JP2021008942A - Liquefied natural gas vaporizer and cold water supply method - Google Patents

Liquefied natural gas vaporizer and cold water supply method Download PDF

Info

Publication number
JP2021008942A
JP2021008942A JP2019123985A JP2019123985A JP2021008942A JP 2021008942 A JP2021008942 A JP 2021008942A JP 2019123985 A JP2019123985 A JP 2019123985A JP 2019123985 A JP2019123985 A JP 2019123985A JP 2021008942 A JP2021008942 A JP 2021008942A
Authority
JP
Japan
Prior art keywords
water
natural gas
intermediate medium
liquefied natural
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019123985A
Other languages
Japanese (ja)
Other versions
JP6767546B1 (en
Inventor
正英 岩崎
Masahide Iwasaki
正英 岩崎
朝寛 鈴木
Tomohiro Suzuki
朝寛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019123985A priority Critical patent/JP6767546B1/en
Priority to KR1020217040419A priority patent/KR102522339B1/en
Priority to PCT/JP2020/024340 priority patent/WO2021002231A1/en
Priority to CN202080048269.0A priority patent/CN114026358B/en
Priority to TW109122179A priority patent/TWI792015B/en
Application granted granted Critical
Publication of JP6767546B1 publication Critical patent/JP6767546B1/en
Publication of JP2021008942A publication Critical patent/JP2021008942A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Abstract

To provide a liquefied natural gas vaporizer capable of lowering a temperature of cold water flowing out from the vaporizer while suppressing icing.SOLUTION: A liquefied natural gas vaporizer includes: an intermediate medium evaporation section evaporating at least a part of a liquid intermediate medium by exchanging heat between the liquid intermediate medium and water; a liquefied natural gas vaporization section vaporizing at least a part of liquefied natural gas by exchanging heat between a gaseous intermediate medium generated by evaporation of the liquid intermediate medium in the intermediate medium evaporation section and the liquefied natural gas; and a water cooling part further cooling water by exchanging heat between natural gas generated by vaporization of the liquefied natural gas in the liquefied natural gas vaporization section and the water cooled by heat exchange with the liquid intermediate medium in the intermediate medium evaporation section via a heat transfer section.SELECTED DRAWING: Figure 1

Description

本発明は、液化天然ガス気化器及び冷水供給方法に関する。 The present invention relates to a liquefied natural gas vaporizer and a cold water supply method.

従来、特許文献1に記載されているように、液化天然ガス(Liquefied Natural Gas;LNG)を気化する気化器として、中間媒体式気化器(IFV;Intermediate Fluid type Vaporizer)が知られている。中間媒体式気化器は、プロパン等の中間媒体を介して海水等の熱源によりLNGを気化するものであり、熱源とLNGとを直接熱交換させる気化器に比べて着氷トラブルを抑制可能なものである。 Conventionally, as described in Patent Document 1, as a vaporizer for vaporizing liquefied natural gas (LNG), an intermediate medium type vaporizer (IFV) is known. The intermediate medium type vaporizer vaporizes LNG with a heat source such as seawater via an intermediate medium such as propane, and can suppress icing troubles as compared with a vaporizer that directly exchanges heat between the heat source and LNG. Is.

特許文献1に記載された中間媒体式気化器は、液相の中間媒体と水とを熱交換させることによって中間媒体を蒸発させる中間媒体蒸発部と、液化天然ガスと気相の中間媒体とを熱交換させることによって液化天然ガスを気化させる液化天然ガス気化部と、を有している。また中間媒体蒸発部で液相の中間媒体により冷却された水は、当該中間媒体蒸発部から流出した後、ガスタービンコンバインド発電装置(GTCC;Gas Turbine Combined Cycle)におけるガスタービン駆動用の空気を冷却する冷却器に導入される。 The intermediate medium type vaporizer described in Patent Document 1 has an intermediate medium evaporating unit that evaporates the intermediate medium by exchanging heat between the liquid phase intermediate medium and water, and an intermediate medium between the liquefied natural gas and the gas phase. It has a liquefied natural gas vaporization unit that vaporizes liquefied natural gas by exchanging heat. Further, the water cooled by the liquid phase intermediate medium in the intermediate medium evaporation section flows out from the intermediate medium evaporation section, and then cools the air for driving the gas turbine in the gas turbine combined cycle (GTCC). Introduced to the cooler.

特開2018−119511号公報JP-A-2018-119511

ここで、GTCCにおける発電効率を上げるために、より低温の冷水を空気冷却器に供給することが要求される場合がある。しかし、特許文献1に記載された中間媒体式気化器において中間媒体蒸発部から流出する冷水の温度を下げ過ぎると(例えば4〜5℃よりも低温まで下げると)、伝熱管の内表面で着氷が起こり易くなるという問題がある。したがって、従来では、着氷を抑制しつつ気化器から流出する冷水の温度を下げるのが困難という問題がある。 Here, in order to increase the power generation efficiency in the GTCC, it may be required to supply cold water at a lower temperature to the air cooler. However, in the intermediate medium type vaporizer described in Patent Document 1, if the temperature of the cold water flowing out from the intermediate medium evaporation part is lowered too much (for example, when the temperature is lowered to a temperature lower than 4 to 5 ° C.), the icing is formed on the inner surface of the heat transfer tube. There is a problem that ice is likely to occur. Therefore, conventionally, there is a problem that it is difficult to lower the temperature of the cold water flowing out of the vaporizer while suppressing icing.

本発明は、上記課題に鑑みてなされたものであり、その目的は、着氷を抑制しつつ気化器から流出する冷水の温度を下げることが可能な液化天然ガス気化器及び当該液化天然ガス気化器を用いた冷水供給方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is a liquefied natural gas vaporizer capable of lowering the temperature of cold water flowing out of the vaporizer while suppressing icing, and the liquefied natural gas vaporization. It is to provide a cold water supply method using a vessel.

本発明の一局面に係る液化天然ガス気化器は、液状の中間媒体と水とを熱交換させることにより、液状の前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、前記中間媒体蒸発部で液状の前記中間媒体が蒸発することにより発生したガス状の前記中間媒体と液化天然ガスとを熱交換させることにより、前記液化天然ガスの少なくとも一部を気化させる液化天然ガス気化部と、前記液化天然ガス気化部で前記液化天然ガスが気化することにより発生した天然ガスと、前記中間媒体蒸発部で液状の前記中間媒体との熱交換により冷却された前記水とを、伝熱部を介して熱交換させることにより、前記水をさらに冷却する水冷却部と、を備えている。 The liquefied natural gas vaporizer according to one aspect of the present invention has an intermediate medium evaporation section that evaporates at least a part of the liquid intermediate medium by exchanging heat between the liquid intermediate medium and water, and the intermediate medium evaporation. A liquefied natural gas vaporization unit that vaporizes at least a part of the liquefied natural gas by heat-exchanges between the gaseous intermediate medium generated by evaporation of the liquid intermediate medium and the liquefied natural gas. The heat transfer section transfers the natural gas generated by the vaporization of the liquefied natural gas in the liquefied natural gas vaporization section and the water cooled by heat exchange with the liquid intermediate medium in the intermediate medium evaporation section. It is provided with a water cooling unit that further cools the water by exchanging heat through the water.

