JP2021017890A - Two-axis screw pump - Google Patents

Two-axis screw pump Download PDF

Info

Publication number
JP2021017890A
JP2021017890A JP2020122677A JP2020122677A JP2021017890A JP 2021017890 A JP2021017890 A JP 2021017890A JP 2020122677 A JP2020122677 A JP 2020122677A JP 2020122677 A JP2020122677 A JP 2020122677A JP 2021017890 A JP2021017890 A JP 2021017890A
Authority
JP
Japan
Prior art keywords
viscous fluid
pump
screw
pump casing
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020122677A
Other languages
Japanese (ja)
Other versions
JP7158052B2 (en
Inventor
寛二 前田
Kanji Maeda
寛二 前田
高宏 前田
Takahiro Maeda
高宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTSUKO KINZOKU KOGYO KK
Original Assignee
FUTSUKO KINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTSUKO KINZOKU KOGYO KK filed Critical FUTSUKO KINZOKU KOGYO KK
Publication of JP2021017890A publication Critical patent/JP2021017890A/en
Application granted granted Critical
Publication of JP7158052B2 publication Critical patent/JP7158052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

To provide a two-axis screw pump capable of deaerating even highly viscous fluid sufficiently, as well as preventing the viscous fluid to be transferred from being degenerated or component abrasion powder from being mixed.SOLUTION: A two-axis screw pump 1 is a rotary component non-contact type pump comprising a pair of pump screws, a cylindrical pump casing 2, a viscous fluid intake port 18 of the pump casing 2, a viscous fluid discharge port 19 of the pump casing 2, a gas outlet 20 provided in the pump casing 2, and a deaerator 27. The viscous fluid intake port 18 of the pump casing 2 is provided with a dispersion member 40 (example of surface area increasing means 77) in which viscous fluid Q is diverted and then flows into the pump casing 2.SELECTED DRAWING: Figure 1

Description

本発明は、被移送物である粘性流体の物性を変質させることなく高度な脱泡能力を有して移送する2軸スクリューポンプに関するものである。 The present invention relates to a biaxial screw pump that transfers a viscous fluid to be transferred with a high defoaming ability without deteriorating the physical properties of the viscous fluid.

従来、この種の2軸スクリューポンプとしては、下記の特許文献1に記載されたものが知られている。当該文献記載の2軸スクリューポンプは脱気装置付きの2軸スクリューポンプであって、特許文献1中の図5および図6に示されるように、一対のポンプスクリュー7a,7bの側面7Sa,7Sbの間、およびポンプスクリュー7a,7bの先端面7B,7Bとポンプケーシング内周面2Aの間に、それぞれ、空気などの気体は通過できるが粘性流体は通さない隙間G,Hが形成されている。この装置では、ポンプケーシングの気体抜出口に連結された脱気装置の駆動により、粘性流体中の気体を機外に排出しながら粘性流体を移送するようになっており、互いに非接触な一対のポンプスクリュー7a,7bを有する容積式ポンプでありながら、粘性流体から気体を排出して移送できるという機能を有している。 Conventionally, as a twin-screw pump of this type, the one described in Patent Document 1 below is known. The twin-screw pump described in the document is a twin-screw pump with a degassing device, and as shown in FIGS. 5 and 6 in Patent Document 1, side surfaces 7Sa, 7Sb of a pair of pump screws 7a, 7b. Gap G and H are formed between the spaces and between the tip surfaces 7B and 7B of the pump screws 7a and 7b and the inner peripheral surface 2A of the pump casing, respectively, which allow gas such as air to pass through but not viscous fluid. .. In this device, the viscous fluid is transferred while discharging the gas in the viscous fluid to the outside by driving the degassing device connected to the gas outlet of the pump casing, and a pair of non-contact with each other. Although it is a positive displacement pump having pump screws 7a and 7b, it has a function of discharging gas from a viscous fluid and transferring it.

特開2015−55179号公報JP-A-2015-55179

しかしながら、前記した特許文献1に記載の2軸スクリューポンプは、気泡が分散媒中に多数散在し、且つ、互いに安定に静止して動かないような高粘度の粘性流体を移送する場合に、その粘性流体はポンプ室のラセン状空間内でその空間形状に保持されたまま殆んど型崩れすることなく移送されるので、気泡も粘性流体中を移動しにくく、気泡が部分的に残存して脱気し切れないという不具合があった。 However, the twin-screw pump described in Patent Document 1 described above is used when a large number of bubbles are scattered in a dispersion medium and a highly viscous viscous fluid that is stable and stationary with each other is transferred. Since the viscous fluid is transferred in the spiral space of the pump chamber while being held in its space shape and hardly losing its shape, it is difficult for bubbles to move in the viscous fluid, and the bubbles partially remain. There was a problem that it could not be completely degassed.

本発明は、上記した従来の問題点に鑑みてなされたものであって、気泡が静止して動きにくいほど高粘度の粘性流体であっても、元来の脱気能力を補完することで、より高度の脱気ができる2軸スクリューポンプの提供を目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and even if the viscous fluid is so viscous that the bubbles are stationary and difficult to move, the original degassing ability is complemented. An object of the present invention is to provide a twin-screw pump capable of more advanced degassing.

上記目的を達成するために、本発明に係る2軸スクリューポンプは、互いに非接触で螺合して回転駆動される一対のポンプスクリューと、一対のポンプスクリューを非接触で収容する筒状のポンプケーシングと、ポンプケーシングにおける軸心方向の途中位置に設けられた粘性流体取入口と、ポンプケーシングの先端側に設けられた粘性流体吐出口と、ポンプケーシングの上面における粘性流体取入口よりも末端側に設けられた気体抜出口と、気体抜出口に連結された脱気装置と、を備えて成り、一対のポンプスクリューの側面の間、および各ポンプスクリューの先端面とポンプケーシングの内周面の間に、気体を通過可能で且つ粘性流体を通さない隙間が形成されている2軸スクリューポンプであって、ポンプケーシングの粘性流体取入口に、粘性流体の単位体積あたりの表面積を増加させてポンプケーシング内に流入させる表面積増加手段を備えていることを特徴とするものである。 In order to achieve the above object, the twin-screw pump according to the present invention is a tubular pump that houses a pair of pump screws that are screwed and rotationally driven in a non-contact manner with each other and a pair of pump screws that are housed in a non-contact manner. The casing, the viscous fluid intake provided in the middle of the pump casing in the axial direction, the viscous fluid discharge port provided on the tip side of the pump casing, and the end side of the upper surface of the pump casing from the viscous fluid inlet. A degassing device connected to the gas vent and the degassing device provided in the pump screw, and between the side surfaces of the pair of pump screws, and between the tip surface of each pump screw and the inner peripheral surface of the pump casing. A biaxial screw pump in which a gap that allows gas to pass through and does not allow viscous fluid to pass through is formed between the pumps. The surface area of the viscous fluid per unit volume is increased at the viscous fluid intake of the pump casing. It is characterized in that it is provided with a means for increasing the surface area to flow into the casing.

また、前記構成において、表面積増加手段が、粘性流体取入口から取入れられる粘性流体の流量を制限するために粘性流体を分流させたのちにポンプケーシング内に流入させる分散部材で構成されていることを特徴とするものである。 Further, in the above configuration, the surface area increasing means is composed of a dispersion member that divides the viscous fluid and then flows it into the pump casing in order to limit the flow rate of the viscous fluid taken in from the viscous fluid intake. It is a feature.

また、前記構成において、分散部材は、粘性流体取入口を蓋う板状本体と、板状本体に粘性流体通過可能に表裏貫通して形成された複数の通過用孔と、を備えて成り、粘性流体が複数の通過用孔を通過したのちにポンプケーシング内に流入する構成にされていることを特徴とするものである。 Further, in the above configuration, the dispersion member includes a plate-shaped main body that covers the viscous fluid intake, and a plurality of passage holes formed through the plate-shaped main body so that the viscous fluid can pass through. It is characterized in that the viscous fluid is configured to flow into the pump casing after passing through a plurality of passage holes.

そして、前記構成において、分散部材は、粘性流体取入口を蓋う板状体と、板状体に表裏貫通して形成された弁座孔と、弁座孔の内周面との間に粘性流体通過可能な通過用隙間を有して配置される弁体と、弁体を板状体に固定するための固定部材と、を備えて成り、粘性流体が通過用隙間を通過したのちにポンプケーシング内に流入する構成にされていることを特徴とするものである。 Then, in the above configuration, the dispersion member is viscous between the plate-shaped body that covers the viscous fluid intake, the valve seat hole formed by penetrating the plate-shaped body from the front and back, and the inner peripheral surface of the valve seat hole. It is provided with a valve body arranged with a passage gap through which the fluid can pass, and a fixing member for fixing the valve body to the plate-like body, and the pump is provided after the viscous fluid has passed through the passage gap. It is characterized in that it is configured to flow into the casing.

更に、前記構成において、弁体の外周面を弁座孔の内周面に対し近接離間させて通過用隙間の大きさを可変にする隙間可変機構を備えていることを特徴とするものである。 Further, in the above configuration, the outer peripheral surface of the valve body is closely separated from the inner peripheral surface of the valve seat hole to provide a clearance variable mechanism for varying the size of the passage clearance. ..

また、前記構成において、表面積増加手段が、粘性流体取入口から取入れられた粘性流体を粘性流体取入口の流路断面積よりも小さな流路断面積に絞ったのちにポンプケーシング内に流入させる流体絞り部材で構成されていることを特徴とするものである。 Further, in the above configuration, the surface area increasing means narrows the viscous fluid taken in from the viscous fluid intake to a flow path cross-sectional area smaller than the flow path cross-sectional area of the viscous fluid intake, and then flows the viscous fluid into the pump casing. It is characterized in that it is composed of a drawing member.

そして、前記構成において、流体絞り部材が、粘性流体取入口を蓋うリング状の板状本体と、板状本体の内周縁に垂設された有底筒状の筒体部と、筒体部の底面部に上下貫通して形成されていて筒体部の流路断面積よりも小さな開孔面積の通過用孔と、を備えて成り、筒体部内の粘性流体が通過用孔を通過したのちにポンプケーシング内に流入する構成にされていることを特徴とするものである。 Then, in the above configuration, the fluid drawing member includes a ring-shaped plate-shaped main body that covers the viscous fluid intake, a bottomed tubular tubular body portion that is vertically provided on the inner peripheral edge of the plate-shaped main body, and a tubular body portion. It is provided with a passage hole having an opening area smaller than the flow path cross-sectional area of the tubular body, which is formed so as to penetrate vertically through the bottom surface of the cylinder, and the viscous fluid in the tubular body has passed through the passage hole. It is characterized in that it is configured to flow into the pump casing later.

更に、前記構成において、筒体部の通過用孔がスリット状に形成されるとともに、流体絞り部材が粘性流体取入口に配備された状態で通過用孔が当該スリット長手方向をポンプケーシングにおける軸心と直角の方向に向けて配置される構成にされていることを特徴とするものである。 Further, in the above configuration, the passage hole of the tubular body portion is formed in a slit shape, and the passage hole is axially centered in the pump casing in the longitudinal direction of the slit in a state where the fluid drawing member is arranged at the viscous fluid intake. It is characterized in that it is arranged so as to be arranged in a direction perpendicular to the above.

