JP2021011633A - Aluminum alloy clad material - Google Patents

Aluminum alloy clad material Download PDF

Info

Publication number
JP2021011633A
JP2021011633A JP2020078187A JP2020078187A JP2021011633A JP 2021011633 A JP2021011633 A JP 2021011633A JP 2020078187 A JP2020078187 A JP 2020078187A JP 2020078187 A JP2020078187 A JP 2020078187A JP 2021011633 A JP2021011633 A JP 2021011633A
Authority
JP
Japan
Prior art keywords
brazing
less
sacrificial material
aluminum alloy
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020078187A
Other languages
Japanese (ja)
Other versions
JP7498591B2 (en
Inventor
祥基 森
Yoshiki Mori
祥基 森
三宅 秀幸
Hideyuki Miyake
秀幸 三宅
路英 吉野
Michihide Yoshino
路英 吉野
岩尾 祥平
Shohei Iwao
祥平 岩尾
江戸 正和
Masakazu Edo
正和 江戸
杉本 尚規
Naomi Sugimoto
尚規 杉本
伸洋 本間
Nobuhiro Homma
伸洋 本間
詔悟 山田
Shogo Yamada
詔悟 山田
勇樹 寺本
Yuuki Teramoto
勇樹 寺本
外山 猛敏
Taketoshi Toyama
猛敏 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Denso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to CN202010612310.4A priority Critical patent/CN112176230A/en
Priority to DE102020208138.7A priority patent/DE102020208138A1/en
Priority to US16/918,096 priority patent/US11045911B2/en
Publication of JP2021011633A publication Critical patent/JP2021011633A/en
Application granted granted Critical
Publication of JP7498591B2 publication Critical patent/JP7498591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

To perform brazing stably without a flux.SOLUTION: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and a brazing material disposed on the other surface of the core material, the brazing material containing Si: 6.0-14.0%, Mg: 0.05-1.5%, Bi: 0.05-0.25%, Sr: 0.0001-0.1%, and the balance consisting of Al and inevitable impurities, and satisfying a relationship of (Bi+Mg)×Sr≤0.1. Mg-Bi-based compounds contained in the brazing material with a diameter of 0.1 μm or more and less than 5.0 μm are more than 20 in number per 10,000 μm2 visual field in a surface layer plane direction before brazing, and the Mg-Bi-based compounds with a diameter of 5.0 μm or more are less than 2 in number per 10,000 μm2 visual field, and the core material contains Mn: 1.0-1.7%, Si: 0.2-1.0%, Fe: 0.1-0.5%, Cu: 0.08-1.0%, Mg: 0.1-0.7%, and the balance consisting of Al and inevitable impurities. The sacrificial material contains Zn: 0.5-6.0%, with its Mg content limited to 0.1% or less, and a Mg concentration on the sacrificial material surface after brazing being 0.15% or less.SELECTED DRAWING: Figure 1

Description

この発明は、フラックスフリーにより接合がされるフラックスフリーろう付用のアルミニウム合金クラッド材に関する The present invention relates to an aluminum alloy clad material for flux-free brazing that is joined by flux-free.

コンデンサやエバポレーターなどのアルミニウム製自動車用熱交換器は、これまでの小型軽量化と共にアルミニウム材料の薄肉高強度化が進んできている。アルミニウム製熱交換器の製造では、継手を接合するろう付が行われるが、現在主流のフッ化物系フラックスを使用するろう付方法では、フラックスが材料中のMgと反応して不活性化しろう付不良を生じ易いため、Mg添加高強度部材の利用が制限される。このため、フラックスを使用せずにMg添加アルミニウム合金を接合するろう付方法が望まれている。 Aluminum automobile heat exchangers such as capacitors and evaporators are becoming smaller and lighter, and aluminum materials are becoming thinner and stronger. In the manufacture of aluminum heat exchangers, brazing is used to join joints, but in the brazing method that uses fluoride-based flux, which is currently the mainstream, the flux reacts with Mg in the material to inactivate it. Since defects are likely to occur, the use of Mg-added high-strength members is restricted. Therefore, a brazing method for joining Mg-added aluminum alloys without using flux is desired.

Al−Si−Mgろう材を用いるフラックスフリーろう付では、溶融して活性となったろう材中のMgが接合部表面のAl酸化皮膜(Al)を還元分解することで接合が可能となる。閉塞的な面接合継手などでは、Mgによる酸化皮膜の分解作用によりろう材を有するブレージングシート同士を組合せた継手や、ブレージングシートとろう材を有さない被接合部材(ベア材)を組合せた継手で良好な接合状態が得られる(特許文献1参照)。 In flux-free brazing using Al-Si-Mg brazing material, Mg in the brazing material that has been melted and activated can be bonded by reducing and decomposing the Al oxide film (Al 2 O 3 ) on the surface of the joint. Become. For closed surface joints, joints that combine brazing sheets that have brazing material due to the decomposition action of the oxide film by Mg, and joints that combine brazing sheets and members to be joined (bare material) that do not have brazing material. A good joint state can be obtained (see Patent Document 1).

しかし、コンデンサやエバポレーターなど一般的な熱交換器の代表的な継手形状であるチューブとフィン接合部などでは雰囲気の影響を受け易く、Mg添加ろう材の表面でMgO皮膜が成長し易くなる。MgO皮膜は分解され難い安定な酸化皮膜であるため接合が著しく阻害される。
このため、一般的な熱交換器にフラックスフリー技術を適用するためには開放部を有する継手で安定した接合状態が得られるフラックスフリーろう付用ブレージングシートが強く望まれている。
However, the tube and fin joints, which are typical joint shapes of general heat exchangers such as capacitors and evaporators, are easily affected by the atmosphere, and the MgO film is likely to grow on the surface of the Mg-added brazing material. Since the MgO film is a stable oxide film that is not easily decomposed, bonding is significantly hindered.
Therefore, in order to apply the flux-free technology to a general heat exchanger, a flux-free brazing brazing sheet that can obtain a stable joint state with a joint having an open portion is strongly desired.

フラックスフリーろう付の接合状態を安定させる方法として、例えば特許文献2に示すAl−Si−Mg−Bi系ろう材を用い、ろう材中のBi粒子やMg−Bi化合物粒子の分布状態を制御する技術が提案されている。この技術によれば、円相当径5.0〜50μmの単体BiあるいはBi−Mg化合物をろう材中に分散させておくことで、これら化合物が材料製造時にろう材表面に露出し、露出部での酸化皮膜形成が抑制されることで短時間のろう付加熱時間でのフラックスフリーろう付性が向上するとされている。 As a method for stabilizing the bonding state of flux-free brazing, for example, an Al-Si-Mg-Bi-based brazing material shown in Patent Document 2 is used, and the distribution state of Bi particles and Mg-Bi compound particles in the brazing material is controlled. Technology has been proposed. According to this technique, by dispersing a simple substance Bi or Bi-Mg compound having a circular equivalent diameter of 5.0 to 50 μm in a brazing material, these compounds are exposed on the surface of the brazing material at the time of material production, and the exposed portion It is said that the flux-free brazing property is improved in a short brazing heat addition time by suppressing the formation of the oxide film.

特許公報第4547032号明細書Patent Publication No. 4547032 特開2014−50861号公報Japanese Unexamined Patent Publication No. 2014-50861

しかし、従来提案されているフラックスフリーろう付方法では、現在主流のフッ化物系フラックスを使用するろう付方法を代替できるほどに安定した接合性が得られているとは言い難く、一般的な熱交換器に広く適用するためにはさらなる技術の向上が必要である。 However, it is difficult to say that the flux-free brazing method proposed in the past has obtained stable bondability enough to replace the brazing method using the currently mainstream fluoride-based flux, and general heat is used. Further technical improvements are needed for widespread application to exchangers.

本発明は、上記事情を背景としてなされたものであり、フラックスフリーによってろう付を安定して行うことができるフラックスフリーろう付用のアルミニウム合金クラッド材を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide an aluminum alloy clad material for flux-free brazing capable of stably performing brazing by flux-free.

本発明者らは上記課題に鑑み鋭意検討を重ねた結果、Bi添加Al−Si−Mg系ろう材においてろう付性をさらに向上させるためにはろう溶融時に表面にBiを均一に濃化させることが最も重要であること、また、5μm以上の粗大なMg−Bi化合物は材料製造時の酸化皮膜生成抑制には効果があるものの、ろう付加熱時に溶解しにくく、むしろある程度微細な0.1μm以上5.0μm未満のBi−Mg化合物を所定の数密度以上に分散させることで、ろう付加熱時に確実にMg−Bi化合物が溶解し、金属Biを生成、かつ生成したBiが表面に均一に濃化することで、良好なろう付性が得られることを見出した。 As a result of diligent studies in view of the above problems, the present inventors uniformly concentrated Bi on the surface at the time of brazing in order to further improve the brazing property of the Bi-added Al-Si-Mg-based brazing material. Is the most important, and although a coarse Mg-Bi compound of 5 μm or more is effective in suppressing the formation of an oxide film during material production, it is difficult to dissolve during brazing heat, but rather a fine 0.1 μm or more. By dispersing a Bi-Mg compound of less than 5.0 μm at a predetermined density or higher, the Mg-Bi compound is surely dissolved during brazing heat, and a metal Bi is generated, and the generated Bi is uniformly concentrated on the surface. It was found that good brazing property can be obtained by changing the brazing property.

また、フラックスフリーろう付におけるろう溶融挙動とろう付性の関係を調査し、フラックスフリーろう付においては酸化を抑制しつつ、短時間のうちに活性な溶融ろうを生成させ、フィレットを形成することが重要となるため、液相線温度が低く、固液共存域が短いろう材が好ましいため、高Siろう材が好ましいことを明らかにするとともに、高Siろう材で問題となる鋳造時に生成する粗大な初晶Siの抑制手法についても検討を重ねた。 In addition, the relationship between brazing behavior and brazing property in flux-free brazing is investigated, and in flux-free brazing, active molten brazing is generated in a short time while suppressing oxidation to form fillets. It is clarified that a high-Si brazing material is preferable because a brazing material having a low liquidus temperature and a short solid-liquid coexisting region is preferable, and it is generated at the time of casting, which is a problem with a high-Si brazing material. The method of suppressing coarse primary crystal Si was also studied repeatedly.