本発明者等は、液化天然ガス気化器において、着氷を抑制しつつ当該気化器から流出する冷水の温度を下げるための方策について鋭意検討を行い、以下の知見を得て本発明に想到した。 The present inventors diligently studied measures for lowering the temperature of cold water flowing out of the liquefied natural gas vaporizer while suppressing icing, and obtained the following findings to come up with the present invention. ..

一般に、中間媒体式の液化天然ガス気化器では、液状の中間媒体が水により加熱されて蒸発し、液化天然ガスがガス状の中間媒体により加熱されて天然ガスが発生する。ここで、水と中間媒体とを熱交換させる中間媒体蒸発部では、水から熱回収した中間媒体が液相から気相へ状態変化するため、中間媒体側の境膜伝熱係数が大きくなる。このため、中間媒体蒸発部では、伝熱管壁の温度が水の温度よりも中間媒体の温度に近づき、下がり易い傾向にある。このような理由から、従来の液化天然ガス気化器では、着氷を抑制しつつ気化器から流出する冷水の温度をより下げるのが困難であった。 Generally, in an intermediate medium type liquefied natural gas vaporizer, a liquid intermediate medium is heated by water and evaporated, and the liquefied natural gas is heated by a gaseous intermediate medium to generate natural gas. Here, in the intermediate medium evaporation section where heat is exchanged between water and the intermediate medium, the intermediate medium that has recovered heat from water changes its state from the liquid phase to the gas phase, so that the boundary film heat transfer coefficient on the intermediate medium side becomes large. Therefore, in the intermediate medium evaporation section, the temperature of the heat transfer tube wall is closer to the temperature of the intermediate medium than the temperature of water, and tends to decrease. For this reason, it has been difficult for conventional liquefied natural gas vaporizers to lower the temperature of cold water flowing out of the vaporizer while suppressing icing.

そこで、本発明者等は、上記問題点を解決するための方策として、中間媒体蒸発部で液状の中間媒体により冷却された水を、液化天然ガス気化部で発生した天然ガスの冷熱を利用してさらに冷却する水冷却部を設けることに着想した。この水冷却部では、天然ガスが水から熱回収する際に状態変化が起こらないため、天然ガス側の境膜伝熱係数が中間媒体蒸発部における中間媒体側の境膜伝熱係数よりも小さくなる。このため、水冷却部では、中間媒体蒸発部に比べて、伝熱管壁の温度が下がり難くなる。したがって、本発明の液化天然ガス気化器によれば、気化器から流出する冷水の温度を例えば4〜5℃よりも低温まで下げた時でも、気化器内における着氷を抑制することが可能になる。 Therefore, as a measure for solving the above problems, the present inventors and others utilize the cold heat of the natural gas generated in the liquefied natural gas vaporization section by using the water cooled by the liquid intermediate medium in the intermediate medium evaporation section. The idea was to provide a water cooling unit for further cooling. In this water cooling section, the state does not change when natural gas recovers heat from water, so the boundary film heat transfer coefficient on the natural gas side is smaller than the boundary film heat transfer coefficient on the intermediate medium side in the intermediate medium evaporation section. Become. Therefore, in the water cooling section, the temperature of the heat transfer tube wall is less likely to drop than in the intermediate medium evaporation section. Therefore, according to the liquefied natural gas vaporizer of the present invention, it is possible to suppress icing in the vaporizer even when the temperature of the cold water flowing out of the vaporizer is lowered to a temperature lower than, for example, 4 to 5 ° C. Become.

上記液化天然ガス気化器は、前記水冷却部で前記水と熱交換した前記天然ガスと、前記中間媒体蒸発部に流入する前の前記水と、を熱交換させることにより、前記天然ガスを加温する天然ガス加温部をさらに備えていてもよい。 The liquefied natural gas vaporizer adds the natural gas by exchanging heat between the natural gas that has exchanged heat with the water in the water cooling unit and the water that has not flowed into the intermediate medium evaporation unit. It may further include a natural gas heating unit for heating.

この構成によれば、天然ガスの温度を要求温度まで容易に上げることができる。 According to this configuration, the temperature of the natural gas can be easily raised to the required temperature.

本発明の他の局面に係る冷水供給方法は、上記液化天然ガス気化器の前記水冷却部から流出した前記水を、ガスタービンコンバインド発電装置におけるガスタービン駆動用空気の冷却水として供給する方法である。 The cold water supply method according to another aspect of the present invention is a method of supplying the water flowing out from the water cooling portion of the liquefied natural gas vaporizer as cooling water for the gas turbine driving air in the gas turbine combined power generation device. is there.

この方法によれば、水冷却部で十分な低温まで冷却された冷水によりガスタービン駆動用空気を冷却することができる。これにより、空気の含水量が下がるため燃焼効率が向上し、その結果、ガスタービンコンバインド発電装置における発電効率を上げることができる。 According to this method, the gas turbine driving air can be cooled by the cold water cooled to a sufficiently low temperature by the water cooling unit. As a result, the water content of the air is reduced, so that the combustion efficiency is improved, and as a result, the power generation efficiency in the gas turbine combined power generation device can be increased.

以上の説明から明らかなように、本発明によれば、着氷を抑制しつつ気化器から流出する冷水の温度を下げることが可能な液化天然ガス気化器及び当該液化天然ガス気化器を用いた冷水供給方法を提供することができる。 As is clear from the above description, according to the present invention, a liquefied natural gas vaporizer capable of lowering the temperature of cold water flowing out of the vaporizer while suppressing icing and the liquefied natural gas vaporizer are used. A cold water supply method can be provided.

本発明の実施形態1に係る液化天然ガス気化器の構成を模式的に示す図である。It is a figure which shows typically the structure of the liquefied natural gas vaporizer which concerns on Embodiment 1 of this invention. ガスタービンコンバインド発電装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the gas turbine combined power generation apparatus. 本発明の実施形態2に係る液化天然ガス気化器の構成を模式的に示す図である。It is a figure which shows typically the structure of the liquefied natural gas vaporizer which concerns on Embodiment 2 of this invention.

以下、図面に基づいて、本発明の実施形態に係る液化天然ガス気化器及び冷水供給方法を詳細に説明する。 Hereinafter, the liquefied natural gas vaporizer and the cold water supply method according to the embodiment of the present invention will be described in detail with reference to the drawings.

(実施形態1)
<液化天然ガス気化器>
まず、本発明の実施形態1に係る液化天然ガス気化器1の構成を、図1を参照して説明する。本実施形態に係る液化天然ガス気化器1は、中間媒体を介して水W1(例えば工業用水)により液化天然ガス(LNG)を気化する中間媒体式気化器であり、LNG基地エリアに設置して使用される。図1に示すように、液化天然ガス気化器1は、中間媒体蒸発部E1と、液化天然ガス気化部E2と、天然ガス加温部E3と、水冷却部E4と、を主に備えている。
(Embodiment 1)
<Liquefied natural gas vaporizer>
First, the configuration of the liquefied natural gas vaporizer 1 according to the first embodiment of the present invention will be described with reference to FIG. The liquefied natural gas vaporizer 1 according to the present embodiment is an intermediate medium type vaporizer that vaporizes liquefied natural gas (LNG) with water W1 (for example, industrial water) via an intermediate medium, and is installed in the LNG base area. used. As shown in FIG. 1, the liquefied natural gas vaporizer 1 mainly includes an intermediate medium evaporation section E1, a liquefied natural gas vaporization section E2, a natural gas heating section E3, and a water cooling section E4. ..

