JP2021010855A - Method for separating and recovering carbon dioxide - Google Patents

Method for separating and recovering carbon dioxide Download PDF

Info

Publication number
JP2021010855A
JP2021010855A JP2019124960A JP2019124960A JP2021010855A JP 2021010855 A JP2021010855 A JP 2021010855A JP 2019124960 A JP2019124960 A JP 2019124960A JP 2019124960 A JP2019124960 A JP 2019124960A JP 2021010855 A JP2021010855 A JP 2021010855A
Authority
JP
Japan
Prior art keywords
carbon dioxide
tertiary amine
aqueous solution
solid absorbent
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019124960A
Other languages
Japanese (ja)
Inventor
靖 原
Yasushi Hara
靖 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019124960A priority Critical patent/JP2021010855A/en
Publication of JP2021010855A publication Critical patent/JP2021010855A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a method enabling high-purity carbon dioxide to be separated and recovered with low energy.SOLUTION: A method for separating and recovering carbon dioxide is provided that combines a solid absorption method and a chemical absorption method and comprises: a step (1) in which a gas including an aqueous tertiary amine solution and carbon dioxide is flowed to a solid absorbent with amine carried on a porous carrier to cause the solid absorbent to absorb carbon dioxide; a step (2) in which flow of the gas including carbon dioxide is stopped, the aqueous tertiary amine solution is supplied, and gas other than carbon dioxide is substituted with the aqueous tertiary amine solution; a step (3) in which the solid absorbent and the aqueous tertiary amine solution are heated, and carbon dioxide is desorbed; and a step (4) in which the solid absorbent and the aqueous tertiary amine solution are cooled.SELECTED DRAWING: None

Description

本発明は、二酸化炭素の分離回収方法に関する。 The present invention relates to a method for separating and recovering carbon dioxide.

近年、地球温暖化問題のため、二酸化炭素の分離・回収が注目されており、多くの二酸化炭素分離回収法の開発がなされている。特に、石炭火力発電は大量の二酸化炭素を発生しており、石炭からバイオマスへの燃料転換や、二酸化炭素の回収技術などは、地球温暖化対策の重要な課題となっている。 In recent years, due to the problem of global warming, the separation and recovery of carbon dioxide has attracted attention, and many carbon dioxide separation and recovery methods have been developed. In particular, coal-fired power generation generates a large amount of carbon dioxide, and fuel conversion from coal to biomass and carbon dioxide recovery technology are important issues for global warming countermeasures.

二酸化炭素の分離回収法としては、化学吸収法、物理吸収法、膜分離法などが開発されている。 Chemical absorption methods, physical absorption methods, membrane separation methods and the like have been developed as carbon dioxide separation and recovery methods.

化学吸収法は、二酸化炭素と選択的に反応するアミンの水溶液、特に、エタノールアミン系の水溶液を吸収剤として使用し、温度差で二酸化炭素を吸脱着する。すなわち、低温で二酸化炭素を吸収剤に吸収させ、高温で二酸化炭素を放散するというサイクルで二酸化炭素を分離回収する。化学吸収法は純度の高い二酸化炭素を効率よく回収できるという特徴のため広く実用化されており、低二酸化炭素濃度で、常圧である石炭火力発電の燃焼排ガス処理に適しているが、アミンと反応した二酸化炭素を分離するために多大なエネルギーを要するという欠点がある。 In the chemical absorption method, an aqueous solution of amine that selectively reacts with carbon dioxide, particularly an ethanolamine-based aqueous solution, is used as an absorbent, and carbon dioxide is absorbed and desorbed by a temperature difference. That is, carbon dioxide is separated and recovered in a cycle in which carbon dioxide is absorbed by an absorbent at low temperature and carbon dioxide is released at high temperature. The chemical absorption method has been widely put into practical use because it can efficiently recover high-purity carbon dioxide, and is suitable for the treatment of combustion exhaust gas from coal-fired power generation with low carbon dioxide concentration and normal pressure. It has the disadvantage that it requires a large amount of energy to separate the reacted carbon dioxide.

物理吸収法は、ゼオライトなどの固体吸着材による気体の選択的吸脱着を利用するものであり、温度差、圧力差で二酸化炭素を吸脱着する。物理吸着法は、アミンを使用した化学吸収法より低エネルギーで二酸化炭素を分離回収できるが、化学吸収法より二酸化炭素の純度は低くなる。また、圧力差で分離する方法は火力発電の燃焼排ガスには最適ではない。 The physical absorption method utilizes selective adsorption / desorption of gas by a solid adsorbent such as zeolite, and carbon dioxide is adsorbed / desorbed by a temperature difference and a pressure difference. The physical adsorption method can separate and recover carbon dioxide with lower energy than the chemical absorption method using amine, but the purity of carbon dioxide is lower than that of the chemical absorption method. In addition, the method of separating by pressure difference is not optimal for the combustion exhaust gas of thermal power generation.