さらに、より一層フラックスフリーろう付の安定性を向上させるため研究を行ったところ、若干の減圧を併用することでろう付安定性は高まり、フッ化物系フラックスを使用するろう付法と同等以上のろう付安定性を得られる可能性が示唆された。ただし、その場合には真空ろう付ほどではないが蒸気圧の高いZnが蒸発して耐食性が劣化してしまうという新たな問題が生じた。AlブレージングシートではZnが添加されたAl犠牲材がクラッドされ、その犠牲陽極効果によって、心材を防食しているため、Zn蒸発が生じるとブレージングシートの耐食性が劣化してしまう。 Furthermore, when research was conducted to further improve the stability of flux-free brazing, the brazing stability was improved by using a slight decompression in combination, which was equal to or better than the brazing method using fluoride-based flux. It was suggested that brazing stability could be obtained. However, in that case, a new problem has arisen in which Zn having a high vapor pressure evaporates and the corrosion resistance deteriorates, although it is not as high as vacuum brazing. In the Al brazing sheet, the Al sacrificial material to which Zn is added is clad, and the sacrificial anode effect protects the core material. Therefore, when Zn evaporation occurs, the corrosion resistance of the brazing sheet deteriorates.

そこで、本発明者らはZnが蒸発した場合でも高い耐食性を得るという観点から鋭意検討を重ねた結果、Znを含有する部材表面のろう付中のMg濃度を所定値以下に抑えることでZn蒸発が抑制できること、さらに、犠牲材の成分を適正化することでZn蒸発が生じた場合でもあっても耐食性が劣化しにくいことを見出し、上記のようにMg−Bi化合物の分散状態を適切に制御したAl−Si−Mg−Biろう材と組み合わせることで、開放部を有する継手で安定した接合状態が得られるとともに、かつ耐食性に優れるフラックスフリーろう付用アルミニウム合金クラッド材を発明するに至った。 Therefore, as a result of diligent studies from the viewpoint of obtaining high corrosion resistance even when Zn evaporates, the present inventors have made Zn evaporation by suppressing the Mg concentration in brazing on the surface of the member containing Zn to a predetermined value or less. Furthermore, it was found that the corrosion resistance does not easily deteriorate even when Zn evaporation occurs by optimizing the components of the sacrificial material, and the dispersion state of the Mg-Bi compound is appropriately controlled as described above. By combining with the Al-Si-Mg-Bi brazing material, a flux-free aluminum alloy clad material for brazing has been invented, which can obtain a stable bonding state in a joint having an open portion and has excellent corrosion resistance.

すなわち、アルミニウム合金クラッド材のうち、第1の形態は、心材の片面に犠牲材が配置され、前記心材のもう一方の片面に、質量%で、Si:6.0〜14.0%、Mg:0.05〜1.5%、Bi:0.05〜0.25%、Sr:0.0001〜0.1%を含有し残部がAlおよび不可避不純物からなり、かつ、(Bi+Mg)×Sr≦0.1の関係を満たすAl−Si−Mg−Bi系ろう材が配置され、
前記Al−Si−Mg−Bi系ろう材に含まれるMg−Bi系化合物が、ろう付前の表層面方向の観察において、円相当径で0.1μm以上5.0μm未満の直径を有するものが10000μm視野あたり30個よりも多く存在し、かつ、5.0μm以上の径を有するものが10000μm視野あたり2個未満であり、
さらに、前記心材が、質量%で、Mn:1.0〜1.7%、Si:0.2〜1.0%、Fe:0.1〜0.5%、Cu:0.08〜1.0%、Mg:0.1〜0.7%を含有し、残部がAlおよび不可避不純物からなり、
前記犠牲材が、質量%で、Zn:0.5〜6.0%を含有するとともにMg含有量が0.1%以下に規制され、ろう付後の犠牲材表面のMg濃度が0.15%以下であることを特徴とする。
That is, in the first form of the aluminum alloy clad material, the sacrificial material is arranged on one side of the core material, and Si: 6.0 to 14.0%, Mg, by mass%, is placed on the other side of the core material. : 0.05 to 1.5%, Bi: 0.05 to 0.25%, Sr: 0.0001 to 0.1%, the balance is composed of Al and unavoidable impurities, and (Bi + Mg) × Sr An Al-Si-Mg-Bi brazing material satisfying the relationship of ≤0.1 is arranged, and
The Mg-Bi compound contained in the Al-Si-Mg-Bi brazing material has a diameter equivalent to a circle of 0.1 μm or more and less than 5.0 μm in the observation in the surface layer direction before brazing. 10000 2 was present more than 30 per field, and those with a diameter of more than 5.0μm is less than two per 10000 2 field,
Further, the core material is Mn: 1.0 to 1.7%, Si: 0.2 to 1.0%, Fe: 0.1 to 0.5%, Cu: 0.08 to 1 in mass%. It contains 0.0%, Mg: 0.1 to 0.7%, and the balance consists of Al and unavoidable impurities.
The sacrificial material contains Zn: 0.5 to 6.0% in mass%, the Mg content is regulated to 0.1% or less, and the Mg concentration on the surface of the sacrificial material after brazing is 0.15. It is characterized by being less than%.

他の形態のアルミニウム合金クラッド材の発明は、前記形態の発明において、前記心材がさらに、Mg:0.1〜0.7%を含有することを特徴とする。 The invention of another form of the aluminum alloy clad material is characterized in that, in the invention of the above-mentioned form, the core material further contains Mg: 0.1 to 0.7%.

他の形態のアルミニウム合金クラッド材の発明は、前記形態の発明において、前記心材がさらに、Ti:0.05〜0.3%を含有することを特徴とする。 The invention of another form of the aluminum alloy clad material is characterized in that, in the invention of the said form, the core material further contains Ti: 0.05 to 0.3%.

他の形態のアルミニウム合金クラッド材の発明は、前記形態の発明において、ろう付後の前記犠牲材の最卑部と前記心材の中央部の自然電位が犠牲材最卑部のほうが卑であって、自然電位差が120〜280mVの範囲にあり、さらに前記犠牲材の最表面と最卑部との電位差が50mV以内であることを特徴とする。 In the invention of the other form of the aluminum alloy clad material, in the invention of the above-mentioned form, the natural potentials of the lowest portion of the sacrificial material after brazing and the central portion of the core material are lower in the lowest portion of the sacrificial material. The natural potential difference is in the range of 120 to 280 mV, and the potential difference between the outermost surface and the lowest portion of the sacrificial material is within 50 mV.

他の形態のアルミニウム合金クラッド材の発明は、前記形態の発明において、前記犠牲材が、質量%で、さらにSi:0.2〜0.8%、Cr:0.05〜0.5%、Ti:0.05〜0.3%の1種あるいは2種以上を含有することを特徴とする。 In the invention of the other form of the aluminum alloy clad material, in the invention of the said form, the sacrificial material is mass%, Si: 0.2 to 0.8%, Cr: 0.05 to 0.5%, Ti: It is characterized by containing one kind or two or more kinds of 0.05 to 0.3%.

以下に、本発明で規定した内容について、その作用とともに説明する。
以下で説明する成分は、いずれも質量%で示されている。
The contents specified in the present invention will be described below together with their actions.
All of the components described below are shown in% by mass.

<ろう材>
Si:6.0〜14.0%
Siは、ろう付時に溶融ろうを形成し、接合部のフィレットを形成するために添加される。開放部におけるフラックスフリーろう付では、酸化を抑制しつつ、短時間のうちに活性な溶融ろうを生成させ、フィレットを形成することが重要となるため、液相線温度が低く、固液共存域が短いろう材が好ましい。含有量が下限未満であると、溶融ろう生成時間が長くなるとともに溶融ろうが不足する。一方、上限超であると、やはり溶融ろう生成時間が長くなるとともに材料が硬く脆くなるため、素材製造が困難になる。このため、Siの含有量を上記範囲に定める。
なお、同様の理由でSi含有量を、下限で9.0%、上限で13.0%とするのが望ましい。
<Blazed material>
Si: 6.0-14.0%
Si is added to form molten brazing during brazing and to form fillets at the joints. In flux-free brazing in the open part, it is important to generate active molten brazing in a short time and form fillets while suppressing oxidation, so the liquidus temperature is low and the solid-liquid coexistence region. A brazing material with a short temperature is preferable. If the content is less than the lower limit, the molten wax formation time becomes long and the molten wax becomes insufficient. On the other hand, if it exceeds the upper limit, the molten wax formation time becomes long and the material becomes hard and brittle, which makes it difficult to manufacture the material. Therefore, the Si content is set within the above range.
For the same reason, it is desirable that the Si content is 9.0% at the lower limit and 13.0% at the upper limit.

Mg:0.05〜1.5%
Mgは、Al酸化皮膜(Al)を還元分解するために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると、ろう付雰囲気中の酸素と反応して接合を阻害するMgOが生成することや、材料が硬く脆くなるため、素材製造が困難になる。このため、Mgの含有量を上記範囲に定める。
なお、同様の理由でMg含有量を、下限で0.1%、上限で1.2%とするのが望ましく、さらに、下限で0.2%、上限で1.0%とするのがより望ましい。
Mg: 0.05-1.5%
Mg is added to reduce and decompose the Al oxide film (Al 2 O 3 ). If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, MgO that reacts with oxygen in the brazing atmosphere to inhibit bonding is generated, and the material becomes hard and brittle. Material manufacturing becomes difficult. Therefore, the Mg content is set within the above range.
For the same reason, it is desirable that the Mg content is 0.1% at the lower limit and 1.2% at the upper limit, and more preferably 0.2% at the lower limit and 1.0% at the upper limit. desirable.

Bi:0.05〜0.25%
Biは、ろう付昇温過程で材料表面に濃化し、ろう付中の酸化を抑制するとともに溶融ろうの表面張力を低下させることで開放部での接合性を向上させるために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると効果が飽和するだけでなく、材料表面でBiの酸化物が生成し易くなり接合が阻害される。このため、Biの含有量を上記範囲に定める。
なお、同様の理由でBi含有量を、下限で0.08%、上限で0.23%とするのが望ましい。
Bi: 0.05-0.25%
Bi is added to the surface of the material in the process of raising the temperature of the brazing, to suppress oxidation during brazing and to reduce the surface tension of the molten brazing to improve the bondability at the open portion. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, not only the effect is saturated, but also Bi oxide is easily formed on the surface of the material and bonding is hindered. Therefore, the Bi content is set within the above range.
For the same reason, it is desirable that the Bi content is 0.08% at the lower limit and 0.23% at the upper limit.

Sr:0.0001〜0.1%
Srは、Si含有量が高いろう材で発生する粗大な初晶Si生成を抑制するために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると鋳造時に溶湯表面で酸化してドロスが増加したり、粗大な化合物を形成することで鋳造性が低下する。このため、Srの含有量を上記範囲に定める。
なお、同様の理由でSr含有量を、下限で0.0005%、上限で0.06%とするのが望ましい。
Sr: 0.0001 to 0.1%
Sr is added to suppress the formation of coarse primary crystal Si generated in a brazing material having a high Si content. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, it is oxidized on the surface of the molten metal during casting to increase dross, or to form a coarse compound, resulting in a decrease in castability. Therefore, the Sr content is set within the above range.
For the same reason, it is desirable that the Sr content is 0.0005% at the lower limit and 0.06% at the upper limit.