中間媒体蒸発部E1は、液状の中間媒体M1と水W1とを熱交換させることにより、液状の中間媒体M1の少なくとも一部を蒸発させる。中間媒体M1は、水W1の温度とLNGの温度との間に沸点及び凝縮点を有する熱媒体であり、例えばプロパンである。本実施形態における中間媒体蒸発部E1は、シェルアンドチューブ式熱交換器により構成されている。 The intermediate medium evaporation unit E1 evaporates at least a part of the liquid intermediate medium M1 by exchanging heat between the liquid intermediate medium M1 and the water W1. The intermediate medium M1 is a heat medium having a boiling point and a condensation point between the temperature of water W1 and the temperature of LNG, for example, propane. The intermediate medium evaporation unit E1 in the present embodiment is composed of a shell-and-tube heat exchanger.

具体的には、図1に示すように、中間媒体蒸発部E1は、水平方向に長い形状を有し且つ液状の中間媒体M1に充填されたシェル10と、液状の中間媒体M1に浸るようにシェル10内の下部に配置された複数の伝熱管11と、を有している。シェル10の一方の側部には水入口室12が設けられており、シェル10の他方の側部には水出口室13が設けられている。複数の伝熱管11の各々は、水入口室12及び水出口室13と連通しており、水入口室12から水出口室13まで延びる水平姿勢で配置されている。 Specifically, as shown in FIG. 1, the intermediate medium evaporation section E1 is immersed in a shell 10 having a horizontally long shape and filled with a liquid intermediate medium M1 and a liquid intermediate medium M1. It has a plurality of heat transfer tubes 11 arranged at the lower part in the shell 10. A water inlet chamber 12 is provided on one side of the shell 10, and a water outlet chamber 13 is provided on the other side of the shell 10. Each of the plurality of heat transfer tubes 11 communicates with the water inlet chamber 12 and the water outlet chamber 13, and is arranged in a horizontal posture extending from the water inlet chamber 12 to the water outlet chamber 13.

中間媒体蒸発部E1では、水入口室12から伝熱管11内に流入した水W1が、水出口室13に向かって伝熱管11内を流れる過程で液状の中間媒体M1と熱交換する(水W1から液状の中間媒体M1への放熱が起こる)。これにより、水W1から熱回収した液状の中間媒体M1が蒸発してガス状の中間媒体M2が発生し、一方で水W1が液状の中間媒体M1から冷熱を回収することにより冷却される。液状の中間媒体M1の温度は、例えば−10〜−5℃程度であり、冷却後の水W1の温度は例えば4〜5℃程度である。 In the intermediate medium evaporation section E1, the water W1 that has flowed into the heat transfer tube 11 from the water inlet chamber 12 exchanges heat with the liquid intermediate medium M1 in the process of flowing through the heat transfer tube 11 toward the water outlet chamber 13 (water W1). Dissipates heat from the liquid intermediate medium M1). As a result, the liquid intermediate medium M1 heat recovered from the water W1 evaporates to generate the gaseous intermediate medium M2, while the water W1 is cooled by recovering the cold heat from the liquid intermediate medium M1. The temperature of the liquid intermediate medium M1 is, for example, about −10 to −5 ° C., and the temperature of the cooled water W1 is, for example, about 4 to 5 ° C.

液化天然ガス気化部E2は、中間媒体蒸発部E1で液状の中間媒体M1が蒸発することにより発生したガス状の中間媒体M2とLNGとを熱交換させることにより、LNGの少なくとも一部を気化させる。本実施形態における液化天然ガス気化部E2は、中間媒体蒸発部E1と同様に、シェルアンドチューブ式熱交換器により構成されている。 The liquefied natural gas vaporization unit E2 vaporizes at least a part of LNG by exchanging heat between the gaseous intermediate medium M2 generated by the evaporation of the liquid intermediate medium M1 in the intermediate medium evaporation unit E1 and the LNG. .. The liquefied natural gas vaporization unit E2 in the present embodiment is composed of a shell-and-tube heat exchanger like the intermediate medium evaporation unit E1.

図1に示すように、液化天然ガス気化部E2は、シェル10と、シェル10内の上部(液状の中間媒体M1の液面よりも上側)に配置されたU字形状の伝熱管21と、を有している。シェル10の側部(水出口室13の上側)には、LNG入口室22及びNG出口室23がそれぞれ設けられており、両室は仕切り板24により互いに仕切られている。伝熱管21は、LNG入口室22内に連通する管入口21Aと、NG出口室23内に連通する管出口21Bと、を有し、管入口21Aから水平方向一方側に延びた後屈曲し、当該屈曲部から管出口21Bに向かって水平方向他方側に延びる形状を有している。 As shown in FIG. 1, the liquefied natural gas vaporization unit E2 includes a shell 10, a U-shaped heat transfer tube 21 arranged above the shell 10 (above the liquid surface of the liquid intermediate medium M1), and the shell 10. have. An LNG inlet chamber 22 and an NG outlet chamber 23 are provided on the side portion of the shell 10 (upper side of the water outlet chamber 13), and both chambers are separated from each other by a partition plate 24. The heat transfer tube 21 has a pipe inlet 21A communicating with the LNG inlet chamber 22 and a pipe outlet 21B communicating with the NG outlet chamber 23, and extends horizontally from the pipe inlet 21A to one side and then bends. It has a shape extending from the bent portion toward the pipe outlet 21B on the other side in the horizontal direction.

液化天然ガス気化部E2では、LNG入口室22から伝熱管21内にLNGが流入すると共に、中間媒体蒸発部E1で発生したガス状の中間媒体M2が伝熱管21の近傍の位置まで上昇する。そして、LNGがガス状の中間媒体M2から熱回収することにより蒸発して天然ガス(NG;Natural Gas)が発生し、一方でLNGにより冷却されたガス状の中間媒体M2が凝縮してシェル10内の底部側に溜まる。NGは、伝熱管21の管出口21BからNG出口室23内に流出する。 In the liquefied natural gas vaporization section E2, LNG flows into the heat transfer tube 21 from the LNG inlet chamber 22, and the gaseous intermediate medium M2 generated in the intermediate medium evaporation section E1 rises to a position near the heat transfer tube 21. Then, LNG evaporates by recovering heat from the gaseous intermediate medium M2 to generate natural gas (NG; Natural Gas), while the gaseous intermediate medium M2 cooled by LNG condenses and shells 10. It collects on the bottom side of the inside. The NG flows out from the pipe outlet 21B of the heat transfer tube 21 into the NG outlet chamber 23.

