized and adhered to the rubber elastic body 16. The deformation control member 58 is inserted into the hollow portion 24 of the main body rubber elastic body 16 from the lower opening 28, and is provided so as to project from the inner shaft member 52 toward the outer circumference as shown in FIG. Be done. The overlapping region 60 of the deformation control member 58 attached to the shaft body 54 has a tubular shape along the inner surface 26 of the cavity 24, and is overlapped with the inner surface 26 of the cavity 24 in an abutting state. The release region 62 of the deformation control member 58 is located on the inner circumference of the inner surface 26 of the cavity portion 24, and a gap is provided between the release region 62 and the inner surface 26 of the cavity portion 24.

本実施形態のエンジンマウント50では、変形制御面34がインナ軸部材52に外嵌固定される別部材によって構成されている。それ故、例えば、本体ゴム弾性体16の成形時に加硫接着されたインナ軸部材52の軸本体54に対して、変形制御面34を備える変形制御部材58を嵌め合わせて固定することにより、後付けで設けることができる。 In the engine mount 50 of the present embodiment, the deformation control surface 34 is composed of another member that is externally fitted and fixed to the inner shaft member 52. Therefore, for example, the deformation control member 58 provided with the deformation control surface 34 is fitted and fixed to the shaft body 54 of the inner shaft member 52 that has been vulcanized and adhered at the time of molding the main body rubber elastic body 16. Can be provided with.

なお、エンジンマウント50において、本体ゴム弾性体16に対して上下方向の圧縮荷重が作用すると、図6に示すように、空洞部24に膨出する本体ゴム弾性体16の内周面(内面26)が、変形制御部材58の重なり領域60だけでなく、リリース領域62にも当接する。これにより、第一の実施形態と同様に、本体ゴム弾性体16の歪の分散化によって、本体ゴム弾性体16の耐久性の向上が図られる。 In the engine mount 50, when a compressive load in the vertical direction acts on the main body rubber elastic body 16, as shown in FIG. 6, the inner peripheral surface (inner surface 26) of the main body rubber elastic body 16 bulges into the cavity 24. ) Comes into contact with not only the overlapping region 60 of the deformation control member 58 but also the release region 62. As a result, the durability of the main body rubber elastic body 16 can be improved by dispersing the strain of the main body rubber elastic body 16 as in the first embodiment.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、変形制御面は、全周にわたって同一の断面形状である必要はなく、周方向で形状が変化していても良い。変形制御面は、必ずしも全周にわたって連続して形成されるものに限定されず、周方向で部分的に設けられていても良いし、周方向で複数が設けられていても良い。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited by the specific description thereof. For example, the deformation control surface does not have to have the same cross-sectional shape over the entire circumference, and the shape may change in the circumferential direction. The deformation control surface is not necessarily limited to the one that is continuously formed over the entire circumference, and may be partially provided in the circumferential direction, or may be provided in plurality in the circumferential direction.

変形制御面の具体的な形状は、重なり領域とリリース領域が設けられていれば、特に限定されない。例えば、リリース領域が段階的に突出高さの異なる複数段構造とされていても良い。これによれば、本体ゴム弾性体の変形量に応じて、本体ゴム弾性体の変形制御面への当接面積が多段階に変化することから、本体ゴム弾性体の歪の分散化がより効果的に図られ得る。 The specific shape of the deformation control surface is not particularly limited as long as the overlapping region and the release region are provided. For example, the release region may have a multi-stage structure in which the protrusion heights are gradually different. According to this, the contact area of the main body rubber elastic body with the deformation control surface changes in multiple stages according to the amount of deformation of the main body rubber elastic body, so that the strain dispersion of the main body rubber elastic body is more effective. Can be planned.

