JP2021013935A - Brazing material wire for flux free brazing and flux free brazing method - Google Patents

Brazing material wire for flux free brazing and flux free brazing method Download PDF

Info

Publication number
JP2021013935A
JP2021013935A JP2019128367A JP2019128367A JP2021013935A JP 2021013935 A JP2021013935 A JP 2021013935A JP 2019128367 A JP2019128367 A JP 2019128367A JP 2019128367 A JP2019128367 A JP 2019128367A JP 2021013935 A JP2021013935 A JP 2021013935A
Authority
JP
Japan
Prior art keywords
brazing
flux
surface layer
wire
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019128367A
Other languages
Japanese (ja)
Other versions
JP7311337B2 (en
Inventor
三宅 秀幸
Hideyuki Miyake
秀幸 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2019128367A priority Critical patent/JP7311337B2/en
Publication of JP2021013935A publication Critical patent/JP2021013935A/en
Application granted granted Critical
Publication of JP7311337B2 publication Critical patent/JP7311337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

To provide a brazing material wire for flux free brazing of an aluminum member and a flux free brazing method which can obtain good brazing properties with flux free.SOLUTION: There is provided a brazing material wire for flux free brazing in which a surface layer part is layered on a core part and is used for flux free brazing of an aluminum member, in which the core part is composed of an Al-Si-Mg-based alloy containing, by mass%, 4-13% Si and 0.1-5.0% Mg, and the surface layer part is composed of an Al-Si-based alloy containing, by mass%, 2-13% Si.SELECTED DRAWING: None

Description

この発明は、フラックスフリーでろう付を行うフラックスフリーろう付用ろう材ワイヤーおよびフラックスフリーろう付方法に関する。 The present invention relates to a flux-free brazing brazing material wire for performing flux-free brazing and a flux-free brazing method.

減圧を伴わない非酸化性ガス雰囲気下でのAl−Si−Mgろう材を用いたフラックスフリーろう付では、溶融して活性となったろう材中のMgが接合部表面のAl酸化皮膜(Al)を還元分解することで接合が可能となる。閉塞的な面接合継手などでは、Mgによる酸化皮膜の分解作用によりろう材を有するブレージングシートを組合せた継手や、ブレージングシートとろう材を有さない被接合部材(ベア材)を組合せた継手で良好な接合状態が得られる。
しかし、雰囲気の影響を受け易い開放部を有する継手形状では、Mg添加ろう材の表面でMgO皮膜が成長し易くなるが、MgO皮膜は分解され難い安定な酸化皮膜であるため接合が著しく阻害される。このことから、開放部を有する継手で安定した接合状態が得られるフラックスフリーろう付方法が望まれる。
さらに、自動車用熱交換器では各種形状のアルミニウム部材が接合されるが、継手の部材間クリアランスが広いとブレージングシートから供給されるろう材量のみでは十分な接合状態が得られ難くなる問題がある。このことから、フラックスフリーろう付でクリアランスが広い継手を接合する際には、ろう材不足を補い良好な接合状態を実現するろう材ワイヤーの利用が重要となる場合がある。
In flux-free brazing using Al-Si-Mg brazing material in a non-oxidizing gas atmosphere without decompression, Mg in the brazing material that has been melted and activated is the Al oxide film (Al 2) on the surface of the joint. Bonding is possible by reducing and decomposing O 3 ). For closed surface joints, joints that combine a brazing sheet that has a brazing material due to the decomposition action of the oxide film by Mg, or a joint that combines a brazing sheet and a member to be joined (bare material) that does not have a brazing material. A good joint condition can be obtained.
However, in the joint shape having an open portion that is easily affected by the atmosphere, the MgO film easily grows on the surface of the Mg-added brazing material, but the MgO film is a stable oxide film that is not easily decomposed, so that the bonding is significantly hindered. To. For this reason, a flux-free brazing method that can obtain a stable joining state with a joint having an open portion is desired.
Further, in heat exchangers for automobiles, aluminum members of various shapes are joined, but if the clearance between the members of the joint is wide, there is a problem that it is difficult to obtain a sufficient joined state only by the amount of brazing material supplied from the brazing sheet. .. For this reason, when joining a joint with flux-free brazing and a wide clearance, it may be important to use a brazing wire that compensates for the shortage of brazing material and realizes a good joining state.

上記課題に対し、ろう材表面でMgO皮膜が成長することを抑制するため、表層部をMg無添加合金とし、コア部にMgを添加したろう材合金を適用することで接合状態を改善するフラックスフリーろう付用のろう材ワイヤーが提案されている(特許文献1参照)。 To solve the above problem, in order to suppress the growth of MgO film on the surface of the brazing material, the surface layer part is made of an Mg-free alloy, and the brazing material alloy with Mg added is applied to the core part to improve the bonding state. A brazing wire for free brazing has been proposed (see Patent Document 1).

特開2012−96264号公報Japanese Unexamined Patent Publication No. 2012-96264

しかし、特許文献1の方法では、コア部よりも表層部の固相線温度が熱交換器の構造部材となるブレージングシートの心材合金(一般に固相線温度が600℃以上)などと同程度に高いため、到達温度600℃程度で行われる通常のろう付では、表層部の溶融が十分に進まずコア部ろう材の流動が妨げられる課題がある。ろう付昇温過程では、コア部から表層部にSiが拡散し表層部の固相線温度が低下するが、600℃程度までのろう付では表層部中に生成する液相の割合が少ないため、溶融したコアろう材の流出が進み難く安定したフィレットが形成され難い。 However, in the method of Patent Document 1, the solidus temperature of the surface layer portion rather than the core portion is about the same as that of the core alloy of the brazing sheet (generally, the solidus temperature is 600 ° C. or higher) which is a structural member of the heat exchanger. Since it is high, there is a problem that in the normal brazing performed at an ultimate temperature of about 600 ° C., the surface layer portion does not sufficiently melt and the flow of the core portion brazing material is hindered. In the process of raising the temperature of brazing, Si diffuses from the core to the surface layer and the solidus temperature of the surface layer decreases, but brazing up to about 600 ° C. causes a small proportion of the liquid phase to be formed in the surface layer. , It is difficult for the molten core brazing material to flow out and a stable fillet is difficult to form.

本発明は、上記事情を背景としてなされたものであり、フラックスフリーで良好なろう付性が得られるフラックスフリーろう付用ろう材ワイヤーおよびフラックスフリーろう付方法を提供することを目的とする。 The present invention has been made in the context of the above circumstances, and an object of the present invention is to provide a flux-free brazing brazing material wire and a flux-free brazing method capable of obtaining flux-free and good brazing properties.