水冷却部E4は、液化天然ガス気化部E2でLNGが気化することにより発生したNGと、中間媒体蒸発部E1で液状の中間媒体M1との熱交換により冷却された水W1とを、伝熱部を介して熱交換させることにより、水W1をさらに冷却する。本実施形態における水冷却部E4は、中間媒体蒸発部E1及び液化天然ガス気化部E2と同様に、シェルアンドチューブ式熱交換器により構成されている。図1に示すように、水冷却部E4は、第1連絡管51により液化天然ガス気化部E2に接続されていると共に、第2連絡管52により中間媒体蒸発部E1に接続されている。また水冷却部E4は、NGの流路上において、液化天然ガス気化部E2よりも下流側で且つ天然ガス加温部E3よりも上流側(液化天然ガス気化部E2と天然ガス加温部E3との間)に配置されている。 The water cooling unit E4 heat transfers NG generated by vaporization of LNG in the liquefied natural gas vaporization unit E2 and water W1 cooled by heat exchange between the liquid intermediate medium M1 in the intermediate medium evaporation unit E1. The water W1 is further cooled by exchanging heat through the section. The water cooling unit E4 in the present embodiment is composed of a shell-and-tube heat exchanger like the intermediate medium evaporation unit E1 and the liquefied natural gas vaporization unit E2. As shown in FIG. 1, the water cooling unit E4 is connected to the liquefied natural gas vaporization unit E2 by the first connecting pipe 51, and is connected to the intermediate medium evaporation unit E1 by the second connecting pipe 52. Further, the water cooling unit E4 is on the NG flow path on the downstream side of the liquefied natural gas vaporizing unit E2 and on the upstream side of the natural gas heating unit E3 (the liquefied natural gas vaporizing unit E2 and the natural gas heating unit E3). Is located between).

より具体的には、水冷却部E4は、水平方向に長い形状のシェル41と、シェル41内に配置されたU字形状の伝熱管42と、伝熱管42の管入口42Aに連通するNG入口室43と、伝熱管42の管出口42Bに連通すると共に仕切り板45によりNG入口室43に対して仕切られたNG出口室44と、を有している。 More specifically, the water cooling unit E4 has a shell 41 having a long shape in the horizontal direction, a U-shaped heat transfer tube 42 arranged in the shell 41, and an NG inlet communicating with the pipe inlet 42A of the heat transfer tube 42. It has a chamber 43 and an NG outlet chamber 44 that communicates with the pipe outlet 42B of the heat transfer tube 42 and is partitioned from the NG inlet chamber 43 by a partition plate 45.

図1に示すように、第1連絡管51は、上流端が液化天然ガス気化部E2のNG出口室23に接続されていると共に、下流端が水冷却部E4のNG入口室43に接続されている。また第2連絡管52は、上流端が中間媒体蒸発部E1の水出口室13に接続されていると共に、下流端が水冷却部E4のシェル41の上部に設けられた水入口41Aに接続されている。 As shown in FIG. 1, the upstream end of the first connecting pipe 51 is connected to the NG outlet chamber 23 of the liquefied natural gas vaporization unit E2, and the downstream end is connected to the NG inlet chamber 43 of the water cooling unit E4. ing. Further, the upstream end of the second connecting pipe 52 is connected to the water outlet chamber 13 of the intermediate medium evaporation section E1, and the downstream end is connected to the water inlet 41A provided above the shell 41 of the water cooling section E4. ing.

伝熱管42は、液化天然ガス気化部E2から流出したNGが流通するものであり、管入口42Aから水平方向一方側に延びた後屈曲し、当該屈曲部から管出口42Bに向かって水平方向他方側に延びる形状を有している。シェル41内の空間には、中間媒体蒸発部E1から流出した冷却後の水W1が第2連絡管52を通じて流入し、当該水W1は、シェル41の下部に設けられた水出口41Bからシェル41の外へ流出する。 The heat transfer tube 42 is for NG flowing out from the liquefied natural gas vaporization section E2, extends from the tube inlet 42A to one side in the horizontal direction and then bends, and then bends from the bent portion toward the pipe outlet 42B in the horizontal direction. It has a shape that extends to the side. The cooled water W1 flowing out from the intermediate medium evaporation section E1 flows into the space inside the shell 41 through the second connecting pipe 52, and the water W1 flows from the water outlet 41B provided at the lower part of the shell 41 to the shell 41. Outflow to the outside.

上記構成により、液化天然ガス気化部E2(NG出口室23)から流出したNGは、第1連絡管51を通じてNG入口室43内に流入し、その後、管入口42Aから伝熱管42内に流入する。そして、NGは、伝熱管42内を管入口42Aから管出口42Bに向かって流通した後、NG出口室44内へ流出する。 With the above configuration, the NG flowing out from the liquefied natural gas vaporization unit E2 (NG outlet chamber 23) flows into the NG inlet chamber 43 through the first connecting pipe 51, and then flows into the heat transfer pipe 42 from the pipe inlet 42A. .. Then, the NG circulates in the heat transfer tube 42 from the tube inlet 42A toward the tube outlet 42B, and then flows out into the NG outlet chamber 44.

一方、中間媒体蒸発部E1(水出口室13)から流出した水W1は、第2連絡管52を通じて水入口41Aからシェル41内に流入する。そして、水W1は、伝熱管42内を流通するNGと当該伝熱管42の管壁部(伝熱部)を介して熱交換し、NGから冷熱を回収することにより4〜5℃よりも低温まで冷却された後、水出口41Bからシェル41の外へ流出する。一方、NGは、水W1から熱回収することにより加温された後、伝熱管42の管出口42BからNG出口室44へ流出する。 On the other hand, the water W1 flowing out from the intermediate medium evaporation section E1 (water outlet chamber 13) flows into the shell 41 from the water inlet 41A through the second connecting pipe 52. Then, the water W1 exchanges heat with the NG flowing in the heat transfer tube 42 via the tube wall portion (heat transfer portion) of the heat transfer tube 42, and recovers the cold heat from the NG to be lower than 4 to 5 ° C. After being cooled to, it flows out of the shell 41 from the water outlet 41B. On the other hand, the NG is heated by recovering heat from the water W1 and then flows out from the pipe outlet 42B of the heat transfer tube 42 to the NG outlet chamber 44.

天然ガス加温部E3は、水冷却部E4で水W1と熱交換したNGと、中間媒体蒸発部E1に流入する前の水W1と、を熱交換させることにより、NGを加温する。本実施形態における天然ガス加温部E3は、中間媒体蒸発部E1、液化天然ガス気化部E2及び水冷却部E4と同様に、シェルアンドチューブ式熱交換器により構成されており、第3連絡管53により水冷却部E4に接続されている。 The natural gas heating unit E3 heats the NG by exchanging heat between the NG that has exchanged heat with the water W1 in the water cooling unit E4 and the water W1 that has not flowed into the intermediate medium evaporation unit E1. The natural gas heating unit E3 in the present embodiment is composed of a shell-and-tube heat exchanger like the intermediate medium evaporation unit E1, the liquefied natural gas vaporization unit E2, and the water cooling unit E4, and is composed of a third connecting pipe. It is connected to the water cooling unit E4 by 53.