エンジンマウント10の車両への装着状態において、パワーユニットの分担支持荷重が本体ゴム弾性体16に入力されることにより、本体ゴム弾性体16の内面26がインナ軸部材12のリリース領域38の少なくとも一部に当接するようにしても良い。要するに、本体ゴム弾性体16の変形制御面34への当接領域は、車両への装着状態において更に振動等の荷重が入力されることで重なり領域36からリリース領域38に向けて広がるようにしても良いし、車両装着時にパワーユニットの分担支持荷重などが入力されることで重なり領域36からリリース領域38に向けて広がるようにしても良い。パワーユニットの分担支持荷重の入力によって本体ゴム弾性体16の変形制御面34への当接領域が広がることにより、軸方向のばね定数と軸直角方向のばね定数の比を調節し易くなる。即ち、軸方向のばね定数に対する軸直角方向のばね定数の比を大きく調整することができ、ばね定数のチューニング自由度を大きくすることができる。 When the engine mount 10 is mounted on the vehicle, the shared support load of the power unit is input to the main body rubber elastic body 16, so that the inner surface 26 of the main body rubber elastic body 16 becomes at least a part of the release region 38 of the inner shaft member 12. You may make it come into contact with. In short, the contact region of the main body rubber elastic body 16 with the deformation control surface 34 is expanded from the overlapping region 36 toward the release region 38 by further inputting a load such as vibration in the mounted state on the vehicle. Alternatively, it may be expanded from the overlapping region 36 toward the release region 38 by inputting a shared support load of the power unit or the like when the vehicle is mounted. By inputting the shared support load of the power unit, the contact region of the main body rubber elastic body 16 with the deformation control surface 34 expands, so that the ratio of the spring constant in the axial direction to the spring constant in the direction perpendicular to the axis can be easily adjusted. That is, the ratio of the spring constant in the direction perpendicular to the axis to the spring constant in the axial direction can be greatly adjusted, and the degree of freedom in tuning the spring constant can be increased.

また、インナ軸部材側の変形制御面は、重なり領域に最大突出部が設けられており、かかる最大突出部からリリース領域に亘る部分では、突出高さが大きくなる方向の傾斜を有しないように、同じ突出高さの面か又は突出高さが小さくなる面をもって軸方向にのびていることが望ましい。更に、最大突出部からリリース領域に亘る部分では、軸方向の傾斜角度が次第に又は段階的に変化していることが好適であり、且つ、傾斜角度の変化点では接線が共通するように滑らかに繋がって変化していることが望ましい。 Further, the deformation control surface on the inner shaft member side is provided with a maximum protrusion in the overlapping region, so that the portion extending from the maximum protrusion to the release region does not have an inclination in the direction in which the protrusion height increases. , It is desirable to extend in the axial direction with a surface having the same protrusion height or a surface with a smaller protrusion height. Further, in the portion extending from the maximum protrusion to the release region, it is preferable that the inclination angle in the axial direction changes gradually or stepwise, and at the change point of the inclination angle, the tangent line is smoothly made common. It is desirable that they are connected and change.

インナ軸部材側の変形制御面に当接する本体ゴム弾性体の空洞部の内面も、底部側(インナ軸部材の板状部側)から開口側(板状部と反対の側)に向かって内径寸法が小さくならないように、同じ内径か又は内径が大きくなる面をもって軸方向に延びていることが望ましい。かかる空洞部の底面は、成形時における成形型の抜きテーパも考慮され得る。因みに、図2,5に示した実施形態では、本体ゴム弾性体16の空洞部24の内面26は、上端のゴムの噛み切り部分よりも下方に実質的に軸方向の全長に亘って、僅かに下方に向かって一定の傾斜角度で拡開するテーパ状内周面とされている。 The inner surface of the cavity of the rubber elastic body of the main body that contacts the deformation control surface on the inner shaft member side also has an inner diameter from the bottom side (plate-shaped side of the inner shaft member) toward the opening side (opposite the plate-shaped part). It is desirable that they extend axially with the same inner diameter or a surface with a larger inner diameter so that the dimensions do not become smaller. For the bottom surface of the cavity, the punching taper of the molding die at the time of molding can be taken into consideration. Incidentally, in the embodiment shown in FIGS. 2 and 5, the inner surface 26 of the cavity 24 of the main body rubber elastic body 16 is slightly below the upper end rubber bite portion and substantially over the entire length in the axial direction. It is a tapered inner peripheral surface that expands downward at a constant inclination angle.

