JP2021016349A - Three-dimensional molding material and method for producing three-dimensional food - Google Patents

Three-dimensional molding material and method for producing three-dimensional food Download PDF

Info

Publication number
JP2021016349A
JP2021016349A JP2019134094A JP2019134094A JP2021016349A JP 2021016349 A JP2021016349 A JP 2021016349A JP 2019134094 A JP2019134094 A JP 2019134094A JP 2019134094 A JP2019134094 A JP 2019134094A JP 2021016349 A JP2021016349 A JP 2021016349A
Authority
JP
Japan
Prior art keywords
dimensional
powder
molding material
powder layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019134094A
Other languages
Japanese (ja)
Other versions
JP2021016349A5 (en
Inventor
春樹 切替
Haruki KIRIKAE
春樹 切替
哲全 林
Jerchyuan Lin
哲全 林
範明 飯村
Noriaki Iimura
範明 飯村
晶子 石田
Akiko Ishida
晶子 石田
典之 眞名田
Noriyuki Manada
典之 眞名田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2019134094A priority Critical patent/JP2021016349A/en
Publication of JP2021016349A publication Critical patent/JP2021016349A/en
Publication of JP2021016349A5 publication Critical patent/JP2021016349A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Formation And Processing Of Food Products (AREA)

Abstract

To provide a three-dimensional molding material that can form a powder layer when molding a stereo three-dimensional food, and to provide a method for producing three-dimensional food.SOLUTION: The three-dimensional molding material 10 which is an edible powder is used when molding a stereo three-dimensional food 11 by a three-dimensional printer 12. The three-dimensional molding material 10 has an angle of repose measured thereabout of 43° or less, and a uniform powder layer 14 is formed in the three-dimensional printer 12.SELECTED DRAWING: Figure 1

Description

本発明は、三次元成形材料及び三次元食品の製造方法に関する。 The present invention relates to a three-dimensional molding material and a method for producing a three-dimensional food product.

三次元プリンタの技術により複雑な三次元形状やテクスチャを有する立体的な三次元食品を成形する手法が提案されている(例えば特許文献1を参照)。この特許文献1に記載された手法では、バインダージェッティング方式で三次元食品の成形を行なっている。すなわち、成形槽内に食用の成形材料である粉体を層状にした複数の粉体層を順次に積層するように形成するとともに、1層の粉体層が形成されるごとに、当該粉体層に結合誘起液を供給し、この結合誘起液が供給された粉体層の部分に結合体を形成することによって、各粉体層の結合体が積層された三次元食品を形成している。 A method for molding a three-dimensional three-dimensional food having a complicated three-dimensional shape and texture by a three-dimensional printer technique has been proposed (see, for example, Patent Document 1). In the method described in Patent Document 1, three-dimensional food is molded by a binder jetting method. That is, a plurality of powder layers in which powder, which is an edible molding material, is layered are formed in a molding tank so as to be sequentially laminated, and each time one powder layer is formed, the powder is formed. By supplying a bond-inducing liquid to the layers and forming a bond in the portion of the powder layer to which the bond-inducing liquid is supplied, a three-dimensional food product in which the bonds of each powder layer are laminated is formed. ..

特開2016―131507号公報Japanese Unexamined Patent Publication No. 2016-131507

上記のように立体的な三次元食品を成形する場合では、可食性の粉体によって粉体層を形成する必要があるが、粉体層を形成することができない場合があった。なお、このような問題は、バインダージェッティング方式に限らず、粉体層を形成する場合に生じる。 In the case of molding a three-dimensional three-dimensional food as described above, it is necessary to form a powder layer with edible powder, but there are cases where the powder layer cannot be formed. It should be noted that such a problem occurs not only in the binder jetting method but also in the case of forming a powder layer.

本発明は、上記事情を鑑みてなされたものであり、立体的な三次元食品を成形する際に粉体層を形成することができる三次元成形材料及び三次元食品の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a three-dimensional molding material capable of forming a powder layer when molding a three-dimensional three-dimensional food, and a method for producing the three-dimensional food. With the goal.

本発明の三次元成形材料は、立体的な三次元食品の成形に用いられる可食性を有する粉体であり、安息角が43°以下である。 The three-dimensional molding material of the present invention is an edible powder used for molding three-dimensional three-dimensional foods, and has an angle of repose of 43 ° or less.

また、本発明の三次元食品の製造方法は、上記の三次元成形材料を層状に堆積させて粉体層を形成する粉体層形成工程と、前記粉体層の少なくとも一部の粉体を同一化して固化させた固化層を形成する固化工程とを有し、前記粉体層形成工程と前記固化工程とを繰り返すことにより、複数の前記固化層を積層した立体的な三次元食品を形成するものである。 Further, the method for producing a three-dimensional food product of the present invention includes a powder layer forming step of depositing the above-mentioned three-dimensional molding material in layers to form a powder layer, and at least a part of the powder in the powder layer. It has a solidification step of forming a solidified layer that has been identified and solidified, and by repeating the powder layer forming step and the solidifying step, a three-dimensional three-dimensional food in which a plurality of the solidified layers are laminated is formed. To do.