膜分離法は、二酸化炭素と他の気体との透過速度が異なる膜を使用し二酸化炭素を分離する方法であり、アミノ基などを有する高分子を膜にしたもの、支持体にアミン化合物などを担持した膜などが使用される。膜分離法は最も低エネルギーで二酸化炭素を分離可能であるが、膜モジュールが高価であり、圧力差によって分離するため、石炭火力発電の燃焼排ガスのような常圧、低濃度の二酸化炭素を大規模に回収するには不向きである。 The membrane separation method is a method of separating carbon dioxide using membranes having different permeation rates between carbon dioxide and other gases, such as a membrane made of a polymer having an amino group or an amine compound as a support. A supported membrane or the like is used. The membrane separation method can separate carbon dioxide with the lowest energy, but the membrane module is expensive and separates by pressure difference, so normal pressure and low concentration carbon dioxide such as combustion exhaust gas of coal-fired power generation is large. Not suitable for large-scale recovery.

石炭火力発電の燃焼排ガス処理に適した方法として、化学吸収法と物理吸収法を組み合わせた固体吸収法が提案されている(例えば、特許文献1参照)。この方法は、多孔質担体にアミン化合物を担持した固体吸収材を使用し、化学的(及び物理的)に二酸化炭素を吸収材に吸収させ、温度差、圧力差、脱離剤などで二酸化炭素を脱離させるものである。化学吸収法と物理吸収法の特徴を兼ね備えた方法であり、低エネルギーで高純度の二酸化炭素を分離回収できる方法として注目されている。課題は回収した二酸化炭素の純度が化学吸収法より低いこと、二酸化炭素の脱離が温度差だけでは難しいこと、装置の大型化が難しいことがある。固体吸収法において、二酸化炭素の純度を高めるためには、装置空隙、固体吸収材の粒間、細孔内に拡散している原料ガスを減圧、ガス置換などで除去しなければならず、時間、エネルギーなどの増大を招く。また、多孔質の固体吸収材の伝熱が極めて悪いため、吸収材の温度が不均一になりやすく、吸脱着塔(槽)を大きくすることは容易ではない。さらに固体吸収材の伝熱が悪いため、温度差のみで吸脱着を制御することは工業的に困難であり、減圧、水蒸気置換など他の方法で二酸化炭素を脱着しなければならない。 As a method suitable for treating combustion exhaust gas of coal-fired power generation, a solid absorption method that combines a chemical absorption method and a physical absorption method has been proposed (see, for example, Patent Document 1). In this method, a solid absorbent material in which an amine compound is supported on a porous carrier is used, carbon dioxide is chemically (and physically) absorbed by the absorbent material, and carbon dioxide is produced by a temperature difference, a pressure difference, a release agent, or the like. Is to be desorbed. It is a method that combines the characteristics of the chemical absorption method and the physical absorption method, and is attracting attention as a method that can separate and recover high-purity carbon dioxide with low energy. The problems are that the purity of the recovered carbon dioxide is lower than that of the chemical absorption method, that it is difficult to desorb carbon dioxide only by the temperature difference, and that it is difficult to increase the size of the device. In the solid absorption method, in order to increase the purity of carbon dioxide, it is necessary to remove the raw material gas diffused in the device voids, between the grains of the solid absorbent, and in the pores by decompression, gas replacement, etc. , Invites an increase in energy, etc. Further, since the heat transfer of the porous solid absorbent material is extremely poor, the temperature of the absorbent material tends to be non-uniform, and it is not easy to enlarge the suction / desorption tower (tank). Furthermore, since the heat transfer of the solid absorbent material is poor, it is industrially difficult to control the adsorption and desorption only by the temperature difference, and carbon dioxide must be desorbed by other methods such as decompression and steam substitution.

特開2015−9185公報JP 2015-9185

本発明は上記の課題に鑑みてなされたものであり、その目的は、低エネルギーで高純度の二酸化炭素を分離回収する方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for separating and recovering low-energy, high-purity carbon dioxide.

本発明者は、二酸化炭素の分離回収方法について鋭意検討した結果、固体吸収法と化学吸収法を組み合わせた新規な方法で高純度の二酸化炭素を容易に分離回収できるという新規な事実を見出し、本発明を完成させるに至った。 As a result of diligent studies on the method for separating and recovering carbon dioxide, the present inventor has found a novel fact that high-purity carbon dioxide can be easily separated and recovered by a novel method combining a solid absorption method and a chemical absorption method. The invention has been completed.

すなわち、本発明は、以下に示すとおりの二酸化炭素の分離回収方法である。 That is, the present invention is a method for separating and recovering carbon dioxide as shown below.