そして、インナ軸部材側の変形制御面と本体ゴム弾性体の空洞部の内面との相対的な組み合わせにより、少なくともリリース領域では、両者の軸直角方向の対向面間距離が空洞部の底部側から開口側に向かって狭くならないように、同じ対向面間距離か又は大きくなる対向面間距離をもって設定されることが望ましい。尤も、インナ軸部材側の変形制御面と本体ゴム弾性体の空洞部の内面とは、軸方向における傾斜角度の変化率が互いに異ならされることで、荷重の入力に際して、当接面積が非線形的に増大するように設定することができ、それによって、ばね特性の非線形的な立ち上がりが設定可能とされる。 Then, due to the relative combination of the deformation control surface on the inner shaft member side and the inner surface of the hollow portion of the rubber elastic body of the main body, the distance between the facing surfaces in the direction perpendicular to the axes of both is at least from the bottom side of the hollow portion in the release region. It is desirable that the distance between the facing surfaces is the same or the distance between the facing surfaces increases so that the distance does not become narrower toward the opening side. However, the deformation control surface on the inner shaft member side and the inner surface of the cavity of the rubber elastic body of the main body have different rates of change in the inclination angle in the axial direction, so that the contact area is non-linear when the load is input. It can be set to increase to, which allows the non-linear rise of the spring characteristics to be set.

また、前記実施形態における本体ゴム弾性体16の空洞部24の内面26は、特に底部側における内周端が開口側に向かって折り返していないから、仮にインナ軸部材12側の変形制御面34と密着していなくても、従来構造のすぐり穴に比して局所的な応力や歪の集中が回避される。なお、インナ軸部材12側の変形制御面34と本体ゴム弾性体16の空洞部24の内面26とは、少なくとも車両に装着されて例えばパワーユニットなどの支持荷重が及ぼされた状態では、変形制御面34の重なり領域36の例えば最大外径部位において本体ゴム弾性体16の空洞部24の内面26が隙間なく当接していることが望ましい。尤も、前記実施形態において、大径部32と板状部18との軸方向対向面間や、変形制御部材58とフランジ状部56との軸方向対向面間等においては、荷重入力に際しての応力が殆ど及ぼされないことから、本体ゴム弾性体16が充填されている必要はなく、空所などであっても良い。 Further, since the inner peripheral end of the hollow portion 24 of the main body rubber elastic body 16 in the above embodiment is not folded back toward the opening side, the inner peripheral end on the bottom side is tentatively different from the deformation control surface 34 on the inner shaft member 12 side. Even if they are not in close contact with each other, local stress and strain concentration can be avoided as compared with the conventional structure. The deformation control surface 34 on the inner shaft member 12 side and the inner surface 26 of the cavity 24 of the main body rubber elastic body 16 are at least in a state where they are mounted on a vehicle and a support load such as a power unit is applied. It is desirable that the inner surface 26 of the cavity 24 of the main body rubber elastic body 16 is in contact with each other without a gap in, for example, the maximum outer diameter portion of the overlapping region 36 of 34. However, in the above-described embodiment, the stress at the time of load input is generated between the axially facing surfaces of the large diameter portion 32 and the plate-shaped portion 18, and between the axially opposed surfaces of the deformation control member 58 and the flange-shaped portion 56. It is not necessary that the main body rubber elastic body 16 is filled, and it may be a vacant space or the like.