本発明に係る2軸スクリューポンプは、互いに非接触の一対のポンプスクリューを内蔵する容積式ポンプであって、粘性流体取入口に表面積増加手段を備えているので、取入れられた粘性流体は表面積増加手段により単位体積あたりの表面積が増加したのちにポンプケーシング内に送られる。従って、増えた表面積により粘性液体中から気泡が抜き出されやすくなり、より多くの気泡を気体抜出口から取り出すことができる。その結果、元来の脱気能力を補完して、より高度の脱気を行なうことができる。 The twin-screw pump according to the present invention is a positive displacement pump containing a pair of pump screws that are not in contact with each other, and is provided with a surface area increasing means at the viscous fluid intake, so that the viscous fluid taken in increases the surface area. After the surface area per unit volume is increased by means, it is sent into the pump casing. Therefore, the increased surface area makes it easier for bubbles to be extracted from the viscous liquid, and more bubbles can be extracted from the gas outlet. As a result, a higher degree of degassing can be performed by complementing the original degassing ability.

また、表面積増加手段が分散部材で構成されているものでは、粘性流体取入口に流入する粘性流体は分散部材により分流されて流量が制限されたのちにポンプケーシング内に送られる。このとき、複数の通過用孔の開孔面積の合計のほうが粘性流体取入口の流路断面積よりも小さいので、単位時間あたりに流入する粘性流体の表面積は、複数の通過用孔を通過する前後で大きくなる。これらに起因して、粘性流体の流動化が図られ粘性流体中の気泡の衝突を促して気泡を大径化させるから、気泡を気体抜出口に向けて容易に移動し得るとともに、増えた表面積により粘性流体中の気泡をいっそう多く脱気することができる。 Further, in the case where the surface area increasing means is composed of a dispersion member, the viscous fluid flowing into the viscous fluid intake is separated by the dispersion member and sent into the pump casing after the flow rate is restricted. At this time, since the total opening area of the plurality of passage holes is smaller than the flow path cross-sectional area of the viscous fluid intake, the surface area of the viscous fluid flowing in per unit time passes through the plurality of passage holes. It gets bigger before and after. Due to these, the viscous fluid is fluidized and the collision of the bubbles in the viscous fluid is promoted to increase the diameter of the bubbles. Therefore, the bubbles can be easily moved toward the gas outlet and the increased surface area. This allows more air bubbles in the viscous fluid to be degassed.

また、分散部材が、粘性流体取入口を蓋う板状本体と、板状本体に形成された複数の通過用孔とを備えて成るものでは、極めて簡素で安価な構成でありながら、複数の通過用孔で粘性流体を確実に分散させることができ、高度な脱気を行なうことができる。 Further, if the dispersion member is provided with a plate-shaped main body that covers the viscous fluid intake and a plurality of passage holes formed in the plate-shaped main body, a plurality of dispersion members are provided, although the configuration is extremely simple and inexpensive. The viscous fluid can be reliably dispersed in the passage holes, and a high degree of degassing can be performed.

そして、分散部材が、粘性流体取入口を蓋う板状体と、板状体に形成された弁座孔と、弁座孔の内周面との間に配置される弁体と、弁体を板状体に固定する固定部材とを備えて成るものでは、弁座孔と弁体との間に粘性流体の通過用隙間を設けることができ、この通過用隙間に粘性流体を通過させることにより、粘性流体を分散させて高度な脱気を行なうことができる。 Then, the dispersion member is arranged between the plate-shaped body that covers the viscous fluid intake, the valve seat hole formed in the plate-shaped body, and the inner peripheral surface of the valve seat hole, and the valve body. In the case of a device provided with a fixing member for fixing the viscous fluid to the plate-like body, a gap for passing the viscous fluid can be provided between the valve seat hole and the valve body, and the viscous fluid is allowed to pass through this passing gap. Therefore, the viscous fluid can be dispersed and highly degassed.

更に、弁体の外周面と弁座孔の内周面の間の通過用隙間を変える隙間可変機構を備えているものでは、弁座孔の内周面に対し弁体の外周面を近接離間させて通過用隙間の大きさを可変にするので、通過用隙間の大きさを粘性流体の粘性に合った適切な大きさに設定変更できるから、適切な脱気能力で粘性流体の脱気を行なうことができる。 Further, in the case of a device provided with a clearance variable mechanism for changing the passage gap between the outer peripheral surface of the valve body and the inner peripheral surface of the valve seat hole, the outer peripheral surface of the valve body is separated from the inner peripheral surface of the valve seat hole. Since the size of the passing gap is made variable, the size of the passing gap can be changed to an appropriate size that matches the viscosity of the viscous fluid, so the viscous fluid can be degassed with an appropriate degassing ability. Can be done.

また、前記構成において、表面積増加手段が流体絞り部材で構成されているものでは、粘性流体取入口に流入した粘性流体は、流体絞り部材の通過用孔によって粘性流体取入口の流路断面積よりも小さな流路断面積に絞られるので、通過用孔を通過した粘性流体の表面積は大きくなる。その結果、粘性流体から多くの脱気を行なうことができる。 Further, in the above configuration, in the case where the surface area increasing means is composed of the fluid drawing member, the viscous fluid flowing into the viscous fluid intake is from the flow path cross-sectional area of the viscous fluid intake by the passage hole of the fluid drawing member. Since it is narrowed down to a small flow path cross-sectional area, the surface area of the viscous fluid that has passed through the passage hole becomes large. As a result, much degassing can be performed from the viscous fluid.

そして、前記構成において、流体絞り部材が、粘性流体取入口を蓋う板状本体と、有底筒状の筒体部と、筒体部の底面部に形成された通過用孔とを備えて成るものでは、簡素で安価な構成でありながら、粘性流体を通過用孔で絞って取り入れた粘性流体の表面積を大きくでき、高度な脱気を行なうことができる。 In the above configuration, the fluid drawing member includes a plate-shaped main body that covers the viscous fluid intake, a bottomed tubular body portion, and a passage hole formed in the bottom surface portion of the tubular body portion. Although the structure is simple and inexpensive, the surface area of the viscous fluid taken in by squeezing the viscous fluid through the passage holes can be increased, and a high degree of degassing can be performed.

更に、前記構成において、筒体部の通過用孔がスリット状に形成されるとともに、通過用孔がスリット長手方向をポンプケーシングにおける軸心と直角の方向に向けて配置されるものでは、通過用孔のどの位置からでも気体抜出口に対して略同じ距離になるので、通過用孔での通過位置によることなく、粘性流体からの脱気を効率よく行なわせることができる。 Further, in the above configuration, if the passage hole of the tubular body portion is formed in a slit shape and the passage hole is arranged so that the longitudinal direction of the slit is oriented in the direction perpendicular to the axial center of the pump casing, the passage hole is used. Since the distance from any position of the hole is substantially the same as that of the gas outlet, degassing from the viscous fluid can be efficiently performed regardless of the passing position in the passage hole.

本発明の実施形態1に係る2軸スクリューポンプを示す側面構成図である。It is a side view which shows the biaxial screw pump which concerns on Embodiment 1 of this invention. 前記2軸スクリューポンプを示す正面構成図である。It is a front view which shows the two-screw pump. 前記2軸スクリューポンプの一部断面を含む内部平面構成図である。It is an internal plan view including a partial cross section of the twin-screw pump. 前記2軸スクリューポンプの内部構成図であって図3におけるA−A線矢視断面図である。It is an internal block diagram of the twin-screw pump, and is the cross-sectional view taken along the line AA in FIG. 前記2軸スクリューポンプ内の隙間を説明するための図であって、(a)は一対のポンプスクリュー間の隙間を示す部分拡大平面図、(b)はポンプスクリューとポンプケーシングの内周面間の隙間を示す部分拡大平面図である。It is a figure for demonstrating the gap in the biaxial screw pump, (a) is a partially enlarged plan view which shows the gap between a pair of pump screws, and (b) is the space between the pump screw and the inner peripheral surface of a pump casing. It is a partially enlarged plan view which shows the gap of. 前記2軸スクリューポンプの要部を分解した一部断面を含む側面構成図である。It is a side view including the partial cross section which disassembled the main part of the twin-screw pump. 前記2軸スクリューポンプの分散部材を示す図であって、(a)は平面図、(b)は(a)におけるB−B線矢視断面図である。It is a figure which shows the dispersion member of the twin-screw pump, (a) is a plan view, (b) is a sectional view taken along the line BB in (a). (a)はこの実施形態1の2軸スクリューポンプにより得られた魚肉ソーセージを撮影したX線撮像図、(b)は従前の2軸スクリューポンプにより得られた魚肉ソーセージを撮影したX線撮像図である。(A) is an X-ray image of the fish sausage obtained by the 2-axis screw pump of the first embodiment, and (b) is an X-ray image of the fish sausage obtained by the conventional 2-axis screw pump. Is. (a)は実施形態1の2軸スクリューポンプにより得られた魚肉ソーセージの身を半割にして広げた部分平面図、(b)は従前の2軸スクリューポンプにより得られた魚肉ソーセージの身を半割にして広げた部分平面図である。(A) is a partial plan view of the fish sausage obtained by the two-screw pump of the first embodiment and expanded in half, and (b) is the body of the fish sausage obtained by the conventional two-screw pump. It is a partial plan view which is divided in half and expanded. 前記2軸スクリューポンプの分散部材を示した図であって、(a)は実施形態1で用いた分散部材の平面図、(b)〜(d)は(a)の分散部材の変形例であって孔幅を順次小さくした分散部材をそれぞれ示す平面図である。It is a figure which showed the dispersion member of the biaxial screw pump, (a) is a plan view of the dispersion member used in Embodiment 1, (b)-(d) is a modification of the dispersion member of (a). It is a top view which shows each of the dispersion members which were gradually reduced in hole width. (a)〜(d)は前記2軸スクリューポンプに用い得る他の分散部材の例をそれぞれ示した平面図である。(A) to (d) are plan views showing examples of other dispersion members that can be used for the twin-screw pump. 本発明の実施形態2に係る2軸スクリューポンプの要部を示す一部断面を含む部分側面図である。It is a partial side view including a partial cross section which shows the main part of the twin-screw pump which concerns on Embodiment 2 of this invention. 実施形態2の2軸スクリューポンプの構成部品を示す図であり、(a)は弁体を示していて(1)は平面図、(2)は側面図、(3)は底面図、(b)は固定部材を示していて(1)は平面図、(2)は(1)におけるC−C線矢視断面図、(3)は底面図、(c)は板状体を示していて(1)は平面図、(2)は(1)におけるD−D線矢視断面図である。It is a figure which shows the component part of the 2 shaft screw pump of Embodiment 2, (a) shows a valve body, (1) is a plan view, (2) is a side view, (3) is a bottom view, (b). ) Indicates a fixing member, (1) is a plan view, (2) is a cross-sectional view taken along the line CC in (1), (3) is a bottom view, and (c) is a plate-like body. (1) is a plan view, and (2) is a cross-sectional view taken along the line DD in (1). 実施形態2の2軸スクリューポンプにおける要部の動作を説明するための部分側断面図である。It is a partial side sectional view for demonstrating the operation of the main part in the twin-screw pump of Embodiment 2. 本発明の実施形態3に係る2軸スクリューポンプに用いられる流体絞り部材を示す図であって、(a)は斜め下から見上げた斜視図、(b)は斜め上から見降ろした斜視図である。It is a figure which shows the fluid drawing member used for the twin-screw pump which concerns on Embodiment 3 of this invention, (a) is the perspective view which looked up from diagonally below, (b) is the perspective view which looked down from diagonally above. is there. 実施形態3の2軸スクリューポンプの流体絞り部材を示す図であって、(a)は平面図、(b)は(a)におけるE−E線矢視断面図、(c)は(a)におけるF−F線矢視断面図である。It is a figure which shows the fluid drawing member of the biaxial screw pump of Embodiment 3, (a) is a plan view, (b) is the sectional view taken along the line EE in (a), (c) is (a). It is a cross-sectional view taken along the line FF in. 実施形態3の2軸スクリューポンプの要部部品を含む分解背面図である。It is an exploded rear view including the main part parts of the twin-screw pump of Embodiment 3. 実施形態3の2軸スクリューポンプの図17におけるR−R線矢視断面図である。FIG. 17 is a cross-sectional view taken along the line RR in FIG. 17 of the twin-screw pump of the third embodiment. 実施形態3の2軸スクリューポンプの要部部品を組み付けた状態を示す背面図である。It is a rear view which shows the state which the main part part of the 2 shaft screw pump of Embodiment 3 is assembled. 本発明の実施形態4に係る2軸スクリューポンプに用いられる流体絞り部材を示す図であって、(a)は平面図、(b)は(a)におけるG−G線矢視側面図、(c)は(a)におけるH−H線矢視断面図、(d)は(a)におけるI−I線矢視断面図である。It is a figure which shows the fluid drawing member used for the twin shaft screw pump which concerns on Embodiment 4 of this invention, (a) is a plan view, (b) is a side view of GG line arrow in (a), ( c) is a cross-sectional view taken along the line OH in (a), and (d) is a cross-sectional view taken along the line I-I in (a).