[1](1)アミンを多孔質担体に担持した固体吸収材に、三級アミン水溶液及び二酸化炭素を含むガスを流通させ、二酸化炭素を吸収させる工程、
(2)二酸化炭素を含むガスの流通を停止して、三級アミン水溶液を供給し、二酸化炭素以外のガスを三級アミン水溶液で置換する工程、
(3)固体吸収材及び三級アミン水溶液を加熱し、二酸化炭素を脱離させる工程、
(4)固体吸収材及び三級アミン水溶液を冷却する工程、
から成る二酸化炭素の分離回収方法。
[1] (1) A step of flowing a tertiary amine aqueous solution and a gas containing carbon dioxide through a solid absorbent material on which amine is supported on a porous carrier to absorb carbon dioxide.
(2) A step of stopping the flow of a gas containing carbon dioxide, supplying a tertiary amine aqueous solution, and replacing a gas other than carbon dioxide with a tertiary amine aqueous solution.
(3) A step of heating a solid absorbent and a tertiary amine aqueous solution to desorb carbon dioxide.
(4) Step of cooling the solid absorbent and the tertiary amine aqueous solution,
A method for separating and recovering carbon dioxide consisting of.

[2]アミンが、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのエタノールアミン類、これらのアルキル化体、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ピペラジン、アミノエチルピペラジンなどのエチレンアミン類、これらのアルキル化体、これらの酸化エチレン付加体、酸化プロピレン付加体から選ばれる少なくとも一種である、上記[1]に記載の二酸化炭素の分離回収方法。 [2] Amines are ethanolamines such as monoethanolamine, diethanolamine, and triethanolamine, alkylated products thereof, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, piperazin, aminoethylpiperazin, and the like. The method for separating and recovering carbon dioxide according to the above [1], which is at least one selected from ethylene amines, alkylated products thereof, ethylene oxide adducts and propylene oxide adducts.

[3]多孔質担体が、シリカ、アルミナ、活性炭、ポリマーから選ばれる少なくとも一種である、上記[1]又は[2]に記載の二酸化炭素の分離回収方法。 [3] The method for separating and recovering carbon dioxide according to the above [1] or [2], wherein the porous carrier is at least one selected from silica, alumina, activated carbon, and a polymer.

[4]三級アミンが、トリエタノールアミン、N,N−ジメチルエタノールアミン、N−メチルジエタノールアミンなどのエタノールアミン類、テトラキス(ヒドロキシエチル)エチレンジアミン、テトラキス(ヒドロキシプロピル)エチレンジアミン、ヒドロキシエチルエチレンジアミンのメチル化体、ヒドロキシエチルピペラジンのメチル化体などのエチレンアミン誘導体、メチルモルホリン、ヒドロキシエチルモルホリンなどのモルホリン誘導体、ジメチルイミダゾールなどのイミダゾール誘導体から選ばれる少なくとも一種である、上記[1]〜[3]のいずれかに記載の二酸化炭素の分離回収方法。 [4] Methylation of tertiary amines such as ethanolamines such as triethanolamine, N, N-dimethylethanolamine and N-methyldiethanolamine, tetrakis (hydroxyethyl) ethylenediamine, tetrakis (hydroxypropyl) ethylenediamine and hydroxyethylethylenediamine. Any of the above [1] to [3], which is at least one selected from the body, an ethyleneamine derivative such as a methylated form of hydroxyethylpiperazine, a morpholin derivative such as methylmorpholin and hydroxyethylmorpholin, and an imidazole derivative such as dimethylimidazole. The method for separating and recovering carbon dioxide described in Crab.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の二酸化炭素の分離回収方法は、固体吸収材と化学吸収液(三級アミン水溶液)を使用する。 The method for separating and recovering carbon dioxide of the present invention uses a solid absorbent and a chemical absorbent (tertiary amine aqueous solution).

本発明の方法において、固体吸収材には、従来提案されてきたアミンを使用することができるが、化学吸収液に使用される三級アミンより担体との相互作用が強いものが好ましい。 In the method of the present invention, previously proposed amines can be used as the solid absorbent, but those having a stronger interaction with the carrier than the tertiary amine used in the chemical absorbent are preferable.

一般に、一級アミン、二級アミンは、三級アミンより担体との相互作用が強く、また沸点の高いアミンの方が担体との相互作用が強い。本発明の方法において使用されるアミンを例示すると、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのエタノールアミン類、N−メチルエタノールアミン、N−エチルエタノールアミン、アミノメチルプロパノールなどのエタノールアミンのアルキル化体、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ピペラジン、アミノエチルピペラジンなどのエチレンアミン類、メチルエチレンジアミン、メチルジエチレントリアミンなどのエチレンアミン類のアルキル化体、ヒドロキシエチルエチレンジアミン、ヒドロキシプロピルエチレンジアミンなどのエチレンアミン類の酸化エチレン付加体、酸化プロピレン付加体などが挙げられるが、これら以外のアミンを使用しても一向に差し支えない。 In general, primary amines and secondary amines have a stronger interaction with carriers than tertiary amines, and amines with a higher boiling point have stronger interactions with carriers. Examples of amines used in the method of the present invention are alkylation of ethanolamines such as monoethanolamine, diethanolamine and triethanolamine, and ethanolamines such as N-methylethanolamine, N-ethylethanolamine and aminomethylpropanol. Body, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, piperazine, ethyleneamines such as aminoethylpiperazine, alkylated compounds of ethyleneamines such as methylethylenediamine and methyldiethylenetriamine, hydroxyethylethylenediamine, hydroxy Examples thereof include ethylene oxide adducts and propylene oxide adducts of ethylene amines such as propylethylenediamine, but amines other than these may be used at all.