ろう材の不可避不純物としてFe:0.3%以下の範囲で含有してもよい。 As an unavoidable impurity of the brazing material, Fe: may be contained in the range of 0.3% or less.

(Bi+Mg)×Sr≦0.1
フラックスフリーろう付用のAl−Si−Mg−Bi系ろう材では活性なMgやBiを含有しているため、所定量以上のSrと共存すると鋳造時に溶湯中に粗大なBi−Mg−Sr化合物が生成し鋳造性が低下する。この化合物はBiとMgの総量が多いほど、また、Sr含有量が多いほど生成しやすくなる。(Bi+Mg)×Srはこの粗大なBi−Mg−Sr化合物生成の臨界条件を示すものであり、(Bi+Mg)×Sr≦0.1とすることで、Al−Si−Mg−Bi系ろう材にSrを添加しても粗大なBi−Mg−Sr化合物が生成せず、かつ、Sr本来の添加目的である初晶Si生成抑制効果を得ることができる。このため、上記範囲に定める。
なお、同様の理由で(Bi+Mg)×Sr≦0.08とするのが望ましい。
(Bi + Mg) × Sr ≦ 0.1
Since the Al-Si-Mg-Bi brazing material for flux-free brazing contains active Mg and Bi, if it coexists with Sr in a predetermined amount or more, a coarse Bi-Mg-Sr compound is contained in the molten metal during casting. Is generated and castability is reduced. This compound is more likely to be produced as the total amount of Bi and Mg increases and the Sr content increases. (Bi + Mg) × Sr indicates the critical condition for the formation of this coarse Bi-Mg-Sr compound, and by setting (Bi + Mg) × Sr ≦ 0.1, an Al-Si-Mg-Bi-based brazing material can be obtained. Even if Sr is added, a coarse Bi-Mg-Sr compound is not produced, and the effect of suppressing the production of primary crystal Si, which is the original purpose of adding Sr, can be obtained. Therefore, it is defined in the above range.
For the same reason, it is desirable to set (Bi + Mg) × Sr ≦ 0.08.

Mg−Bi系化合物:円相当径で、0.1〜5.0μm径未満のものが10000μm視野あたり20個よりも多い
微細なMg−Bi系化合物が分散することで、ろう付昇温過程でこの化合物が溶解した際に、Biが材料表面に均一に濃縮し易くなり、材料の酸化が抑制される。0.1μm未満の化合物は溶解しても、溶解量が少ないため上記効果が得られない。5.0μm以上の化合物はろう付昇温過程で溶融しにくく、化合物のまま残存してしまうため上記効果が得られない。また、上記化合物が10000μm視野あたり20個以下であると、溶解箇所が少なく、Biが材料表面に均一に濃縮しにくい。同様の理由で、さらに30個以上であるのが望ましく、さらに、40個以上であるのがより望ましい。
Mg-Bi-based compounds: Circle-equivalent diameters less than 0.1 to 5.0 μm are 10,000 μm. More than 20 fine Mg-Bi-based compounds are dispersed per 2 visual fields, resulting in a brazing temperature rise process. When this compound is dissolved, Bi is easily uniformly concentrated on the surface of the material, and oxidation of the material is suppressed. Even if a compound having a size of less than 0.1 μm is dissolved, the above effect cannot be obtained because the amount of dissolution is small. A compound having a thickness of 5.0 μm or more is difficult to melt in the process of raising the temperature with brazing, and the compound remains as it is, so that the above effect cannot be obtained. Further, when the number of the above compounds is 20 or less per 10000 μm 2 field of view, there are few dissolution points and it is difficult for Bi to be uniformly concentrated on the material surface. For the same reason, it is desirable that the number is 30 or more, and more preferably 40 or more.

なお、ろう材表面のMg−Bi系化合物の数は、作製した材料のろう材表面を0.1μmの砥粒で鏡面処理し、FE−EPMA(電界放出型電子線マイクロアナライザ)を用いた全自動粒子解析を行うと共に、さらに、1μm以下の微細な化合物を測定するため、切出したろう材層の表面から機械研磨、および電解研磨をして薄膜を作製し、TEM(透過型電子顕微鏡)で観察し、表面方向10000μm(100μm角)の観察視野において、0.1〜5.0μmのMg−Bi系化合物粒子数をカウントすることで求められる。 The number of Mg-Bi compounds on the surface of the brazing material is as follows: The surface of the brazing material of the produced material is mirror-treated with 0.1 μm abrasive grains, and FE-EPMA (field emission electron probe microanalyzer) is used. In addition to performing automatic particle analysis, in order to measure fine compounds of 1 μm or less, a thin film is prepared by mechanical polishing and electrolytic polishing from the surface of the cut-out brazing material layer, and observed with a TEM (transmission electron microscope). Then, it is obtained by counting the number of Mg-Bi compound particles of 0.1 to 5.0 μm in the observation field of 10000 μm 2 (100 μm square) in the surface direction.

また、Mg−Bi系化合物を細かく密に分布させる手段としては、鋳造時には、溶湯温度が高いところから早い冷却速度で鋳込むこと(Mg−Bi化合物の粗大晶出を抑制、Mg,Biの鋳造時の固溶を促進し、その後の熱処理で所望の状態で分散させる)、熱延時には、一定以上の大きな総圧下量をとること(晶出物の破砕促進による微細化と数密度の増加)、高温域での圧延時間を長くとること(熱間圧延時の動的析出を促進)、熱延仕上り温度を低くしてその後の冷却速度を速くする(緩慢冷却による粗大析出を抑制)ことなどを適正に組み合わせることで調整することができる。 Further, as a means for finely and densely distributing the Mg-Bi compound, casting is performed at a high cooling rate from a place where the molten metal temperature is high (suppressing coarse crystallization of the Mg-Bi compound and casting Mg and Bi). (Promote solid dissolution at the time and disperse in a desired state by subsequent heat treatment), and take a large total reduction amount above a certain level during hot rolling (fineness and increase in number density by promoting crushing of crystals) , Prolonging the rolling time in the high temperature range (promoting dynamic precipitation during hot rolling), lowering the hot rolling finish temperature and increasing the subsequent cooling rate (suppressing coarse precipitation due to slow cooling), etc. Can be adjusted by properly combining.

Mg−Bi系化合物:円相当径で、5.0μm径以上のものが10000μm視野あたり2個未満
粗大なMg−Bi系化合物は、ろう付昇温過程で溶融し難く材料表面にBiが均一に濃化しにくく、また、粗大な化合物ができることで5.0μm未満の微細なMg−Bi化合物の生成量が減ってしまうため、所定値よりも低くする必要がある。
なお、ろう材表面のMg−Bi系化合物の数は、前述したFE−EPMAによる全自動粒子解析により求められる。また、粗大なMg−Bi系化合物の生成を抑制する手段としては、前述の鋳造条件や熱延条件を適切に制御することで調整することができる。
例えば、鋳造時に、溶湯温度が高いところから早い冷却速度で鋳込むこと(Mg−Bi化合物の粗大晶出を抑制)、熱延時には、一定以上の大きな総圧下量をとること(晶出物の破砕促進による微細化)、熱延仕上り温度を低くしてその後の冷却速度を速くする(緩慢冷却による粗大析出を抑制)ことなどを適正に組み合わせることで調整することができる。
Mg-Bi-based compounds: Circle-equivalent diameter of 5.0 μm or more is 10000 μm Less than 2 per 2 visual fields Coarse Mg-Bi-based compounds are difficult to melt during the brazing temperature rise process, and Bi is uniform on the material surface. It is difficult to concentrate the compound, and the amount of a fine Mg-Bi compound having a diameter of less than 5.0 μm is reduced due to the formation of a coarse compound. Therefore, it is necessary to make the value lower than the predetermined value.
The number of Mg-Bi compounds on the surface of the brazing material can be determined by the above-mentioned fully automatic particle analysis by FE-EPMA. Further, as a means for suppressing the formation of a coarse Mg-Bi-based compound, it can be adjusted by appropriately controlling the above-mentioned casting conditions and hot spreading conditions.
For example, during casting, casting at a high cooling rate from a place where the molten metal temperature is high (suppressing coarse crystallization of Mg-Bi compound), and during hot spreading, a large total reduction amount of a certain level or more should be taken (crystallized product). It can be adjusted by appropriately combining (miniaturization by promoting crushing), lowering the hot-rolled finish temperature and increasing the subsequent cooling rate (suppressing coarse precipitation due to slow cooling).

犠牲材
Zn:0.5〜6.0%
Znは、材料の自然電位を他部材よりも卑にし、犠牲防食効果を発揮させ、クラッド材の耐孔食性を向上させるために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると電位が卑となりすぎて犠牲材の腐食消耗速度が速くなり、犠牲材の早期消失によってクラッド材の耐孔食性が低下する。
なお、同様の理由で、下限で0.7%、上限で5.7%とするのが望ましい。
Sacrificial material Zn: 0.5 to 6.0%
Zn is added in order to make the natural potential of the material lower than that of other members, exert a sacrificial corrosion protection effect, and improve the pitting corrosion resistance of the clad material. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the potential becomes too low and the corrosion and consumption rate of the sacrificial material becomes faster, and the pitting corrosion resistance of the clad material becomes worse due to the early disappearance of the sacrificial material. descend.
For the same reason, it is desirable that the lower limit is 0.7% and the upper limit is 5.7%.

Mg含有量0.1%以下
Mgは蒸気圧が高く、さらに、Al酸化皮膜を還元分解するため、Mgが多いほどろう付中に材料表面の酸化皮膜が破壊されやすい。破壊された酸化皮膜下にZnが存在すると、破壊された酸化皮膜の隙間からZnが蒸発してしまう。したがって、Zn蒸発が生じ得る環境においてはZn含有層のMg添加量を所定値以下とすることでMgの蒸発と酸化皮膜の破壊に起因したZnの蒸発を抑制することができる。
なお、同様の理由で、0.05%以下とするのが望ましい。
Mg content 0.1% or less Mg has a high vapor pressure and further reduces and decomposes the Al oxide film. Therefore, the larger the Mg content, the more easily the oxide film on the material surface is destroyed during brazing. If Zn exists under the destroyed oxide film, Zn evaporates from the gaps in the destroyed oxide film. Therefore, in an environment where Zn evaporation can occur, it is possible to suppress the evaporation of Mg and the evaporation of Zn due to the destruction of the oxide film by setting the amount of Mg added to the Zn-containing layer to a predetermined value or less.
For the same reason, it is desirable to set it to 0.05% or less.