本発明によれば、三次元成形材料として安息角が43°以下である可食性の粉体を用いることにより、粉体層を形成することができ、三次元食品の三次元プリンタによる造形が可能になる。 According to the present invention, a powder layer can be formed by using an edible powder having an angle of repose of 43 ° or less as a three-dimensional molding material, and three-dimensional food can be molded by a three-dimensional printer. become.

本発明の実施形態に用いた三次元プリンタによる三次元食品の造形過程を模式的に示す説明図である。It is explanatory drawing which shows typically the modeling process of the 3D food by the 3D printer used in the Embodiment of this invention.

図1において、本発明の実施形態に係る三次元成形材料(以下、単に成形材料という)10は、三次元食品成形装置としての例えばバインダージェッティング方式の三次元プリンタ12によって立体的な三次元食品(以下、造形物という)11を成形する材料として提供される。成形材料10は、後述するように安息角が所定の条件を満たしており、三次元プリンタ12において、粉体層14を形成することができる可食性を有する粉体である。 In FIG. 1, the three-dimensional molding material (hereinafter, simply referred to as a molding material) 10 according to the embodiment of the present invention is a three-dimensional food product obtained by, for example, a binder jetting type three-dimensional printer 12 as a three-dimensional food molding apparatus. It is provided as a material for molding 11 (hereinafter referred to as a modeled object). As will be described later, the molding material 10 is a powder having an angle of repose satisfying a predetermined condition and having edible properties capable of forming the powder layer 14 in the three-dimensional printer 12.

成形材料10は、可食性を有する粉体であれば、その材料は特に限定されるものではない。成形材料10は、例えば、デキストリン、タンパク質、食物繊維、砂糖(粉糖)、ココア(ココアパウダ)、ぶどう糖(単糖)、糖アルコール、粉乳等の粉体、およびこれら粉体の混合物が挙げられる。このうちで、特に粉糖は、風味や口どけが良好である理由から好ましい。砂糖やデキストリンなどの単糖類から多糖類は、水を含むことで結着する性質があることから製造工程の面からも好ましい。また、成形材料10の粉体は、成分としてあるいは粉体として2種類以上のものを含んでもよく、食品添加物を成分としてあるいは粉体として含んでもよい。成形材料10である粉体は、比較的に粒径の小さな粉末、粉末よりも粒径の大きな顆粒等であってもよい。 The material of the molding material 10 is not particularly limited as long as it is an edible powder. Examples of the molding material 10 include powders such as dextrin, protein, dietary fiber, sugar (powdered sugar), cocoa (cocoa powder), glucose (monosaccharide), sugar alcohol, milk powder, and a mixture of these powders. Of these, powdered sugar is particularly preferable because it has a good flavor and melts in the mouth. Monosaccharides to polysaccharides such as sugar and dextrin are preferable from the viewpoint of the manufacturing process because they have the property of binding when they contain water. Further, the powder of the molding material 10 may contain two or more kinds of powders as components or powders, and may contain food additives as components or powders. The powder of the molding material 10 may be a powder having a relatively small particle size, granules having a particle size larger than that of the powder, or the like.

成形材料10としては、それについて測定される安息角が43°以下となるものが用いられる。安息角が43°以下の成形材料10は、流動性が良く、そのため均一で良好な粉体層14を形成することができる。成形材料10の安息角は、好ましくは31°以上43°以下の範囲内である。安息角が31°以上であれば、均一で良好な粉体層14を確実に形成することができる。均一で良好な粉体層14が形成できることにより、造形物11を良好に成形することができる。 As the molding material 10, a material having an angle of repose measured about the molding material 10 of 43 ° or less is used. The molding material 10 having an angle of repose of 43 ° or less has good fluidity, so that a uniform and good powder layer 14 can be formed. The angle of repose of the molding material 10 is preferably in the range of 31 ° or more and 43 ° or less. When the angle of repose is 31 ° or more, a uniform and good powder layer 14 can be surely formed. Since the uniform and good powder layer 14 can be formed, the modeled product 11 can be molded well.

ここで、安息角は、重力場において、粉体(成形材料10)を、漏斗のようなものから水平面上に静かに落下させて堆積させたときに形成される山(円錐体)の稜線(母線)が水平面となす角度である。この安息角は、例えば粉体特性評価装置である「ホソカワ/ミクロン パウダテスタPT−E」(ホソカワミクロン株式会社製)を用いて、以下の測定条件で測定することができる。安息角の測定時における温度は23℃、湿度は20%とし、上記粉体特性評価装置付属の取り扱い説明書に従って測定を行う。具体的には、以下のように安息角を測定する。口径75mm、足径6mmの漏斗を使用し、漏斗の吐出口の先端から下方に70mmの高さに直径78mmの円形の台を配置し、漏斗の吐出口より粉体を台の上にゆっくりと落とす。台から粉体がこぼれ落ちるまで粉体を落とした後、分度器を用いて安息角を測定する。安息角は、このように2〜3回測定して得られる値を平均した値とする。 Here, the angle of repose is the ridgeline (conical body) of a mountain (conical body) formed when powder (molding material 10) is gently dropped onto a horizontal plane and deposited in a gravitational field. The bus angle) is the angle formed by the horizontal plane. This angle of repose can be measured under the following measurement conditions using, for example, "Hosokawa / Micron Powder Tester PT-E" (manufactured by Hosokawa Micron Co., Ltd.), which is a powder property evaluation device. The temperature at the time of measuring the angle of repose is 23 ° C., the humidity is 20%, and the measurement is performed according to the instruction manual attached to the powder characteristic evaluation device. Specifically, the angle of repose is measured as follows. Using a funnel with a diameter of 75 mm and a foot diameter of 6 mm, place a circular table with a diameter of 78 mm at a height of 70 mm below the tip of the funnel discharge port, and slowly pour powder onto the table from the funnel discharge port. Drop it. After dropping the powder from the table until the powder spills, measure the angle of repose using a protractor. The angle of repose is the average value of the values obtained by measuring 2-3 times in this way.