以下、本発明の実施形態を図面に基づいて説明する。尚、以下に述べる実施形態は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。ここに、図1は本発明の実施形態1に係る2軸スクリューポンプを示す側面構成図、図2は前記2軸スクリューポンプを示す部分正面構成図、図3は前記2軸スクリューポンプの要部を示す一部断面を含む側面構成図、図4は前記2軸スクリューポンプの2軸スクリューポンプの内部構成図であって図3におけるA−A線矢視断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below are merely examples that embody the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a side sectional view showing a twin-screw pump according to the first embodiment of the present invention, FIG. 2 is a partial front sectional view showing the twin-screw pump, and FIG. 3 is a main part of the twin-screw pump. 4 is an internal configuration diagram of the twin-screw pump of the twin-screw pump, and is a sectional view taken along the line AA in FIG.

「実施形態1.」
図1〜図4において、この実施形態1に係る2軸スクリューポンプ1は、前後貫通した筒状のポンプケーシング2と、ポンプケーシング2の後端部に連結された軸受部5と、を備えている。ポンプケーシング2の前端部には吐出側ケーシング3が連結され、この吐出側ケーシング3の前端部に管部4が接続されている。ポンプケーシング2内には一対のポンプスクリュー7a,7bが収容される。軸部8a,8bに止めネジなどで固定されたポンプスクリュー7a,7bの前端部は、軸受などに支承されていない遊動端26,26となっている。これらポンプスクリュー7a,7bの遊動端26,26は、固定用板14,14をあてがわれ、例えばボルト15,15によって軸部8a,8bに固定される。ポンプスクリュー7aの螺旋方向とポンプスクリュー7bの螺旋方向は逆向きである。
"Implementation 1."
In FIGS. 1 to 4, the biaxial screw pump 1 according to the first embodiment includes a tubular pump casing 2 penetrating the front and rear, and a bearing portion 5 connected to the rear end portion of the pump casing 2. There is. A discharge side casing 3 is connected to the front end portion of the pump casing 2, and a pipe portion 4 is connected to the front end portion of the discharge side casing 3. A pair of pump screws 7a and 7b are housed in the pump casing 2. The front ends of the pump screws 7a and 7b fixed to the shafts 8a and 8b with set screws and the like are idle ends 26 and 26 that are not supported by bearings or the like. The idle ends 26, 26 of these pump screws 7a, 7b are assigned fixing plates 14, 14, and are fixed to the shaft portions 8a, 8b by, for example, bolts 15, 15. The spiral direction of the pump screw 7a and the spiral direction of the pump screw 7b are opposite.

軸受部5はハウジング9とカバー板10とから箱体状に構成されており、カバー板10の前端面にポンプケーシング2の筒端面が連結されている。ハウジング9内には円錐コロ軸受11,11とコロ軸受12,12が配備されている。これらのコロ軸受11,12はポンプスクリュー7aの軸部8aの後端部を片持ち状に回動自在に支承している。ポンプスクリュー7bの軸部8bの後端部も別の円錐コロ軸受11とコロ軸受12により片持ち状に回動自在に支承されている。すなわち、ポンプスクリュー7a,7bの後部側は、ハウジング9内でそれぞれ回転自由に二点支持されている。ハウジング9内でカバー板10の近傍において、ポンプスクリュー7a,7bにはシール機構16,16が装着されている。そして、ポンプスクリュー7aの軸部8aに同期歯車13aが固着されており、ポンプスクリュー7bの軸部8bには前記の同期歯車13aと噛合する同期歯車13bが固着されている。これら同期歯車13aと同期歯車13bとの同期噛合により、一対のポンプスクリュー7a,7bは、いかなる回転角度でも互いに接触することのない疑似的な噛み合いを行なうようになっている。すなわち、ポンプスクリュー7a,7bは互いに非接触で螺合して回転する。この場合、ポンプスクリュー7aの例えば軸部8aが駆動軸として、減速機構などの連結機構30を介してモータMに連結されている。 The bearing portion 5 is formed of a housing 9 and a cover plate 10 in a box shape, and the cylindrical end surface of the pump casing 2 is connected to the front end surface of the cover plate 10. Conical roller bearings 11 and 11 and roller bearings 12 and 12 are arranged in the housing 9. These roller bearings 11 and 12 rotatably support the rear end portion of the shaft portion 8a of the pump screw 7a in a cantilever shape. The rear end of the shaft portion 8b of the pump screw 7b is also rotatably supported in a cantilever shape by another conical roller bearing 11 and a roller bearing 12. That is, the rear sides of the pump screws 7a and 7b are freely rotatably supported at two points in the housing 9. Sealing mechanisms 16 and 16 are mounted on the pump screws 7a and 7b in the housing 9 in the vicinity of the cover plate 10. A synchronous gear 13a is fixed to the shaft portion 8a of the pump screw 7a, and a synchronous gear 13b that meshes with the synchronous gear 13a is fixed to the shaft portion 8b of the pump screw 7b. Due to the synchronous meshing of the synchronous gear 13a and the synchronous gear 13b, the pair of pump screws 7a and 7b perform pseudo meshing without contacting each other at any rotation angle. That is, the pump screws 7a and 7b are screwed together in a non-contact manner and rotate. In this case, for example, the shaft portion 8a of the pump screw 7a is connected to the motor M as a drive shaft via a connection mechanism 30 such as a reduction mechanism.

前記のポンプケーシング2は、正面視繭形状のポンプ室6が前後貫通して形成されている。ポンプケーシング2の前端部には、筒状の吐出側ケーシング3が連結されている。吐出側ケーシング3の前端部には、粘性流体吐出口19を有する筒状の管部4が連結されている。管部4の先端にはベント管34の一端が連結され、ベント管34の他端に逆止弁36が連結されている。逆止弁36の出側には、流体移送先とつながる管部35が連結されている。逆止弁36は、粘性流体移送方向(黒塗矢印方向)へのみ粘性流体Qの流通を許容するようになっており、通常はバネ部材のバネ弾性力により弁が閉止されている。このポンプ室6には、軸心Xa回りに回転するポンプスクリュー7aと、このポンプスクリュー7aと常に非接触で螺合して軸心Xb回りに回転するポンプスクリュー7bとが格納される。これら1対のポンプスクリュー7a,7bの各外周面は、後で詳述するように、ポンプ室6の内周面2Aとも常に非接触となっている。一方、ポンプケーシング2の上面であって前後中央部よりもやや後位置には、ポンプ室6とホッパー24とを連通する粘性流体取入口18が形成されている。 The pump casing 2 is formed by the front-view cocoon-shaped pump chamber 6 penetrating the front and rear. A tubular discharge-side casing 3 is connected to the front end of the pump casing 2. A tubular pipe portion 4 having a viscous fluid discharge port 19 is connected to the front end portion of the discharge side casing 3. One end of the vent pipe 34 is connected to the tip of the pipe portion 4, and the check valve 36 is connected to the other end of the vent pipe 34. A pipe portion 35 connected to the fluid transfer destination is connected to the exit side of the check valve 36. The check valve 36 allows the viscous fluid Q to flow only in the viscous fluid transfer direction (the direction indicated by the black arrow), and the valve is normally closed by the spring elastic force of the spring member. In the pump chamber 6, a pump screw 7a that rotates around the axis Xa and a pump screw 7b that is always screwed with the pump screw 7a in a non-contact manner and rotates around the axis Xb are stored. The outer peripheral surfaces of the pair of pump screws 7a and 7b are always in non-contact with the inner peripheral surface 2A of the pump chamber 6, as will be described in detail later. On the other hand, a viscous fluid intake 18 that communicates the pump chamber 6 and the hopper 24 is formed on the upper surface of the pump casing 2 at a position slightly rear of the front and rear central portions.

また、粘性流体取入口18を囲むポンプケーシング2の上面位置には、フランジ受部50が形成されている。粘性流体取入口18とポンプ室6とを結ぶフランジ受部50内は、管部21からの粘性流体Qをポンプ室6へ取り入れるための導入路86となっている。このフランジ受部50には、管部21のフランジがボルト51で固定されている。そして、管部21のフェルール継手部と管部53の下側のフェルール継手部とがクランプバンド54で固定され、管部53の上側のフェルール継手部にホッパー24のフェルール継手部があてがわれてクランプバンド(図示省略)で固定される。これにより、ホッパー24と粘性流体取入口18とが連通する。他方、ポンプ室6の後端部の天井面には、左右に延びる通気溝23が上向きに陥入して形成されている。この通気溝23の上方位置のポンプケーシング2に、通気溝23とケーシング上方外部とを連通する気体抜出口20が形成されている。すなわち、ポンプ室6内の気体を抜き出すための気体抜出口20が粘性流体取入口18よりも粘性流体移送方向上流側のポンプケーシング2に形成されている。この気体抜出口20には、ポンプ室6内の気体を抜き出す脱気装置27が、管材などの連通路29を介して連結されている。前記の脱気装置27として、ここでは例えば空気エジェクター方式のものを用いているが、ピストン・シリンダ式または遠心ファン式の減圧ポンプを使用しても構わない。 Further, a flange receiving portion 50 is formed at a position on the upper surface of the pump casing 2 surrounding the viscous fluid intake 18. The inside of the flange receiving portion 50 connecting the viscous fluid intake port 18 and the pump chamber 6 is an introduction path 86 for taking the viscous fluid Q from the pipe portion 21 into the pump chamber 6. The flange of the pipe portion 21 is fixed to the flange receiving portion 50 with bolts 51. Then, the ferrule joint portion of the pipe portion 21 and the ferrule joint portion on the lower side of the pipe portion 53 are fixed by the clamp band 54, and the ferrule joint portion of the hopper 24 is applied to the ferrule joint portion on the upper side of the pipe portion 53. It is fixed with a clamp band (not shown). As a result, the hopper 24 and the viscous fluid intake 18 communicate with each other. On the other hand, a ventilation groove 23 extending to the left and right is formed by being recessed upward on the ceiling surface at the rear end of the pump chamber 6. The pump casing 2 located above the ventilation groove 23 is formed with a gas outlet 20 that communicates the ventilation groove 23 with the outside above the casing. That is, a gas outlet 20 for extracting gas in the pump chamber 6 is formed in the pump casing 2 on the upstream side in the viscous fluid transfer direction with respect to the viscous fluid intake 18. A degassing device 27 for extracting gas in the pump chamber 6 is connected to the gas outlet 20 via a communication passage 29 such as a pipe material. As the degassing device 27, for example, an air ejector type is used here, but a piston / cylinder type or centrifugal fan type decompression pump may be used.