ろう付後の犠牲材表面のMg濃度が0.15%以下
Mgは蒸気圧が高く、さらに、Al酸化皮膜を還元分解するため、Mgが多いほどろう付中に材料表面の酸化皮膜が破壊されやすい。破壊された酸化皮膜下にZnが存在すると、破壊された酸化皮膜の隙間からZnが蒸発してしまう。したがって、ろう付途中に犠牲材表面に存在するMg量が多いほど絶えずZnが蒸発することになり、結果としてZn蒸発量が多くなる。クラッド材の場合には犠牲材に添加されたMg量が少ない場合であっても、心材などの他層からMgが拡散してくるため、ろう付中の拡散を考慮した材料設計が必要である。ろう付後の犠牲材表面のMg濃度が多いほど、ろう付中に犠牲材表面が高Mgになっていたことになり、そのためZn蒸発が多くなる。したがって、ろう付後の犠牲材表面のMg量はZn蒸発のしやすさの目安となり、ろう付後の犠牲材表面のMg濃度を所定値以下とすることで、Mgの蒸発と酸化皮膜の破壊に起因したZnの蒸発を抑制することができる。
なお、同様の理由で、0.1%以下とするのが望ましい。
The Mg concentration on the surface of the sacrificial material after brazing is 0.15% or less Mg has a high vapor pressure and further reduces and decomposes the Al oxide film, so the more Mg, the more the oxide film on the material surface is destroyed during brazing. Cheap. If Zn exists under the destroyed oxide film, Zn evaporates from the gaps in the destroyed oxide film. Therefore, as the amount of Mg present on the surface of the sacrificial material increases during brazing, Zn evaporates constantly, and as a result, the amount of Zn evaporation increases. In the case of a clad material, even if the amount of Mg added to the sacrificial material is small, Mg diffuses from other layers such as the core material, so it is necessary to design the material in consideration of diffusion during brazing. .. The higher the Mg concentration on the surface of the sacrificial material after brazing, the higher the Mg concentration on the surface of the sacrificial material during brazing, and therefore the amount of Zn evaporation increases. Therefore, the amount of Mg on the surface of the sacrificial material after brazing is a measure of the ease of Zn evaporation, and by setting the Mg concentration on the surface of the sacrificial material after brazing to a predetermined value or less, the evaporation of Mg and the destruction of the oxide film It is possible to suppress the evaporation of Zn due to the above.
For the same reason, it is desirable to set it to 0.1% or less.

Si:0.2〜0.8%
Siは、単体Si、Al−Fe−Si、Al−Mn−Si、Al−Mn−Si−Feなどの金属間化合物として析出して腐食の起点を分散させることでクラッド材の耐孔食性を向上させるので所望により添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると腐食速度が速くなり、犠牲材の早期消失によってクラッド材の耐孔食性が低下する。
なお、同様の理由で、下限で0.3%、上限で0.7%とするのが望ましい。
また、Siを積極的に含有しない場合、Siを不可避不純物として0.05%以下で含有するものであってもよい。
Si: 0.2-0.8%
Si is precipitated as an intermetallic compound such as simple Si, Al-Fe-Si, Al-Mn-Si, and Al-Mn-Si-Fe to disperse the origin of corrosion, thereby improving the pore corrosion resistance of the clad material. Therefore, it is added as desired. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the corrosion rate becomes high, and the pitting corrosion resistance of the clad material is lowered due to the early disappearance of the sacrificial material.
For the same reason, it is desirable that the lower limit is 0.3% and the upper limit is 0.7%.
Further, when Si is not positively contained, Si may be contained as an unavoidable impurity in an amount of 0.05% or less.

Cr:0.05〜0.5%
Crは、Al−Cr系金属間化合物として析出して腐食の起点を分散させることや固溶Crの濃淡部を形成させることで腐食形態を層状とすることでクラッド材の耐孔食性を向上させるので所望により添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると鋳造時に巨大な金属間化合物を形成し圧延性が低下する。
なお、同様の理由で、下限で0.1%、上限で0.4%とするのが望ましい。
また、Crを積極的に含有しない場合、Crを不可避不純物として0.05%未満で含有するものであってもよい。
Cr: 0.05-0.5%
Cr is precipitated as an Al—Cr-based intermetallic compound to disperse the starting point of corrosion and to form a shaded portion of solid solution Cr to form a layered corrosion form, thereby improving the pitting corrosion resistance of the clad material. Therefore, it is added as desired. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, a huge intermetallic compound is formed during casting and the rollability is lowered.
For the same reason, it is desirable that the lower limit is 0.1% and the upper limit is 0.4%.
Further, when Cr is not positively contained, Cr may be contained as an unavoidable impurity in an amount of less than 0.05%.

Ti:0.05〜0.3%
Tiは、Al−Ti系金属間化合物として析出して腐食の起点を分散させることや、固溶Tiの濃淡部を形成させることで腐食形態を層状とすることでクラッド材の耐孔食性を向上させるので所望により添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると鋳造時に巨大な金属間化合物を形成し圧延性が低下する。
なお、同様の理由で、下限で0.07%、上限で0.25%とするのが望ましい。
また、Tiを積極的に含有しない場合、Tiを不可避不純物として0.05%未満で含有するものであってもよい。
Ti: 0.05-0.3%
Ti precipitates as an Al-Ti intermetallic compound to disperse the origin of corrosion, and by forming a shaded portion of solid solution Ti to layer the corrosion form, the pitting corrosion resistance of the clad material is improved. Therefore, it is added as desired. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, a huge intermetallic compound is formed during casting and the rollability is lowered.
For the same reason, it is desirable that the lower limit is 0.07% and the upper limit is 0.25%.
Further, when Ti is not positively contained, Ti may be contained as an unavoidable impurity in an amount of less than 0.05%.

心材
Mn:1.0〜1.7%
Mnは、Al−Mn、Al−Mn−Si、Al−Mn−Fe、Al−Mn−Si−Feなどの金属間化合物として析出して材料強度を向上させるために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると鋳造時に巨大な金属間化合物(晶出物)が生成し、圧延性が低下する。
なお、同様の理由で、下限で1.1%、上限で1.6%とするのが望ましく、さらに下限を1.2%とするのが一層望ましい。
Heartwood Mn: 1.0 to 1.7%
Mn is precipitated as an intermetallic compound such as Al-Mn, Al-Mn-Si, Al-Mn-Fe, and Al-Mn-Si-Fe, and is added to improve the material strength. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, a huge intermetallic compound (crystallized product) is generated during casting, and the rollability is lowered.
For the same reason, it is desirable that the lower limit is 1.1%, the upper limit is 1.6%, and the lower limit is 1.2%.

Si:0.2〜1.0%
Siは、固溶により材料強度を向上させる他、MgSiやAl−Mn−Si、Al−Mn−Si−Fe金属間化合物として析出し材料強度を向上させるために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると材料の融点が低下する。
なお、同様の理由で、下限で0.6%、上限で0.9%とするのが望ましい。
Si: 0.2 to 1.0%
Si is added to improve the material strength by solid solution and to precipitate as Mg 2 Si, Al-Mn-Si, and Al-Mn-Si-Fe intermetallic compounds. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the melting point of the material is lowered.
For the same reason, it is desirable that the lower limit is 0.6% and the upper limit is 0.9%.

Fe:0.1〜0.5%
FeはAl−Mn−Fe、Al−Mn−Si−Feなどの金属間化合物として析出して材料強度を向上させるために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると鋳造時に巨大な金属間化合物(晶出物)が生成し、圧延性が低下する。
なお、同様の理由で、下限で0.12%、上限で0.4%とするのが望ましい。
Fe: 0.1 to 0.5%
Fe is precipitated as an intermetallic compound such as Al-Mn-Fe and Al-Mn-Si-Fe and is added to improve the material strength. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, a huge intermetallic compound (crystallized product) is generated during casting, and the rollability is lowered.
For the same reason, it is desirable that the lower limit is 0.12% and the upper limit is 0.4%.

Cu:0.08〜1.0%
Cuは、固溶して材料強度を向上させるために添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると耐食性が低下する。
なお、同様の理由で、下限で0.10%、上限で0.6%とするのが望ましく、さらに下限を0.15%とするのが一層望ましい。
Cu: 0.08 to 1.0%
Cu is added to dissolve in solid solution and improve the material strength. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the corrosion resistance is lowered.
For the same reason, the lower limit is preferably 0.10%, the upper limit is 0.6%, and the lower limit is more preferably 0.15%.

Mg:0.1〜0.7%
Mgは、Siなどとの化合物が析出することで材料強度がを向上させること、およびろう材表面に拡散し、酸化皮膜(Al)を還元分解させ、接合性を向上させるため、所望により添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると材料が硬くなりすぎて、素材製造が困難になる。
なお、同様の理由で、下限で0.2%、上限で0.65%とするのが望ましい。
また、Mgを積極的に含有しない場合、Mgを不可避不純物として0.05%以下で含有するものであってもよい。
Mg: 0.1 to 0.7%
Mg is desired because it improves the material strength by precipitating a compound with Si and the like, and diffuses to the surface of the brazing material to reduce and decompose the oxide film (Al 2 O 3 ) and improve the bondability. Is added by. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, the material becomes too hard and it becomes difficult to manufacture the material.
For the same reason, it is desirable that the lower limit is 0.2% and the upper limit is 0.65%.
When Mg is not positively contained, Mg may be contained as an unavoidable impurity in an amount of 0.05% or less.

Ti:0.05〜0.3%
Tiは、Al−Ti系金属間化合物として析出して腐食の起点を分散させることや、固溶Tiの濃淡部を形成させることで腐食形態を層状とすることでクラッド材の耐孔食性を向上させるため所望により添加される。含有量が下限未満であると、効果が不十分であり、上限超えであると鋳造時に巨大な金属間化合物を形成し圧延性が低下する。
なお、同様の理由で、下限で0.07%、上限で0.25%とするのが望ましい。
また、Tiを積極的に含有しない場合、Tiを不可避不純物として0.05%未満で含有するものであってもよい。
Ti: 0.05-0.3%
Ti precipitates as an Al-Ti intermetallic compound to disperse the origin of corrosion, and by forming a shaded portion of solid solution Ti to layer the corrosion form, the pitting corrosion resistance of the clad material is improved. It is added as desired to allow it. If the content is less than the lower limit, the effect is insufficient, and if it exceeds the upper limit, a huge intermetallic compound is formed during casting and the rollability is lowered.
For the same reason, it is desirable that the lower limit is 0.07% and the upper limit is 0.25%.
Further, when Ti is not positively contained, Ti may be contained as an unavoidable impurity in an amount of less than 0.05%.