本発明の方法において、固体吸収材には担体を使用する。担体としては、一般に知られているものを使用することができるが、表面積が大きく、アミンに対して耐性のあるものが好ましい。本発明の方法において、使用される担体を例示すると、シリカ、アルミナ、チタニア、ジルコニア、シリカアルミナ、ゼオライトなどの無機酸化物担体、活性炭、多孔質ポリマーなどが挙げられるが、これら以外を使用しても一向に差し支えない。無機酸化物の中では、シリカが最も広く使用されており工業的に好ましい。シリカは、結晶性と非結晶性(アモルファス)があり、細孔を有するゼオライト状のシリカ、メソポーラスシリカなど多種知られている。本発明の方法において、使用するシリカには特に制限はなく、工業的に流通しているものを使用することができるが、表面積が大きいシリカが好ましい。表面積が大きいほどアミンが効率的に作用する。一般的に表面積が大きいほど細孔径が小さくなる傾向があるため、高分子量、高粘度のアミンを担持することが難しくなるが、シリカが結晶性か非結晶性か、またその構造によって、細孔径と表面積の関係が変化するため、本発明の方法において最適のシリカの表面積を限定することは困難である。 In the method of the present invention, a carrier is used as the solid absorbent. As the carrier, generally known ones can be used, but those having a large surface area and resistance to amines are preferable. Examples of the carriers used in the method of the present invention include inorganic oxide carriers such as silica, alumina, titania, zirconia, silica alumina, and zeolite, activated carbon, and porous polymers, but other carriers are used. There is no problem at all. Of the inorganic oxides, silica is the most widely used and industrially preferred. Silica has crystalline and non-crystalline (amorphous), and various types such as zeolite-like silica having pores and mesoporous silica are known. In the method of the present invention, the silica used is not particularly limited, and industrially distributed silica can be used, but silica having a large surface area is preferable. The larger the surface area, the more efficiently the amine acts. Generally, the larger the surface area, the smaller the pore diameter tends to be, so it is difficult to support high molecular weight and high viscosity amines. However, depending on whether silica is crystalline or non-crystalline and its structure, the pore diameter It is difficult to limit the optimum surface area of silica in the method of the present invention because the relationship between surface area and surface area changes.

本発明の方法において、固体吸収材の粒径に特に制限はないが、小さすぎると液、気体の流通に圧力を要し、大きすぎると、液、固体の分散、接触が低下するため、100μm以上、2cm以下が好ましい。 In the method of the present invention, the particle size of the solid absorbent is not particularly limited, but if it is too small, pressure is required for the flow of the liquid and the gas, and if it is too large, the dispersion and contact of the liquid and the solid are lowered. Above, 2 cm or less is preferable.

本発明の方法において、使用する三級アミンにも特に制限はないが、二酸化炭素と反応し、形成した重炭酸塩や炭酸塩が水に不溶となるものは好ましくない。イミダゾール類、水酸基を含有する三級アミン水溶液は重炭酸塩が析出しにくく、本発明の方法に好適に使用できる。本発明の方法に使用できる三級アミンを例示すると、トリエタノールアミン、N,N−ジメチルエタノールアミン、N−メチルジエタノールアミンなどのエタノールアミン類、テトラキス(ヒドロキシエチル)エチレンジアミン、テトラキス(ヒドロキシプロピル)エチレンジアミン、ヒドロキシエチルエチレンジアミンのメチル化体、ヒドロキシエチルピペラジンのメチル化体などのエチレンアミン誘導体、メチルモルホリン、ヒドロキシエチルモルホリンなどのモルホリン誘導体、ジメチルイミダゾールなどのイミダゾール誘導体が挙げられるが、これら以外を使用しても一向に差し支えない。 The tertiary amine used in the method of the present invention is not particularly limited, but one in which the bicarbonate or carbonate formed by reacting with carbon dioxide becomes insoluble in water is not preferable. An aqueous solution of a tertiary amine containing imidazoles and a hydroxyl group is less likely to precipitate bicarbonate and can be suitably used for the method of the present invention. Examples of tertiary amines that can be used in the method of the present invention include ethanolamines such as triethanolamine, N, N-dimethylethanolamine and N-methyldiethanolamine, tetrakis (hydroxyethyl) ethylenediamine, tetrakis (hydroxypropyl) ethylenediamine, Examples thereof include ethyleneamine derivatives such as methylated products of hydroxyethylethylenediamine and methylated products of hydroxyethylpiperazine, morpholin derivatives such as methylmorpholin and hydroxyethylmorpholin, and imidazole derivatives such as dimethylimidazole. There is no problem at all.