一対のポンプスクリュー7a,7bは、軸部8a,8bが挿し通される円筒状の基部7A,7Aの外周面に螺旋状のスクリュー歯が形成されている。そして、図5(a)に示すように、ポンプスクリュー7aのスクリュー歯の側面7Saとポンプスクリュー7bのスクリュー歯の側面7Sbとの間には、隙間Gが設けられて常時非接触になっている。また、各ポンプスクリュー7a,7bのスクリュー歯の外周面7Bとポンプスクリュー2のポンプ室6の内周面2Aとの間には、図5(b)に示すように、隙間Hが設けられて常時非接触になっている。すなわち、一対のポンプスクリュー7a,7bが如何なる回転角度の位置にあっても、これらの隙間G,Hは常に存在する。前記した隙間G,Hはいずれも、空気などの気体Kは通過できるが粘性流体Qの高粘度液や硬・軟質固形物は通過できない隙間幅に設定されている。この場合、隙間Gの隙間幅は例えば0.03〜0.09mmであり、隙間Hの隙間幅は例えば0.12〜0.18mmである。そして、これら一対のポンプスクリュー7a,7bにより粘性流体Qを移送し得るポンプ作用が引き起こされるのは、図3,4中に示した領域Pの範囲内である。この領域Pの範囲内のうち、粘性流体取入口18よりも上流側となるのは、図3,4中に示した領域paの範囲である。尚、2軸スクリューポンプ1が食品、医薬品、化粧料材料などの移送用である場合は、衛生面および商品物性維持の観点から、粘性流体Qと直に接する部品としては、ステンレス製のものを用いることが望ましい。この2軸スクリューポンプ1のポンプ容量は、定格で例えば10〜120L/minである。 The pair of pump screws 7a and 7b have spiral screw teeth formed on the outer peripheral surfaces of the cylindrical base portions 7A and 7A through which the shaft portions 8a and 8b are inserted. Then, as shown in FIG. 5A, a gap G is provided between the side surface 7Sa of the screw tooth of the pump screw 7a and the side surface 7Sb of the screw tooth of the pump screw 7b so that they are not in contact with each other at all times. .. Further, as shown in FIG. 5B, a gap H is provided between the outer peripheral surface 7B of the screw teeth of the pump screws 7a and 7b and the inner peripheral surface 2A of the pump chamber 6 of the pump screw 2. It is always non-contact. That is, no matter what rotation angle the pair of pump screws 7a and 7b are located at, these gaps G and H are always present. Both of the above-mentioned gaps G and H are set to a gap width that allows gas K such as air to pass through, but does not allow high-viscosity liquids of viscous fluid Q and hard / soft solids to pass through. In this case, the gap width of the gap G is, for example, 0.03 to 0.09 mm, and the gap width of the gap H is, for example, 0.12 to 0.18 mm. The pair of pump screws 7a and 7b causes a pumping action capable of transferring the viscous fluid Q within the range of the region P shown in FIGS. 3 and 4. Within the range of this region P, the range on the upstream side of the viscous fluid intake 18 is the range of the region pa shown in FIGS. 3 and 4. When the twin-screw pump 1 is for transferring foods, pharmaceuticals, cosmetic materials, etc., stainless steel parts should be used as parts that come into direct contact with the viscous fluid Q from the viewpoint of hygiene and maintenance of commercial properties. It is desirable to use it. The pump capacity of the twin-screw pump 1 is rated, for example, 10 to 120 L / min.

一方で、この2軸スクリューポンプ1では、図6に示すように、ポンプケーシング2の粘性流体取入口18の入側に、表面積増加手段77の一例である分散部材40が配備されている。この分散部材40は、図7に示すように、ポンプケーシング2の粘性流体取入口18を蓋う円盤状の板状本体42と、板状本体42の平面中央部分に板上面から下向きに陥入して形成された段部44と、段部44に粘性流体通過可能に表裏貫通して形成された平面視直線状の複数の通過用孔41,41,41,・・・と、板状本体42の周縁部に形成されていてボルト51を通すボルト挿通孔43,43,43,43と、から構成されている。分散部材40の厚さtは例えば5mmである。この場合、管部21の管内または粘性流体取入口18の流路断面積A[(直径L/2)2・π]よりも、複数の通過用孔41,41,41,・・・の総開孔面積B(流路断面積)[孔幅Y×(各通過用孔41の長手寸法の総和)]のほうが小さい。 On the other hand, in the twin-screw pump 1, as shown in FIG. 6, a dispersion member 40, which is an example of the surface area increasing means 77, is provided on the entrance side of the viscous fluid intake 18 of the pump casing 2. As shown in FIG. 7, the dispersion member 40 is recessed downward from the upper surface of the plate into the disk-shaped plate-shaped main body 42 that covers the viscous fluid intake 18 of the pump casing 2 and the plane central portion of the plate-shaped main body 42. 41, 41, 41, ..., And a plate-shaped main body, which are formed through the step portion 44 and a plurality of passage holes 41, 41, 41, ... It is formed on the peripheral edge of 42 and is composed of bolt insertion holes 43, 43, 43, 43 through which the bolt 51 is passed. The thickness t of the dispersion member 40 is, for example, 5 mm. In this case, the total number of passage holes 41, 41, 41, ... Is larger than the flow path cross-sectional area A [(diameter L / 2) 2 · π] in the pipe of the pipe portion 21 or the viscous fluid intake 18. The opening area B (flow path cross-sectional area) [hole width Y × (total longitudinal dimensions of each passage hole 41)] is smaller.

上記のように構成された2軸スクリューポンプ1の作用を次に説明する。移送に用いられる高粘度の粘性流体Qとしては、例えば魚肉ソーセージ原料、味噌、水飴、バター、溶融チョコレートなどの食品、クリームやローションなどの化粧料、溶融合成樹脂などの工業材料、あるいは医療用材料などが挙げられる。この高粘度の粘性流体Qとしては、相対粘度が例えば1〜100万Pa・sのものを用いることができる。粘性流体Qの取り扱い温度は、流体の種類により異なるが、例えば常温〜200℃程度である。ここでは、相対粘度が例えば100万Pa・sである「ケーシング充填前の魚肉ソーセージ原料」を用いた例を示す。ホッパー24内の粘性流体Q(図1参照)中には、多数の気泡73,73,73,・・・が散在しそれぞれ静止している。 The operation of the twin-screw pump 1 configured as described above will be described below. The highly viscous viscous fluid Q used for transfer includes, for example, fish meat sausage raw materials, miso, starch syrup, butter, foods such as molten chocolate, cosmetics such as creams and lotions, industrial materials such as molten synthetic resins, and medical materials. And so on. As the viscous fluid Q having a high viscosity, a fluid having a relative viscosity of, for example, 1 to 1 million Pa · s can be used. The handling temperature of the viscous fluid Q varies depending on the type of fluid, but is, for example, about room temperature to 200 ° C. Here, an example using "fish sausage raw material before casing filling" having a relative viscosity of, for example, 1 million Pa · s is shown. A large number of bubbles 73, 73, 73, ... Are scattered and stationary in the viscous fluid Q (see FIG. 1) in the hopper 24.

モータMの回転駆動により、ポンプスクリュー7aが一方向に回転すると、同期歯車13a,13bを介して動力伝達されたポンプスクリュー7bが逆方向に同期回転する。ポンプスクリュー7a,7bの回転速度は、例えば100〜1000rpmである。一方で、粘性流体Qをホッパー24内に投入すると、その粘性流体Qは、ホッパー24から管部53を経て管部21に流入する。その後、管部21の粘性流体Qは分散部材40の複数の通過用孔41,41,41,・・・で流量が制限されながら分かれて流入し、通過用孔41,41,41,・・・の通過後は、それぞれ流入粘性流体N,N,N,・・・(図7(b)参照)として粘性流体取入口18の手前で再び合流する。この場合、管部21における粘性流体Qの単位時間あたりの流入量(本発明に云う単位体積)は[(直径L/2)2・π・流入長J]で算出されるが、管部21の管内の流路断面積Aよりも通過用孔41,41,41,・・・の総開孔面積Bのほうが小さいので、各通過用孔41から流入する流入粘性流体Nの流入長J1は粘性流体Qの流入長Jよりも長くなる。これにより、粘性流体Qの単位体積あたりの表面積[L・π・J]よりも流入粘性流体Nの単位体積あたりの表面積[(2・(各通過用孔41の孔幅Y+孔長手寸法)・J1)の総和]のほうが広くなるのである。 When the pump screw 7a rotates in one direction due to the rotational drive of the motor M, the pump screw 7b whose power is transmitted via the synchronous gears 13a and 13b rotates synchronously in the opposite direction. The rotation speeds of the pump screws 7a and 7b are, for example, 100 to 1000 rpm. On the other hand, when the viscous fluid Q is thrown into the hopper 24, the viscous fluid Q flows from the hopper 24 into the pipe portion 21 via the pipe portion 53. After that, the viscous fluid Q of the pipe portion 21 separately flows in while the flow rate is restricted by the plurality of passage holes 41, 41, 41, ... Of the dispersion member 40, and the passage holes 41, 41, 41, ... After passing through, the inflowing viscous fluids N, N, N, ... (See FIG. 7B) are rejoined before the viscous fluid intake 18. In this case, (unit volume referred to in the present invention) viscosity flowing per unit time of the fluid Q in the tube unit 21 is calculated by [(diameter L / 2) 2 · π · inflow length J], the tube portion 21 Since the total opening area B of the passage holes 41, 41, 41, ... Is smaller than the flow path cross-sectional area A in the pipe, the inflow length J1 of the inflow viscous fluid N flowing in from each passage hole 41 is It becomes longer than the inflow length J of the viscous fluid Q. As a result, the surface area per unit volume of the inflowing viscous fluid N is higher than the surface area [L · π · J] per unit volume of the viscous fluid Q [(2. (Hole width Y of each passage hole 41 + hole longitudinal dimension). The sum of J1)] is wider.

このように分散部材40で分散して再度合流した粘性流体Qは、粘性流体取入口18を経てポンプケーシング2のポンプ室6内に流入する。一方、脱気装置27の駆動により、ポンプケーシング2内の気体(ほとんどが空気)は気体抜出口20から抜き出され、ポンプ室6内の圧力は低下している。このとき、脱気装置27による減圧度は、例えば−0.01〜−0.04MPa(因みに完全真空=−0.1MPa)である。これに対し、粘性流体Qは、ポンプスクリュー7a,7bのポンプ作用によって吐出側ケーシング3に向けて送られていくのである(黒塗矢印F方向)。 The viscous fluid Q thus dispersed by the dispersion member 40 and rejoined flows into the pump chamber 6 of the pump casing 2 through the viscous fluid intake port 18. On the other hand, by driving the degassing device 27, the gas (mostly air) in the pump casing 2 is extracted from the gas outlet 20, and the pressure in the pump chamber 6 is reduced. At this time, the degree of decompression by the degassing device 27 is, for example, −0.01 to −0.04 MPa (by the way, complete vacuum = −0.1 MPa). On the other hand, the viscous fluid Q is sent toward the discharge side casing 3 by the pumping action of the pump screws 7a and 7b (black arrow F direction).