すなわち、本発明のフラックスフリーろう付用ろう材ワイヤーのうち、第1の形態は、コア部に表層部が積層されており、アルミニウム部材のフラックスフリーろう付に用いられるフラックスフリーろう付用ろう材ワイヤーであって、
コア部が、質量%で4〜13%のSiおよび0.1〜5.0%のMgを含有するAl−Si−Mg系合金からなり、表層部が、質量%で2〜13%Siを含有するAl−Si系合金からなることを特徴とする。
That is, among the flux-free brazing brazing wire of the present invention, the first form is a flux-free brazing brazing material in which a surface layer portion is laminated on a core portion and is used for flux-free brazing of an aluminum member. It's a wire
The core part is made of an Al—Si—Mg based alloy containing 4 to 13% Si by mass% and 0.1 to 5.0% Mg, and the surface layer part is 2 to 13% Si by mass%. It is characterized by being composed of an Al—Si based alloy contained therein.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、コア部に表層部が積層されており、アルミニウム部材のフラックスフリーろう付に用いられるフラックスフリーろう付用ろう材ワイヤーであって、
コア部が、質量%で1%以上4%未満のSiおよび0.1〜5.0%のMgを含有するAl−Si−Mg系合金からなり、表層部が、質量%で2〜13%Siを含有するAl−Si系合金からなることを特徴とする。
The invention of another form of flux-free brazing brazing wire is a flux-free brazing brazing wire used for flux-free brazing of aluminum members, in which a surface layer portion is laminated on the core portion.
The core part is made of an Al—Si—Mg based alloy containing 1% or more and less than 4% Si and 0.1 to 5.0% Mg in mass%, and the surface layer part is 2 to 13% by mass. It is characterized by being made of an Al—Si based alloy containing Si.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記コア部に含まれるSi粒子が、断面観察において、円相当径0.25μm以上のSi粒子が10000μm当たり3,000個未満であり、かつ、前記表層部に含まれるSi粒子が、表層面方向の観察において、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数の割合が10%以上であることを特徴とする。 In the invention of the other form of the flux-free brazing brazing material wire, in the invention of the above-described embodiment, the Si particles contained in the core portion are observed in cross section, and the Si particles having a circle equivalent diameter of 0.25 μm or more are per 10,000 μm 2 . Of the number of Si particles containing less than 3,000 and contained in the surface layer portion having a diameter equivalent to a circle of 0.8 μm or more in the observation in the surface layer direction, the diameter is 1.75 μm or more. It is characterized in that the ratio of the number of things is 10% or more.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記表層部のAl−Si−Mg系合金が、さらに質量%で、0.1〜1.0%のFeを含有することを特徴とする。 In the invention of the other form of the flux-free brazing brazing material wire, in the invention of the above-mentioned form, the Al—Si—Mg-based alloy in the surface layer portion is further increased in mass% by 0.1 to 1.0% of Fe. It is characterized by containing.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記コア部のAl−Si−Mg系合金と、前記表層部のAl−Si系合金の液相線温度差が50℃未満であることを特徴とする。 In the invention of the other form of the flux-free brazing brazing material wire, the liquidus temperature difference between the Al—Si—Mg based alloy in the core portion and the Al—Si based alloy in the surface layer portion in the invention of the above embodiment. Is less than 50 ° C.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記表層部の厚さが30μm以上であることを特徴とする。 The invention of another form of flux-free brazing brazing wire is characterized in that, in the invention of the above-mentioned form, the thickness of the surface layer portion is 30 μm or more.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記コア部のAl−Si−Mg系合金に、さらに質量%で、0.01〜0.5%のBiを含有することを特徴とする。 The invention of another form of flux-free brazing brazing wire is based on the invention of the above-mentioned form, in which Bi of 0.01 to 0.5% in mass% is further added to the Al-Si-Mg-based alloy of the core portion. It is characterized by containing.

他の形態のフラックスフリーろう付用ろう材ワイヤーの発明は、前記形態の発明において、前記表層部のAl−Si系合金に、さらに質量%で、0.01〜0.1%のBiを含有することを特徴とする。 In the invention of another form of flux-free brazing brazing material wire, in the invention of the above-mentioned form, the Al—Si alloy on the surface layer further contains 0.01 to 0.1% Bi in mass%. It is characterized by doing.

本発明のフラックスフリーろう付方法のうち、第1の形態は、前記形態のいずれかのフラックスフリーろう付用ろう材ワイヤーを用いて、酸素濃度100ppm以下の非酸化性ガス雰囲気中で、フラックスを用いることなくアルミニウム部材同士の接合を行うことを特徴とする。 In the first form of the flux-free brazing method of the present invention, the flux is applied in a non-oxidizing gas atmosphere having an oxygen concentration of 100 ppm or less by using the flux-free brazing brazing material wire of any of the above-described forms. It is characterized in that aluminum members are joined to each other without being used.

以下に本発明で規定する成分組成等について、その作用と限定理由を説明する。なお、以下の説明では、成分組成はいずれも質量%で示されている。
(コア部組成)
Si:4〜13%
Siは、ろう付時にコア部中に液相を生成し、コア部に添加されたMgの表層部への拡散を促進する。Si含有量が不足すると効果が不十分であり、Siを過剰に含有すると、材料が硬く脆くなりワイヤーへの加工時やワイヤーの曲げ加工などで破断が生じ易くなるため、製造が困難となる。
これらの点でSi含有量を4〜13%とするのが望ましい。
なお、同様の理由で、Si含有量の下限を5%、上限を11%とするのが一層望ましい。
Si:1〜4%未満
上記同様に、Siは、ろう付時にコア部中に液相を生成し、コア部に添加されたMgの表層部への拡散を促進する。ところで、接合する継手のクリアランスが例えば600μmを超えるなど特に大きい場合は、コア部のSi添加量を低減すると、ろう付中の液相率が減りコア部が溶け残るため、クリアランスを埋める効果がある。Si含有量が不足するとMgの拡散効果が不十分となり、過剰になるとコア部が溶け残る割合が低下しクリアランスを埋める効果が不十分となる。ただし、Si量を4%未満に低減する場合は、前記4〜13%Siよりもろう付中の表層部へのMg拡散量が低下し易くなるため、コア部へのMg添加量は0.5%以上とすることが望ましい。さらに同様の理由で0.8%Mg以上とすることがより望ましい。
これらの点でSi含有量を1〜4%未満とするのが望ましい。なお、同様の理由で、Si含有量の下限を1.5%、上限を3%とするのが一層望ましい。
The action and the reason for limitation of the component composition and the like specified in the present invention will be described below. In the following description, the component compositions are all shown in% by mass.
(Core composition)
Si: 4 to 13%
Si forms a liquid phase in the core portion at the time of brazing, and promotes diffusion of Mg added to the core portion to the surface layer portion. If the Si content is insufficient, the effect is insufficient, and if the Si content is excessive, the material becomes hard and brittle, and breakage is likely to occur during processing into a wire or bending of the wire, which makes manufacturing difficult.
In these respects, it is desirable that the Si content is 4 to 13%.
For the same reason, it is more desirable that the lower limit of the Si content is 5% and the upper limit is 11%.
Si: less than 1 to 4% Similarly, Si forms a liquid phase in the core portion at the time of brazing and promotes diffusion of Mg added to the core portion to the surface layer portion. By the way, when the clearance of the joint to be joined is particularly large, for example, exceeding 600 μm, reducing the amount of Si added to the core portion reduces the liquid phase ratio during brazing and leaves the core portion undissolved, which has the effect of filling the clearance. .. If the Si content is insufficient, the diffusion effect of Mg becomes insufficient, and if it becomes excessive, the ratio of the core portion remaining undissolved decreases and the effect of filling the clearance becomes insufficient. However, when the amount of Si is reduced to less than 4%, the amount of Mg diffused into the surface layer during brazing is more likely to decrease than the amount of 4 to 13% Si, so the amount of Mg added to the core is 0. It is desirable to set it to 5% or more. Further, for the same reason, it is more desirable to set it to 0.8% Mg or more.
In these respects, it is desirable that the Si content is less than 1 to 4%. For the same reason, it is more desirable to set the lower limit of the Si content to 1.5% and the upper limit to 3%.