図1に示すように、天然ガス加温部E3は、水平方向に長い形状のシェル31と、シェル31内に配置されたU字形状の伝熱管32と、伝熱管32の管入口32Aに連通するNG入口室33と、伝熱管32の管出口32Bに連通すると共に仕切り板35によりNG入口室33に対して仕切られたNG出口室34と、を有している。第3連絡管53は、上流端が水冷却部E4のNG出口室44に接続されていると共に、下流端が天然ガス加温部E3のNG入口室33に接続されている。 As shown in FIG. 1, the natural gas heating unit E3 communicates with a shell 31 having a long shape in the horizontal direction, a U-shaped heat transfer tube 32 arranged in the shell 31, and a pipe inlet 32A of the heat transfer tube 32. It has an NG inlet chamber 33 that communicates with the NG inlet chamber 33, and an NG outlet chamber 34 that communicates with the pipe outlet 32B of the heat transfer tube 32 and is partitioned from the NG inlet chamber 33 by a partition plate 35. The upstream end of the third connecting pipe 53 is connected to the NG outlet chamber 44 of the water cooling unit E4, and the downstream end is connected to the NG inlet chamber 33 of the natural gas heating unit E3.

伝熱管32は、水冷却部E4から流出したNGが流通するものであり、管入口32Aから水平方向一方側に延びた後屈曲し、当該屈曲部から管出口32Bに向かって水平方向他方側に延びる形状を有している。シェル31内の空間には、中間媒体蒸発部E1に流入する前の水W1が流入し、当該水W1は、シェル31の下部に設けられた水出口31Bからシェル31の外へ流出する。 The heat transfer tube 32 is for flowing NG flowing out from the water cooling unit E4, extends from the pipe inlet 32A to one side in the horizontal direction, and then bends, and from the bent portion toward the pipe outlet 32B to the other side in the horizontal direction. It has an extending shape. Water W1 before flowing into the intermediate medium evaporation section E1 flows into the space inside the shell 31, and the water W1 flows out of the shell 31 from the water outlet 31B provided at the lower part of the shell 31.

天然ガス加温部E3では、水冷却部E4(NG出口室44)から流出したNGが、第3連絡管53を通じてNG入口室33内に流入し、その後、管入口32Aから伝熱管32内に流入する。そして、NGは、伝熱管32内を管入口32Aから管出口32Bに向かって流れる過程で、シェル31内に流入した水W1から熱回収することにより加温され、NG出口室34へ流出する。 In the natural gas heating unit E3, the NG flowing out from the water cooling unit E4 (NG outlet chamber 44) flows into the NG inlet chamber 33 through the third connecting pipe 53, and then flows into the heat transfer tube 32 from the pipe inlet 32A. Inflow. Then, the NG is heated by recovering heat from the water W1 flowing into the shell 31 in the process of flowing through the heat transfer tube 32 from the tube inlet 32A toward the tube outlet 32B, and flows out to the NG outlet chamber 34.

<ガスタービンコンバインド発電装置>
次に、上記液化天然ガス気化器1で発生したNG(天然ガス加温部E3のNG出口室34から流出したNG)を燃料として発電するガスタービンコンバインド発電装置2の構成を、図2を主に参照して説明する。図2に示すように、ガスタービンコンバインド発電装置2は、冷却器81と、空気圧縮機82と、ガスタービン83と、排熱回収ボイラ84と、蒸気タービン86と、ガスタービン発電機85と、を主に有している。
<Gas turbine combined power generator>
Next, FIG. 2 mainly describes the configuration of the gas turbine combined power generation device 2 that generates power using the NG generated in the liquefied natural gas vaporizer 1 (NG flowing out from the NG outlet chamber 34 of the natural gas heating unit E3) as fuel. It will be explained with reference to. As shown in FIG. 2, the gas turbine combined power generation device 2 includes a cooler 81, an air compressor 82, a gas turbine 83, an exhaust heat recovery boiler 84, a steam turbine 86, a gas turbine generator 85, and the like. Mainly has.

空気圧縮機82は、冷却器81で冷却された空気を圧縮する。ガスタービン83は、空気圧縮機82から吐出された圧縮空気によりNGが燃焼し、その燃焼により発生した燃焼ガスによって回転駆動される。 The air compressor 82 compresses the air cooled by the cooler 81. The gas turbine 83 is NG burned by the compressed air discharged from the air compressor 82, and is rotationally driven by the combustion gas generated by the combustion.

排熱回収ボイラ84は、ガスタービン83から流出した燃焼ガスが流通する第1流路84Aと、水が流通する第2流路84Bと、を有しており、当該燃焼ガスと水とを熱交換させることにより水を蒸発させる。蒸気タービン86は、排熱回収ボイラ84で発生した蒸気により回転駆動される。ガスタービン発電機85は、ガスタービン83及び蒸気タービン86に接続されており、当該ガスタービン83及び蒸気タービン86の回転エネルギーを電気エネルギーに変換する。 The exhaust heat recovery boiler 84 has a first flow path 84A through which the combustion gas flowing out from the gas turbine 83 flows, and a second flow path 84B through which water flows, and heats the combustion gas and water. Evaporate the water by exchanging. The steam turbine 86 is rotationally driven by the steam generated in the exhaust heat recovery boiler 84. The gas turbine generator 85 is connected to the gas turbine 83 and the steam turbine 86, and converts the rotational energy of the gas turbine 83 and the steam turbine 86 into electric energy.

<水循環機構>
次に、液化天然ガス気化器1とガスタービンコンバインド発電装置2との間で水W1を循環させる水循環機構3の構成を、図1及び図2を参照して説明する。図1に示すように、水循環機構3は、液化天然ガス気化器1から冷却器81へ水W1(冷水)を供給する冷水供給流路62と、冷却器81から液化天然ガス気化器1へ水W1(温水)を供給する温水供給流路63と、を有している。
<Water circulation mechanism>
Next, the configuration of the water circulation mechanism 3 that circulates the water W1 between the liquefied natural gas vaporizer 1 and the gas turbine combined power generation device 2 will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the water circulation mechanism 3 includes a chilled water supply flow path 62 for supplying water W1 (cold water) from the liquefied natural gas vaporizer 1 to the cooler 81, and water from the cooler 81 to the liquefied natural gas vaporizer 1. It has a hot water supply flow path 63 for supplying W1 (hot water).

冷水供給流路62は、配管により構成されており、上流端が水冷却部E4のシェル41の水出口41Bに接続されていると共に、下流端が冷却器81の第1流路81Aの入口に接続されている。図1に示すように、冷水供給流路62には、水冷却部E4から流出した水W1(冷水)を貯留する冷水タンク70と、水冷却部E4から流出した水W1を冷却器81に向かって送り出す冷水循環ポンプ71とが、水W1の流通方向の上流側から下流側に向かって順に配置されている。なお、冷水タンク70は省略されてもよい。 The chilled water supply flow path 62 is composed of pipes, and the upstream end is connected to the water outlet 41B of the shell 41 of the water cooling unit E4, and the downstream end is connected to the inlet of the first flow path 81A of the cooler 81. It is connected. As shown in FIG. 1, in the chilled water supply flow path 62, the chilled water tank 70 for storing the water W1 (cold water) flowing out from the water cooling unit E4 and the water W1 flowing out from the water cooling unit E4 are directed toward the cooler 81. The chilled water circulation pump 71 that sends out the water is arranged in order from the upstream side to the downstream side in the flow direction of the water W1. The cold water tank 70 may be omitted.