ろう付後の犠牲材最卑部と心材中央部の自然電位差が70〜280mVの範囲(犠牲材最卑部のほうが卑)
犠牲材最卑部と心材中央部の自然電位差は、犠牲材によって心材がどの程度犠牲防食されるかの目安となる。下限未満では電位差不足で心材を防食しきれず、腐食が心材方向に進んでしまう。上限超えの場合には、過防食となってアルカリ腐食が発生してしまう。このため、上記自然電位差に設定するのが望ましい。
なお、同様の理由で、下限で120mV、上限で250mVとするのが一層望ましい。
The natural potential difference between the lowest part of the sacrificial material after brazing and the central part of the heartwood is in the range of 70 to 280 mV (the lowest part of the sacrificial material is lower).
The natural potential difference between the lowest part of the sacrificial material and the central part of the heartwood is a measure of how much the heartwood is sacrificed and protected by the sacrificial material. If it is less than the lower limit, the core material cannot be completely protected due to insufficient potential difference, and corrosion proceeds toward the core material. If the upper limit is exceeded, overcorrosion will occur and alkaline corrosion will occur. Therefore, it is desirable to set the natural potential difference.
For the same reason, it is more desirable to set the lower limit to 120 mV and the upper limit to 250 mV.

犠牲材最表面と最卑部との電位差が50mV以内
通常の電位分布は犠牲材内において犠牲材表面が最も卑で心材方向に向かって貴となる。この場合、犠牲材最表面と最卑部が一致するため、犠牲材最表面と最卑部との電位差は0となる。したがって、犠牲材最表面と最卑部との電位差は犠牲材内における逆電位勾配の大きさを意味する。この電位差を50mV以内とすることにより良好な耐食性が得られる。
犠牲材最表面と最卑部との電位差を小さくするためには、Zn蒸発を抑制するか、あるいは、Znが蒸発しても電位が大きく変化しない犠牲材成分とする必要がある。Zn蒸発の抑制は前記のとおり、犠牲材へ添加するMg量を所定値以下にすることや、ろう付後の犠牲材表面のMg濃度を低くすることにより達成される。
一方、Zn蒸発しても電位が大きく変化しない犠牲材とするためには犠牲材を構成する成分が重要である。すなわち、犠牲材には通常電位を卑にするZnとともに他元素が添加されるが、他元素を排除した場合には、Zn添加によって電位が卑となるが、ある程度Znを添加した後では電位の卑化が緩慢になる(電位に及ぼすZn量の影響が飽和する)。したがって、犠牲材をAl−Zn合金とし、かつ、犠牲材表面のZn濃度を所定値以上にすることで、Zn蒸発が生じた場合でも、犠牲材最表面と最卑部との電位差を小さくできる。
さらに、他元素のなかでもZnによる電位卑化に影響を与えにくいSi,Cr,Tiなどは添加しても上記効果に対する悪影響は小さい。
The potential difference between the outermost surface and the lowest part of the sacrificial material is within 50 mV. In the normal potential distribution, the surface of the sacrificial material is the lowest in the sacrificial material and becomes noble toward the heartwood. In this case, since the outermost surface of the sacrificial material and the lowest portion coincide with each other, the potential difference between the outermost surface of the sacrificial material and the lowest portion becomes zero. Therefore, the potential difference between the outermost surface and the lowest portion of the sacrificial material means the magnitude of the reverse potential gradient in the sacrificial material. Good corrosion resistance can be obtained by setting this potential difference within 50 mV.
In order to reduce the potential difference between the outermost surface and the lowest portion of the sacrificial material, it is necessary to suppress Zn evaporation or use a sacrificial material component whose potential does not change significantly even if Zn evaporates. As described above, the suppression of Zn evaporation is achieved by reducing the amount of Mg added to the sacrificial material to a predetermined value or less and reducing the Mg concentration on the surface of the sacrificial material after brazing.
On the other hand, in order to obtain a sacrificial material whose potential does not change significantly even if Zn evaporates, the components constituting the sacrificial material are important. That is, other elements are usually added to the sacrificial material together with Zn which makes the potential base, but when the other elements are excluded, the potential becomes base due to the addition of Zn, but after adding Zn to some extent, the potential becomes high. Deterioration becomes slow (the effect of the amount of Zn on the potential is saturated). Therefore, by using an Al—Zn alloy as the sacrificial material and setting the Zn concentration on the surface of the sacrificial material to a predetermined value or more, the potential difference between the outermost surface and the lowest portion of the sacrificial material can be reduced even when Zn evaporation occurs. ..
Furthermore, even if Si, Cr, Ti, etc., which are less likely to affect the potential leveling by Zn among other elements, are added, the adverse effect on the above effect is small.

犠牲材最表面と最卑部との電位差が50mV超の場合、犠牲材表面が最卑部よりも貴なため、犠牲材表面を溶け残して腐食が進むため、犠牲材が有効に機能せず、早期に心材に腐食が到達することでクラッド材の耐食性が低下する。このため、犠牲材最表面と最卑部との電位差を50mV以内に設定するのが望ましい。
なお、同様の理由で、上記電位差を40mV以内とするのが望ましく、25mV以内がさらに望ましい。
When the potential difference between the outermost surface and the lowest part of the sacrificial material is more than 50 mV, the surface of the sacrificial material is more noble than the lowest part, and the surface of the sacrificial material remains undissolved and corrosion progresses, so that the sacrificial material does not function effectively. Corrosion resistance of the clad material decreases due to the early arrival of corrosion on the core material. Therefore, it is desirable to set the potential difference between the outermost surface of the sacrificial material and the lowest portion within 50 mV.
For the same reason, it is desirable that the potential difference is within 40 mV, and more preferably within 25 mV.

本発明の心材、ろう材、犠牲材のアルミニウム合金は、その他に不可避不純物を含んでいる。例えば、犠牲材において、FeやMnを不可避不純物として含むものであってもよい。 The aluminum alloy of the core material, brazing material, and sacrificial material of the present invention also contains unavoidable impurities. For example, the sacrificial material may contain Fe and Mn as unavoidable impurities.

すなわち、本発明によれば、フラックスフリーのろう付において、安定したろう付が可能であり、ろう付後において、高い強度と優れた耐食性を有することができるという効果が得られる。 That is, according to the present invention, stable brazing is possible in flux-free brazing, and after brazing, it is possible to obtain the effects of having high strength and excellent corrosion resistance.

本発明の一実施形態におけるフラックスフリーろう付用のブレージングシートを示す図である。It is a figure which shows the brazing sheet for flux-free brazing in one Embodiment of this invention. 本発明の一実施形態におけるアルミニウム製自動車用熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger for an automobile made of aluminum in one Embodiment of this invention. 本発明の実施例におけるろう付評価モデルを示す図である。It is a figure which shows the brazing evaluation model in the Example of this invention. 本発明の実施例における犠牲材最表面、最卑部および心材中央部の電位差の関係を示す図である。It is a figure which shows the relationship of the potential difference of the sacrificial material outermost surface, the lowest part and the core material central part in the Example of this invention.

以下に、本発明の一実施形態について説明する。
本発明組成に調整してアルミニウム合金を溶製する。該溶製は半連続鋳造法によって行うことができる。
本実施形態では、ろう付前時点で微細なMg−Bi化合物を分散させるため、ろう材の鋳造時に溶湯温度が高いところから速い冷却速度で鋳造することでMg−Bi化合物の粗大晶出を抑制しつつ、MgとBiを鋳塊内に固溶させる。
具体的には、溶湯温度を700℃以上とすることでMgとBiの固溶度を高めることができる。
得られたアルミニウム合金鋳塊に対しては、所定条件で均質化処理を行う。均質化処理温度が低いと粗大なMg−Bi化合物が析出し、ろう付前時点で本発明のMg−Bi化合物の分布状態が得られにくくなるため、処理温度400℃以上で1〜10時間行うことが望ましい。
An embodiment of the present invention will be described below.
The aluminum alloy is melted by adjusting to the composition of the present invention. The melting can be carried out by a semi-continuous casting method.
In the present embodiment, since fine Mg-Bi compound is dispersed before brazing, coarse crystallization of Mg-Bi compound is suppressed by casting at a high cooling rate from a place where the molten metal temperature is high when casting the brazing material. While doing so, Mg and Bi are solid-dissolved in the ingot.
Specifically, the solid solubility of Mg and Bi can be increased by setting the molten metal temperature to 700 ° C. or higher.
The obtained aluminum alloy ingot is homogenized under predetermined conditions. If the homogenization treatment temperature is low, coarse Mg-Bi compounds are precipitated, and it is difficult to obtain the distribution state of the Mg-Bi compound of the present invention before brazing. Therefore, the treatment is performed at a treatment temperature of 400 ° C. or higher for 1 to 10 hours. Is desirable.

次に、上記ろう材を心材、犠牲材と組み付けて熱間でクラッド圧延するが、このとき、本発明では、熱延時の所定温度での圧延時間、熱延開始から終了までの相当ひずみ、熱延仕上げ温度、熱延後の冷却速度を制御し、Mg−Bi化合物を所定のサイズと数密度に調整する。 Next, the brazing material is assembled with a core material and a sacrificial material and clad-rolled hot. At this time, in the present invention, the rolling time at a predetermined temperature during hot rolling, the equivalent strain from the start to the end of hot rolling, and heat. The rolling finish temperature and the cooling rate after hot rolling are controlled to adjust the Mg-Bi compound to a predetermined size and number density.

先ず熱延時所定の温度域での圧延時間を満たすことで、本発明で定義する所定サイズのMg−Bi化合物の析出を動的ひずみが入る環境下で促進する。具体的には、熱延時の材料温度が400〜500℃の間の圧延時間を10min以上とすることで微細なMg−Bi化合物の析出を促進する。 First, by satisfying the rolling time in a predetermined temperature range during hot rolling, precipitation of a predetermined size Mg-Bi compound defined in the present invention is promoted in an environment where dynamic strain is applied. Specifically, the precipitation of fine Mg-Bi compounds is promoted by setting the rolling time between a material temperature of 400 to 500 ° C. during hot rolling to 10 min or more.