Mg:0.1〜5.0%
Mgは、Al酸化皮膜(Al)を還元分解する。ただし、Mg含有量が不足すると、効果が不十分であり、Mg含有量が過剰になると、効果が飽和するとともに、材料が硬く脆くなるため、ワイヤー製造が困難になる。これらのため、Mg含有量は、0.1〜5.0%とする。なお、同様の理由で、下限を0.3%、上限を3.0%とするのが望ましく、さらに、下限を0.8%、上限を2.5%とするのがより望ましい。
Mg: 0.1 to 5.0%
Mg reduces and decomposes the Al oxide film (Al 2 O 3 ). However, if the Mg content is insufficient, the effect is insufficient, and if the Mg content is excessive, the effect is saturated and the material becomes hard and brittle, which makes wire production difficult. Therefore, the Mg content is set to 0.1 to 5.0%. For the same reason, it is desirable that the lower limit is 0.3% and the upper limit is 3.0%, and further that the lower limit is 0.8% and the upper limit is 2.5%.

Bi:0.01〜0.5%
Biは、溶融ろうの表面張力を低下させ隙間充填性を向上させるので所望により含有させる。Bi含有量が不足すると効果が不十分であり、Bi含有量が過剰になると効果が飽和する。これらのため、Bi含有量は0.01〜0.5%とするのが望ましい。なお、同様の理由で下限を0.02%、上限を0.2%とするのが望ましい。
Bi: 0.01-0.5%
Bi is added as desired because it lowers the surface tension of the molten wax and improves the gap filling property. If the Bi content is insufficient, the effect is insufficient, and if the Bi content is excessive, the effect is saturated. Therefore, it is desirable that the Bi content is 0.01 to 0.5%. For the same reason, it is desirable that the lower limit is 0.02% and the upper limit is 0.2%.

(表層部組成)
Si:2〜13%
表層部では、ろう付時にSiによって溶融ろうを形成し、接合部のフィレットを形成する。Si含有量が不足すると、フィレットを形成するための溶融ろうが不足する。また、コア部からのMgの拡散が遅れ、十分な接合が得られない。一方、Si含有量が過剰になると、効果が飽和する。また、材料が硬く脆くなるため、素材製造が困難になる。
これらのため、表層部ろう材では、Si含有量を2〜13%とする。また、同様の理由でSi含有量の下限を3%、上限を11%とするのがさらに望ましい。
(Surface composition)
Si: 2 to 13%
At the surface layer portion, molten brazing is formed by Si at the time of brazing to form a fillet at the joint portion. When the Si content is insufficient, the molten wax for forming the fillet is insufficient. In addition, the diffusion of Mg from the core portion is delayed, and sufficient bonding cannot be obtained. On the other hand, when the Si content becomes excessive, the effect is saturated. Moreover, since the material becomes hard and brittle, it becomes difficult to manufacture the material.
For these reasons, the Si content of the surface layer brazing material is set to 2 to 13%. Further, for the same reason, it is more desirable to set the lower limit of the Si content to 3% and the upper limit to 11%.

Bi:0.01〜0.1%
Biは、ろう付昇温過程で材料表面に濃縮し、緻密な酸化皮膜の成長抑制や溶融ろうの表面張力を低下させ隙間充填性を向上させるので所望により含有する。Biの含有量が不足すると効果が不十分であり、Biを過剰に含有すると、効果が飽和する。さらに、Mgを添加しない表層部では、Biを過剰に添加すると素材製造時の熱処理でBiが材料表面に濃縮し酸化皮膜が脆弱となり、接合を阻害する酸化皮膜が保管中に成長し易くなるため好ましくない。これらのため、Biの含有量を0.01〜0.1%とするのが望ましい。また、同様の理由で、Biの下限を0.02%とし、上限を0.07%とするのが一層望ましい。
Bi: 0.01-0.1%
Bi is concentrated on the surface of the material in the process of raising the temperature with brazing, and is preferably contained because it suppresses the growth of a dense oxide film and lowers the surface tension of the molten brazing to improve the gap filling property. If the Bi content is insufficient, the effect is insufficient, and if the Bi content is excessive, the effect is saturated. Further, in the surface layer portion to which Mg is not added, if Bi is excessively added, Bi is concentrated on the surface of the material by the heat treatment at the time of material production, and the oxide film becomes fragile, so that the oxide film that inhibits bonding easily grows during storage. Not preferred. Therefore, it is desirable that the Bi content is 0.01 to 0.1%. For the same reason, it is more desirable to set the lower limit of Bi to 0.02% and the upper limit to 0.07%.

Fe:0.1〜1.0%
FeはAlに殆ど固溶せず、表層部中で、単体またはAl、Mn、Siなどとの金属間化合物として存在する。材料表面に存在するこれらの粒子は酸化皮膜の欠陥部となるため、接合を阻害する酸化皮膜の成長を抑制することや、コア部から拡散してきたMgがAlを分解する際に酸化皮膜が破壊され易くなる効果をもつ。0.1%未満では効果が不十分となり、1.0%超では効果が飽和し、さらに多くなると機械的に脆くなり製造性が低下するため、下限を0.1%、上限を1.0%とする。
Fe: 0.1 to 1.0%
Fe hardly dissolves in Al and exists as a simple substance or as an intermetallic compound with Al, Mn, Si, etc. in the surface layer portion. Since these particles existing on the surface of the material become defects in the oxide film, they suppress the growth of the oxide film that inhibits bonding, and Mg diffused from the core oxidizes when decomposing Al 2 O 3. It has the effect of making the film more easily broken. If it is less than 0.1%, the effect becomes insufficient, if it exceeds 1.0%, the effect is saturated, and if it is more than 1.0%, it becomes mechanically brittle and the manufacturability decreases. Therefore, the lower limit is 0.1% and the upper limit is 1.0. %.

(表層部厚さ)
ろう付昇温過程ではコア部に添加されたMgが表層部に拡散するが、ろう溶融温度以下の早い段階で材料表面にMgが到達すると雰囲気中の酸素と反応してMgO皮膜が成長し易くなり接合が阻害されるため、表層部の厚みを一定以上にすることでMgO皮膜の成長を抑制する。本理由により表層部の厚さは30μm以上が望ましい。
(Thickness of surface layer)
In the process of raising the temperature with brazing, Mg added to the core part diffuses to the surface layer part, but if Mg reaches the surface of the material at an early stage below the brazing melting temperature, it reacts with oxygen in the atmosphere and the MgO film easily grows. Since brazing is hindered, the growth of the MgO film is suppressed by increasing the thickness of the surface layer portion to a certain level or more. For this reason, the thickness of the surface layer is preferably 30 μm or more.