温水供給流路63は、配管により構成されており、上流端が冷却器81の第1流路81Aの出口に接続されていると共に、下流端が中間媒体蒸発部E1の水入口室12に接続されている。温水供給流路63には、冷却器81から流出した水W1(温水)を海水等の熱源によりさらに加熱するバックアップ加温器72と、冷却器81から流出した水W1を貯留する温水タンク73と、冷却器81から流出した水W1を液化天然ガス気化器1に向かって送り出す温水循環ポンプ74とが、水W1の流通方向の上流側から下流側に向かって順に配置されている。なお、バックアップ加温器72及び温水タンク73はそれぞれ省略されてもよい。 The hot water supply flow path 63 is composed of pipes, and the upstream end is connected to the outlet of the first flow path 81A of the cooler 81, and the downstream end is connected to the water inlet chamber 12 of the intermediate medium evaporation unit E1. Has been done. The hot water supply flow path 63 includes a backup warmer 72 that further heats the water W1 (hot water) flowing out of the cooler 81 with a heat source such as seawater, and a hot water tank 73 that stores the water W1 flowing out of the cooler 81. The hot water circulation pump 74 that sends out the water W1 flowing out from the cooler 81 toward the liquefied natural gas vaporizer 1 is arranged in order from the upstream side to the downstream side in the flow direction of the water W1. The backup warmer 72 and the hot water tank 73 may be omitted, respectively.

水循環機構3は、温水側分岐流路63Aをさらに有している。図1に示すように、温水側分岐流路63Aは、温水供給流路63のうち温水循環ポンプ74よりも下流側の部位P1と天然ガス加温部E3のシェル31の水入口31Aとを接続する第1流路部分63AAと、当該シェル31の水出口31Bと温水供給流路63のうち部位P1よりも下流側の部位P2とを接続する第2流路部分63ABと、を有している。この構成により、温水供給流路63を流通する水W1(温水)の一部を部位P1から分流させ、天然ガス加温部E3のシェル31内の空間を通過させた後に、部位P2において温水供給流路63を流通する水W1に合流させることができる。 The water circulation mechanism 3 further has a hot water side branch flow path 63A. As shown in FIG. 1, the hot water side branch flow path 63A connects a portion P1 of the hot water supply flow path 63 on the downstream side of the hot water circulation pump 74 and a water inlet 31A of the shell 31 of the natural gas heating portion E3. It has a first flow path portion 63AA, and a second flow path portion 63AB that connects the water outlet 31B of the shell 31 and the portion P2 of the hot water supply flow path 63 downstream of the portion P1. .. With this configuration, a part of the water W1 (hot water) flowing through the hot water supply flow path 63 is separated from the portion P1 and passed through the space inside the shell 31 of the natural gas heating portion E3, and then the hot water is supplied at the portion P2. It can be merged with the water W1 flowing through the flow path 63.

上記構成により、冷水供給流路62及び温水供給流路63を通じて、液化天然ガス気化器1と冷却器81との間で水W1を循環させることができる。この循環流路上において、水冷却部E4は、中間媒体蒸発部E1の下流側において当該中間媒体蒸発部E1と直列に配置されている。 With the above configuration, water W1 can be circulated between the liquefied natural gas vaporizer 1 and the cooler 81 through the cold water supply flow path 62 and the hot water supply flow path 63. On this circulation flow path, the water cooling unit E4 is arranged in series with the intermediate medium evaporation unit E1 on the downstream side of the intermediate medium evaporation unit E1.

<冷水供給方法>
次に、本発明の実施形態1に係る冷水供給方法を説明する。本実施形態に係る冷水供給方法は、上記の液化天然ガス気化器1の水冷却部E4(シェル41)から流出した水W1(冷水)を、ガスタービンコンバインド発電装置2におけるガスタービン駆動用空気の冷却水として供給する方法である。
<Cold water supply method>
Next, the cold water supply method according to the first embodiment of the present invention will be described. In the cold water supply method according to the present embodiment, the water W1 (cold water) flowing out from the water cooling unit E4 (shell 41) of the liquefied natural gas vaporizer 1 is used as the air for driving the gas turbine in the gas turbine combined power generation device 2. This is a method of supplying as cooling water.

まず、温水循環ポンプ74を作動させることによって、水W1(温水)を、温水供給流路63を通じて中間媒体蒸発部E1の水入口室12内へ流入させる。この時、一部の水W1を部位P1から温水側分岐流路63A(第1流路部分63AA)へ分流させ、天然ガス加温部E3のシェル31内を通過させた後に、水入口室12の直ぐ上流側(部位P2)で温水供給流路63に合流させてもよい。 First, by operating the hot water circulation pump 74, water W1 (hot water) is allowed to flow into the water inlet chamber 12 of the intermediate medium evaporation section E1 through the hot water supply flow path 63. At this time, a part of the water W1 is diverted from the portion P1 to the hot water side branch flow path 63A (first flow path portion 63AA), passed through the shell 31 of the natural gas heating portion E3, and then the water inlet chamber 12 It may be merged with the hot water supply flow path 63 on the immediate upstream side (site P2).

次に、水W1を水入口室12から伝熱管11内に流入させると共に、当該水入口室12から水出口室13に向かって伝熱管11内を流通させる。この時、伝熱管11の管壁部を介して水W1と液状の中間媒体M1との熱交換が起こり、水W1が液状の中間媒体M1から冷熱を回収することにより、例えば4〜5℃程度まで冷却される。そして、冷却された水W1(冷水)は、伝熱管11から水出口室13へ流出する。 Next, the water W1 is allowed to flow into the heat transfer tube 11 from the water inlet chamber 12, and is circulated in the heat transfer tube 11 from the water inlet chamber 12 toward the water outlet chamber 13. At this time, heat exchange between the water W1 and the liquid intermediate medium M1 occurs through the tube wall portion of the heat transfer tube 11, and the water W1 recovers the cold heat from the liquid intermediate medium M1, for example, about 4 to 5 ° C. Is cooled to. Then, the cooled water W1 (cold water) flows out from the heat transfer tube 11 to the water outlet chamber 13.

次に、水出口室13から流出した水W1を、第2連絡管52を通じて水冷却部E4のシェル41内に流入させる。この時、伝熱管42の管壁部を介して水W1とNGとの熱交換が起こり、水W1がNGから冷熱を回収することにより4〜5℃よりも低温までさらに冷却される。そして、冷却された水W1は、シェル41の水出口41Bから冷水供給流路62内に流出する。 Next, the water W1 flowing out of the water outlet chamber 13 is allowed to flow into the shell 41 of the water cooling unit E4 through the second connecting pipe 52. At this time, heat exchange between the water W1 and the NG occurs through the tube wall portion of the heat transfer tube 42, and the water W1 recovers the cold heat from the NG to be further cooled to a temperature lower than 4 to 5 ° C. Then, the cooled water W1 flows out from the water outlet 41B of the shell 41 into the cold water supply flow path 62.

次に、冷水循環ポンプ71を作動させることによって、水冷却部E4でNGにより4〜5℃より低温まで冷却された水W1を、冷水供給流路62を通じて冷却器81(第1流路81A)へ供給する。これにより、冷却器81の第2流路81B内に吸い込まれた空気が、第1流路81Aを流通する水W1(冷水)により冷却される。 Next, by operating the chilled water circulation pump 71, the water W1 cooled to a temperature lower than 4 to 5 ° C. by NG in the water cooling unit E4 is passed through the chilled water supply flow path 62 to the cooler 81 (first flow path 81A). Supply to. As a result, the air sucked into the second flow path 81B of the cooler 81 is cooled by the water W1 (cold water) flowing through the first flow path 81A.