この場合、粘性流体Qは、分散部材40の通過用孔41,41,41,・・・を通っていったん分流したのちに再び合流する。そして、ポンプ室6内は脱気装置27により真空引きされているので、分散部材40を通過して大粒になった気泡は、ポンプ室6内で粘性流体Q中を粘性流体移送方向(黒塗矢印Fの方向)とは反対方向(白抜き矢印の方向、すなわち移送方向上流側に向けて)に容易に移動する。このとき、微細な気泡も、ポンプケーシング2の内周面2Aとポンプスクリュー7a,7bの外周面7Bとの隙間H(図5(b)参照)や、ポンプスクリュー7aの側面7Saとポンプスクリュー7bの側面7Sbとの隙間G(図5(a)参照)を通過して領域pa中を後向きに移動する。その後、移動した気泡は脱気装置27の作用により気体抜出口20から連通路29を経て吸い出され機外へ排出される。これにより、気体を大幅に除去された粘性流体Qが粘性流体吐出口19から逆止弁36へ送り出される。自身のバネ部材により閉弁していた逆止弁36は、入側の圧力が正圧の例えば0.05MPaに達したときにバネ部材のバネ弾性力に抗して開弁し、粘性流体Qを管部35へ送り出す。管部35からの粘性流体Qは、例えばソーセージケーシングへ充填するための充填機へ魚肉材料として送られる。 In this case, the viscous fluid Q once splits through the passage holes 41, 41, 41, ... Of the dispersion member 40, and then rejoins. Since the inside of the pump chamber 6 is evacuated by the degassing device 27, the bubbles that have passed through the dispersion member 40 and become large particles pass through the viscous fluid Q in the pump chamber 6 in the viscous fluid transfer direction (painted in black). It easily moves in the direction opposite to the direction of the arrow F (the direction of the white arrow, that is, toward the upstream side in the transfer direction). At this time, even fine air bubbles are also contained in the gap H between the inner peripheral surface 2A of the pump casing 2 and the outer peripheral surface 7B of the pump screws 7a and 7b (see FIG. 5B), and the side surface 7Sa and the pump screw 7b of the pump screw 7a. It passes through the gap G (see FIG. 5A) with the side surface 7Sb of the above and moves backward in the region pa. After that, the moved air bubbles are sucked out from the gas outlet 20 through the communication passage 29 by the action of the degassing device 27 and discharged to the outside of the machine. As a result, the viscous fluid Q from which the gas has been largely removed is sent out from the viscous fluid discharge port 19 to the check valve 36. The check valve 36, which was closed by its own spring member, opens against the spring elastic force of the spring member when the pressure on the inlet side reaches a positive pressure of, for example, 0.05 MPa, and the viscous fluid Q Is sent to the pipe portion 35. The viscous fluid Q from the pipe portion 35 is sent as a fish meat material to, for example, a filling machine for filling the sausage casing.

前記のように送られた粘性流体Qは、充填機で可撓筒状のケーシング内に充填され、その筒両端が留輪で封止されて魚肉ソーセージ(A)にされる。得られた魚肉ソーセージ(A)をX線撮影装置で撮影したところ、図8(a)に示したようなX線写真が得られた。このX線写真には、ケーシング影像60、留輪影像61および魚肉影像62Aが写っていたが、魚肉影像62A中に気泡は認められなかった。
一方、分散部材40を用いていない従前の2軸スクリューポンプにより粘性流体Qを脱泡搬送して魚肉ソーセージ(B)を得た。その魚肉ソーセージ(B)をX線撮影装置で撮影したところ、図8(b)に示したようなX線写真が得られた。この魚肉ソーセージ(B)のX線写真には、ケーシング影像60、留輪影像61および魚肉影像62が写っており、魚肉影像62中にはいくつかの気泡影像63が認められた。
The viscous fluid Q sent as described above is filled in a flexible tubular casing by a filling machine, and both ends of the casing are sealed with retaining rings to make fish sausage (A). When the obtained fish sausage (A) was photographed with an X-ray photographing apparatus, an X-ray photograph as shown in FIG. 8 (a) was obtained. In this X-ray photograph, the casing image 60, the retaining ring image 61, and the fish meat image 62A were shown, but no bubbles were observed in the fish meat image 62A.
On the other hand, the viscous fluid Q was defoamed and conveyed by a conventional twin-screw pump that did not use the dispersion member 40 to obtain fish sausage (B). When the fish sausage (B) was photographed with an X-ray apparatus, an X-ray photograph as shown in FIG. 8 (b) was obtained. The X-ray photograph of the fish sausage (B) shows a casing image 60, a ring image 61, and a fish image 62, and some bubble images 63 were observed in the fish image 62.

更に、前記のように分散部材40を用いて得られた魚肉ソーセージ(A)からケーシングおよび留輪を取り外して魚肉を露出させた。その魚肉を長手方向に縦割りにして開いたものを図9(a)に示す。縦割りされて開かれた魚肉72AAおよび魚肉72ABを観察すると、魚肉の呈する桃色が濃く、気泡は見当たらなかった。
一方、分散部材40を用いることなく得られた魚肉ソーセージ(B)を縦割りにして開くと、図9(b)に示すように、開かれた魚肉72Aと魚肉72Bには、気泡73A、気泡73B、気泡74Aおよび気泡74Bが含まれていた。気泡73Aと気泡73B、および気泡74Aと気泡74Bは、それぞれ縦割り前に一体の気泡であったものである。そして、この魚肉72Aと魚肉72Bは、空気混入率が高いためか、魚肉の呈する桃色が前述の魚肉ソーセージ(A)よりも淡かった。
Further, the casing and the retaining ring were removed from the fish sausage (A) obtained by using the dispersion member 40 as described above to expose the fish meat. FIG. 9A shows the fish meat that is vertically divided and opened in the longitudinal direction. When observing the fish meat 72AA and the fish meat 72AB which were vertically divided and opened, the pink color of the fish meat was deep and no bubbles were found.
On the other hand, when the fish sausage (B) obtained without using the dispersion member 40 is vertically divided and opened, as shown in FIG. 9B, the opened fish meat 72A and the fish meat 72B have bubbles 73A and bubbles. 73B, bubbles 74A and bubbles 74B were included. The bubble 73A and the bubble 73B, and the bubble 74A and the bubble 74B were one cell before being vertically divided, respectively. The pink color of the fish meat 72A and the fish meat 72B was lighter than that of the fish sausage (A) described above, probably because the air mixing rate was high.

そして、前記のように、ほとんど気泡の見られない魚肉ソーセージ(A)は、気泡を含んでいた従前の魚肉ソーセージ(B)と比べて、見掛け比重が高くなるとともに比重検出値のバラツキが小さくなり、ソーセージ食材の酸化劣化も防げるものであった。従って、商品品質の安定化に大きく寄与できたのである。 As described above, the fish sausage (A) having almost no bubbles has a higher apparent specific gravity and a smaller variation in the specific gravity detection value than the conventional fish sausage (B) containing bubbles. , It was also possible to prevent oxidative deterioration of sausage ingredients. Therefore, it was able to greatly contribute to the stabilization of product quality.

以上に述べたように、この実施形態1の2軸スクリューポンプ1によれば、粘性流体取入口18の入側に分散部材40が配備されているので、ポンプケーシング2に取り込まれる直前の粘性流体Qには分散部材40により流量制限のために分散をさせることができる。これにより、粘性流体Qの流動化を促進し、粘性流体Q中の気泡の衝突を促して気泡を大径化させることができる。従って、ポンプケーシング2内に取り込まれた粘性流体Qにおいては、大径となった気泡が容易に気体抜出口20に向けて移動するので、元来気泡が動きにくかった高粘度の粘性流体Qであっても、粘性流体Qから気泡を確実かつ高度に抜き出すことができ、脱気性能を向上化させることができる。併せて、分散部材40による表面積増加手段77の機能により、分散部材40から流入した流入粘性流体N,N,N,・・・の表面積が大きくされているので、これによっても脱気性能は更に向上化される。 As described above, according to the twin-screw pump 1 of the first embodiment, since the dispersion member 40 is provided on the inlet side of the viscous fluid intake 18, the viscous fluid immediately before being taken into the pump casing 2. The Q can be dispersed by the dispersion member 40 to limit the flow rate. As a result, the fluidization of the viscous fluid Q can be promoted, the collision of the bubbles in the viscous fluid Q can be promoted, and the diameter of the bubbles can be increased. Therefore, in the viscous fluid Q taken into the pump casing 2, the large-diameter bubbles easily move toward the gas outlet 20, so that the viscous fluid Q, which originally had difficulty in moving, is used. Even if there is, the bubbles can be reliably and highly extracted from the viscous fluid Q, and the degassing performance can be improved. At the same time, the surface area of the inflowing viscous fluid N, N, N, ... Inflowing from the dispersion member 40 is increased by the function of the surface area increasing means 77 by the dispersion member 40, so that the degassing performance is further improved. It will be improved.

ところで、前記の分散部材40は図10(a)にも示されているが、各通過用孔41は、比較的広い孔幅Y(例えば5mm)で開口したものである。但し、粘性流体Qの粘度や質に応じた孔幅の通過用孔を有する分散部材を用いることができる。例えば、図10(b)の分散部材40Aでは、各通過用孔41Aの孔幅YAが4mmにされている。更に、同図(c)の分散部材40Bでは各通過用孔41Bの孔幅YBが3mmであり、同図(d)の分散部材40Cでは各通過用孔41Cの孔幅YCが2mmである。これらの分散部材40A〜40Cであっても、分散部材40と同種の効果を呈することは言うまでもない。 By the way, although the dispersion member 40 is also shown in FIG. 10A, each passage hole 41 is opened with a relatively wide hole width Y (for example, 5 mm). However, a dispersion member having a passage hole having a hole width according to the viscosity and quality of the viscous fluid Q can be used. For example, in the dispersion member 40A of FIG. 10B, the hole width YA of each passage hole 41A is set to 4 mm. Further, in the dispersion member 40B of the figure (c), the hole width YB of each passage hole 41B is 3 mm, and in the dispersion member 40C of the figure (d), the hole width YC of each passage hole 41C is 2 mm. Needless to say, even these dispersion members 40A to 40C exhibit the same effect as the dispersion member 40.

そして、上面の分散部材40〜40Cでは、平面視直線状の通過用孔41〜41Cを複数平行に並べて形成したものを例示したが、本発明はそれらに限定されない。例えば、図11(a)〜(d)に示される分散部材40a〜40dも本発明に含まれる。これらにおいて、分散部材40aでは直線状の通過用孔41aが放射状に配置して形成され、分散部材40bでは円形の通過用孔41bが多数形成されている。また、分散部材40cでは前記の通過用孔41bよりも大径で円形の通過用孔41cが多数形成され、分散部材40dでは大径の複数の通過用孔41dが十の字状に配置して形成されている。これらのような分散部材であっても、粘性流体Qを流動化させるとともに気泡同士の衝突を促進し得るから、脱気を向上化できるという効果を奏する。 The dispersion members 40 to 40C on the upper surface exemplify those formed by arranging a plurality of passage holes 41 to 41C in a straight line in a plan view in parallel, but the present invention is not limited thereto. For example, the dispersion members 40a to 40d shown in FIGS. 11A to 11D are also included in the present invention. In these, the dispersion member 40a is formed by arranging linear passage holes 41a in a radial pattern, and the dispersion member 40b is formed by a large number of circular passage holes 41b. Further, in the dispersion member 40c, a large number of circular passage holes 41c having a diameter larger than that of the passage holes 41b are formed, and in the dispersion member 40d, a plurality of large diameter passage holes 41d are arranged in a cross shape. It is formed. Even with such a dispersion member, the viscous fluid Q can be fluidized and the collision between bubbles can be promoted, so that the degassing can be improved.