また、熱延開始から終了までの相当ひずみを制御することで、鋳造時に生成した粗大なMg−Bi晶出物を破砕して微細化するとともに数密度を増やすとができる。具体的には、式(1)で示す相当ひずみεが、ε>5.0となるようにスラブ厚みや仕上げ厚みを調整することでMg−Bi晶出物が十分に微細化し、数密度が増加する。

ε=(2/√3)ln(t0/t) ・・・式(1)
t0:熱延開始厚み(スラブ厚み)
t :熱延仕上げ厚み
Further, by controlling the equivalent strain from the start to the end of hot spreading, it is possible to crush and refine the coarse Mg-Bi crystallized product generated at the time of casting and increase the number density. Specifically, by adjusting the slab thickness and the finish thickness so that the equivalent strain ε represented by the equation (1) becomes ε> 5.0, the Mg-Bi crystallized product becomes sufficiently fine and the number density becomes high. To increase.

ε = (2 / √3) ln (t0 / t) ・ ・ ・ Equation (1)
t0: Hot spreading start thickness (slab thickness)
t: Hot-rolled finish thickness

さらに、熱延の仕上げ温度が高く、動的ひずみがない状態で高温で維持されることや、熱延後の冷却速度が遅くなると、結晶粒界などに本発明が目的とするよりも粗大なMg−Bi化合物が析出するため、熱延仕上げ温度を所定温度まで低くし、一定以上の冷却速度を確保することで粗大なMg−Bi化合物の析出を抑制する。具体的には、熱延仕上げ温度を250〜350℃とし、仕上げ温度から200℃までの冷却速度を−20℃/hrよりも早く制御することで粗大なMg−Bi化合物の析出を抑制する。 Further, if the finishing temperature of hot spreading is high and the temperature is maintained at a high temperature without dynamic strain, or if the cooling rate after hot spreading is slowed down, the grain boundaries and the like are coarser than those intended by the present invention. Since the Mg-Bi compound is precipitated, the hot-rolled finishing temperature is lowered to a predetermined temperature and a cooling rate of a certain level or higher is secured to suppress the precipitation of the coarse Mg-Bi compound. Specifically, the hot-rolled finishing temperature is set to 250 to 350 ° C., and the cooling rate from the finishing temperature to 200 ° C. is controlled to be faster than −20 ° C./hr to suppress the precipitation of coarse Mg-Bi compounds.

その後、冷間圧延などを経て、図1に示すように、心材2の片面にろう材3が配置され、心材2の他面に犠牲材4が配置された本発明のアルミニウム合金クラッド材1が得られる。
冷間圧延では、例えば、75%以上の総圧下率で冷間圧延を行い、温度200〜450℃にて中間焼鈍を行い、その後圧延率40%の最終圧延を行うことができる。冷間圧延では、Mg−Bi化合物は破砕されにくいため、本発明が目的とするサイズや数密度を逸脱することはないため、特に条件が限定されるものではない。また、中間焼鈍は行わないものとしても良いし、最終焼鈍で終了させたH2n調質ものものでもよい。
After that, after cold rolling or the like, as shown in FIG. 1, the aluminum alloy clad material 1 of the present invention in which the brazing material 3 is arranged on one side of the core material 2 and the sacrificial material 4 is arranged on the other surface of the core material 2 can get.
In cold rolling, for example, cold rolling can be performed at a total rolling reduction of 75% or more, intermediate annealing can be performed at a temperature of 200 to 450 ° C., and then final rolling can be performed at a rolling ratio of 40%. In cold rolling, the Mg-Bi compound is not easily crushed and does not deviate from the size and number density intended by the present invention, so that the conditions are not particularly limited. Further, the intermediate annealing may not be performed, or the H2n tempered product completed by the final annealing may be used.

上記工程で得られたブレージングシートからなるアルミニウム合金クラッド材1は、熱交換器の構成部材として、他の構成部材10(図1に示すフィンやチューブやサイドプレートなど)と組み合わされた組み付け体として、ろう付に供される。
上記組み付け体は、常圧下の非酸化性雰囲気とされた加熱炉内に配置される。非酸化性ガスには窒素ガス、あるいは、アルゴンなどの不活性ガス、または、水素、アンモニアなどの還元性ガス、あるいはこれらの混合ガスを用いて構成することができる。ろう付炉内雰囲気の圧力は常圧を基本とするが、例えば、製品内部のガス置換効率を向上させるためにろう材溶融前の温度域で100kPa〜0.1Pa程度の中低真空とすることや、炉内への外気(大気)混入を抑制するために大気圧よりも5〜100Pa程度陽圧としてもよい。
The aluminum alloy clad material 1 made of the brazing sheet obtained in the above step is used as a component of the heat exchanger as an assembly combined with another component 10 (fins, tubes, side plates, etc. shown in FIG. 1). , Used for brazing.
The assembly is placed in a heating furnace in a non-oxidizing atmosphere under normal pressure. The non-oxidizing gas can be composed of a nitrogen gas, an inert gas such as argon, a reducing gas such as hydrogen or ammonia, or a mixed gas thereof. The pressure in the atmosphere inside the brazing furnace is basically normal pressure, but for example, in order to improve the gas replacement efficiency inside the product, a medium-low vacuum of about 100 kPa to 0.1 Pa should be set in the temperature range before melting the brazing material. Alternatively, the positive pressure may be about 5 to 100 Pa higher than the atmospheric pressure in order to suppress the mixing of outside air (atmosphere) into the furnace.

加熱炉は密閉した空間を有することを必要とせず、ろう付材の搬入口、搬出口を有するトンネル型であってもよい。このような加熱炉でも、不活性ガスを炉内に吹き出し続けることで非酸化性が維持される。該非酸化性雰囲気としては、酸素濃度として体積比で50ppm以下が望ましい。 The heating furnace does not need to have a closed space, and may be a tunnel type having an inlet and an outlet for brazing material. Even in such a heating furnace, the non-oxidizing property is maintained by continuously blowing the inert gas into the furnace. As the non-oxidizing atmosphere, the oxygen concentration is preferably 50 ppm or less in terms of volume ratio.

上記雰囲気下で、例えば、昇温速度10〜200℃/minで加熱して、組み付け体の到達温度が559〜630℃となる熱処理条件にてろう付接合を行う。
ろう付条件において、昇温速度が速くなるほどろう付時間が短くなるため、材料表面の酸化皮膜成長が抑制されてろう付性が向上する。到達温度は少なくともろう材の固相線温度以上とすればろう付可能であるが、液相線温度に近づけることで流動ろう材が増加し、開放部を有する継手で良好な接合状態が得られ易くなる。ただし、あまり高温にするとろう浸食が進み易く、ろう付後の組付け体の構造寸法精度が低下するため好ましくない。
Under the above atmosphere, for example, heating is performed at a heating rate of 10 to 200 ° C./min, and brazing joining is performed under heat treatment conditions where the ultimate temperature of the assembled body is 559 to 630 ° C.
Under brazing conditions, the faster the rate of temperature rise, the shorter the brazing time, so the growth of the oxide film on the surface of the material is suppressed and the brazing property is improved. Brazing is possible if the ultimate temperature is at least the solidus temperature of the brazing material or higher, but the fluid brazing material increases as the temperature approaches the liquidus temperature, and a good joint state can be obtained with a joint having an open portion. It will be easier. However, if the temperature is too high, brazing erosion is likely to proceed, and the structural dimensional accuracy of the assembled body after brazing is lowered, which is not preferable.

図2は、上記アルミニウム合金クラッド材1を用いてフィン6を形成し、ろう付対象材としてアルミニウム合金製のチューブ7を用いたアルミニウム製熱交換器5を示している。フィン6、チューブ7を、補強材8、ヘッダプレート9と組み込んで、フラックスフリーろう付によって自動車用などのアルミニウム製熱交換器5を得ている。 FIG. 2 shows an aluminum heat exchanger 5 in which fins 6 are formed by using the aluminum alloy clad material 1 and a tube 7 made of an aluminum alloy is used as a brazing target material. The fins 6 and the tube 7 are incorporated with the reinforcing material 8 and the header plate 9, and the aluminum heat exchanger 5 for automobiles and the like is obtained by flux-free brazing.

表1、2および表4、5に示す組成(残部がAlと不可避不純物)の各種ブレージングシートを、表7に示す鋳造条件および均質化条件(ろう材)、ならびに熱間圧延条件にて熱間圧延板を作製した。なお、成分中の「−」は、含有量が0または不可避不純物量であることを示している。
その後、中間焼鈍を含む冷間圧延によって、H14相当調質の0.30mm厚の冷間圧延板を作製した。なお、各層のクラッド率は犠牲材10%、ろう材8%とした。
また、ろう付対象部材としてA3003合金、H14のアルミニウムベア材(0.06mm厚)のコルゲートフィンを用意した。
Various brazing sheets having the compositions shown in Tables 1, 2 and 4 and 5 (the balance is Al and unavoidable impurities) are hot under the casting conditions and homogenization conditions (brazing material) shown in Table 7, and the hot rolling conditions. A rolled plate was produced. In addition, "-" in the component indicates that the content is 0 or the amount of unavoidable impurities.
Then, a cold rolled plate having a thickness equivalent to H14 and having a thickness of 0.30 mm was produced by cold rolling including intermediate annealing. The clad ratio of each layer was 10% for the sacrificial material and 8% for the brazing material.
Further, as a member to be brazed, corrugated fins made of A3003 alloy and H14 aluminum bare material (0.06 mm thickness) were prepared.

前記アルミニウムクラッド材を用いて幅25mmのチューブを製作し、該チューブとコルゲートフィンとを該チューブろう材とコルゲートフィンが接するように組み合わせ、ろう付評価モデルとしてチューブ15段、長さ300mmのコアとした。前記コアを、窒素雰囲気中(真空度100kPa、酸素含有量30ppm)のろう付炉にて、600℃まで加熱後そのまま冷却して、そのろう付状態を評価した。
その際、室温から550℃までの昇温時の入熱量(ろう付熱処理中のZnの拡散係数と時間の積の積算値)は6×10−11、ろう付完了までの入熱量は4×10−10とし、ろう付温度から室温までは100℃/minの速度で冷却した。
A tube having a width of 25 mm is manufactured using the aluminum clad material, and the tube and the corrugated fin are combined so that the tube brazing material and the corrugated fin are in contact with each other. As a brazing evaluation model, a 15-stage tube and a core having a length of 300 mm are used. did. The core was heated to 600 ° C. in a brazing furnace in a nitrogen atmosphere (vacuum degree 100 kPa, oxygen content 30 ppm) and then cooled as it was, and the brazed state was evaluated.
At that time, the amount of heat input when the temperature rises from room temperature to 550 ° C. (integrated value of the product of Zn diffusion coefficient and time during brazing heat treatment) is 6 × 10-11 m 2 , and the amount of heat input until the completion of brazing is It was set to 4 × 10 -10 m 2, and cooled at a rate of 100 ° C./min from the brazing temperature to room temperature.