以上の通り、本実施形態に係る液化天然ガス気化器1は、液化天然ガス気化部E2で発生したNGの冷熱を利用して水W1を冷却する水冷却部E4を備えている。これにより、以下の通り、液化天然ガス気化器1内における着氷を抑制しつつ当該液化天然ガス気化器1から流出する水W1(冷水)の温度を4〜5℃よりも低温まで下げることができる。 As described above, the liquefied natural gas vaporizer 1 according to the present embodiment includes a water cooling unit E4 that cools the water W1 by utilizing the cold heat of NG generated in the liquefied natural gas vaporizer E2. As a result, as described below, the temperature of the water W1 (cold water) flowing out of the liquefied natural gas vaporizer 1 can be lowered to a temperature lower than 4 to 5 ° C. while suppressing icing in the liquefied natural gas vaporizer 1. it can.

すなわち、上述の通り、液化天然ガス気化器1では、液状の中間媒体M1が水W1により加熱されて蒸発し、LNGがガス状の中間媒体M2により加熱されてNGが発生する。ここで、中間媒体蒸発部E1では、水W1から熱回収した中間媒体が液体から気体へ状態変化する。つまり、液状の中間媒体M1は、潜熱として水W1から熱回収するため、伝熱管11の外側(液状の中間媒体M1側)の境膜伝熱係数が大きくなる。このため、中間媒体蒸発部E1では伝熱管11の管壁温度が液状の中間媒体M1の影響により下がり易くなり、水W1を4〜5℃よりも低温まで下げると、伝熱管11の管壁内面における着氷の懸念が大きくなる。 That is, as described above, in the liquefied natural gas vaporizer 1, the liquid intermediate medium M1 is heated by the water W1 and evaporated, and the LNG is heated by the gaseous intermediate medium M2 to generate NG. Here, in the intermediate medium evaporation unit E1, the intermediate medium heat recovered from the water W1 changes its state from a liquid to a gas. That is, since the liquid intermediate medium M1 recovers heat from the water W1 as latent heat, the boundary film heat transfer coefficient on the outside of the heat transfer tube 11 (on the liquid intermediate medium M1 side) becomes large. Therefore, in the intermediate medium evaporation section E1, the tube wall temperature of the heat transfer tube 11 tends to decrease due to the influence of the liquid intermediate medium M1, and when the water W1 is lowered to a temperature lower than 4 to 5 ° C., the inner surface of the tube wall of the heat transfer tube 11 There is growing concern about icing in.

これに対し、水冷却部E4では、NGが顕熱として水W1から熱回収する。つまり、水冷却部E4では、中間媒体蒸発部E1とは異なり、水W1と熱交換する相手側の媒体(NG)の状態変化は起こらない。このため、伝熱管42の内側(NG側)の境膜伝熱係数は小さくなり、したがって伝熱管42の管壁温度が過度に低下するのを抑制することができる。よって、本実施形態に係る液化天然ガス気化器1によれば、水冷却部E4により水W1を4〜5℃よりもさらに低温まで冷却する要求がある場合、水W1の循環量を増加させ又は水W1としてブライン水等を使用しなくても、伝熱管42の外壁面における着氷を抑制することができる。さらに、水冷却部E4を新たな熱交換部として設けることにより、その他の熱交換部(中間媒体蒸発部E1、液化天然ガス気化部E2及び天然ガス加温部E3)における熱負荷を低減することも可能になる。 On the other hand, in the water cooling unit E4, NG recovers heat from the water W1 as sensible heat. That is, unlike the intermediate medium evaporation unit E1, the water cooling unit E4 does not change the state of the medium (NG) on the other side that exchanges heat with the water W1. Therefore, the boundary film heat transfer coefficient on the inside (NG side) of the heat transfer tube 42 becomes small, and therefore, it is possible to suppress an excessive decrease in the tube wall temperature of the heat transfer tube 42. Therefore, according to the liquefied natural gas vaporizer 1 according to the present embodiment, when there is a request for the water cooling unit E4 to cool the water W1 to a temperature lower than 4 to 5 ° C., the circulation amount of the water W1 is increased or Even if brine water or the like is not used as the water W1, icing on the outer wall surface of the heat transfer tube 42 can be suppressed. Further, by providing the water cooling unit E4 as a new heat exchange unit, the heat load in the other heat exchange units (intermediate medium evaporation unit E1, liquefied natural gas vaporization unit E2, and natural gas heating unit E3) can be reduced. Will also be possible.

(実施形態2)
次に、本発明の実施形態2に係る液化天然ガス気化器1Aの構成を、図3を参照して説明する。実施形態2に係る液化天然ガス気化器1Aは、基本的に上記実施形態1に係る液化天然ガス気化器1と同様の構成を備え且つ同様の作用効果を奏するものであるが、天然ガス加温部E3の構成が省略されている点で上記実施形態1と異なっている。
(Embodiment 2)
Next, the configuration of the liquefied natural gas vaporizer 1A according to the second embodiment of the present invention will be described with reference to FIG. The liquefied natural gas vaporizer 1A according to the second embodiment basically has the same configuration as the liquefied natural gas vaporizer 1 according to the first embodiment and exhibits the same action and effect, but is heated by natural gas. It differs from the first embodiment in that the configuration of the part E3 is omitted.

図3に示すように、実施形態2に係る液化天然ガス気化器1Aは、中間媒体蒸発部E1、液化天然ガス気化部E2及び水冷却部E4の3つの熱交換部により構成されている。このような液化天然ガス気化器1Aは、常温のNGの供給が要求されず、0℃付近の低温のNGの供給が要求される用途において用いることができる。 As shown in FIG. 3, the liquefied natural gas vaporizer 1A according to the second embodiment is composed of three heat exchange units, an intermediate medium evaporation unit E1, a liquefied natural gas vaporization unit E2, and a water cooling unit E4. Such a liquefied natural gas vaporizer 1A can be used in applications where the supply of NG at room temperature is not required and the supply of NG at a low temperature of around 0 ° C. is required.

上記の通り開示された実施形態は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。したがって、本発明の範囲には、以下の実施形態も含まれる。 It should be understood that the embodiments disclosed as described above are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims. Therefore, the scope of the present invention also includes the following embodiments.

上記実施形態1では、水冷却部E4がフィンアンドチューブ式熱交換器により構成されている場合を説明したが、これに限定されない。水冷却部E4は、例えばプレート式熱交換器や固定管板式熱交換器により構成されていてもよい。また天然ガス加温部E3も、プレート式熱交換器や固定管板式熱交換器により構成されていてもよい。 In the first embodiment, the case where the water cooling unit E4 is configured by the fin-and-tube heat exchanger has been described, but the present invention is not limited to this. The water cooling unit E4 may be composed of, for example, a plate type heat exchanger or a fixed tube plate type heat exchanger. Further, the natural gas heating unit E3 may also be composed of a plate type heat exchanger or a fixed tube plate type heat exchanger.