(表層部Si粒子)
本発明を実施するにあたっては、表層部ろう材表面に比較的粗大なSi粒子が存在していることが好ましい。通常、アルミニウム材料表面には緻密なAl等の酸化皮膜が存在し、ろう付け熱処理過程ではこれがさらに成長し厚膜となる。酸化皮膜の厚みが増すほど、酸化皮膜の破壊作用を阻害する傾向が強くなるのが一般的な見解である。本発明では、表層部ろう材表面に粗大なSi粒子が存在することで、粗大Si粒子表面にはアルミニウムの緻密な酸化皮膜が成長せず、この部位がアルミニウム材料表面の酸化皮膜欠陥として働く。すなわち、アルミニウム材料表面の酸化皮膜がろう付熱処理中に厚膜となっても、Si粒子部分からろう材の染み出し等が発生し、この部位を起点に酸化皮膜破壊作用が進んでいくものと考えられる。ここで言うSi粒子とは、組成上Si単体成分によるSi粒子、及び、例えば、Fe−Si系化合物や、Fe−Siを主成分とするAl−Fe−Si系の金属間化合物等をも含むものとする。本発明の説明においては、これらを便宜的にSi粒子と表記する。具体的には、ろう材表面のSi粒子を円相当径でみなし、0.8μm以上のSi粒子数をカウントした場合に、1.75μm以上のものの数の割合が10%以上存在すると、この効果が十分に得られる。本発明においてSi粒子の密度には言及していないが、合金組成や製造条件の範囲によって、10000μm視野における0.8μm以上のSi粒子数は数十〜数千個の範囲に及ぶと考えられ、その規定は難しいことから、本発明においては、このSi粒子数範囲で、1.75μm径以上のものの数の割合が10%以上存在すれば、効果を得られることを確認し上記規定を望ましいものとした。
(Surface Si particles)
In carrying out the present invention, it is preferable that relatively coarse Si particles are present on the surface of the brazing material in the surface layer portion. Normally, a dense oxide film such as Al 2 O 3 is present on the surface of the aluminum material, and this is further grown to become a thick film in the brazing heat treatment process. It is a general view that the thicker the oxide film, the stronger the tendency to inhibit the destructive action of the oxide film. In the present invention, due to the presence of coarse Si particles on the surface of the brazing material in the surface layer, a dense oxide film of aluminum does not grow on the surface of the coarse Si particles, and this portion acts as an oxide film defect on the surface of the aluminum material. That is, even if the oxide film on the surface of the aluminum material becomes a thick film during the brazing heat treatment, the brazing material seeps out from the Si particle portion, and the oxide film breaking action proceeds from this portion. Conceivable. The Si particles referred to here include Si particles composed of a simple substance of Si, and, for example, Fe-Si compounds and Al-Fe-Si intermetallic compounds containing Fe-Si as a main component. It shall be. In the description of the present invention, these are referred to as Si particles for convenience. Specifically, when the Si particles on the surface of the brazing material are regarded as having a diameter equivalent to a circle and the number of Si particles of 0.8 μm or more is counted, this effect is obtained when the ratio of the number of those having 1.75 μm or more is 10% or more. Is sufficiently obtained. Although the density of Si particles is not mentioned in the present invention, it is considered that the number of Si particles of 0.8 μm or more in a 10000 μm 2 field of view ranges from several tens to several thousand depending on the alloy composition and the range of production conditions. Since it is difficult to specify the above, in the present invention, it is confirmed that the effect can be obtained if the ratio of the number of particles having a diameter of 1.75 μm or more is 10% or more in this Si particle number range, and the above specification is desirable. I made it.

(コア部Si粒子)
さらに、本発明を実施するにあたっては、コア部ろう材中のSi粒子が細かく分散している状態が好ましい。本発明では、ろう付昇温過程でMgを添加したコア部ろう材が固相線温度に達すると、MgSi粒子などを起点に溶融が始まり、表層部ろう材にMgの拡散が進み易くなるが、コア部ろう材中のSi粒子が粗大で粗に分布していると、表層部ろう材へのMgの拡散が不均一となるため、表層部ろう材表面でのMgによる酸化皮膜(Al等)の分解作用も不均一となり接合状態が不安定となる。ここで言うSi粒子とは、組成上Si単体成分によるSi粒子、及び、例えば、MgSi化合物等の金属間化合物も含むものとする。本発明の説明においては、これらを便宜的にSi粒子と表記する。具体的には、コア部ろう材断面から見たSi粒子を円相当径でみなし、0.25μm以上のSi粒子が10000μm当たり3,000個未満とすることにより効果が得られる。Si粒子は、上記を満たす範囲で粒子径がより細かく密に分散していることが望ましい。
なお、Si粒子を細かくする手段としては、鋳造時の超音波印加や凝固速度制御(0.1〜500℃/sec)、焼鈍時の温度条件により調整することや、ろう材中Si粒子の微細化効果があるSrなどを添加することが挙げられるが、その方法が限定されるものではない。
(Si particles in the core)
Further, in carrying out the present invention, it is preferable that the Si particles in the brazing material of the core portion are finely dispersed. In the present invention, when the core brazing material to which Mg is added reaches the solidus line temperature in the process of raising the temperature of brazing, melting starts from Mg 2 Si particles and the like, and the diffusion of Mg easily proceeds to the surface layer brazing material. However, if the Si particles in the core brazing material are coarse and coarsely distributed, the diffusion of Mg into the surface layer brazing material becomes non-uniform, so that the oxide film due to Mg on the surface layer brazing material surface ( The decomposition action of Al 2 O 3 etc.) also becomes non-uniform and the bonding state becomes unstable. The Si particles referred to here include Si particles composed of Si alone components and intermetallic compounds such as Mg 2 Si compounds. In the description of the present invention, these are referred to as Si particles for convenience. Specifically, the effect can be obtained by regarding the Si particles seen from the cross section of the brazing material in the core portion as having a diameter equivalent to a circle and setting the number of Si particles of 0.25 μm or more to less than 3,000 per 10,000 μm 2 . It is desirable that the Si particles have a finer and denser particle size within the range satisfying the above.
As means for making the Si particles finer, ultrasonic waves are applied during casting, solidification rate control (0.1 to 500 ° C./sec), adjustment is made according to the temperature conditions during annealing, and the Si particles in the brazing material are finely divided. Addition of Sr or the like having an annealing effect can be mentioned, but the method is not limited.

(液相線温度差)
コア部ろう材は、Mg添加により表層部のAl−Siろう材よりも固相線温度が低いため、ろう付昇温過程では表層部ろう材よりも早く溶融が始まり、液相線温度に近づくほど液相率が高くなり表層部ろう材へのMg拡散量が増加する。しかし、コア部ろう材の液相線温度が表層部ろう材よりも低過ぎると、ワイヤー端部などからコア部ろう材が流出し、材料表面のAl皮膜を分解するのに十分なMg量が不足することや、接合部に流入する有効な流動ろうが不足する。また、逆に表層部ろう材の液相線温度がコア部ろう材の液相線温度よりも低すぎると表層部ろう材表面のAl皮膜を分解するのに十分なMg量がコア部ろう材から拡散する前に表層部ろう材の液相率が高まり活性となるため、最表面の再酸化や不安定なろう流動によりろう付性が低下する。このため、コア部ろう材と表層部ろう材の液相線温度差は、60℃以下とすることが望ましい。さらに、同様の理由で35℃未満とすることがより望ましい。
(Liquid phase temperature difference)
Since the core brazing material has a lower solidus temperature than the surface Al-Si brazing material due to the addition of Mg, melting starts earlier than the surface brazing material in the brazing temperature rise process and approaches the liquidus temperature. The higher the liquid phase ratio, the higher the amount of Mg diffused into the surface brazing material. However, if the liquidus temperature of the core brazing material is too lower than that of the surface brazing material, the core brazing material flows out from the wire end or the like, which is sufficient to decompose the Al 2 O 3 film on the material surface. The amount of Mg is insufficient, and the effective flow wax flowing into the joint is insufficient. On the contrary, if the liquidus temperature of the surface brazing material is too lower than the liquidus temperature of the core brazing material, the amount of Mg sufficient to decompose the Al 2 O 3 film on the surface of the surface brazing material is the core. Since the liquid phase ratio of the surface layer brazing material increases and becomes active before diffusing from the part brazing material, the brazing property is lowered due to reoxidation of the outermost surface and unstable brazing flow. Therefore, it is desirable that the liquidus temperature difference between the core brazing material and the surface brazing material is 60 ° C. or less. Further, for the same reason, it is more desirable to keep the temperature below 35 ° C.