また、前記実施形態では、アウタ筒部材14が軸方向上方に向かって湾曲して広がる拡開状部22を備えており、アウタ筒部材14の軸方向上端部にフランジ状部が設けられている一方、軸方向下側部分では、略一定の径寸法で軸方向に延びる筒状部21が形成されており、下端開口部には補強用やストッパ用として利用できる内フランジ状部23が設けられていた。そして、変形制御面34は、その全体が、アウタ筒部材14の軸方向下側部分に設けられた小径の筒状部21を軸方向上方に外れた位置に設けられており、変形制御面34とアウタ筒部材14との対向面間でのゴムボリュームの確保が図られている。なお、図3,6に仮想線で例示したように、軸直角方向のストッパ突部46は、アウタ筒部材14の小径の筒状部21に対して軸直角方向で対向する位置となるように設定されており、ストッパ機能の向上が図られている。 Further, in the above-described embodiment, the outer cylinder member 14 is provided with an expanded portion 22 that is curved and spreads upward in the axial direction, and a flange-shaped portion is provided at the upper end portion in the axial direction of the outer cylinder member 14. On the other hand, in the lower portion in the axial direction, a tubular portion 21 extending in the axial direction with a substantially constant diameter dimension is formed, and an inner flange-shaped portion 23 that can be used for reinforcement or a stopper is provided at the lower end opening. Was there. The deformation control surface 34 is provided at a position where the small-diameter tubular portion 21 provided in the axially lower portion of the outer tubular member 14 is displaced upward in the axial direction, and the deformation control surface 34 is provided. The rubber volume is secured between the surface facing the outer cylinder member 14 and the outer cylinder member 14. As illustrated by virtual lines in FIGS. 3 and 6, the stopper protrusion 46 in the direction perpendicular to the axis is positioned so as to face the small-diameter tubular portion 21 of the outer cylinder member 14 in the direction perpendicular to the axis. It has been set and the stopper function has been improved.

変形制御面34を構成する変形制御部材58が軸本体20と別部材とされている場合に、軸本体20と変形制御部材58が、相互に組み合わされた状態で本体ゴム弾性体16の成形用金型にセットされて、本体ゴム弾性体16に加硫接着されていても良い。要するに、別体の変形制御部材58が採用される場合に、変形制御部材58は、前記第二の実施形態のような本体ゴム弾性体16の加硫成形後に軸本体20に取り付けられる態様に限定されない。 When the deformation control member 58 constituting the deformation control surface 34 is a separate member from the shaft body 20, the shaft body 20 and the deformation control member 58 are combined with each other for forming the main body rubber elastic body 16. It may be set in a mold and vulcanized and adhered to the main body rubber elastic body 16. In short, when a separate deformation control member 58 is adopted, the deformation control member 58 is limited to a mode in which the main body rubber elastic body 16 is attached to the shaft main body 20 after vulcanization molding as in the second embodiment. Not done.

筒型防振装置は、必ずしも回転対称形状に限定されるものではなく、例えば、軸方向視で楕円形などであっても良い。 The tubular anti-vibration device is not necessarily limited to a rotationally symmetric shape, and may be, for example, an elliptical shape in the axial direction.

10,50 エンジンマウント(筒型防振装置)
12,52 インナ軸部材
14 アウタ筒部材
16 本体ゴム弾性体
18 板状部
20,54 軸本体
21 筒状部
22 拡開状部
23 内フランジ状部
24 空洞部
26 内面
28 開口部
30 上部
31 外周面
32 大径部
34 変形制御面
36,60 重なり領域
38,62 リリース領域
40 第一のテーパ面
42 筒状面
44 第二のテーパ面
46 ストッパ突部
56 フランジ状部
58 変形制御部材
64 当接部
10,50 engine mount (cylindrical anti-vibration device)
12, 52 Inner shaft member 14 Outer cylinder member 16 Main body rubber elastic body 18 Plate-shaped part 20, 54 Shaft main body 21 Cylindrical part 22 Expanded part 23 Inner flange-shaped part 24 Cavity part 26 Inner surface 28 Opening 30 Upper part 31 Outer circumference Surface 32 Large diameter part 34 Deformation control surface 36,60 Overlapping area 38,62 Release area 40 First tapered surface 42 Cylindrical surface 44 Second tapered surface 46 Stopper protrusion 56 Flange-shaped part 58 Deformation control member 64 Contact Department

Claims (8)