本発明の方法において、三級アミンは水溶液として使用する。水以外の溶媒を使用しても実施はできるが、工業的にコストが高くなるとともに可燃性となり、取扱いに注意を要する。また、水は比熱が高いため、加熱した三級アミン水溶液を固体吸収材に供給した時、温度変化が小さいという利点がある。さらに、二酸化炭素及びその反応生成物の溶解度が高く、効率よく二酸化炭素を分離回収できる。三級アミン水溶液の濃度は、アミンの種類により大きく変化するため限定することは困難であるが、あえて例示すると0.1重量%〜50重量%、好ましくは1重量%〜30重量%である。0.1重量%未満の濃度であると、三級アミンの効果が工業的でないほど小さく、50重量%を超える濃度にしても三級アミンの効果は大きくは上昇しない。 In the method of the present invention, the tertiary amine is used as an aqueous solution. Although it can be carried out using a solvent other than water, it is industrially costly and flammable, so care must be taken in handling. Further, since water has a high specific heat, there is an advantage that the temperature change is small when a heated tertiary amine aqueous solution is supplied to the solid absorbent. Furthermore, carbon dioxide and its reaction products have high solubility, and carbon dioxide can be efficiently separated and recovered. It is difficult to limit the concentration of the tertiary amine aqueous solution because it varies greatly depending on the type of amine, but for example, it is 0.1% by weight to 50% by weight, preferably 1% by weight to 30% by weight. If the concentration is less than 0.1% by weight, the effect of the tertiary amine is so small that it is not industrial, and if the concentration exceeds 50% by weight, the effect of the tertiary amine does not increase significantly.

本発明の方法において、二酸化炭素を分離回収する装置は特に限定されないが、一般に広く使用されている固定床ガス吸脱着装置を利用することができる。二酸化炭素を含む処理対象ガス、及び三級アミン水溶液を流通できる、加熱、冷却可能な塔(又は槽)に固体吸収材を充填する。固体吸収材を充填した塔(又は槽)は複数あると、連続で二酸化炭素を分離回収できる。 In the method of the present invention, the device for separating and recovering carbon dioxide is not particularly limited, but a generally widely used fixed floor gas suction / desorption device can be used. A solid absorbent is filled in a column (or tank) that can be heated and cooled so that a gas to be treated containing carbon dioxide and a tertiary amine aqueous solution can flow. If there are a plurality of towers (or tanks) filled with a solid absorbent, carbon dioxide can be continuously separated and recovered.

本発明の方法において、処理対象ガスから二酸化炭素を分離回収する工程は、以下の工程からなる。
(1)固体吸収材に三級アミン水溶液及び処理対象ガスを流通させ、二酸化炭素を吸収させる工程、
(2)処理対象ガスの流通を停止して、三級アミン水溶液を供給し、二酸化炭素以外のガスを三級アミン水溶液で置換する工程、
(3)固体吸収材及び三級アミン水溶液を加熱し、二酸化炭素を脱離させる工程、
(4)固体吸収材及び三級アミン水溶液を冷却する工程、
(1)の工程で、固体吸収材の他に化学吸収液(三級アミン水溶液)を供給することにより、固体吸収材の温度制御を可能にするとともに、二酸化炭素の吸収効率を高め、さらに固体吸収材の寿命も長くすることができる。
In the method of the present invention, the step of separating and recovering carbon dioxide from the gas to be treated comprises the following steps.
(1) A step of circulating a tertiary amine aqueous solution and a gas to be treated through a solid absorbent material to absorb carbon dioxide.
(2) A step of stopping the flow of the gas to be treated, supplying a tertiary amine aqueous solution, and replacing a gas other than carbon dioxide with a tertiary amine aqueous solution.
(3) A step of heating a solid absorbent and a tertiary amine aqueous solution to desorb carbon dioxide.
(4) Step of cooling the solid absorbent and the tertiary amine aqueous solution,
In the step (1), by supplying a chemical absorbent (tertiary amine aqueous solution) in addition to the solid absorbent, the temperature of the solid absorbent can be controlled, the carbon dioxide absorption efficiency is enhanced, and the solid The life of the absorbent material can also be extended.

(2)の工程で、二酸化炭素以外の不要なガスを、化学吸収液(三級アミン水溶液)で置換することにより、回収した二酸化炭素の純度を高めることができる。この場合、固体吸収材の細孔内も化学吸収液(三級アミン水溶液)で置換すると、さらに二酸化炭素の純度が高くなる。 By substituting an unnecessary gas other than carbon dioxide with a chemical absorption liquid (tertiary amine aqueous solution) in the step (2), the purity of the recovered carbon dioxide can be increased. In this case, if the inside of the pores of the solid absorbent material is also replaced with a chemical absorbent (tertiary amine aqueous solution), the purity of carbon dioxide is further increased.