また、成形材料10は、それを用いて造形物11を成形した際に、その造形物11の表面の凹凸を抑制した滑らかな表面とする観点からは、レーザ回折法により測定される粒度分布の体積基準の累積95%径が537μm以下であることが好ましい。成形材料10における大きな粒径の粒子の割合が小さく、滑らかな表面の造形物11を成形できる。より好ましくは、レーザ回折法により測定される粒度分布の体積基準の累積95%径が537μm以下、累積50%径が198μm以下かつ累積15%径が78.5μm以下である。これにより、より滑らかな表面の造形物11を成形できる。レーザ回折法により測定される粒度分布の測定は、例えばレーザ回折式粒度分布測定装置「MASTERSIZER 3000」(Malvern製)で測定することができる。 Further, the molding material 10 has a particle size distribution measured by a laser diffraction method from the viewpoint of forming a smooth surface in which irregularities on the surface of the model 11 are suppressed when the model 11 is molded using the molding material 10. It is preferable that the cumulative 95% diameter based on the volume is 537 μm or less. The proportion of particles having a large particle size in the molding material 10 is small, and the molded product 11 having a smooth surface can be molded. More preferably, the cumulative 95% diameter of the particle size distribution measured by the laser diffraction method is 537 μm or less, the cumulative 50% diameter is 198 μm or less, and the cumulative 15% diameter is 78.5 μm or less. As a result, the model 11 having a smoother surface can be molded. The particle size distribution measured by the laser diffraction method can be measured by, for example, a laser diffraction type particle size distribution measuring device "MASTERSIZER 3000" (manufactured by Malvern).

三次元プリンタ12は、図1に示されるように、成形槽21、粉体供給ヘッド22、バー23、プリントヘッド24等を備えている。成形槽21は、上面が開放した箱状であり、その内部には上下方向に移動自在な底板25が設けられている。底板25は、その上面は平坦な水平面にされている。この成形槽21は、図1の紙面垂直方向に幅を有し、底板25の移動で深さが変化する。粉体供給ヘッド22、バー23は、それぞれ主走査方向(成形槽21の幅方向)に延びている。バー23は、主走査方向に対して直交する水平方向である副走査方向(図1の左右方向)に移動自在に設けられている。プリントヘッド24は、主走査方向及び副走査方向にそれぞれ移動自在であり、副走査方向にはバー23とともに移動する。 As shown in FIG. 1, the three-dimensional printer 12 includes a molding tank 21, a powder supply head 22, a bar 23, a print head 24, and the like. The molding tank 21 has a box shape with an open upper surface, and a bottom plate 25 that can move in the vertical direction is provided inside the molding tank 21. The upper surface of the bottom plate 25 is a flat horizontal surface. The molding tank 21 has a width in the direction perpendicular to the paper surface of FIG. 1, and the depth changes as the bottom plate 25 moves. The powder supply head 22 and the bar 23 extend in the main scanning direction (the width direction of the molding tank 21), respectively. The bar 23 is movably provided in the sub-scanning direction (left-right direction in FIG. 1), which is a horizontal direction orthogonal to the main scanning direction. The print head 24 is movable in the main scanning direction and the sub scanning direction, respectively, and moves together with the bar 23 in the sub scanning direction.

三次元プリンタ12で造形物11を成形する手順は、次の通りである。まず、成形槽21の深さが粉体層14の一層分の厚みと同じになるように、底板25の高さが調節される。この後に、粉体供給ヘッド22の底部に設けられた主走査方向に延びるスリットから、原料タンク(図示省略)から供給された成形材料10が吐出される。成形槽21の副走査方向の一端に接して設けられた受け台26の上方に粉体供給ヘッド22が配置されており、粉体供給ヘッド22から吐出された成形材料10は、受け台26に堆積される(図1(A))。 The procedure for molding the modeled object 11 with the three-dimensional printer 12 is as follows. First, the height of the bottom plate 25 is adjusted so that the depth of the molding tank 21 is the same as the thickness of one layer of the powder layer 14. After that, the molding material 10 supplied from the raw material tank (not shown) is discharged from the slit extending in the main scanning direction provided at the bottom of the powder supply head 22. The powder supply head 22 is arranged above the pedestal 26 provided in contact with one end in the sub-scanning direction of the molding tank 21, and the molding material 10 discharged from the powder supply head 22 is sent to the pedestal 26. It is deposited (Fig. 1 (A)).