(ろう付条件)
酸素濃度100ppmを超えると接合部における再酸化が進みやすくなり、接合性が低下するので、酸素濃度を限定するのが望ましい。
上記ろう材ワイヤーは、酸素濃度100ppm以下の非酸化性ガス雰囲気において、フラックスフリーでろう付を行うことができる。
ろう付炉内雰囲気の圧力は常圧を基本とするが、例えば、製品内部のガス置換効率を向上させるためにろう材溶融前の温度域で100kPa〜0.1Pa程度の中低真空とすることや、炉内への外気(大気)混入を抑制するために大気圧よりも5〜100Pa程度陽圧としてもよい。
非酸化性ガス雰囲気としては、窒素ガス、或いは還元性ガスもしくはこれらの混合ガスが挙げられる。使用する置換ガスの種類としては、アルミニウム材の接合を得るにあたり特に限定されるものではないが、コストの観点より、窒素ガス、不活性ガスとしてはアルゴン、還元性ガスとしては水素、アンモニアを用いることが好適である。雰囲気中の酸素濃度管理範囲としては、100ppm以下が望ましい。100ppm超では被ろう付部材の再酸化が進みやすくなる。同様の理由で30ppm以下とするのが望ましく、さらに、10ppm以下とするのが一層望ましい。
(Brazing conditions)
If the oxygen concentration exceeds 100 ppm, reoxidation at the joint is likely to proceed and the bondability is lowered. Therefore, it is desirable to limit the oxygen concentration.
The brazing material wire can be brazed free of flux in a non-oxidizing gas atmosphere having an oxygen concentration of 100 ppm or less.
The pressure in the atmosphere inside the brazing furnace is basically normal pressure, but for example, in order to improve the gas replacement efficiency inside the product, a medium-low vacuum of about 100 kPa to 0.1 Pa should be set in the temperature range before melting the brazing material. Alternatively, the positive pressure may be about 5 to 100 Pa higher than the atmospheric pressure in order to suppress the mixing of outside air (atmosphere) into the furnace.
Examples of the non-oxidizing gas atmosphere include nitrogen gas, reducing gas, and a mixed gas thereof. The type of replacement gas used is not particularly limited in obtaining the bonding of the aluminum material, but from the viewpoint of cost, nitrogen gas is used, argon is used as the inert gas, and hydrogen and ammonia are used as the reducing gas. Is preferable. The oxygen concentration control range in the atmosphere is preferably 100 ppm or less. If it exceeds 100 ppm, the reoxidation of the brazed member tends to proceed. For the same reason, it is desirable to set it to 30 ppm or less, and further preferably to 10 ppm or less.

すなわち、本発明によれば、表層部をMg無添加ろう材とし、コア部をMg添加ろう材とすることで、ろう付昇温過程の材料表面でのMgO皮膜成長を抑制しつつ、さらに、各ろう材層のSi粒子分布を最適化することでろう材溶融時には、Al酸化皮膜(Al)を分解するMgを効率的に材料表面に供給することができるため、接合部表面で溶融ろう材が濡れ拡がり易くなり、開放部を有する継手においても良好な接合状態が得られる。
本発明により実用的な酸素濃度管理下で開放部を有する継手で良好な接合状態が得られるため、ラジエータ、コンデンサ、エバポレータ、ヒータコア、インタークーラなどのチューブ根付部において従来ろう付方法と同等以上の接合部強度や耐久性が確保される。
That is, according to the present invention, by using the Mg-free brazing material for the surface layer portion and the Mg-added brazing material for the core portion, the MgO film growth on the material surface during the brazing temperature rise process is suppressed, and further. By optimizing the distribution of Si particles in each brazing material layer, Mg that decomposes the Al oxide film (Al 2 O 3 ) can be efficiently supplied to the material surface when the brazing material is melted. The molten brazing material becomes easy to wet and spread, and a good joint state can be obtained even in a joint having an open portion.
According to the present invention, a good joint state can be obtained in a joint having an open portion under practical oxygen concentration control. Therefore, the tube root portion such as a radiator, a capacitor, an evaporator, a heater core, and an intercooler is equal to or higher than the conventional brazing method. Joint strength and durability are ensured.

本発明の一実施形態におけるフラックスフリーろう付用のろう材ワイヤーを示す図である。It is a figure which shows the brazing material wire for flux-free brazing in one Embodiment of this invention. 本発明の一実施形態におけるアルミニウム製自動車用熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger for an automobile made of aluminum in one Embodiment of this invention. 本発明の実施例におけるろう付評価モデルを示す図である。It is a figure which shows the brazing evaluation model in the Example of this invention.

以下に、本発明の一実施形態のアルミニウム合金のフラックスフリーろう付用ろう材ワイヤーについて説明する。
質量で、Si:4〜13%、または、Si:1〜4%未満、および、Mg:0.1〜5.0%を含有し、所望によりBi:0.01〜0.5%を含有するアルミニウム合金を溶製し、コア部用の合金材を得る。溶製方法としては、半連続鋳造法や連続鋳造法を用いることができる。
さらに、質量%で、Si:2〜13%を含有し、所望によりFe:0.1〜1.0%、Bi:0.01〜0.1%の1種または2種を含有するAl−Si系合金を溶製し、表層部用の合金材を得る。
The flux-free brazing brazing wire of the aluminum alloy according to the embodiment of the present invention will be described below.
By mass, Si: 4 to 13% or Si: less than 1 to 4%, and Mg: 0.1 to 5.0%, and optionally Bi: 0.01 to 0.5%. The aluminum alloy to be used is melted to obtain an alloy material for the core part. As the melting method, a semi-continuous casting method or a continuous casting method can be used.
Further, Al- containing 1 or 2 types of Si: 2 to 13% in mass%, Fe: 0.1 to 1.0%, and Bi: 0.01 to 0.1%, if desired. A Si-based alloy is melted to obtain an alloy material for the surface layer.

また、コア部、表層部ろう材用アルミニウム合金としては、その他に、質量%で、Cu:0.05〜2.0、Mn:0.05〜2.5、Ca:0.001〜0.5、Li:0.001〜0.5、Be:0.001〜0.1などを含有してもよい。Cuはろう材溶融温度の調整、Mnは溶融ろうの流動性の調整、Ca、Li、Beはろう付時の材料表面の酸化皮膜分解を促進する元素として適宜選択し、上記範囲にて添加することができる。 In addition, as the aluminum alloy for the brazing material of the core portion and the surface layer portion, Cu: 0.05 to 2.0, Mn: 0.05 to 2.5, Ca: 0.001 to 0. 5. Li: 0.001 to 0.5, Be: 0.001 to 0.1 and the like may be contained. Cu is appropriately selected as an element for adjusting the melting temperature of the brazing material, Mn is for adjusting the fluidity of the molten wax, and Ca, Li, and Be are appropriately selected as elements for promoting decomposition of the oxide film on the surface of the material during brazing, and added within the above range. be able to.