軸方向一方の端部に板状部を有するインナ軸部材と軸方向一方の端部に拡開状部を有するアウタ筒部材とが本体ゴム弾性体で連結された筒型防振装置において、
前記本体ゴム弾性体には、軸方向他方の端面に開口して前記インナ軸部材の外周面上を前記板状部に向かって軸方向に延びる空洞部が設けられている一方、
該インナ軸部材には、外周面上に突出する変形制御面が設けられていると共に、
該変形制御面には、該空洞部の内面に沿って広がる重なり領域と、該重なり領域から該空洞部の開口側に向かって該空洞部の内面から次第に離れるリリース領域とが、設けられており、
該本体ゴム弾性体の該変形制御面への当接領域が入力荷重の増大に伴って該重なり領域から該リリース領域に向けて広がるようになっている筒型防振装置。
In a tubular anti-vibration device in which an inner shaft member having a plate-shaped portion at one end in the axial direction and an outer tubular member having a spread-shaped portion at one end in the axial direction are connected by a rubber elastic body of the main body.
The main body rubber elastic body is provided with a cavity portion that opens at the other end surface in the axial direction and extends axially toward the plate-like portion on the outer peripheral surface of the inner shaft member.
The inner shaft member is provided with a deformation control surface protruding on the outer peripheral surface, and is provided with a deformation control surface.
The deformation control surface is provided with an overlapping region that extends along the inner surface of the cavity and a release region that gradually separates from the inner surface of the cavity from the overlapping region toward the opening side of the cavity. ,
A tubular anti-vibration device in which a contact region of the main body rubber elastic body with the deformation control surface expands from the overlapping region toward the release region as the input load increases.
前記変形制御面が、突出高さが段階的に異ならされた複数段が軸方向で滑らかにつながった湾曲面とされている請求項1に記載の筒型防振装置。 The tubular anti-vibration device according to claim 1, wherein the deformation control surface is a curved surface in which a plurality of stages having different protrusion heights are smoothly connected in the axial direction. 前記変形制御面が前記インナ軸部材に一体形成された大径部によって構成されている請求項1又は2に記載の筒型防振装置。 The tubular anti-vibration device according to claim 1 or 2, wherein the deformation control surface is formed of a large-diameter portion integrally formed with the inner shaft member. 前記変形制御面が前記インナ軸部材に外嵌固定された別部材によって構成されている請求項1〜3の何れか一項に記載の筒型防振装置。 The tubular anti-vibration device according to any one of claims 1 to 3, wherein the deformation control surface is formed of another member that is fitted and fixed to the inner shaft member. 前記インナ軸部材から前記空洞部内へ突出するストッパ突部が、該空洞部の深さ方向の中間部分において設けられている請求項1〜4の何れか一項に記載の筒型防振装置。 The tubular anti-vibration device according to any one of claims 1 to 4, wherein a stopper protrusion protruding from the inner shaft member into the cavity is provided in an intermediate portion in the depth direction of the cavity. 前記重なり領域の外周側に位置する前記本体ゴム弾性体の外周面が、前記アウタ筒部材に固着されていない自由表面とされている請求項1〜5の何れか一項に記載の筒型防振装置。 The tubular protection according to any one of claims 1 to 5, wherein the outer peripheral surface of the main body rubber elastic body located on the outer peripheral side of the overlapping region is a free surface that is not fixed to the outer tubular member. Shaking device. 前記変形制御面が周方向の全周にわたって連続しており、該変形制御面の前記重なり領域が全周にわたって前記空洞部の内面に沿って広がっている請求項1〜6の何れか一項に記載の筒型防振装置。 The aspect according to any one of claims 1 to 6, wherein the deformation control surface is continuous over the entire circumference in the circumferential direction, and the overlapping region of the deformation control surface extends along the inner surface of the cavity portion over the entire circumference. The described tubular anti-vibration device. 前記空洞部が略一定の内径で軸方向に延びている請求項1〜7の何れか一項に記載の筒型防振装置。 The tubular vibration isolator according to any one of claims 1 to 7, wherein the cavity portion extends in the axial direction with a substantially constant inner diameter.
JP2019135587A 2019-07-23 2019-07-23 Cylindrical anti-vibration device Active JP7233331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135587A JP7233331B2 (en) 2019-07-23 2019-07-23 Cylindrical anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135587A JP7233331B2 (en) 2019-07-23 2019-07-23 Cylindrical anti-vibration device