成形材料10が受け台26に堆積された後、バー23が成形槽21の一端側から他端側(この例で右端側から左端側)に向けて水平移動する(図1(B))。これにより、受け台26上の成形材料10が成形槽21内に展開される。このときに、バー23は、その底面が成形槽21の上端と同じ高さを移動する。このようにして、バー23が成形槽21の他端まで移動することで、底板25上に表面が平坦となった一層分の厚みを持った1層目の粉体層14を形成する。なお、図1では、受け台26と底板25との段差すなわち粉体層14の1層分の厚みを強調して描いてあるが、実際の段差は非常に小さい。したがって、バー23の副走査方向への移動により、堆積した成形材料10を成形槽21内に薄く層状に展開した(敷いた)状態にすることができる。 After the molding material 10 is deposited on the cradle 26, the bar 23 moves horizontally from one end side to the other end side (from the right end side to the left end side in this example) of the molding tank 21 (FIG. 1 (B)). As a result, the molding material 10 on the cradle 26 is deployed in the molding tank 21. At this time, the bottom surface of the bar 23 moves at the same height as the upper end of the molding tank 21. In this way, the bar 23 moves to the other end of the molding tank 21 to form the first powder layer 14 having the thickness of one layer having a flat surface on the bottom plate 25. In FIG. 1, the step between the pedestal 26 and the bottom plate 25, that is, the thickness of one layer of the powder layer 14 is emphasized, but the actual step is very small. Therefore, by moving the bar 23 in the sub-scanning direction, the deposited molding material 10 can be developed (laid) in a thin layer in the molding tank 21.

上記のようにして1層目の粉体層14を形成した後、粉体層14の上方で、プリントヘッド24を主走査と副走査にそれぞれ移動して固化層28を形成する(図1(C))。プリントヘッド24は、主走査方向に1行分移動するごとに副走査方向の位置がずれるように移動する。このときプリントヘッド24は、上記粉体層14の形成の際にバー23とともに成形槽21の一端側から他端側に移動しているため、副走査方向には、成形槽21の他端側から一端側に移動する。 After forming the first powder layer 14 as described above, the print head 24 is moved to the main scan and the sub scan above the powder layer 14 to form the solidified layer 28 (FIG. 1 (FIG. 1). C)). The print head 24 moves so that the position in the sub-scanning direction shifts each time it moves by one line in the main scanning direction. At this time, since the print head 24 moves from one end side to the other end side of the molding tank 21 together with the bar 23 when the powder layer 14 is formed, the other end side of the molding tank 21 is moved in the sub-scanning direction. Move to one end side from.

そして、この移動中のプリントヘッド24から、成形すべき造形物11の1層目の粉体層14の位置における水平断面形状で固化液27が粉体層14に向けて吐出されて供給される。このように固化液27が供給された粉体層14の部分の粉体は、固化液27の作用によって同一化して固化して1層目の固化層28を形成する。これにより、造形物11の水平断面形状を有する1層目の固化層28が形成される。なお、粉体層14中の固化層28以外の部分は、粉体の状態を維持し、成形中において順次形成される各層の固化層28を支持する。 Then, the solidifying liquid 27 is discharged and supplied from the moving print head 24 toward the powder layer 14 in a horizontal cross-sectional shape at the position of the powder layer 14 of the first layer of the modeled object 11 to be molded. .. The powder in the portion of the powder layer 14 to which the solidifying liquid 27 is supplied is homogenized and solidified by the action of the solidifying liquid 27 to form the first solidifying layer 28. As a result, the first solidified layer 28 having the horizontal cross-sectional shape of the modeled object 11 is formed. The portion of the powder layer 14 other than the solidified layer 28 maintains the state of the powder and supports the solidified layer 28 of each layer that is sequentially formed during molding.

固化液27としては、食品として無害であり、固化液27が供給された粉体層14の部分の粉体を同一化して固化するものであればよく、粉体の種類に応じたものを用いることができる。固化液27は、それが供給された部分の粉体中の粒子が溶融して同一化した後にそれらを固化させるものでもよい。また、固化液27は、粉体を構成する粒子同士の間に介在することで粉体を一体化するものでもよい。固化液27としては、例えば、水、グリセリン、アルコール等や、これら液体の混合物が挙げられる。 The solidifying liquid 27 may be harmless as food and may be solidified by homogenizing the powder in the portion of the powder layer 14 to which the solidifying liquid 27 is supplied, and a solidifying liquid 27 may be used according to the type of powder. be able to. The solidifying liquid 27 may be one that solidifies the particles in the powder of the portion to which the solidifying liquid 27 is supplied after the particles are melted and identified. Further, the solidifying liquid 27 may be one that integrates the powder by interposing between the particles constituting the powder. Examples of the solidifying liquid 27 include water, glycerin, alcohol and the like, and a mixture of these liquids.