これらの合金に対し、例えば、コア部と表層部の2重構造からなるビレットを作製し、後方押出しなどの押出加工により本発明のろう材ワイヤーが得られる。ろう材ワイヤーの製造方法は特に限定されるものではなく、その他に、コア部合金単体を押出してワイヤーを製作した後、溶融させた表層部合金をディッピングや溶射などでコア部合金ワイヤーに被覆して製造する方法がある。また、コア部合金と表層部合金を熱間圧延でクラッドして2重構造の板材とした後、適宜冷間圧延を行い、さらに、板材をロールフォーミングなどで表層部合金が表側になるように中空のワイヤー状に加工することでも製造できる。なお、ワイヤー状に加工した後、径や寸法精度を調整するため、引抜き加工などを加えても良い。
上記のような方法により本発明のろう材ワイヤーを得る。
図1は、ろう材ワイヤー1の断面図を示す図であり、コア部1Aの周囲に表層部1Bが周回して位置している。
For these alloys, for example, a billet having a double structure of a core portion and a surface layer portion is produced, and the brazing wire of the present invention can be obtained by extrusion processing such as back extrusion. The method for manufacturing the brazing wire is not particularly limited. In addition, after the core alloy is extruded to produce the wire, the molten surface alloy is coated on the core alloy wire by dipping or thermal spraying. There is a method of manufacturing. Further, after the core alloy and the surface alloy are clad by hot rolling to form a plate material having a double structure, cold rolling is performed as appropriate, and the plate material is roll-formed so that the surface alloy is on the front side. It can also be manufactured by processing it into a hollow wire shape. After processing into a wire shape, drawing processing or the like may be added in order to adjust the diameter and dimensional accuracy.
The brazing wire of the present invention is obtained by the above method.
FIG. 1 is a cross-sectional view of the brazing filler metal wire 1, in which the surface layer portion 1B is located around the core portion 1A.

得られたろう材ワイヤーでは、コア部に含まれるSi粒子は、ろう材の断面観察において、円相当径0.25μm以上のSi粒子が10000μmあたり3000個未満となっている。さらに、表層部に含まれるSi粒子は、表層面方向の観察において、円相当径で0.8μm以上の径を持つ粒子の数のうち、1.75μm以上の径を持つ粒子の割合が10%以上となっている。そして、表層部の厚さは30μm以上が確保されている。 In the obtained brazing wire, the number of Si particles contained in the core portion is less than 3000 per 10,000 μm 2 in the cross-sectional observation of the brazing material, in which the number of Si particles having a circle equivalent diameter of 0.25 μm or more is less than 3000. Further, as for the Si particles contained in the surface layer portion, 10% of the number of particles having a diameter of 0.8 μm or more in the equivalent circle diameter is 1.75 μm or more in the observation in the surface direction. That is all. The thickness of the surface layer portion is secured to be 30 μm or more.

ろう付対象のアルミニウム部材は、特に限定されるわけではないが、例えば、以下のようなものが適用できる。
ろう材合金として、質量%で、Si:4〜12%、Mg:0.1〜5.0%を含有し、所望により、Bi:0.01〜0.5%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を溶製し、芯材用アルミニウム合金として、質量%で、Mn:0.1〜3.0%、Si:0.1〜1.2%、Cu:0.1〜3.0%、Mg:0.2〜1.0%、を含有し、残部がAlと不可避不純物からなる組成に調製する。ろう材合金と芯材合金を熱間圧延でクラッドしてブレージングシートとし、プレス成形などで熱交換器部材の形状に加工する。ろう材用アルミニウム合金としては、その他に、Fe、Cu、Zn、Mn、Ca、Li、Be、芯材用アルミニウム合金としては、その他に、Fe、Zn、Ca、Li、Beなどを既知の量で含有してもよい。また、Znが添加されたアルミニウム合金を犠牲防食層として何れかのクラッド層間、または、ろう材がクラッドされていない芯材表面にクラッドしてもよい。
The aluminum member to be brazed is not particularly limited, but for example, the following can be applied.
As a brazing alloy, Si: 4 to 12% and Mg: 0.1 to 5.0% are contained in mass%, and if desired, Bi: 0.01 to 0.5% is contained, and the balance is Al. An aluminum alloy composed of unavoidable impurities is melted to form an aluminum alloy for a core material, in terms of mass%, Mn: 0.1 to 3.0%, Si: 0.1 to 1.2%, Cu: 0.1. The composition is prepared to contain ~ 3.0%, Mg: 0.2 to 1.0%, and the balance is composed of Al and unavoidable impurities. The brazing alloy and the core alloy are clad by hot rolling to form a brazing sheet, which is processed into the shape of a heat exchanger member by press molding or the like. Other known amounts of Fe, Cu, Zn, Mn, Ca, Li, Be as the aluminum alloy for the brazing material, and Fe, Zn, Ca, Li, Be and the like as the aluminum alloy for the core material. May be contained in. Further, the aluminum alloy to which Zn is added may be used as a sacrificial anticorrosion layer and clad between any clad layers or the surface of the core material to which the brazing material is not clad.

また、上記の芯材用アルミニウム合金は、ベア材のまま圧延による板材や押出による棒状に加工し、その後、プレスや切削により熱交換器部材に加工して用いても良い。
本発明としては、ろう付対象のアルミニウム部材の合金組成は特に限定されるものではないが、MgSiなどを微細析出させることで材料の大幅な高強度化が図れるため、MgとSiを積極添加した合金を好適に用いることができる。従来のフッ化物系フラックスを用いるろう付方法は、フラックスがMgと反応して高融点のフッ化Mgを生成し不活性化するためろう付性が低下することや、この反応によりMgを消費するため高強度Mg添加合金に適用することが難しかったが、フラックスフリーろう付では高強度Mg添加合金が利用可能となる。
Further, the aluminum alloy for the core material may be used as a bare material by being processed into a plate material by rolling or a rod shape by extrusion, and then processed into a heat exchanger member by pressing or cutting.
In the present invention, the alloy composition of the aluminum member to be brazed is not particularly limited, but since the material can be significantly increased in strength by finely precipitating Mg 2 Si and the like, Mg and Si are positively used. The added alloy can be preferably used. In the conventional brazing method using a fluoride-based flux, the flux reacts with Mg to generate high-melting fluoride Mg and inactivates it, so that the brazing property is lowered and Mg is consumed by this reaction. Therefore, it was difficult to apply it to high-strength Mg-added alloys, but high-strength Mg-added alloys can be used for flux-free brazing.

上記により例えばラジエータの熱交換器部材を加工し、製品形状となるように組み付ける。その際に、継手のクリアランスが大きいチューブ根付などには、本発明のろう材ワイヤーを設置する。ワイヤーは、必要に応じてリング状に加工したもの、U字型に曲げたもの、棒状ワイヤーを1周以上巻き付けるなどの設置方法が適宜選択できる。ろう付条件は特に限定されないが、例えば、酸素濃度30ppmの窒素ガス雰囲気中で600℃まで加熱するろう付を行うことができる。
ろう付により得られた熱交換器製品は、クリアランスが大きい継手を含む全ての接合部で十分なフィレットが形成され、自動車などの使用環境において優れた耐久性や熱交換性能が発揮される。
According to the above, for example, the heat exchanger member of the radiator is processed and assembled so as to have a product shape. At that time, the brazing wire of the present invention is installed at the netsuke of the tube having a large joint clearance. The wire can be appropriately selected from an installation method such as a ring-shaped wire, a U-shaped bent wire, or a rod-shaped wire wound around one or more turns, if necessary. The brazing conditions are not particularly limited, but for example, brazing can be performed by heating to 600 ° C. in a nitrogen gas atmosphere having an oxygen concentration of 30 ppm.
In the heat exchanger products obtained by brazing, sufficient fillets are formed at all joints including joints with a large clearance, and excellent durability and heat exchange performance are exhibited in the usage environment such as automobiles.