Publications (2)

Publication Number Publication Date
JP2021017969A true JP2021017969A (en) 2021-02-15
JP7233331B2 JP7233331B2 (en) 2023-03-06

Family

ID=74563103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135587A Active JP7233331B2 (en) 2019-07-23 2019-07-23 Cylindrical anti-vibration device

Country Status (1)

Country Link
JP (1) JP7233331B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509690U (en) * 1973-05-24 1975-01-31
JP2004278706A (en) * 2003-03-17 2004-10-07 Tokai Rubber Ind Ltd Fluid sealing type cylindrical vibration isolator
JP2011133035A (en) * 2009-12-24 2011-07-07 Tokai Rubber Ind Ltd Vibration isolating mount
JP2012137155A (en) * 2010-12-27 2012-07-19 Tokai Rubber Ind Ltd Vibration damping device with stopper rubber part and method of manufacturing same
WO2014199418A1 (en) * 2013-06-13 2014-12-18 住友理工株式会社 Vibration damping device
JP2018071768A (en) * 2016-11-04 2018-05-10 住友理工株式会社 Vibration isolator
JP2018169013A (en) * 2017-03-30 2018-11-01 住友理工株式会社 Cylindrical vibration-proof device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509690U (en) * 1973-05-24 1975-01-31
JP2004278706A (en) * 2003-03-17 2004-10-07 Tokai Rubber Ind Ltd Fluid sealing type cylindrical vibration isolator
JP2011133035A (en) * 2009-12-24 2011-07-07 Tokai Rubber Ind Ltd Vibration isolating mount
JP2012137155A (en) * 2010-12-27 2012-07-19 Tokai Rubber Ind Ltd Vibration damping device with stopper rubber part and method of manufacturing same
WO2014199418A1 (en) * 2013-06-13 2014-12-18 住友理工株式会社 Vibration damping device
JP2018071768A (en) * 2016-11-04 2018-05-10 住友理工株式会社 Vibration isolator
JP2018169013A (en) * 2017-03-30 2018-11-01 住友理工株式会社 Cylindrical vibration-proof device

Also Published As

Publication number Publication date
JP7233331B2 (en) 2023-03-06

Similar Documents

Publication Publication Date Title
JP4622979B2 (en) Cylindrical anti-vibration device stopper and cylindrical anti-vibration assembly
JP5759328B2 (en) Vibration isolator
JP6532367B2 (en) Tubular vibration control with bracket
JP2012097878A (en) Vibration control connecting rod
JP6783135B2 (en) Cylindrical anti-vibration device
US11028894B2 (en) Tubular vibration-damping device
WO2015166923A1 (en) Vibration-damping device
JP3951274B1 (en) Anti-vibration bushing manufacturing method
CN109424680B (en) Vibration-proof structure
JP2001280400A (en) Upper support for suspension
JP6909571B2 (en) Anti-vibration device
JP4624494B2 (en) Cylindrical dynamic damper and manufacturing method thereof
JP2008248898A (en) Cylindrical vibration damper
JP2003202053A (en) Vibration-proofing device
JP2021017969A (en) Tubular vibration isolation device
JP7102234B2 (en) Vibration isolation device
JP5662795B2 (en) Cylindrical vibration isolator
JP6811597B2 (en) Anti-vibration bush
JP4157060B2 (en) Cylindrical dynamic damper
JP2014066297A (en) Cylindrical type vibration control device
CN111356859A (en) Buffer brake
JP7487085B2 (en) Cylindrical vibration isolation device
JP7432455B2 (en) Cylindrical vibration isolator
WO2022202187A1 (en) Anti-vibration device
JP2009216148A (en) Upper support

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7233331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150