1層目の固化層28の形成後、粉体層14の厚み分だけ底板25が下げられた後、1層目と同様にして、粉体供給ヘッド22から受け台26に供給された成形材料10をバー23が副走査方向に移動して展開することにより、1層目の粉体層14の上面に2層目の粉体層14を形成する(図1(D))。2層目の粉体層14を形成した後には、プリントヘッド24を主走査方向及び副走査方向に移動させて、1層目の固化層28と同様に2層目の固化層28を形成する。以降、同様にして、粉体層14の形成と、粉体層14の粉体の一部を同一化して固化させた固化層28の形成とを交互に繰り返し行い、最終層の固化層28まで形成する(図1(E))。 After the solidified layer 28 of the first layer is formed, the bottom plate 25 is lowered by the thickness of the powder layer 14, and then the molding material supplied from the powder supply head 22 to the pedestal 26 in the same manner as the first layer. The bar 23 moves and unfolds the 10 in the sub-scanning direction to form the second powder layer 14 on the upper surface of the first powder layer 14 (FIG. 1 (D)). After forming the second powder layer 14, the print head 24 is moved in the main scanning direction and the sub-scanning direction to form the second solidifying layer 28 in the same manner as the first solidifying layer 28. .. After that, in the same manner, the formation of the powder layer 14 and the formation of the solidified layer 28 in which a part of the powder of the powder layer 14 is unified and solidified are alternately repeated until the solidified layer 28 of the final layer is formed. Form (FIG. 1 (E)).

最終層の固化層28が形成された段階で、成形槽21内の成形材料10である粉体中には、固化層28が積層された造形物11が作製されている。造形物11は、成形槽21内から取り出され(図1(F))、その表面に付着した成形材料10が除去される。なお、このような三次元プリンタ12及びそれによる成形手法は、周知の三次元プリンタのものと同様である。 At the stage when the solidified layer 28 of the final layer is formed, the molded product 11 in which the solidified layer 28 is laminated is produced in the powder which is the molding material 10 in the molding tank 21. The molded object 11 is taken out from the molding tank 21 (FIG. 1 (F)), and the molding material 10 adhering to the surface thereof is removed. The three-dimensional printer 12 and the molding method using the three-dimensional printer 12 are the same as those of the well-known three-dimensional printer.

上記三次元プリンタ12の構成は一例であり、上記のように安息角の条件を満たす成形材料10は、粉体層14を形成する各種の三次元プリンタに有用である。 The configuration of the three-dimensional printer 12 is an example, and the molding material 10 satisfying the angle of repose condition as described above is useful for various three-dimensional printers forming the powder layer 14.

[実施例]
表1は、実施例としての成形材料10のサンプル1〜6について、安息角及び粒度分布と、粉体層14の形成適性及び成形される造形物11の表面粗さとの関係を調べた結果を示している。
[Example]
Table 1 shows the results of investigating the relationship between the angle of repose and the particle size distribution, the formation suitability of the powder layer 14, and the surface roughness of the molded product 11 to be molded, for samples 1 to 6 of the molding material 10 as an example. Shown.

サンプル1〜4は、造粒機を用いて粉糖を顆粒にした顆粒粉糖A〜Dである。これらサンプル1〜4(顆粒粉糖A〜D)は、粒度分布が互いに異なるものとした。造粒機としては、転動流動コーティング装置MP-25(株式会社パウレック製)を用い、次の条件で粉糖を顆粒状にした。粒度分布は、スプレー流量の増減と造粒後の顆粒を篩にかけることで調整した。
給気風量:8.0m/min
ローター回転速度:150rpm/min
給気、排気温度:70℃
製品温度:45℃
スプレー流量:150〜200g/min
Samples 1 to 4 are granulated powdered sugars A to D obtained by granulating powdered sugar using a granulator. These samples 1 to 4 (granular powdered sugars A to D) had different particle size distributions. As a granulator, a rolling fluid coating device MP-25 (manufactured by Paulek Co., Ltd.) was used, and powdered sugar was granulated under the following conditions. The particle size distribution was adjusted by increasing or decreasing the spray flow rate and sieving the granules after granulation.
Air supply air volume: 8.0m 3 / min
Rotor rotation speed: 150 rpm / min
Air supply and exhaust temperature: 70 ° C
Product temperature: 45 ° C
Spray flow rate: 150-200 g / min

サンプル5は、結晶セルロース(セオラスUF-F702(旭化成製))であり、サンプル6は、デキストリン(TK―16(松谷化学工業製))を用いた。 Sample 5 was crystalline cellulose (Theoras UF-F702 (manufactured by Asahi Kasei)), and sample 6 was dextrin (TK-16 (manufactured by Matsutani Chemical Industry Co., Ltd.)).