図2は、上記ろう材ワイヤー1を用いて、アルミニウム合金製のフィン2とアルミニウム合金製のチューブ3とを継手5においてろう付けし、チューブ3をヘッダプレート4の根付部6でろう付け接合している。これら接合によってアルミニウム製自動車用熱交換器10が得られている。根付部6は、クリアランスが大きくなりやすい継ぎ手である。
また、上記実施形態では、本発明の適用用途として自動車用熱交換器について説明したが、自動車用以外の熱交換器でもよく、さらに本発明の用途が熱交換器に限定されるものではない。
In FIG. 2, the aluminum alloy fin 2 and the aluminum alloy tube 3 are brazed at the joint 5 using the brazing material wire 1, and the tube 3 is brazed and joined at the netsuke portion 6 of the header plate 4. ing. From these joints, an aluminum heat exchanger 10 for automobiles is obtained. The netsuke portion 6 is a joint in which the clearance tends to be large.
Further, in the above embodiment, the heat exchanger for automobiles has been described as the application application of the present invention, but the heat exchanger may be other than the heat exchanger for automobiles, and the application of the present invention is not limited to the heat exchanger.

表1に示す組成(残部がAlと不可避不純物)の表層部ろう材、および、表2に示す組成(残部がAlと不可避不純物)のコア部ろう材のビレットを半連続鋳造で溶製した後、表層部ろう材の厚みを変量するため、表層部ろう材内部を切削して各種内径を有する中空ビレットに加工し、さらに、コア部ろう材の外側を切削して各種外径を有するコア部ろう材ビレットを準備した。その後、中空ビレットの内径と同等の外径を有するコア部ろう材ビレットを組み付けて2重構造のビレットとし、後方押出しにより各種組成を有する外径10mmの丸棒を作製した。その後、丸棒を引抜き加工し、外径1.0mmの各種ワイヤーろう材を作製した。 After melting the billets of the surface layer brazing material having the composition shown in Table 1 (the balance is Al and unavoidable impurities) and the core brazing material having the composition shown in Table 2 (the balance is Al and unavoidable impurities) by semi-continuous casting. In order to vary the thickness of the surface layer brazing material, the inside of the surface layer brazing material is cut to form a hollow billet having various inner diameters, and the outside of the core part brazing material is cut to form a core part having various outer diameters. A brazing billet was prepared. Then, a core brazing material billet having an outer diameter equivalent to the inner diameter of the hollow billet was assembled to form a billet having a double structure, and a round bar having an outer diameter of 10 mm having various compositions was produced by backward extrusion. Then, the round bar was drawn out to prepare various wire brazing materials having an outer diameter of 1.0 mm.

Figure 2021013935
Figure 2021013935

Figure 2021013935
Figure 2021013935

板厚1.5mmで質別O材のJIS A3003プレートに7.5〜8.5mmの穴加工を行い、外径7.0mm、内径6.0mmのJIS A3003パイプを図3のように組付け、根付部には各種ワイヤーろう材を内径約7.02mmのリング状に加工したものを設置した。
各種組付け体を酸素濃度10ppmの窒素ガス雰囲気中で到達温度600℃、保持時間3minのろう付を行い、以下の基準でろう付性の評価を行い、その結果を表3〜5に示した。
A JIS A3003 plate with a thickness of 1.5 mm and a quality-class O material is drilled with holes of 7.5 to 8.5 mm, and a JIS A3003 pipe with an outer diameter of 7.0 mm and an inner diameter of 6.0 mm is assembled as shown in Fig. 3. At the netsuke part, various wire brazing materials processed into a ring shape with an inner diameter of about 7.02 mm were installed.
Various brazing bodies were brazed in a nitrogen gas atmosphere having an oxygen concentration of 10 ppm at an ultimate temperature of 600 ° C. and a holding time of 3 min, and the brazing property was evaluated according to the following criteria, and the results are shown in Tables 3 to 5. ..

ろう付性評価方法
◎:プレート穴径8.5mmのクリアランスを埋めることができたもの
○:プレート穴径8.0mmのクリアランスを埋めることができたもの
△:プレート穴径7.5mmのクリアランスを埋めることができたもの
×:プレート穴径7.5mmのクリアランスを埋めることができなかったもの
Brazing property evaluation method ◎: Clearance with a plate hole diameter of 8.5 mm could be filled ○: Clearance with a plate hole diameter of 8.0 mm could be filled Δ: Clearance with a plate hole diameter of 7.5 mm Those that could be filled ×: Those that could not fill the clearance with a plate hole diameter of 7.5 mm

Figure 2021013935
Figure 2021013935

Figure 2021013935
Figure 2021013935

Figure 2021013935
Figure 2021013935

以上、本発明について上記実施形態および実施例に基づいて説明をしたが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは前記実施形態に対する適宜の変更が可能である。 Although the present invention has been described above based on the above embodiments and examples, the present invention is not limited to the contents of the above description, and appropriate modifications to the above embodiments are made as long as the scope of the present invention is not deviated. Is possible.

1 ろう材ワイヤー
1A コア部
1B 表層部
2 フィン
3 チューブ
4 ヘッダープレート
5 継手
6 根付部
10 アルミニウム製自動車用熱交換器
1 Brazing wire 1A Core part 1B Surface layer part 2 Fins 3 Tube 4 Header plate 5 Fittings 6 Netsuke part 10 Aluminum heat exchanger for automobiles

Claims (10)