(3)の工程で、固体吸収材の他に化学吸収液(三級アミン水溶液)を加熱することにより、固体吸収材の温度制御を可能にするとともに、二酸化炭素の放散効率を高め、さらに固体吸収材の寿命も長くすることができる。この時、三級アミン水溶液の流通は停止していても流通させていても良いが、流通させた方が二酸化炭素の放散効率は向上する。 In the step (3), by heating the chemical absorbent (tertiary amine aqueous solution) in addition to the solid absorbent, the temperature of the solid absorbent can be controlled, the emission efficiency of carbon dioxide is improved, and the solid The life of the absorbent material can also be extended. At this time, the distribution of the tertiary amine aqueous solution may be stopped or distributed, but the distribution efficiency of carbon dioxide is improved.

(4)の工程で、固体吸収材及び化学吸収液(三級アミン水溶液)が、二酸化炭素を再び吸収できるようになる。 In the step (4), the solid absorbent and the chemical absorbent (tertiary amine aqueous solution) can absorb carbon dioxide again.

以上の4工程で、従来提案されていた固体吸収法の課題、二酸化炭素純度、伝熱の問題を解決することができる。 With the above four steps, the problems of the solid absorption method, the carbon dioxide purity, and the heat transfer that have been conventionally proposed can be solved.

本発明の方法においては、三級アミン水溶液に様々な添加剤を混合して固体吸収材に供給することができる。添加剤として固体吸収材に使用するアミンを使用すると、固体吸収材の寿命を延ばすことができる。また、触媒を添加すると二酸化炭素の吸収放散性能を向上することができる。 In the method of the present invention, various additives can be mixed with the tertiary amine aqueous solution and supplied to the solid absorbent. The use of amines used in solid absorbents as additives can extend the life of solid absorbents. In addition, the addition of a catalyst can improve the absorption and emission performance of carbon dioxide.

本発明の二酸化炭素の分離回収方法は、高純度の二酸化炭素を低エネルギーで分離回収することができ、工業的に極めて有用である。 The method for separating and recovering carbon dioxide of the present invention can separate and recover high-purity carbon dioxide with low energy, and is extremely useful industrially.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、表記を簡潔にするため、以下の略記号を使用した。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. The following abbreviations are used for the sake of brevity.

シリカ:アモルファスシリカ(富士シリシア株式会社製、球状、2mm径)
DETA:ジエチレントリアミン(東ソー株式会社製)
MDEA:N−メチルジエタノールアミン(富士フイルム和光純薬株式会社製)
実施例1〜4
DETAの10重量%水溶液20gをシリカ20gに加え、2時間静置した。エバポレーターで水を除去し、固体吸収材を調製した。これを内容積60mLのガラス製吸収管に充填し、40℃に保温した。これに、MDEAの30重量%水溶液46.5g及び窒素100mL/分、二酸化炭素50mL/分の混合気体を、二酸化炭素を吸収しなくなるまで流通した。
Silica: Amorphous silica (manufactured by Fuji Silysia Chemical Ltd., spherical, 2 mm diameter)
DETA: Diethylenetriamine (manufactured by Tosoh Corporation)
MDEA: N-Methyldiethanolamine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Examples 1-4
20 g of a 10 wt% aqueous solution of DETA was added to 20 g of silica, and the mixture was allowed to stand for 2 hours. Water was removed with an evaporator to prepare a solid absorbent. This was filled in a glass absorption tube having an internal volume of 60 mL and kept at 40 ° C. To this, a mixed gas of 46.5 g of a 30 wt% aqueous solution of MDEA, 100 mL / min of nitrogen, and 50 mL / min of carbon dioxide was circulated until carbon dioxide was no longer absorbed.

混合気体の流通を停止し、吸収管をMDEA水溶液で満たした後、ガラス製吸収管を80℃に保温した。二酸化炭素が放出されなくなるまで、二酸化炭素の放出量を流量計で測定した。過剰のMDEAを吸収管から除き、吸収管を40℃に冷却した。 After stopping the flow of the mixed gas and filling the absorption tube with the MDEA aqueous solution, the glass absorption tube was kept warm at 80 ° C. The amount of carbon dioxide released was measured with a flow meter until no carbon dioxide was released. Excess MDEA was removed from the absorption tube and the absorption tube was cooled to 40 ° C.

この吸脱着操作を繰り返した結果を表1に記した。なお、CO吸収量、脱離量は、固体吸収材1LあたりのCO量(L)で表した。 The results of repeating this suction / detachment operation are shown in Table 1. The CO 2 absorption amount and the desorption amount were represented by the CO 2 amount (L) per 1 L of the solid absorbent material.

比較例1〜4
実施例1〜4で使用したのと同じ固体吸収材をガラス製吸収管に充填し、40℃に保温した。これに窒素100mL/分、二酸化炭素50mL/分の混合気体を、二酸化炭素を吸収しなくなるまで流通した。
Comparative Examples 1 to 4
The same solid absorbent material used in Examples 1 to 4 was filled in a glass absorbent tube and kept at 40 ° C. A mixed gas of 100 mL / min of nitrogen and 50 mL / min of carbon dioxide was circulated through the mixture until carbon dioxide was no longer absorbed.