安息角の測定では、上記「ホソカワ/ミクロン パウダテスタPT−E」(ホソカワミクロン株式会社製)を用い、上述の測定条件の下で測定した。また、粒度分布は、上述のレーザ回折式粒度分布測定装置「MASTERSIZER 3000」(Malvern製)を用いて測定し、粒度分布の体積基準の累積15%径、累積50%径、累積95%径を求めた。粒度分布は、乾式測定したため溶媒は用いていない。測定した安息角を表1の「安息角」の欄に、また累積15%径、累積50%径、累積95%径を表1の粒度分布の「D15」、「D50」、「D95」の欄にそれぞれ示す。 The angle of repose was measured using the above-mentioned "Hosokawa / Micron Powder Tester PT-E" (manufactured by Hosokawa Micron Co., Ltd.) under the above-mentioned measurement conditions. The particle size distribution is measured using the above-mentioned laser diffraction type particle size distribution measuring device "MASTERSIZER 3000" (manufactured by Malvern), and the cumulative 15% diameter, cumulative 50% diameter, and cumulative 95% diameter of the volume standard of the particle size distribution are measured. I asked. The particle size distribution was measured dry, so no solvent was used. The measured angle of repose is shown in the "Angle of repose" column of Table 1, and the cumulative 15% diameter, cumulative 50% diameter, and cumulative 95% diameter are shown in the particle size distributions "D15", "D50", and "D95" in Table 1. Shown in each column.

また、サンプル1〜6のそれぞれについて、成形材料10として三次元プリンタ12の貯蔵タンクに2kgを投入し、造形物11の成形を試みた。三次元プリンタ12としては、Projet660(3Dsystems社製)を用いた。固化液27は、三次元プリンタの5個のプリントヘッド24のうちの1個を用い、その1個のプリントヘッド24から吐出するようにした。プリントヘッド24は、サーマル方式のものであった。三次元プリンタ12の成形槽21のサイズは、254mm×381mm×203mm(幅×奥行×高さ)である。また、粉体層14の厚みを0.1mmとした。固化液27としては、「3DS Cleaning Solution (ZC6)」を用いた。この固化液27の主成分は、水である。 Further, for each of the samples 1 to 6, 2 kg was put into the storage tank of the three-dimensional printer 12 as the molding material 10 to try to mold the modeled object 11. As the three-dimensional printer 12, Projet660 (manufactured by 3D systems) was used. As the solidifying liquid 27, one of the five print heads 24 of the three-dimensional printer was used, and the solidifying liquid 27 was discharged from the one print head 24. The print head 24 was of a thermal type. The size of the molding tank 21 of the three-dimensional printer 12 is 254 mm × 381 mm × 203 mm (width × depth × height). The thickness of the powder layer 14 was set to 0.1 mm. As the solidifying solution 27, "3DS Cleaning Solution (ZC6)" was used. The main component of the solidifying liquid 27 is water.

上記三次元プリンタ12の稼働中に、粉体層14の形成される状態を観察し、形成状態を粉体層形成適性として4ランク(1〜4)に評価した。粉体層形成適性の評価結果を表1の「粉体層形成適性」の欄にランクの数字で示す。粉体層形成適性のランク1〜4の意味は次の通りである。
1:成形材料の流動性が良く均一な粉体層が形成された(最も良い)。
2:成形材料の流動性が比較的良くほぼ均一な粉体層が形成された(良い)。
3:成形材料に偏りが生じ均一な粉体層を形成できなかった。
4:成形材料の流動性が悪く粉体層を形成できなかった。
During the operation of the three-dimensional printer 12, the state in which the powder layer 14 was formed was observed, and the formed state was evaluated as 4 ranks (1 to 4) as the powder layer formation suitability. The evaluation results of the powder layer formation suitability are shown by rank numbers in the “Powder layer formation suitability” column of Table 1. The meanings of ranks 1 to 4 of the powder layer formation suitability are as follows.
1: A uniform powder layer with good fluidity of the molding material was formed (best).
2: The fluidity of the molding material was relatively good, and a substantially uniform powder layer was formed (good).
3: The molding material was biased and a uniform powder layer could not be formed.
4: The fluidity of the molding material was poor and the powder layer could not be formed.

サンプル1〜6について、いずれも成形を進めることができ、造形物11が得られた。このようにサンプル1〜6を用いて成形された各造形物11について、その表面の粗さを観察して、表面粗さとして4ランク(1〜4)に評価した。表面粗さの評価結果を表1の「表面粗さ」の欄にランクの数字で示す。表面粗さのランク1〜4の意味は次の通りである。なお、サンプル5については、固化液を供給しても、成形材料10が水(固化液)を吸収するだけで同一化が生じなかったため、表面粗さの評価結果をランク4とした。
1:造形物の表面に凹凸が少ない。
2:造形物の表面に凹凸がややあるが少ない。
3:造形物の表面に凹凸が多い。
4:造形物が脆く評価できなかった。
Molding could proceed for each of Samples 1 to 6, and a model 11 was obtained. The surface roughness of each of the molded objects 11 molded using the samples 1 to 6 in this manner was observed and evaluated as 4 ranks (1 to 4) as the surface roughness. The evaluation results of the surface roughness are shown by rank numbers in the "Surface roughness" column of Table 1. The meanings of the surface roughness ranks 1 to 4 are as follows. As for sample 5, even if the solidifying liquid was supplied, the molding material 10 only absorbed water (solidifying liquid) and did not become the same. Therefore, the evaluation result of the surface roughness was ranked as rank 4.
1: There are few irregularities on the surface of the modeled object.
2: There are some irregularities on the surface of the modeled object, but there are few.
3: There are many irregularities on the surface of the modeled object.
4: The modeled object was fragile and could not be evaluated.