ろう付後の電位や材料表面の元素濃度は、ろう付後の元素拡散状態に影響を受ける。元素拡散状態は材料仕様(ろう付前の添加成分や量)が決まっていれば入熱量によって決まるので、入熱量を規定する。入熱量は元素の拡散のしやすさを示すパラメータで、ここではZnの拡散係数と時間の積の積算値で示している。なお、拡散係数は下記式で求める。
拡散係数=振動数因子×EXP(−活性化エネルギー/(気体定数×絶対温度で示した温度))
振動数因子:1.77×10−5(m/s)
活性化エネルギー:118(kJ/mol)
ろう付完了までの入熱量は、ろう付温度に到達後、冷却して室温に至るまでの間のろう付プロセス全体の入熱量で算出する。
また、入熱量を含むろう付条件は、本発明としては上記条件に限定されるものではなく、上記条件は、ろう付前のクラッド材に対する評価の測定条件として用いることができる。
The potential after brazing and the element concentration on the surface of the material are affected by the element diffusion state after brazing. The element diffusion state is determined by the amount of heat input if the material specifications (additional components and amount before brazing) are determined, so the amount of heat input is specified. The amount of heat input is a parameter indicating the ease of diffusion of the element, and is indicated here by the integrated value of the product of the diffusion coefficient of Zn and the time. The diffusion coefficient is calculated by the following formula.
Diffusion coefficient = frequency factor x EXP (-activation energy / (gas constant x temperature shown in absolute temperature))
Frequency factor: 1.77 × 10-5 (m 2 / s)
Activation energy: 118 (kJ / mol)
The amount of heat input until the completion of brazing is calculated by the amount of heat input of the entire brazing process from reaching the brazing temperature to cooling to room temperature.
Further, the brazing conditions including the amount of heat input are not limited to the above conditions in the present invention, and the above conditions can be used as measurement conditions for evaluation of the clad material before brazing.

なお、ろう付条件は上記に限定されるものではない。
実施例における各供試材について、以下の評価を行い、評価結果を表3および表6に示した。
The brazing conditions are not limited to the above.
The following evaluations were performed for each test material in the examples, and the evaluation results are shown in Tables 3 and 6.

ろう付性
○接合率
以下式にて接合率を求め、各試料間の優劣を評価した。
フィン接合率=(フィンとチューブの総ろう付長さ/フィンとチューブの総接触長さ)×100
接合率では、90%以上を○、90%未満を×と評価した。
Brazing property ○ Bonding rate The bonding rate was calculated by the following formula, and the superiority or inferiority between each sample was evaluated.
Fin bonding ratio = (total brazing length of fin and tube / total contact length of fin and tube) x 100
In terms of joining ratio, 90% or more was evaluated as ◯, and less than 90% was evaluated as x.

○フィレット長さ
前記コアから切り出したサンプルを樹脂包埋、鏡面研磨し、光学顕微鏡を用いて図3に示すようにフィン11とチューブ12との間の接合部13接合部におけるフィレット長さを測定した。測定する接合部は20箇所とし、その平均をフィレット長さとして、優劣を評価した。
フィレット長さでは、800μm以上を◎、700μm以上800μm未満を○○○、600μm以上700μm未満を○○、500μm以上600μm未満を○、500μm未満を×と評価した。
○ Fillet length The sample cut out from the core is embedded in resin, mirror-polished, and the fillet length at the joint portion 13 joint between the fin 11 and the tube 12 is measured using an optical microscope as shown in FIG. did. The number of joints to be measured was 20, and the superiority or inferiority was evaluated by using the average as the fillet length.
In terms of fillet length, 800 μm or more was evaluated as ⊚, 700 μm or more and less than 800 μm was evaluated as XX, 600 μm or more and less than 700 μm was evaluated as XX, 500 μm or more and less than 600 μm was evaluated as ◯, and less than 500 μm was evaluated as ×.

○粗大な初晶Si粒
作製したブレージングシートを樹脂埋めし、圧延方向平行断面を鏡面研磨し、バーカー氏液で組織を現出後、光学顕微鏡で観察してろう材層中の粗大な初晶Siの形成状態を評価した。観察は300μmの視野を10箇所とした。
円相当直径で30μm以上の粗大Si粒が2個未満の場合を○○、2〜9個の範囲を○、10個以上見られた場合を×とした。
○ Coarse primary crystal Si grains The prepared brazing sheet is embedded with resin, the cross section parallel to the rolling direction is mirror-polished, the structure is revealed with Mr. Barker's solution, and then the coarse primary crystal in the brazing material layer is observed with an optical microscope. The formation state of Si was evaluated. The observation was performed at 10 locations with a field of view of 300 μm.
The case where the number of coarse Si grains having a diameter equivalent to a circle and 30 μm or more was less than 2 was evaluated as XX, the range of 2 to 9 was evaluated as ◯, and the case where 10 or more were observed was evaluated as x.

ろう付後の強度
ブレージングシートをドロップ形式で炉に設置し、前記ろう付条件にてろう付相当熱処理を行った。その後、サンプルを切り出し、JISに準拠した通常の方法にて室温にて引張試験を実施して引張強さを評価した。
ろう付後の強度では、190MPa以上を◎、180MPa以上190MPa未満を○○、145MPa以上180MPa未満を○、145MPa未満を×と評価した。
Strength after brazing Brazing sheets were installed in a furnace in a drop format, and heat treatment equivalent to brazing was performed under the above brazing conditions. Then, a sample was cut out and a tensile test was carried out at room temperature by a normal method conforming to JIS to evaluate the tensile strength.
Regarding the strength after brazing, 190 MPa or more was evaluated as ⊚, 180 MPa or more and less than 190 MPa was evaluated as ◯, 145 MPa or more and less than 180 MPa was evaluated as ◯, and less than 145 MPa was evaluated as x.

耐食性
ブレージングシートをドロップ形式で炉に設置し、前記ろう付条件にてろう付相当熱処理を行った。その後、サンプルを30mm×80mmのサイズに切り出し、犠牲材面以外をマスキングしたのち、腐食試験に60日間供した。腐食試験はpH3に調整した1%NaCl水溶液を腐食液として使用し、噴霧30分、湿潤90分を1サイクルとして試験に供した(腐食試験のサイクルや温度、湿度等はSWAATと同じ)。
腐食試験後のサンプルはリン酸クロム酸混合溶液によって腐食生成物を除去し、最大腐食部の断面観察を行って腐食深さを測定した。
耐食性では、腐食深さが20μm以内を◎、犠牲材層内である場合を○○、犠牲材層を超えて板厚の半分以内を○、60日間で貫通した供試材のうちで、SWAATに40日間の腐食試験では貫通せず、その後、貫通したものは△、40日間のうちに貫通したものを×と評価した。
A corrosion-resistant brazing sheet was installed in a furnace in a drop format, and a heat treatment equivalent to brazing was performed under the above brazing conditions. Then, the sample was cut into a size of 30 mm × 80 mm, masked except for the sacrificial material surface, and then subjected to a corrosion test for 60 days. In the corrosion test, a 1% NaCl aqueous solution adjusted to pH 3 was used as a corrosive solution, and the test was performed with 30 minutes of spraying and 90 minutes of wetting as one cycle (corrosion test cycle, temperature, humidity, etc. are the same as SWAAT).
In the sample after the corrosion test, the corrosion product was removed by a mixed solution of chromic phosphate, and the corrosion depth was measured by observing the cross section of the maximum corroded part.
In terms of corrosion resistance, the corrosion depth is ◎ when the corrosion depth is within 20 μm, ○○ when it is inside the sacrificial material layer, ○ ○ when it exceeds the sacrificial material layer and is within half of the plate thickness, and SWAAT among the test materials that penetrated in 60 days. In the corrosion test for 40 days, it did not penetrate, and those that penetrated were evaluated as Δ, and those that penetrated within 40 days were evaluated as ×.

ろう付後の犠牲材表面のMg濃度
上記ろう付条件にてろう付相当熱処理を行い、ろう付後のサンプルについて、樹脂包埋、鏡面研磨し、断面方向のEPMA分析によって犠牲材表面のMg濃度を測定した。測定されたEPMAデータのうち、犠牲材表面から5μmの範囲の平均Mg濃度を犠牲材表面のMg濃度とした。なお、犠牲材表面ではMgOの生成により、Mg濃度が高く検出される場合があるため、1.0%以上が検出されたデータを除外の上で上記平均Mg濃度を算出した。
Mg concentration on the surface of the sacrificial material after brazing The heat treatment equivalent to brazing is performed under the above brazing conditions, and the sample after brazing is embedded in resin and mirror-polished, and the Mg concentration on the surface of the sacrificial material is analyzed by EPMA in the cross-sectional direction. Was measured. Of the measured EPMA data, the average Mg concentration in the range of 5 μm from the surface of the sacrificial material was defined as the Mg concentration on the surface of the sacrificial material. Since the Mg concentration may be detected high on the surface of the sacrificial material due to the formation of MgO, the average Mg concentration was calculated after excluding the data in which 1.0% or more was detected.

その他の評価項目
・犠牲材最卑部と心材中央部の電位差
上記ろう付条件にてろう付相当熱処理を行った材料から分極測定用のサンプルを切り出した。測定面以外をマスキングした後、50℃に加熱した5%NaOH溶液中に10秒浸漬、その後、30%HNO3溶液中に60秒浸漬、さらに水道水、イオン交換水で洗浄した後、乾燥させずにそのままpH3に調整した室温の5%NaCl水溶液中、大気解放の条件で自然電位(参照電極は銀/塩化銀電極)を120min測定した。自然電位は値が落ちつく100〜120minの平均値を求めた。
なお、心材中央部についてはあらかじめNaOHなどを用いたエッチングにより、心材中央部を露出させたのちに上記測定を行って自然電位を求めた。
Other evaluation items ・ Potential difference between the lowest part of the sacrificial material and the central part of the core material A sample for polarization measurement was cut out from the material subjected to the heat treatment equivalent to brazing under the above brazing conditions. After masking the surface other than the measurement surface, it is immersed in a 5% NaOH solution heated to 50 ° C. for 10 seconds, then immersed in a 30% HNO3 solution for 60 seconds, washed with tap water and ion-exchanged water, and then not dried. The natural potential (reference electrode is silver / silver chloride electrode) was measured for 120 min in a 5% NaCl aqueous solution at room temperature adjusted to pH 3 as it was under the condition of being released to the atmosphere. For the natural potential, an average value of 100 to 120 min in which the value settled down was obtained.
The central portion of the core material was previously etched with NaOH or the like to expose the central portion of the core material, and then the above measurement was performed to obtain the natural potential.