混合気体の流通を停止し、ガラス製吸収管を80℃に保温した。二酸化炭素が放出されなくなるまで、二酸化炭素の放出量を流量計で測定した。 The flow of the mixed gas was stopped, and the glass absorption tube was kept warm at 80 ° C. The amount of carbon dioxide released was measured with a flow meter until no carbon dioxide was released.

この吸脱着操作を繰り返した結果を表2に記した。なお、CO吸収量、脱離量は、固体吸収材1LあたりのCO量(L)で表した。 The results of repeating this suction / detachment operation are shown in Table 2. The CO 2 absorption amount and the desorption amount were represented by the CO 2 amount (L) per 1 L of the solid absorbent material.

比較例5
40℃でMDEAの30重量%水溶液46.5gに、窒素100mL/分、二酸化炭素50mL/分の混合気体を、二酸化炭素を吸収しなくなるまで流通した。MDEAの30重量%水溶液1kg(1L)あたりの二酸化炭素の吸収量は0.33Lだった。これを80℃にして、二酸化炭素の脱離量を測定した。MDEAの30重量%水溶液1kg(1L)あたりの二酸化炭素の脱離量は0.14Lだった。
Comparative Example 5
A mixture of 100 mL / min of nitrogen and 50 mL / min of carbon dioxide was circulated in 46.5 g of a 30 wt% aqueous solution of MDEA at 40 ° C. until carbon dioxide was no longer absorbed. The amount of carbon dioxide absorbed per 1 kg (1 L) of a 30 wt% aqueous solution of MDEA was 0.33 L. This was set to 80 ° C., and the amount of carbon dioxide desorbed was measured. The amount of carbon dioxide desorbed per 1 kg (1 L) of a 30 wt% aqueous solution of MDEA was 0.14 L.

参考例1
固体吸収材の空間をMDEA水溶液で置換し、固体吸収材及び吸収管に存在する不純物ガス量を測定した。
Reference example 1
The space of the solid absorbent material was replaced with an aqueous solution of MDEA, and the amount of impurity gas present in the solid absorbent material and the absorption tube was measured.

比較例1〜4で使用した固体吸収材をガラス製吸収管に充填し、吸収管を完全にMDEAの30重量%水溶液で満たした。放出された不純物ガスは固体吸収材1Lあたり0.64Lだった。 The solid absorbent used in Comparative Examples 1 to 4 was filled in a glass absorbent tube, and the absorbent tube was completely filled with a 30 wt% aqueous solution of MDEA. The amount of impurity gas released was 0.64 L per 1 L of solid absorbent.

MDEA水溶液を使用しない比較例1〜4の場合、この不純物ガスが、放出COの純度を下げていることがわかった。また、MDEA水溶液を使用し、不純物ガスを置換した実施例1〜4の場合は、不純物ガスが固体吸収材や吸収管に残存していないことがわかった。 In the case of Comparative Examples 1 to 4 in which the MDEA aqueous solution was not used, it was found that this impurity gas reduced the purity of the released CO 2 . Further, in the cases of Examples 1 to 4 in which the MDEA aqueous solution was used and the impurity gas was replaced, it was found that the impurity gas did not remain in the solid absorbent or the absorption tube.

Claims (4)