「実施形態2.」
尚、上記の実施形態1では、板状本体42と、板状本体42に形成されたそれぞれ複数の通過用孔41〜41C,41a〜41dと、を備えて成る分散部材40〜40C,40a〜40dを例示したが、本発明はそれに限定されるものでない。例えば、図12に示すような分散部材40eを有する2軸スクリューポンプも本発明に含まれる。
この分散部材40eは、ポンプケーシング2の粘性流体取入口18を蓋う円盤状の板状体45と、板状体45に表裏貫通して形成された弁座孔38と、弁座孔38の内周面37との間に粘性流体通過可能な通過用隙間YD(図14参照)を有して配置される弁体46と、弁体46を板状体45上の所定位置に固定するための固定部材47およびナット59と、から構成されている。また、この分散部材40eは隙間可変機構39も備えている。隙間可変機構39は、固定部材47の基盤部55と、基盤部55の雌ネジ部57と、弁体46の上部に立設されていて前記の雌ネジ部57と螺合する雄ネジ部48と、から構成されている。
"Implementation 2."
In the first embodiment, the dispersion members 40 to 40C, 40a to include the plate-shaped main body 42 and a plurality of passage holes 41 to 41C, 41a to 41d formed in the plate-shaped main body 42, respectively. Although 40d has been illustrated, the present invention is not limited thereto. For example, a twin-screw pump having a dispersion member 40e as shown in FIG. 12 is also included in the present invention.
The dispersion member 40e includes a disk-shaped plate-shaped body 45 that covers the viscous fluid intake 18 of the pump casing 2, a valve seat hole 38 formed by penetrating the plate-shaped body 45 from the front and back, and a valve seat hole 38. To fix the valve body 46 arranged with a passage gap YD (see FIG. 14) through which the viscous fluid can pass between the inner peripheral surface 37 and the valve body 46 at a predetermined position on the plate-shaped body 45. It is composed of a fixing member 47 and a nut 59. Further, the dispersion member 40e also includes a gap variable mechanism 39. The clearance variable mechanism 39 includes a base portion 55 of the fixing member 47, a female screw portion 57 of the base portion 55, and a male screw portion 48 that is erected above the valve body 46 and is screwed with the female screw portion 57. And is composed of.

前記の板状体45は、図13(c)に示すように、粘性流体取入口18を蓋う円盤状体であって、その板上面から下向きに陥入して形成された段部44aと、段部44aの中央部に上下貫通して形成された平面視円形の弁座孔38と、段部44aにおける外周縁と内周縁(弁座孔38の内周面37の上縁)の間に全周にわたって刻設された円環状の装着用溝58と、板周縁部に形成されたボルト挿通孔43,43,43,43と、を備えて構成されている。
前記の弁体46は、図13(a)に示すように、上向きに縮径した截頭円錐状のテーパ部49と、テーパ部49の上面に立設された雄ネジ部48と、から構成されている。図中の符号49Aはテーパ部49の下面である。この弁体46は例えばステンレス鋼製棒材からの削り出しにより全体が一体物として製作される。
前記の固定部材47は、図13(b)に示すように、平板状の基盤部55と、基盤部55の両端部から垂設された1対の脚部56,56と、基盤部55の平面中心に形成されていて前記弁体46の雄ネジ部48と螺合する雌ネジ部57と、から構成されている。脚部56,56の下端は、板状体45の装着用溝58と同じ曲率で形成されていて装着用溝58内の自由位置に設置可能にされている。
As shown in FIG. 13 (c), the plate-shaped body 45 is a disk-shaped body that covers the viscous fluid intake port 18, and has a step portion 44a formed by invading downward from the upper surface of the plate. , Between the valve seat hole 38 having a circular shape in a plan view formed vertically through the central portion of the step portion 44a, and the outer and inner peripheral edges of the step portion 44a (the upper edge of the inner peripheral surface 37 of the valve seat hole 38). It is configured to include an annular mounting groove 58 engraved over the entire circumference and bolt insertion holes 43, 43, 43, 43 formed in the peripheral portion of the plate.
As shown in FIG. 13A, the valve body 46 includes a tapered portion 49 having a conical head that is reduced in diameter upward, and a male screw portion 48 that is erected on the upper surface of the tapered portion 49. Has been done. Reference numeral 49A in the figure is the lower surface of the tapered portion 49. The valve body 46 is manufactured as an integral body by, for example, being machined from a stainless steel rod.
As shown in FIG. 13B, the fixing member 47 includes a flat plate-shaped base portion 55, a pair of leg portions 56, 56 suspended from both ends of the base portion 55, and a base portion 55. It is composed of a female screw portion 57 which is formed at the center of a plane and is screwed with a male screw portion 48 of the valve body 46. The lower ends of the legs 56, 56 are formed with the same curvature as the mounting groove 58 of the plate-shaped body 45, and can be installed at a free position in the mounting groove 58.

上記構成の分散部材40eを用いた2軸スクリューポンプでは、図14に示すように、管部21からの粘性流体Qが固定部材47の基盤部55の側方を通り抜け、弁体46のテーパ部49に沿って広がりながら下降することにより分散する。その後、粘性流体Qは、例えば隙間幅YDの通過用隙間41eを通過して粘性流体取入口18に至り、ポンプケーシング2内へ流入する。このように分散部材40eを配備したことにより、弁座孔38の内周面37と弁体46のテーパ部49との間に、粘性流体Qを通過させるための通過用隙間YDを形成することができる。そして、この通過用隙間YDに粘性流体Qを通過させることにより、粘性流体Qを流入粘性流体N1のように流量制限および分流をさせて高度な脱気を実現できる。 In the biaxial screw pump using the dispersion member 40e having the above configuration, as shown in FIG. 14, the viscous fluid Q from the pipe portion 21 passes through the side of the base portion 55 of the fixing member 47, and the tapered portion of the valve body 46. Disperse by descending while spreading along 49. After that, the viscous fluid Q passes through, for example, the passing gap 41e having a gap width YD, reaches the viscous fluid intake 18, and flows into the pump casing 2. By arranging the dispersion member 40e in this way, a passage gap YD for passing the viscous fluid Q is formed between the inner peripheral surface 37 of the valve seat hole 38 and the tapered portion 49 of the valve body 46. Can be done. Then, by passing the viscous fluid Q through the passing gap YD, the viscous fluid Q can be flow-limited and diverted like the inflowing viscous fluid N1 to realize a high degree of degassing.

更に、隙間可変機構39では、固定部材47の雌ネジ部57に対して弁体46の雄ネジ部48を上下に螺進させることにより、弁座孔38の内周面37に対し弁体46のテーパ部49(外周面)を近接離間させて通過用隙間41eの隙間幅YD(大きさ)を調整可能である。従って、通過用隙間41eの隙間幅YDを粘性流体Qの粘度に合った適切な大きさに設定変更できる。例えば、より高粘度の粘性流体Qに対しては、雄ネジ部48を雌ネジ部57に対して下向き(図14の矢印N方向)に螺進させることにより、通過用隙間41eを例えば隙間幅YD1のように広げることが可能である。また、弁体46のテーパ部49を弁座孔38の内周面37に密着させることにより、通過用隙間41eを全閉にすることもできる。更に、この分散部材40eによっても、流入粘性流体N1の表面積は流入前と比べて大きくされるので、よりいっそう脱泡性能を高めることができる。 Further, in the clearance variable mechanism 39, the male screw portion 48 of the valve body 46 is screwed up and down with respect to the female screw portion 57 of the fixing member 47, whereby the valve body 46 is screwed to the inner peripheral surface 37 of the valve seat hole 38. The gap width YD (size) of the passage gap 41e can be adjusted by closely separating the tapered portion 49 (outer peripheral surface) of the above. Therefore, the gap width YD of the passage gap 41e can be set and changed to an appropriate size suitable for the viscosity of the viscous fluid Q. For example, for a viscous fluid Q having a higher viscosity, the male screw portion 48 is screwed downward with respect to the female screw portion 57 (in the direction of arrow N in FIG. 14) to make the passage gap 41e, for example, the gap width. It can be expanded like YD1. Further, the passage gap 41e can be completely closed by bringing the tapered portion 49 of the valve body 46 into close contact with the inner peripheral surface 37 of the valve seat hole 38. Further, even with this dispersion member 40e, the surface area of the inflow viscous fluid N1 is increased as compared with that before the inflow, so that the defoaming performance can be further improved.

「実施形態3.」
尚、上記した実施形態1,2では、複数の通過用孔41,41,41,・・・や隙間幅可変の分散部材を有する2軸スクリューポンプを例示したが、本発明はそれらに限定されるものでない。例えば、ひとつの通過用孔を有する流体絞り部材を用いた2軸スクリューポンプも本発明に含まれる。そのような2軸スクリューポンプは、図15〜図19に示すように、実施形態1,2で示した分散部材の替わりに、流体絞り部材78を備えている。この流体絞り部材78は表面積増加手段77の別例であり、ポンプケーシング2の粘性流体取入口18を蓋うリング状の板状本体42と、板状本体42の内周縁全周にわたり板上面から下向きに陥入して形成された段部44と、段部44の内周縁に全周にわたって垂設された有底円筒状の筒体部79と、筒体部79の底面部80に上下貫通して形成された通過用孔82と、板状本体42の周縁部に形成されていてボルト51を通すボルト挿通孔43,43,43,43と、から構成されている。板状本体42の厚さtは例えば10mmである。流体絞り部材78の筒体部79はフランジ受部50の導入路86内に装入され、板状本体42はボルト挿通孔43を通されたボルト51により管部21のフランジ部とともにフランジ受部50に固定される。筒体部79の上面開口は、管部21からの粘性流体Qを取り入れるための導入孔83となっている。
"Embodiment 3."
In the above-described first and second embodiments, a biaxial screw pump having a plurality of passage holes 41, 41, 41, ... And a dispersion member having a variable gap width has been exemplified, but the present invention is limited thereto. Not a thing. For example, a biaxial screw pump using a fluid drawing member having one passage hole is also included in the present invention. As shown in FIGS. 15 to 19, such a biaxial screw pump includes a fluid drawing member 78 instead of the dispersion member shown in the first and second embodiments. The fluid drawing member 78 is another example of the surface area increasing means 77, and is a ring-shaped plate-shaped main body 42 that covers the viscous fluid intake 18 of the pump casing 2 and the plate-shaped main body 42 from the upper surface of the plate over the entire inner peripheral edge. The stepped portion 44 formed by being recessed downward, the bottomed cylindrical tubular body portion 79 suspended over the entire circumference of the inner peripheral edge of the stepped portion 44, and the bottom surface portion 80 of the tubular body portion 79 penetrate vertically. It is composed of a passage hole 82 formed in the above manner and bolt insertion holes 43, 43, 43, 43 formed on the peripheral edge of the plate-shaped main body 42 through which the bolt 51 is passed. The thickness t of the plate-shaped main body 42 is, for example, 10 mm. The tubular body portion 79 of the fluid drawing member 78 is inserted into the introduction path 86 of the flange receiving portion 50, and the plate-shaped main body 42 is fitted with the flange portion of the pipe portion 21 by the bolt 51 passed through the bolt insertion hole 43. It is fixed at 50. The upper surface opening of the tubular body portion 79 is an introduction hole 83 for taking in the viscous fluid Q from the pipe portion 21.

この場合、管部21の管内または粘性流体取入口18の流路断面積A[(直径L/2)2・π]よりも、単一の通過用孔82の開孔面積B1(流路断面積)[孔幅SH×直径L]のほうが小さくなっている。そして、筒体部79の底面部80,80は、ポンプケーシング2のポンプ室6,6の天井形状に対応した2つの凹曲面であり、底面部80,80が合わさった稜線部81は前後に延びる直線状になっている。前記の通過用孔82は直線状の稜線部81に対して直角の左右方向に延びるように穿設されている。尚、左右のポンプ室6,6の境界部分は、天井側の稜線部84と下側の稜線部85となっており、ポンプケーシング2内で前後方向に延びている。 In this case, the opening area B1 (flow path breakage) of the single passage hole 82 is larger than the flow path cross-sectional area A [(diameter L / 2) 2 · π] in the pipe portion 21 or the viscous fluid intake 18. Area) [hole width SH x diameter L] is smaller. The bottom surfaces 80 and 80 of the tubular body portion 79 are two concave curved surfaces corresponding to the ceiling shapes of the pump chambers 6 and 6 of the pump casing 2, and the ridge line portions 81 in which the bottom surface portions 80 and 80 are combined are front and rear. It is a straight line that extends. The passage hole 82 is formed so as to extend in the left-right direction perpendicular to the straight ridge line portion 81. The boundary portions of the left and right pump chambers 6 and 6 are a ridge line portion 84 on the ceiling side and a ridge line portion 85 on the lower side, and extend in the front-rear direction in the pump casing 2.