・犠牲材最表面と最卑部との電位差
上記ろう付条件にてろう付相当熱処理を行った材料から分極測定用のサンプルを切り出した。測定面以外をマスキングした後、50℃に加熱した5%NaOH溶液中に10秒浸漬、その後、30%HNO溶液中に60秒浸漬、さらに水道水、イオン交換水で洗浄した後、乾燥させずにそのままpH3に調整した室温の5%NaCl水溶液中、大気解放の条件で自然電位(参照電極は銀/塩化銀電極)を120min測定した。自然電位は値が落ちつく100〜120minの平均値を求めた。
なお、犠牲材最卑部については、あらかじめNaOHなどを用いたエッチングにより、犠牲材表面から3μm毎の位置を露出させたのちに上記測定を行って自然電位を求め、断面方向での電位分布を得たのち、最も卑な自然電位が得られた位置を犠牲材最卑部とした。
犠牲材最表面、最卑部および心材中央部の電位差の関係を図4の参考概略図に示す。
-Potential difference between the outermost surface and the lowest part of the sacrificial material A sample for polarization measurement was cut out from the material subjected to the heat treatment equivalent to brazing under the above brazing conditions. After masking the surface other than the measurement surface, it is immersed in a 5% NaOH solution heated to 50 ° C. for 10 seconds, then immersed in a 30% HNO 3 solution for 60 seconds, washed with tap water and ion-exchanged water, and then dried. The natural potential (reference electrode is silver / silver chloride electrode) was measured for 120 min in a 5% NaCl aqueous solution at room temperature adjusted to pH 3 as it was, under the condition of being released to the atmosphere. For the natural potential, an average value of 100 to 120 min in which the value settled down was obtained.
For the lowest part of the sacrificial material, the position every 3 μm from the surface of the sacrificial material is exposed in advance by etching with NaOH or the like, and then the above measurement is performed to obtain the natural potential, and the potential distribution in the cross-sectional direction is obtained. After obtaining it, the position where the lowest natural potential was obtained was set as the lowest part of the sacrificial material.
The relationship between the potential difference between the outermost surface, the lowest portion, and the central portion of the core material of the sacrificial material is shown in the reference schematic diagram of FIG.

Figure 2021011633
Figure 2021011633

Figure 2021011633
Figure 2021011633

Figure 2021011633
Figure 2021011633

Figure 2021011633
Figure 2021011633

Figure 2021011633
Figure 2021011633

Figure 2021011633
Figure 2021011633

Figure 2021011633
Figure 2021011633

以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明の範囲は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは、上記実施形態に対する適宜の変更が可能である。 Although the present invention has been described above based on the above-described embodiment, the scope of the present invention is not limited to the contents of the above-mentioned description, and as long as it does not deviate from the scope of the present invention, it is appropriate for the above-described embodiment. Can be changed.

1 アルミニウム合金クラッド材
2 心材
3 ろう材
4 犠牲材
5 アルミニウム製熱交換器
6 フィン
7 チューブ
10 他の構成部材
11 フィン
12 チューブ
13 接合部
1 Aluminum alloy clad material 2 Core material 3 Wax material 4 Sacrificial material 5 Aluminum heat exchanger 6 Fins 7 Tubes 10 Other components 11 Fins 12 Tubes 13 Joints

Claims (5)

心材の片面に犠牲材が配置され、前記心材のもう一方の片面に、質量%で、Si:6.0〜14.0%、Mg:0.05〜1.5%、Bi:0.05〜0.25%、Sr:0.0001〜0.1%を含有し残部がAlおよび不可避不純物からなり、かつ、成分含有量の質量%において、(Bi+Mg)×Sr≦0.1の関係を満たすAl−Si−Mg−Bi系ろう材が配置され、
前記Al−Si−Mg−Bi系ろう材に含まれるMg−Bi系化合物が、ろう付前の表層面方向の観察において、円相当径で0.1μm以上5.0μm未満の直径を有するものが10000μm視野あたり20個よりも多く存在し、かつ、5.0μm以上の径を有するものが10000μm視野あたり2個未満であり、
さらに、前記心材が、質量%で、Mn:1.0〜1.7%、Si:0.2〜1.0%、Fe:0.1〜0.5%、Cu:0.08〜1.0%を含有し、残部がAlおよび不可避不純物からなり、
前記犠牲材が、質量%で、Zn:0.5〜6.0%を含有するとともにMg含有量が0.1%以下に規制され、ろう付後の犠牲材表面のMg濃度が0.15%以下であることを特徴とするアルミニウム合金クラッド材。
A sacrificial material is placed on one side of the core material, and Si: 6.0 to 14.0%, Mg: 0.05 to 1.5%, Bi: 0.05 in mass% on the other side of the core material. It contains ~ 0.25%, Sr: 0.0001 ~ 0.1%, the balance is composed of Al and unavoidable impurities, and the relationship of (Bi + Mg) × Sr ≦ 0.1 is established in mass% of the component content. The filling Al-Si-Mg-Bi brazing material is arranged,
The Mg-Bi compound contained in the Al-Si-Mg-Bi brazing material has a diameter equivalent to a circle of 0.1 μm or more and less than 5.0 μm in the observation in the surface layer direction before brazing. 10000 2 was present more than 20 per field, and those with a diameter of more than 5.0μm is less than two per 10000 2 field,
Further, the core material is Mn: 1.0 to 1.7%, Si: 0.2 to 1.0%, Fe: 0.1 to 0.5%, Cu: 0.08 to 1 in mass%. Contains 0.0%, the balance consists of Al and unavoidable impurities,
The sacrificial material contains Zn: 0.5 to 6.0% in mass%, the Mg content is regulated to 0.1% or less, and the Mg concentration on the surface of the sacrificial material after brazing is 0.15. % Or less, an aluminum alloy clad material.
前記心材がさらに、Mg:0.1〜0.7%を含有することを特徴とする請求項1記載のアルミニウム合金クラッド材。 The aluminum alloy clad material according to claim 1, wherein the core material further contains Mg: 0.1 to 0.7%. 前記心材がさらに、Ti:0.05〜0.3%を含有することを特徴とする請求項1または2に記載のアルミニウム合金クラッド材。 The aluminum alloy clad material according to claim 1 or 2, wherein the core material further contains Ti: 0.05 to 0.3%. ろう付後の前記犠牲材の最卑部と前記心材の中央部の自然電位が犠牲材最卑部のほうが卑であって、自然電位差が70〜280mVの範囲にあり、さらに前記犠牲材の最表面と最卑部との電位差が50mV以内であることを特徴とする請求項1〜3のいずれか1項に記載のアルミニウム合金クラッド材。 The natural potentials of the lowest part of the sacrificial material and the central part of the core material after brazing are lower in the lowest part of the sacrificial material, the natural potential difference is in the range of 70 to 280 mV, and the most of the sacrificial material. The aluminum alloy clad material according to any one of claims 1 to 3, wherein the potential difference between the surface and the lowest portion is within 50 mV. 前記犠牲材が、質量%で、さらにSi:0.2〜0.8%、Cr:0.05〜0.5%、Ti:0.05〜0.3%の1種あるいは2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載のアルミニウム合金クラッド材。 The sacrificial material is one or more of Si: 0.2 to 0.8%, Cr: 0.05 to 0.5%, Ti: 0.05 to 0.3% in mass%. The aluminum alloy clad material according to any one of claims 1 to 4, wherein the aluminum alloy clad material is contained.
JP2020078187A 2019-07-03 2020-04-27 Aluminum alloy clad material Active JP7498591B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010612310.4A CN112176230A (en) 2019-07-03 2020-06-30 Aluminum alloy clad material
DE102020208138.7A DE102020208138A1 (en) 2019-07-03 2020-06-30 Aluminum alloy plating material
US16/918,096 US11045911B2 (en) 2019-07-03 2020-07-01 Aluminum alloy clad material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019124415 2019-07-03
JP2019124415 2019-07-03

Publications (2)

Publication Number Publication Date
JP2021011633A true JP2021011633A (en) 2021-02-04
JP7498591B2 JP7498591B2 (en) 2024-06-12

Family

ID=74227129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078187A Active JP7498591B2 (en) 2019-07-03 2020-04-27 Aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP7498591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193841A1 (en) * 2020-03-26 2021-09-30 株式会社Uacj Aluminum alloy bare material for member to be brazed, and aluminum alloy clad material for member to be brazed
WO2021193842A1 (en) * 2020-03-26 2021-09-30 株式会社Uacj Aluminum alloy bare material for brazed member and aluminum alloy cladding material for brazed member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303161A (en) * 2000-04-20 2001-10-31 Kobe Steel Ltd Brazing sheet made of aluminum alloy
JP2012061483A (en) * 2010-09-14 2012-03-29 Mitsubishi Alum Co Ltd Flux-less brazing method of aluminum material
JP2014050861A (en) * 2012-09-07 2014-03-20 Uacj Corp Aluminum-alloy-made brazing sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303161A (en) * 2000-04-20 2001-10-31 Kobe Steel Ltd Brazing sheet made of aluminum alloy
JP2012061483A (en) * 2010-09-14 2012-03-29 Mitsubishi Alum Co Ltd Flux-less brazing method of aluminum material
JP2014050861A (en) * 2012-09-07 2014-03-20 Uacj Corp Aluminum-alloy-made brazing sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193841A1 (en) * 2020-03-26 2021-09-30 株式会社Uacj Aluminum alloy bare material for member to be brazed, and aluminum alloy clad material for member to be brazed
WO2021193842A1 (en) * 2020-03-26 2021-09-30 株式会社Uacj Aluminum alloy bare material for brazed member and aluminum alloy cladding material for brazed member

Also Published As

Publication number Publication date
JP7498591B2 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
US11759893B2 (en) Aluminum alloy for brazing and aluminum brazing sheet
WO2020129267A1 (en) Aluminum brazing sheet for flux-free brazing
US11045911B2 (en) Aluminum alloy clad material
JP2021011633A (en) Aluminum alloy clad material
JP7252079B2 (en) Aluminum alloy clad material
WO2022196574A1 (en) Aluminum brazing sheet for brazing and method for producing same
US11027373B2 (en) Aluminum alloy clad material
JP2021159967A (en) Aluminum brazing sheet for non-flux brazing
JP7498592B2 (en) Aluminum alloy clad material
JP2021011632A (en) Aluminum alloy clad material
WO2021199733A1 (en) Aluminum brazing sheet
US20210001436A1 (en) Aluminum alloy clad material
JP2022142972A (en) Brazing sheet for aluminum brazing, and manufacturing method of brazing sheet for aluminum brazing
JP2021058902A (en) Aluminum brazing sheet and aluminum component flux-free brazing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240531

R150 Certificate of patent or registration of utility model

Ref document number: 7498591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150