コア部に表層部が積層されており、アルミニウム部材のフラックスフリーろう付に用いられるフラックスフリーろう付用ろう材ワイヤーであって、
コア部が、質量%で4〜13%のSiおよび0.1〜5.0%のMgを含有するAl−Si−Mg系合金からなり、表層部が、質量%で2〜13%Siを含有するAl−Si系合金からなることを特徴とするフラックスフリーろう付用ワイヤーろう材。
A flux-free brazing brazing wire that has a surface layer laminated on the core and is used for flux-free brazing of aluminum members.
The core part is made of an Al—Si—Mg based alloy containing 4 to 13% Si by mass% and 0.1 to 5.0% Mg, and the surface layer part is 2 to 13% Si by mass%. A flux-free brazing wire brazing material characterized by containing an Al—Si alloy.
コア部に表層部が積層されており、アルミニウム部材のフラックスフリーろう付に用いられるフラックスフリーろう付用ろう材ワイヤーであって、
コア部が、質量%で1%以上4%未満のSiおよび0.1〜5.0%のMgを含有するAl−Si−Mg系合金からなり、表層部が、質量%で2〜13%Siを含有するAl−Si系合金からなることを特徴とするフラックスフリーろう付用ワイヤーろう材。
A flux-free brazing brazing wire that has a surface layer laminated on the core and is used for flux-free brazing of aluminum members.
The core part is made of an Al—Si—Mg based alloy containing 1% or more and less than 4% Si and 0.1 to 5.0% Mg in mass%, and the surface layer part is 2 to 13% by mass. A flux-free brazing wire brazing material characterized by being made of an Al—Si based alloy containing Si.
前記コア部に含まれるSi粒子が、断面観察において、円相当径0.25μm以上のSi粒子が10000μm当たり3,000個未満であり、かつ、前記表層部に含まれるSi粒子が、表層面方向の観察において、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数の割合が10%以上であることを特徴とする請求項1または2に記載のフラックスフリーろう付用ワイヤーろう材。 In cross-sectional observation, the number of Si particles contained in the core portion is less than 3,000 per 10,000 μm 2 with a circle-equivalent diameter of 0.25 μm or more, and the Si particles contained in the surface layer portion are on the surface layer surface. According to claim 1 or 2, the ratio of the number of particles having a diameter of 1.75 μm or more to the number of particles having a diameter of 0.8 μm or more in the observation of the direction is 10% or more. The described flux-free brazing wire brazing material. 前記表層部のAl−Si系合金が、さらに質量%で、0.1〜1.0%のFeを含有することを特徴とする請求項1〜3に記載のフラックスフリーろう付用ワイヤーろう材。 The flux-free brazing wire brazing material according to any one of claims 1 to 3, wherein the Al—Si alloy on the surface layer further contains 0.1 to 1.0% Fe in mass%. .. 前記コア部のAl−Si−Mg系合金と、前記表層部のAl−Si系合金の液相線温度差が60℃以下であることを特徴とする請求項1〜4のいずれか1項に記載のフラックスフリーろう付用ワイヤーろう材。 The item according to any one of claims 1 to 4, wherein the liquidus temperature difference between the Al—Si—Mg-based alloy in the core portion and the Al—Si based alloy in the surface layer portion is 60 ° C. or less. The described flux-free brazing wire brazing material. 前記コア部、または、表層部、および、コア部と表層部の双方に質量%で、Cu:0.05〜2.0、Mn:0.05〜2.5、Ca:0.001〜0.5、Li:0.001〜0.5、Be:0.001〜0.1のいずれか1種、または、2種以上を含有することを特徴とする請求項1〜5に記載のフラックスフリーろう付用ワイヤーろう材。 Cu: 0.05 to 2.0, Mn: 0.05 to 2.5, Ca: 0.001 to 0 in mass% of the core portion, the surface layer portion, and both the core portion and the surface layer portion. The flux according to claim 1 to 5, wherein the flux contains any one or more of .5, Li: 0.001 to 0.5, and Be: 0.001 to 0.1. Wire brazing material for free brazing. 前記コア部のAl−Si−Mg系合金に、さらに質量%で、0.01〜0.5%のBiを含有することを特徴とする請求項1〜6のいずれか1項に記載のフラックスフリーろう付用ワイヤーろう材。 The flux according to any one of claims 1 to 6, wherein the Al—Si—Mg-based alloy in the core portion further contains 0.01 to 0.5% Bi in mass%. Wire brazing material for free brazing. 前記表層部のAl−Si系合金に、さらに質量%で、0.01〜0.1%のBiを含有することを特徴とする請求項1〜7のいずれか1項に記載のフラックスフリーろう付用ワイヤーろう材。 The flux-free brazing according to any one of claims 1 to 7, wherein the Al—Si alloy on the surface layer further contains 0.01 to 0.1% Bi in mass%. Attached wire brazing material. 前記表層部の厚さが30μm以上であることを特徴とする請求項1〜8のいずれか1項に記載のフラックスフリーろう付用ワイヤーろう材。 The flux-free brazing wire brazing material according to any one of claims 1 to 8, wherein the surface layer portion has a thickness of 30 μm or more. 請求項1〜9のいずれか1項に記載のフラックスフリーろう付用ワイヤーろう材を用いて、酸素濃度100ppm以下の非酸化性ガス雰囲気中で、フラックスを用いることなくアルミニウム部材同士の接合を行うことを特徴とするアルミニウム部材のフラックスフリーろう付方法。 Using the flux-free brazing wire brazing material according to any one of claims 1 to 9, aluminum members are joined to each other in a non-oxidizing gas atmosphere having an oxygen concentration of 100 ppm or less without using flux. A flux-free brazing method for aluminum members.
JP2019128367A 2019-07-10 2019-07-10 Brazing wire for flux-free brazing and flux-free brazing method Active JP7311337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019128367A JP7311337B2 (en) 2019-07-10 2019-07-10 Brazing wire for flux-free brazing and flux-free brazing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128367A JP7311337B2 (en) 2019-07-10 2019-07-10 Brazing wire for flux-free brazing and flux-free brazing method

Publications (2)

Publication Number Publication Date
JP2021013935A true JP2021013935A (en) 2021-02-12
JP7311337B2 JP7311337B2 (en) 2023-07-19

Family

ID=74531152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128367A Active JP7311337B2 (en) 2019-07-10 2019-07-10 Brazing wire for flux-free brazing and flux-free brazing method

Country Status (1)

Country Link
JP (1) JP7311337B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684116A (en) * 1979-12-07 1981-07-09 Sumitomo Electric Ind Ltd Manufacture of composite wire
JPH03114691A (en) * 1989-09-28 1991-05-15 Showa Alum Corp Composite brazing filler metal
WO2010082599A1 (en) * 2009-01-19 2010-07-22 株式会社日本スペリア社 Wire solder, method of feeding the same and apparatus therefor
JP2016112585A (en) * 2014-12-15 2016-06-23 株式会社Uacj Brazing filler material sheet for surface joint
JP2016150355A (en) * 2015-02-17 2016-08-22 株式会社Uacj Fillet forming brazing material sheet
JP2018001266A (en) * 2016-06-23 2018-01-11 三菱アルミニウム株式会社 Brazing sheet for flux-free brazing, flux-free brazing method and flux-free brazing method for heat exchanger
JP2018103260A (en) * 2016-12-27 2018-07-05 三菱アルミニウム株式会社 Flux-free soldering blazing sheet, flux-free soldering method and heat exchanger manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684116A (en) * 1979-12-07 1981-07-09 Sumitomo Electric Ind Ltd Manufacture of composite wire
JPH03114691A (en) * 1989-09-28 1991-05-15 Showa Alum Corp Composite brazing filler metal
WO2010082599A1 (en) * 2009-01-19 2010-07-22 株式会社日本スペリア社 Wire solder, method of feeding the same and apparatus therefor
JP2016112585A (en) * 2014-12-15 2016-06-23 株式会社Uacj Brazing filler material sheet for surface joint
JP2016150355A (en) * 2015-02-17 2016-08-22 株式会社Uacj Fillet forming brazing material sheet
JP2018001266A (en) * 2016-06-23 2018-01-11 三菱アルミニウム株式会社 Brazing sheet for flux-free brazing, flux-free brazing method and flux-free brazing method for heat exchanger
JP2018103260A (en) * 2016-12-27 2018-07-05 三菱アルミニウム株式会社 Flux-free soldering blazing sheet, flux-free soldering method and heat exchanger manufacturing method

Also Published As

Publication number Publication date
JP7311337B2 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP6055573B1 (en) Brazing sheet for flux-free brazing, flux-free brazing method and flux-free brazing method for heat exchanger
JP4547032B1 (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP6561081B2 (en) Brazing sheet for flux-free brazing, flux-free brazing method, and heat exchanger manufacturing method
JP6726371B1 (en) Aluminum alloy plate for brazing and aluminum brazing sheet
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP6726370B1 (en) Aluminum brazing sheet for flux-free brazing
JP2009058167A (en) Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
US11229978B2 (en) Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger
JP5354911B2 (en) Aluminum heat exchanger and manufacturing method thereof
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
JP2021013935A (en) Brazing material wire for flux free brazing and flux free brazing method
JP2021013936A (en) Aluminum brazing sheet and method for manufacturing heat exchanger
JP4290625B2 (en) Header tank for heat exchanger using extruded aluminum alloy and heat exchanger provided with the same
EP4039394B1 (en) Aluminum brazing sheet and method for flux-free brazing of aluminum member
JP2012052160A (en) Member for flux-less brazing, excellent in blazing property, and method for flux-less brazing aluminum member
JP6184804B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150