上記のように構成された2軸スクリューポンプを用いて、粘性流体Qである「とろろ(粘度8000cp)」をホッパー24から投入し、脱気装置27で脱気しながらポンプスクリュー7a,7bで移送して粘性流体吐出口19から吐出させた。吐出したとろろを熱湯中でボイルし、湯中での浮き沈みにより脱泡性能を評価した。とろろ中に気泡が多く含まれていると、ボイル後のとろろは湯中で浮き、気泡が少ないと沈むのである。この場合、供試したとろろは、ボイル後に沈む態様を見せ、十分に脱気できていたことが分かった。因みに、流体絞り部材78を使用しない2軸スクリューポンプで移送処理されたとろろは、ボイル後に浮かんでしまい、脱気が不十分であることが分かった。 Using the twin-screw pump configured as described above, the viscous fluid Q "Tororo (viscosity 8000 cp)" is charged from the hopper 24 and transferred by the pump screws 7a and 7b while being degassed by the degassing device 27. Then, it was discharged from the viscous fluid discharge port 19. The discharged tororo was boiled in boiling water, and the defoaming performance was evaluated by the ups and downs in the water. If the tororo contains a lot of air bubbles, the tororo after boiling floats in hot water, and if there are few air bubbles, it sinks. In this case, the tororo tested showed a mode of sinking after boiling, and it was found that the tororo was sufficiently degassed. By the way, it was found that the tororo transferred by the twin-screw pump that does not use the fluid drawing member 78 floats after boiling, and the degassing is insufficient.

続いて、流体絞り部材78を使用した2軸スクリューポンプを用いて、粘性流体Qである「パスタソース(粘度100000cp)」を、とろろのときと同様に、ホッパー24から投入し、脱気装置27で脱気しながらポンプスクリュー7a,7bで移送して粘性流体吐出口19から吐出させた。吐出したパスタソースの見掛け比重を測定して脱泡性能を評価した。この場合、予め設定されている評価用比重よりも、測定したパスタソースは見掛け比重の重いサンプルが多くあり、不良率は0.125%と比較的小さいものであった。また、脱気装置27へとつながる連通路29へのパスタソースの侵入も観察されなかった。それに対して、流体絞り部材78を使用しない2軸スクリューポンプで移送処理されたパスタソースのサンプルは、見掛け比重が評価用比重よりも軽く不良率が0.25%であり、且つ、パスタソースの一部が脱気装置27への連通路29に侵入して脱気装置27の将来的な故障を予見するものであった。 Subsequently, using a biaxial screw pump using the fluid drawing member 78, the viscous fluid Q "pasta sauce (viscosity 100,000 cp)" is charged from the hopper 24 in the same manner as in the case of tororo, and the degassing device 27 While degassing, the fluid was transferred by the pump screws 7a and 7b and discharged from the viscous fluid discharge port 19. The defoaming performance was evaluated by measuring the apparent specific gravity of the discharged pasta sauce. In this case, the measured pasta sauce had many samples having a heavier apparent specific gravity than the preset evaluation specific gravity, and the defective rate was relatively small at 0.125%. In addition, no invasion of the pasta sauce into the communication passage 29 leading to the degassing device 27 was observed. On the other hand, the pasta sauce sample transferred by the twin-screw pump that does not use the fluid drawing member 78 has an apparent specific gravity lighter than the evaluation specific gravity, a defect rate of 0.25%, and the pasta sauce. A part of it invaded the communication passage 29 to the degassing device 27 and foresaw a future failure of the degassing device 27.

一方で、流体絞り部材78は、通過用孔82の孔幅SHが5mmのものと2mmのものを作製し、それぞれを用いた2軸スクリューポンプに粘性流体Qを供試し、上記したボイル試験または見掛け比重試験により脱泡性能を評価した。その結果、孔幅SH=2mmの流体絞り部材78を用いるほうが、孔幅SH=5mmの流体絞り部材78を用いた場合よりも、脱泡性能が優れていることが分かった。但し、孔幅SH=2mmの流体絞り部材78を用いる場合は、通過用孔82を通過する流体通過量が低下せざるを得ないので、低流量の移送でも問題のない用途の粘性流体Qにのみ適応が可能となる。 On the other hand, as the fluid drawing member 78, one having a hole width SH of 5 mm and one having a hole width SH of 2 mm are prepared, and the viscous fluid Q is applied to a biaxial screw pump using each of them, and the above-mentioned boil test or the above-mentioned boil test or The defoaming performance was evaluated by an apparent specific gravity test. As a result, it was found that the use of the fluid drawing member 78 having a hole width SH = 2 mm is superior to the case where the fluid drawing member 78 having a hole width SH = 5 mm is used. However, when the fluid drawing member 78 having a hole width SH = 2 mm is used, the amount of fluid passing through the passing hole 82 has to be reduced, so that the viscous fluid Q can be used for applications where there is no problem even when transferring at a low flow rate. Only adaptable.

以上に説明したように、この実施形態3の2軸スクリューポンプ1は、流体絞り部材78を用いているので、粘性流体取入口18に流入した粘性流体Qは、流体絞り部材78の通過用孔82によって粘性流体取入口18の流路断面積Aよりも小さな開孔面積に絞られて送られる。従って、図16に示すように、単位時間あたりに通過用孔82を通過した流入粘性流体N2(流入長J2ぶんの単位体積)の表面積(外周面積[2・(L+SH)・J2])は、粘性流体取入口18を単位時間に流れる流入粘性流体N(流入長Jぶんの単位体積)の表面積(外周面積[L・π・J])よりも大きくなる。その結果、流入粘性流体N2から多量の脱気を行なうことができる。 As described above, since the twin-screw pump 1 of the third embodiment uses the fluid drawing member 78, the viscous fluid Q flowing into the viscous fluid intake 18 is a hole for passing through the fluid drawing member 78. The viscous fluid intake 18 is narrowed down to an opening area smaller than the flow path cross-sectional area A by 82 and sent. Therefore, as shown in FIG. 16, the surface area (outer peripheral area [2 · (L + SH) · J2]) of the inflow viscous fluid N2 (unit volume equivalent to the inflow length J2) that has passed through the passage hole 82 per unit time is determined. It is larger than the surface area (outer peripheral area [L · π · J]) of the inflow viscous fluid N (unit volume corresponding to the inflow length J) flowing through the viscous fluid inlet 18 in a unit time. As a result, a large amount of degassing can be performed from the inflow viscous fluid N2.

また、流体絞り部材78は板状本体42と筒体部79と筒体部底面部80の通過用孔82とを備えているので、簡素で安価な構成でありながら、粘性流体を通過用孔82で絞って取り入れた流入粘性流体N2の表面積を大きくでき、高度な脱気を行なうことができる。そして、筒体部79の通過用孔82はスリット長手方向(矢印V方向(図17(b)参照))をポンプケーシング2における軸心Xa,Xbと直角の左右の方向に向けて配置されているので、通過用孔82のスリットのどの位置からでも気体抜出口20に対して略同じ距離になる。従って、通過用孔82における通過位置によることなく、流入粘性流体N2から効率よく脱気させることができる。 Further, since the fluid drawing member 78 is provided with a plate-shaped main body 42, a tubular body portion 79, and a passage hole 82 for the bottom surface portion 80 of the tubular body portion, the hole for passing a viscous fluid is provided in a simple and inexpensive configuration. The surface area of the inflow viscous fluid N2 squeezed and taken in at 82 can be increased, and a high degree of degassing can be performed. The passage holes 82 of the tubular body portion 79 are arranged so that the slit longitudinal direction (arrow V direction (see FIG. 17B)) is directed to the left and right directions perpendicular to the axial centers Xa and Xb in the pump casing 2. Therefore, the distance to the gas outlet 20 is substantially the same from any position of the slit of the passage hole 82. Therefore, the inflow viscous fluid N2 can be efficiently degassed regardless of the passage position in the passage hole 82.

「実施形態4.」
また、上記では、孔幅SHの狭いスリット状の通過用孔82を有する流体絞り部材78を表面積増加手段77の例として用いた2軸スクリューポンプを示したが、本発明はそれに限られない。例えば、図20に示すような流体絞り部材78aを用いた2軸スクリューポンプも本発明に含まれる。この実施形態4の流体絞り部材78aも実施形態3の流体絞り部材78と共通する構成要素を備えており、流体絞り部材78と同様に、粘性流体取入口18を覆う板状本体42がポンプケーシング2に取り付けられる。そして、この流体絞り部材78aは、筒体部79の前側(吐出口側)の底面部80a、80aが残されていて底面部の後側(空気抜出口側)が切り欠かれることにより、平面視半円状で広い孔幅SH1の通過用孔82aが形成されている。
この流体絞り部材78aを用いた2軸スクリューポンプによっても、粘性流体取入口18から流体絞り部材78aの導入孔83aに流入した単位時間あたり流入長Jの流入粘性流体Nは、通過用孔82aによって、導入孔83aの流路断面積Aよりも小さな開孔面積に絞られて送られる。すなわち、通過用孔82aを通過した流入粘性流体N3(流入長J3ぶんの流体量)の表面積(外周面積)は、導入孔83aを単位時間に流れる流入粘性流体N(流入長Jぶんの流体量)の表面積(外周面積)よりも大きくなる。その結果、流入粘性流体N3から多量の脱気ができたのである。
"Implementation 4."
Further, in the above, a biaxial screw pump using a fluid drawing member 78 having a slit-shaped passing hole 82 having a narrow hole width SH as an example of the surface area increasing means 77 has been shown, but the present invention is not limited thereto. For example, a biaxial screw pump using the fluid drawing member 78a as shown in FIG. 20 is also included in the present invention. The fluid drawing member 78a of the fourth embodiment also has the same components as the fluid drawing member 78 of the third embodiment, and like the fluid drawing member 78, the plate-shaped main body 42 covering the viscous fluid intake 18 is a pump casing. Attached to 2. The fluid throttle member 78a is flat because the bottom surfaces 80a and 80a on the front side (discharge port side) of the tubular body portion 79 are left and the rear side (air outlet side) of the bottom surface portion is cut out. A passage hole 82a having a semicircular shape and a wide hole width SH1 is formed.
Even with a twin-screw pump using this fluid drawing member 78a, the inflow viscous fluid N having an inflow length J per unit time that has flowed into the introduction hole 83a of the fluid drawing member 78a from the viscous fluid intake 18 is provided by the passing hole 82a. , It is narrowed down to an opening area smaller than the flow path cross-sectional area A of the introduction hole 83a and sent. That is, the surface area (outer peripheral area) of the inflow viscous fluid N3 (fluid amount of inflow length J3) that has passed through the passage hole 82a is the inflow viscous fluid N (fluid amount of inflow length J) that flows through the introduction hole 83a in a unit time. ) Is larger than the surface area (outer peripheral area). As a result, a large amount of degassed from the inflow viscous fluid N3.

以上に述べてきた本発明は、上記した実施形態1,2に限定されるものではなく、本発明の分野における通常の知識を有する者であれば想到し得る、各種変形、修正を含む、本発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは勿論である。 The present invention described above is not limited to the above-described first and second embodiments, and includes various modifications and modifications that can be conceived by a person having ordinary knowledge in the field of the present invention. It goes without saying that even if there is a design change within a range that does not deviate from the gist of the invention, it is included in the present invention.