Figure 2021016349
Figure 2021016349

[比較例]
比較例としての成形材料のサンプル7、8についても、実施例と同様にして、安息角、粒度分布、粉体層形成適性を調べた。この結果を表1にあわせて示す。なお、サンプル7、8では、粉体層が形成されず、成形を進めることができなかったため、造形物11の表面粗さを評価しなかった。
[Comparison example]
The angles of repose, particle size distribution, and powder layer formation suitability of the molding material samples 7 and 8 as comparative examples were examined in the same manner as in the examples. The results are also shown in Table 1. In Samples 7 and 8, the surface roughness of the model 11 was not evaluated because the powder layer was not formed and the molding could not proceed.

サンプル7は、サンプル1〜4と同様に、上記造粒機を用いて粉糖を顆粒にした顆粒粉糖Eである。顆粒粉糖Eは、サンプル1〜4(顆粒粉糖A〜D)よりも、粒径の小さな粒子の割合の大きなものとした。サンプル8は、粉糖NSP(株式会社徳倉製)を用いた。 Sample 7 is granulated powdered sugar E obtained by granulating powdered sugar using the above-mentioned granulator as in Samples 1 to 4. The granulated powdered sugar E had a larger proportion of particles having a smaller particle size than the samples 1 to 4 (granular powdered sugars A to D). As sample 8, powdered sugar NSP (manufactured by Tokukura Co., Ltd.) was used.

なお、参考に油分の含有率が異なる2種類のココアパウダについて安息角を、同様に測定したところ、油分の含有率が12%のココアパウダの安息角は45°、22%のココアパウダの安息角は43°であった。 For reference, the angles of repose of two types of cocoa powder having different oil contents were measured in the same manner. The angle of repose of the cocoa powder having an oil content of 12% was 45 °, and the angle of repose of the cocoa powder having an oil content of 22% was 43. It was °.

表1の粉体層形成適性の評価結果より、安息角が43°以下の成形材料10であれば均一な粉体層14を形成できることがわかる。また、安息角が31°以上43°以下の範囲内であればより良好な粉体層14を形成できることがわかる。 From the evaluation results of the powder layer formation suitability in Table 1, it can be seen that a uniform powder layer 14 can be formed if the molding material 10 has an angle of repose of 43 ° or less. Further, it can be seen that a better powder layer 14 can be formed if the angle of repose is within the range of 31 ° or more and 43 ° or less.

また、表面粗さの評価結果より、粒度分布の体積基準の累積95%径が537μm以下であることが好ましく、より好ましくは粒度分布の体積基準の累積50%径が198μm以下かつ累積15%径が78.5μm以下であることがわかる。例えばサンプル1〜4、7からわかるように、成形材料10に含まれる大きな粒径の粒子の割合が大きくなると、安息角が小さくなり粉体層形成適性が向上する傾向が見られる。一方で、成形材料10に含まれる大きな粒径の粒子の割合が小さくなると、造形物11の表面粗さが小さく(表面が滑らかに)なる。このため、滑らかな表面を有する造形物11や緻密な造形物11を成形する観点からは、上記のような粒度分布であることが好ましいことがわかる。 Further, from the evaluation result of the surface roughness, it is preferable that the cumulative 95% diameter of the volume standard of the particle size distribution is 537 μm or less, and more preferably the cumulative 50% diameter of the volume standard of the particle size distribution is 198 μm or less and the cumulative 15% diameter. Is 78.5 μm or less. For example, as can be seen from Samples 1 to 4 and 7, when the proportion of particles having a large particle size contained in the molding material 10 is large, the angle of repose is small and the suitability for forming a powder layer tends to be improved. On the other hand, when the proportion of particles having a large particle size contained in the molding material 10 becomes small, the surface roughness of the model 11 becomes small (the surface becomes smooth). Therefore, from the viewpoint of molding the model 11 having a smooth surface and the dense model 11, it can be seen that the particle size distribution as described above is preferable.

10 三次元成形材料
11 三次元食品
12 三次元プリンタ
14 粉体層
27 固化液
28 固化層

10 Three-dimensional molding material 11 Three-dimensional food 12 Three-dimensional printer 14 Powder layer 27 Solidifying liquid 28 Solidifying layer

Claims (5)

立体的な三次元食品の成形に用いられる可食性を有する粉体であり、安息角が43°以下であることを特徴とする三次元成形材料。 A three-dimensional molding material that is an edible powder used for molding three-dimensional three-dimensional foods and has an angle of repose of 43 ° or less. 安息角が31°以上であることを特徴とする請求項1に記載の三次元成形材料。 The three-dimensional molding material according to claim 1, wherein the angle of repose is 31 ° or more. レーザ回折法により測定される粒度分布の体積基準の累積95%径が537μm以下であることを特徴とする請求項1または2に記載の三次元成形材料。 The three-dimensional molding material according to claim 1 or 2, wherein the cumulative 95% diameter of the volume standard of the particle size distribution measured by the laser diffraction method is 537 μm or less. 前記粒度分布の体積基準の累積50%径が198μm以下かつ累積15%径が78.5μm以下であることを特徴とする請求項3に記載の三次元成形材料。 The three-dimensional molding material according to claim 3, wherein the cumulative 50% diameter of the particle size distribution based on the volume is 198 μm or less and the cumulative 15% diameter is 78.5 μm or less. 請求項1ないし4のいずれかの三次元成形材料を層状に堆積させて粉体層を形成する粉体層形成工程と、
前記粉体層の少なくとも一部の粉体を同一化して固化させた固化層を形成する固化工程と
を有し、
前記粉体層形成工程と前記固化工程とを繰り返すことにより、複数の前記固化層を積層した立体的な三次元食品を形成する
ことを特徴とする三次元食品の製造方法。