(1)アミンを多孔質担体に担持した固体吸収材に、三級アミン水溶液及び二酸化炭素を含むガスを流通させ、二酸化炭素を吸収させる工程、
(2)二酸化炭素を含むガスの流通を停止して、三級アミン水溶液を供給し、二酸化炭素以外のガスを三級アミン水溶液で置換する工程、
(3)固体吸収材及び三級アミン水溶液を加熱し、二酸化炭素を脱離させる工程、
(4)固体吸収材及び三級アミン水溶液を冷却する工程、
から成る二酸化炭素の分離回収方法。
(1) A step of flowing a tertiary amine aqueous solution and a gas containing carbon dioxide through a solid absorbent material on which amine is supported on a porous carrier to absorb carbon dioxide.
(2) A step of stopping the flow of a gas containing carbon dioxide, supplying a tertiary amine aqueous solution, and replacing a gas other than carbon dioxide with a tertiary amine aqueous solution.
(3) A step of heating a solid absorbent and a tertiary amine aqueous solution to desorb carbon dioxide.
(4) Step of cooling the solid absorbent and the tertiary amine aqueous solution,
A method for separating and recovering carbon dioxide consisting of.
アミンが、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのエタノールアミン類、これらのアルキル化体、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ピペラジン、アミノエチルピペラジンなどのエチレンアミン類、これらのアルキル化体、これらの酸化エチレン付加体、酸化プロピレン付加体から選ばれる少なくとも一種である、請求項1に記載の二酸化炭素の分離回収方法。 Amines are ethanolamines such as monoethanolamine, diethanolamine and triethanolamine, alkylated forms of these, ethyleneamine such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, piperazine and aminoethylpiperazine. The method for separating and recovering carbon dioxide according to claim 1, which is at least one selected from the class, alkylated products thereof, ethylene oxide adducts and propylene oxide adducts. 多孔質担体が、シリカ、アルミナ、活性炭、ポリマーから選ばれる少なくとも一種である、請求項1又は2に記載の二酸化炭素の分離回収方法。 The method for separating and recovering carbon dioxide according to claim 1 or 2, wherein the porous carrier is at least one selected from silica, alumina, activated carbon, and a polymer. 三級アミンが、トリエタノールアミン、N,N−ジメチルエタノールアミン、N−メチルジエタノールアミンなどのエタノールアミン類、テトラキス(ヒドロキシエチル)エチレンジアミン、テトラキス(ヒドロキシプロピル)エチレンジアミン、ヒドロキシエチルエチレンジアミンのメチル化体、ヒドロキシエチルピペラジンのメチル化体などのエチレンアミン誘導体、メチルモルホリン、ヒドロキシエチルモルホリンなどのモルホリン誘導体、ジメチルイミダゾールなどのイミダゾール誘導体から選ばれる少なくとも一種である、請求項1〜3のいずれかに記載の二酸化炭素の分離回収方法。 Tertiary amines are ethanolamines such as triethanolamine, N, N-dimethylethanolamine, N-methyldiethanolamine, tetrakis (hydroxyethyl) ethylenediamine, tetrakis (hydroxypropyl) ethylenediamine, methylated form of hydroxyethylethylenediamine, hydroxy. The carbon dioxide according to any one of claims 1 to 3, which is at least one selected from an ethyleneamine derivative such as a methylated form of ethylpiperazine, a morpholin derivative such as methylmorpholin and hydroxyethylmorpholin, and an imidazole derivative such as dimethylimidazole. Separation and recovery method.
JP2019124960A 2019-07-04 2019-07-04 Method for separating and recovering carbon dioxide Pending JP2021010855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019124960A JP2021010855A (en) 2019-07-04 2019-07-04 Method for separating and recovering carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124960A JP2021010855A (en) 2019-07-04 2019-07-04 Method for separating and recovering carbon dioxide

Publications (1)

Publication Number Publication Date
JP2021010855A true JP2021010855A (en) 2021-02-04

Family

ID=74227718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124960A Pending JP2021010855A (en) 2019-07-04 2019-07-04 Method for separating and recovering carbon dioxide

Country Status (1)

Country Link
JP (1) JP2021010855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973419A (en) * 2021-02-05 2021-06-18 合肥工业大学 Proportion-controllable composite hydroxyalkyl piperazine desulfurizer as well as preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973419A (en) * 2021-02-05 2021-06-18 合肥工业大学 Proportion-controllable composite hydroxyalkyl piperazine desulfurizer as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN102652033B (en) CO2 removal from gases by means of aqueous amine solutions with the addition of a sterically hindered amine
JP6615813B2 (en) Carbon dioxide absorbent and carbon dioxide separation and recovery system
AU2015269515B2 (en) Carbon dioxide recovery device, and method for treating exhaust gas
WO2011121633A1 (en) Acidic gas absorbent, acidic gas removal device, and acidic gas removal method
JP2012245483A (en) Acid gas absorbent, acid gas removal method and acid gas removal device
US20140056791A1 (en) Method and system for co2 capture from a stream and solvents used therein
JP2014004533A (en) Acid gas absorbent, acid gas removing method and acid gas removing device
JP2018122278A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2015027647A (en) Acid gas absorbent, acid gas removal method and acid gas removal device
CN107158895A (en) A kind of carbon-dioxide absorbent
CN109200760B (en) Low-energy-consumption regenerated eutectic solvent for removing carbon dioxide stably
JP2017035669A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
KR101549950B1 (en) Carbon Dioxide Absorbent Comprising Triamine
JP2015107443A (en) Acidic gas absorbent, acidic gas removal device, and acidic gas removal method
Yu et al. Mixed alkanolamines with low regeneration energy for CO2 capture in a rotating packed bed
AU2016202116B2 (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
KR101588244B1 (en) Carbon Dioxide Absorbent Comprising Oxygen-containing Diamine
KR20130010253A (en) Method of resource reuse of stripping system for acid gas capture
JP2021010855A (en) Method for separating and recovering carbon dioxide
JP2015112574A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
KR20180023373A (en) System for collecting acid gas including acidic catalyst and method for collecting the same
JP2019098284A (en) Formic acid recovery agent, formic acid removal method, formic acid removal device, carbon dioxide separation recovery method and carbon dioxide separation recovery device
KR101417214B1 (en) Absorbent for the removal of carbon dioxide
JP2016112497A (en) Carbon dioxide collection device and method
KR101292084B1 (en) Carbon dioxide absorbents comprising biogenic amines and method for removing carbon dioxide in the flue gas using the same