1 2軸スクリューポンプ
2 ポンプケーシング
2A 内周面
7a,7b ポンプスクリュー
7Sa,7Sb 側面
7B 先端面
8a,8b 軸部
18 粘性流体取入口
19 粘性流体吐出口
20 気体抜出口
27 脱気装置
29 連通路
37 内周面
38 弁座孔
39 隙間可変機構
40,40a,40b,40c,40d,40e 分散部材
40A,40B,40C 分散部材
41,41A,41B,41C,41D 通過用孔
41a,41b,41c,41d 通過用孔
41e 通過用隙間
42 板状本体
45 板状体
46 弁体
47 固定部材
48 雄ネジ部
49 テーパ部(外周面)
50 フランジ受部
57 雌ネジ部
59 ナット
77 表面積増加手段
78 流体絞り部材
79 筒体部
80 底面部
82 通過用孔
G,H 隙間
Q 粘性流体
Xa,Xb 軸心
Y、YA,YB,YC,SH,SH1 孔幅
YD,YD1 隙間幅
J,J1,J2,J3 流入長
L 直径
N,N1,N2,N3 流入粘性流体
1 2-axis screw pump 2 Pump casing 2A Inner peripheral surface 7a, 7b Pump screw 7Sa, 7Sb Side surface 7B Tip surface 8a, 8b Shaft 18 Viscous fluid inlet 19 Viscous fluid discharge port 20 Gas outlet 27 Degassing device 29 Continuous passage 37 Inner peripheral surface 38 Valve seat hole 39 Gap variable mechanism 40, 40a, 40b, 40c, 40d, 40e Dispersing members 40A, 40B, 40C Dispersing members 41, 41A, 41B, 41C, 41D Passing holes 41a, 41b, 41c, 41d Passing hole 41e Passing gap 42 Plate-shaped body 45 Plate-shaped body 46 Valve body 47 Fixing member 48 Male threaded part 49 Tapered part (outer peripheral surface)
50 Flange receiving part 57 Female threaded part 59 Nut 77 Surface area increasing means 78 Fluid drawing member 79 Cylindrical part 80 Bottom part 82 Passing hole G, H Gap Q Viscous fluid Xa, Xb Axis center Y, YA, YB, YC, SH , SH1 Hole width YD, YD1 Gap width J, J1, J2, J3 Inflow length L Diameter N, N1, N2, N3 Inflow viscous fluid

Claims (8)

互いに非接触で螺合して回転駆動される一対のポンプスクリューと、前記一対のポンプスクリューを非接触で収容する筒状のポンプケーシングと、前記ポンプケーシングにおける軸心方向の途中位置に設けられた粘性流体取入口と、前記ポンプケーシングの先端側に設けられた粘性流体吐出口と、前記ポンプケーシングの上面における前記粘性流体取入口よりも末端側に設けられた気体抜出口と、前記気体抜出口に連結された脱気装置と、を備えて成り、前記一対のポンプスクリューの側面の間、および各ポンプスクリューの先端面と前記ポンプケーシングの内周面の間に、気体を通過可能で且つ粘性流体を通さない隙間が形成されている2軸スクリューポンプであって、
前記ポンプケーシングの粘性流体取入口に、前記粘性流体の単位体積あたりの表面積を増加させて前記ポンプケーシング内に流入させる表面積増加手段を備えていることを特徴とする2軸スクリューポンプ。
A pair of pump screws that are screwed together in a non-contact manner and driven to rotate, a tubular pump casing that houses the pair of pump screws in a non-contact manner, and a position in the middle of the pump casing in the axial direction are provided. A viscous fluid inlet, a viscous fluid discharge port provided on the tip end side of the pump casing, a gas outlet provided on the upper surface of the pump casing on the terminal side of the viscous fluid inlet, and the gas outlet. A degassing device connected to the pump screw, which allows gas to pass through and is viscous between the side surfaces of the pair of pump screws and between the tip surface of each pump screw and the inner peripheral surface of the pump casing. A biaxial screw pump with a gap that does not allow fluid to pass through.
A twin-screw screw pump characterized in that the viscous fluid intake of the pump casing is provided with a surface area increasing means for increasing the surface area of the viscous fluid per unit volume and allowing the viscous fluid to flow into the pump casing.
前記表面積増加手段が、前記粘性流体取入口から取入れられる粘性流体の流量を制限するために前記粘性流体を分流させたのちに前記ポンプケーシング内に流入させる分散部材で構成されていることを特徴とする請求項1に記載の2軸スクリューポンプ。 The surface area increasing means is characterized by being composed of a dispersion member in which the viscous fluid is diverted and then flowed into the pump casing in order to limit the flow rate of the viscous fluid taken in from the viscous fluid intake. The twin-screw pump according to claim 1. 前記分散部材は、前記粘性流体取入口を蓋う板状本体と、前記板状本体に粘性流体通過可能に表裏貫通して形成された複数の通過用孔と、を備えて成り、
前記粘性流体が前記複数の通過用孔を通過したのちに前記ポンプケーシング内に流入する構成にされていることを特徴とする請求項2に記載の2軸スクリューポンプ。
The dispersion member includes a plate-shaped main body that covers the viscous fluid intake, and a plurality of passage holes formed through the plate-shaped main body so that the viscous fluid can pass through the front and back surfaces.
The twin-screw pump according to claim 2, wherein the viscous fluid is configured to flow into the pump casing after passing through the plurality of passage holes.
前記分散部材は、前記粘性流体取入口を蓋う板状体と、前記板状体に表裏貫通して形成された弁座孔と、前記弁座孔の内周面との間に粘性流体通過可能な通過用隙間を有して配置される弁体と、前記弁体を前記板状体に固定するための固定部材と、を備えて成り、前記粘性流体が前記通過用隙間を通過したのちに前記ポンプケーシング内に流入する構成にされていることを特徴とする請求項2に記載の2軸スクリューポンプ。 The dispersion member allows a viscous fluid to pass between a plate-shaped body that covers the viscous fluid intake, a valve seat hole formed by penetrating the plate-shaped body from the front and back, and an inner peripheral surface of the valve seat hole. A valve body arranged with a possible passage gap and a fixing member for fixing the valve body to the plate-like body are provided, and after the viscous fluid has passed through the passage gap. The twin-screw pump according to claim 2, wherein the pump is configured to flow into the pump casing. 前記弁体の外周面を前記弁座孔の内周面に対し近接離間させて前記通過用隙間の大きさを可変にする隙間可変機構を備えていることを特徴とする請求項4に記載の2軸スクリューポンプ。 The fourth aspect of claim 4 is characterized in that the outer peripheral surface of the valve body is brought close to and separated from the inner peripheral surface of the valve seat hole to change the size of the passage gap. 2-axis screw pump. 前記表面積増加手段が、前記粘性流体取入口から取入れられた粘性流体を前記粘性流体取入口の流路断面積よりも小さな流路断面積に絞ったのちに前記ポンプケーシング内に流入させる流体絞り部材で構成されていることを特徴とする請求項1に記載の2軸スクリューポンプ。 A fluid drawing member in which the surface area increasing means narrows the viscous fluid taken in from the viscous fluid intake to a flow path cross-sectional area smaller than the flow path cross-sectional area of the viscous fluid intake, and then flows the viscous fluid into the pump casing. The twin-screw pump according to claim 1, wherein the two-screw pump is composed of. 前記流体絞り部材が、前記粘性流体取入口を蓋うリング状の板状本体と、前記板状本体の内周縁に垂設された有底筒状の筒体部と、前記筒体部の底面部に上下貫通して形成されていて前記筒体部の流路断面積よりも小さな開孔面積の通過用孔と、を備えて成り、前記筒体部内の粘性流体が前記通過用孔を通過したのちに前記ポンプケーシング内に流入する構成にされていることを特徴とする請求項6に記載の2軸スクリューポンプ。 The fluid drawing member includes a ring-shaped plate-shaped body that covers the viscous fluid intake, a bottomed tubular body portion that is vertically provided on the inner peripheral edge of the plate-shaped body, and a bottom surface of the tubular body portion. The portion is provided with a passage hole having an opening area smaller than the flow path cross-sectional area of the tubular portion, which is formed so as to penetrate vertically, and the viscous fluid in the tubular portion passes through the passage hole. The twin-screw pump according to claim 6, wherein the pump is configured to flow into the pump casing afterwards. 前記筒体部の通過用孔がスリット状に形成されるとともに、前記流体絞り部材が前記粘性流体取入口に配備された状態で前記通過用孔が当該スリット長手方向を前記ポンプケーシングにおける軸心と直角の方向に向けて配置される構成にされていることを特徴とする請求項7に記載の2軸スクリューポンプ。 The passage hole of the tubular body portion is formed in a slit shape, and the passage hole is aligned with the axial center of the pump casing in the longitudinal direction of the slit in a state where the fluid drawing member is deployed at the viscous fluid intake. The twin-screw pump according to claim 7, wherein the two-screw pump is configured to be arranged in a right-angled direction.
JP2020122677A 2019-07-19 2020-07-17 twin screw pump Active JP7158052B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133448 2019-07-19
JP2019133448 2019-07-19

Publications (2)

Publication Number Publication Date
JP2021017890A true JP2021017890A (en) 2021-02-15
JP7158052B2 JP7158052B2 (en) 2022-10-21

Family

ID=74563529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020122677A Active JP7158052B2 (en) 2019-07-19 2020-07-17 twin screw pump

Country Status (1)

Country Link
JP (1) JP7158052B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156761U (en) * 1977-05-13 1977-11-28
JPS5250234B2 (en) * 1975-03-11 1977-12-22
JPS57115977U (en) * 1981-01-09 1982-07-17
JPS63229110A (en) * 1987-03-17 1988-09-26 Tomoji Sakai Liquid defoaming device
JP2015055179A (en) * 2013-09-11 2015-03-23 伏虎金属工業株式会社 Two axis screw pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250234B2 (en) * 1975-03-11 1977-12-22
JPS52156761U (en) * 1977-05-13 1977-11-28
JPS57115977U (en) * 1981-01-09 1982-07-17
JPS63229110A (en) * 1987-03-17 1988-09-26 Tomoji Sakai Liquid defoaming device
JP2015055179A (en) * 2013-09-11 2015-03-23 伏虎金属工業株式会社 Two axis screw pump

Also Published As

Publication number Publication date
JP7158052B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP4852042B2 (en) Apparatus for forming finely dispersed micronanoemulsion having a predetermined droplet size distribution and method for forming a finely dispersed micronanoemulsion having a predetermined droplet size distribution
CN107952529B (en) Stirrer type ball mill
IL197798A (en) Rotary pressure transfer device and method of operation thereof
US5205722A (en) Metering pump
JP5863733B2 (en) Twin screw pump
JP6687422B2 (en) Distributed system
JP2021017890A (en) Two-axis screw pump
CA1216468A (en) Rotary vaned pumps with fixed length and shearing knife-edged vanes
AU2014364757B2 (en) A liquid processing mixer
JP7361413B2 (en) Vacuum deaerator with atomization device
ES2879389T3 (en) Device and procedure for dispersing at least one substance in a fluid
JP2013027849A (en) Separation apparatus for suction mixing pump and suction type mixing system
JP2020029791A (en) Deforming pump unit
EP2918345A1 (en) Decanter centrifuge
JP2010013951A (en) Two-shaft screw pump
KR20140053763A (en) Distributing system and operating method thereof
ES2896922T3 (en) Double-sided rotor mixer and mixing method
JP3814261B2 (en) Vane pump
CZ281194A3 (en) Filling and pumping equipment for conveying liquids
JP6799233B2 (en) 2-axis screw pump
JP6799234B2 (en) Pump system
US3479961A (en) Pump
US11859632B2 (en) Boundary-layer pump and method of use
US3256832A (en) Pump
EP3772588A1 (en) Modular block for electric pump with limited space requirement and associated pump

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7158052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150