A powder layer forming step of forming a powder layer by depositing the three-dimensional molding material according to any one of claims 1 to 4 in layers.
It has a solidification step of forming a solidified layer in which at least a part of the powder of the powder layer is unified and solidified.
A method for producing a three-dimensional food product, which comprises repeating the powder layer forming step and the solidifying step to form a three-dimensional three-dimensional food product in which a plurality of the solidified layers are laminated.

JP2019134094A 2019-07-19 2019-07-19 Three-dimensional molding material and method for producing three-dimensional food Pending JP2021016349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134094A JP2021016349A (en) 2019-07-19 2019-07-19 Three-dimensional molding material and method for producing three-dimensional food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134094A JP2021016349A (en) 2019-07-19 2019-07-19 Three-dimensional molding material and method for producing three-dimensional food

Publications (2)

Publication Number Publication Date
JP2021016349A true JP2021016349A (en) 2021-02-15
JP2021016349A5 JP2021016349A5 (en) 2022-07-01

Family

ID=74564066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134094A Pending JP2021016349A (en) 2019-07-19 2019-07-19 Three-dimensional molding material and method for producing three-dimensional food

Country Status (1)

Country Link
JP (1) JP2021016349A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194678A1 (en) * 2014-06-20 2015-12-23 株式会社フジミインコーポレーテッド Powder material to be used in powder lamination shaping and powder lamination shaping method using same
JP2016131507A (en) * 2015-01-16 2016-07-25 株式会社リコー Method for producing three-dimensional molded food product, and three-dimensional molded food product
US20170164650A1 (en) * 2014-02-03 2017-06-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for the production of an edible object by powder bed (3d) printing and food products obtainable therewith
WO2018199110A1 (en) * 2017-04-28 2018-11-01 古河電気工業株式会社 Copper alloy particles, surface-coated copper-based particles and mixed particles
WO2018226217A1 (en) * 2017-06-07 2018-12-13 General Mills, Inc. 3d printed foods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170164650A1 (en) * 2014-02-03 2017-06-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for the production of an edible object by powder bed (3d) printing and food products obtainable therewith
WO2015194678A1 (en) * 2014-06-20 2015-12-23 株式会社フジミインコーポレーテッド Powder material to be used in powder lamination shaping and powder lamination shaping method using same
JP2016131507A (en) * 2015-01-16 2016-07-25 株式会社リコー Method for producing three-dimensional molded food product, and three-dimensional molded food product
WO2018199110A1 (en) * 2017-04-28 2018-11-01 古河電気工業株式会社 Copper alloy particles, surface-coated copper-based particles and mixed particles
WO2018226217A1 (en) * 2017-06-07 2018-12-13 General Mills, Inc. 3d printed foods

Similar Documents

Publication Publication Date Title
Liu et al. 3D printing: Printing precision and application in food sector
US20200306822A1 (en) Coated sand, production method for same, and production method for casting mold
Liu et al. 3D food printing technologies and factors affecting printing precision
JP6436959B2 (en) Polymer powder for powder bed fusion bonding
EP1974838A1 (en) Process for producing pattern
EP3003068B1 (en) Method for the production of edible objects using sls
CN107098994A (en) Three-dimensional contouring material, three-dimensional contouring combination of materials, the manufacture method and its manufacture device of three-dimensional contouring thing
KR930009366B1 (en) Product and process for producing an agglomerated instant coffee having a roast and ground appearance
Holland et al. Creation of food structures through binder jetting
US20160330992A1 (en) Apparatus and method for producing a three-dimensional food product
CN103752769B (en) Based on the solvent casting method of sugared mould
US11420250B2 (en) Mold material, method of producing the same, and method of producing casting mold
TWI428221B (en) Polyamide beads and bead manufacturing process
WO2015106059A1 (en) Method for producing a three-dimensional food product
JP2021016349A (en) Three-dimensional molding material and method for producing three-dimensional food
EP2841057B1 (en) Crystalline microspheres and the process for manufacturing the same
WO2017104415A1 (en) Water-disintegrable composite material, and method for producing three-dimensional model
CN113631558A (en) SIREMADLIN succinic acid ester
FR2709690A1 (en) Consumable model casting process using sand with specific thermal properties.
EP2032515B1 (en) New form of hydroquinone and process for obtaining it
EP0689772B1 (en) Beads of vanillin or ethylvanillin and method for the preparation thereof
JP2017110218A (en) Polymer powder for powder bed fusion methods
JP2023066828A (en) Three-dimensional molded food product and manufacturing method therefor
JP5950819B2 (en) Bubble-containing oily confectionery
RU2682200C2 (en) Powder composition of sorbitol and chewing gum therewith

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231010