また図1では、天然ガス加温部E3及び水冷却部E4の各シェル31,41内において、水W1が上側から下側に向かって流れる場合を示しているが、各シェル31,41内において水W1が下側から上側に向かって流れてもよい。つまり、水入口がシェル31,41の下部にそれぞれ形成されると共に、水出口がシェル31,41の上部にそれぞれ形成されてもよい。 Further, FIG. 1 shows a case where water W1 flows from the upper side to the lower side in the shells 31 and 41 of the natural gas heating unit E3 and the water cooling unit E4, but in the shells 31 and 41. Water W1 may flow from the lower side to the upper side. That is, the water inlet may be formed at the lower part of the shells 31 and 41, and the water outlet may be formed at the upper part of the shells 31 and 41, respectively.

また図1では、天然ガス加温部E3及び水冷却部E4の各々において、伝熱管32,42の内側をNGが流通すると共に当該伝熱管32,42の外側を水W1が流通するが、これに限定されない。すなわち、伝熱管32,42の内側を水W1が流通すると共に、伝熱管32,42の外側(シェル31,41内の空間)をNGが流通する構成でもよい。 Further, in FIG. 1, in each of the natural gas heating unit E3 and the water cooling unit E4, NG circulates inside the heat transfer tubes 32 and 42, and water W1 circulates outside the heat transfer tubes 32 and 42. Not limited to. That is, the water W1 may circulate inside the heat transfer tubes 32 and 42, and the NG may circulate outside the heat transfer tubes 32 and 42 (the space inside the shells 31 and 41).

上記実施形態1では、水W1(温水)の一部を天然ガス加温部E3に分流させる構成を説明したが、水W1(温水)の全量を天然ガス加温部E3及び中間媒体蒸発部E1に対して連続的に流通させてもよい。 In the first embodiment, a configuration in which a part of water W1 (warm water) is diverted to the natural gas heating unit E3 has been described, but the entire amount of water W1 (warm water) is distributed to the natural gas heating unit E3 and the intermediate medium evaporation unit E1. May be continuously distributed to.

上記実施形態1では、水冷却部E4から流出する水W1(冷水)が利用される用途として、ガスタービンコンバインド発電装置2におけるガスタービン駆動用空気の冷却について説明したが、これに限定されない。例えば、各種施設の冷房に用いられる熱交換器や発電ケーブルの冷却等、その他の用途にも冷却後の水W1を利用することが可能である。 In the first embodiment, the cooling of the gas turbine driving air in the gas turbine combined power generation device 2 has been described as an application in which the water W1 (cold water) flowing out from the water cooling unit E4 is used, but the present invention is not limited to this. For example, the cooled water W1 can be used for other purposes such as cooling heat exchangers and power generation cables used for cooling various facilities.

1,1A 液化天然ガス気化器
2 ガスタービンコンバインド発電装置
E1 中間媒体蒸発部
E2 液化天然ガス気化部
E3 天然ガス加温部
E4 水冷却部
M1 液状の中間媒体
M2 ガス状の中間媒体
W1 水
1,1A Liquefied natural gas vaporizer 2 Gas turbine combined power generation device E1 Intermediate medium evaporation part E2 Liquefied natural gas vaporization part E3 Natural gas heating part E4 Water cooling part M1 Liquid intermediate medium M2 Gas-like intermediate medium W1 Water

Claims (3)

液化天然ガス気化器であって、
液状の中間媒体と水とを熱交換させることにより、液状の前記中間媒体の少なくとも一部を蒸発させる中間媒体蒸発部と、
前記中間媒体蒸発部で液状の前記中間媒体が蒸発することにより発生したガス状の前記中間媒体と液化天然ガスとを熱交換させることにより、前記液化天然ガスの少なくとも一部を気化させる液化天然ガス気化部と、
前記液化天然ガス気化部で前記液化天然ガスが気化することにより発生した天然ガスと、前記中間媒体蒸発部で液状の前記中間媒体との熱交換により冷却された前記水とを、伝熱部を介して熱交換させることにより、前記水をさらに冷却する水冷却部と、を備えた、液化天然ガス気化器。
A liquefied natural gas vaporizer
An intermediate medium evaporation section that evaporates at least a part of the liquid intermediate medium by heat exchange between the liquid intermediate medium and water.
A liquefied natural gas that vaporizes at least a part of the liquefied natural gas by exchanging heat between the gaseous intermediate medium generated by the evaporation of the liquid intermediate medium and the liquefied natural gas in the intermediate medium evaporation section. Vaporization department and
The heat transfer section transfers the natural gas generated by the vaporization of the liquefied natural gas in the liquefied natural gas vaporization section and the water cooled by heat exchange with the liquid intermediate medium in the intermediate medium evaporation section. A liquefied natural gas vaporizer comprising a water cooling unit that further cools the water by exchanging heat through the gas.
前記水冷却部で前記水と熱交換した前記天然ガスと、前記中間媒体蒸発部に流入する前の前記水と、を熱交換させることにより、前記天然ガスを加温する天然ガス加温部をさらに備えた、請求項1に記載の液化天然ガス気化器。 A natural gas heating unit that heats the natural gas by exchanging heat between the natural gas that has exchanged heat with the water in the water cooling unit and the water that has not flowed into the intermediate medium evaporation unit. The liquefied natural gas vaporizer according to claim 1, further provided. 請求項1又は2に記載の液化天然ガス気化器の前記水冷却部から流出した前記水を、ガスタービンコンバインド発電装置におけるガスタービン駆動用空気の冷却水として供給する、冷水供給方法。 A chilled water supply method for supplying the water flowing out from the water cooling unit of the liquefied natural gas vaporizer according to claim 1 or 2 as cooling water for gas turbine driving air in a gas turbine combined power generation device.
JP2019123985A 2019-07-02 2019-07-02 Liquefied natural gas vaporizer and cold water supply method Active JP6767546B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019123985A JP6767546B1 (en) 2019-07-02 2019-07-02 Liquefied natural gas vaporizer and cold water supply method
KR1020217040419A KR102522339B1 (en) 2019-07-02 2020-06-22 Liquefied natural gas vaporizer and cold water supply method
PCT/JP2020/024340 WO2021002231A1 (en) 2019-07-02 2020-06-22 Liquefied natural gas vaporizer and cold water supply method
CN202080048269.0A CN114026358B (en) 2019-07-02 2020-06-22 Liquefied natural gas gasifier and cold water supply method
TW109122179A TWI792015B (en) 2019-07-02 2020-07-01 Liquefied natural gas vaporizer and cold water supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123985A JP6767546B1 (en) 2019-07-02 2019-07-02 Liquefied natural gas vaporizer and cold water supply method

Publications (2)

Publication Number Publication Date
JP6767546B1 JP6767546B1 (en) 2020-10-14
JP2021008942A true JP2021008942A (en) 2021-01-28

Family

ID=72745213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123985A Active JP6767546B1 (en) 2019-07-02 2019-07-02 Liquefied natural gas vaporizer and cold water supply method

Country Status (5)

Country Link
JP (1) JP6767546B1 (en)
KR (1) KR102522339B1 (en)
CN (1) CN114026358B (en)
TW (1) TWI792015B (en)
WO (1) WO2021002231A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113685726B (en) * 2021-08-25 2022-09-09 常州化工设计院有限公司 Liquid chlorine gasifier and vaporization process applying same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914587A (en) * 1995-06-23 1997-01-17 Chubu Electric Power Co Inc Fuel lng vaporizing device for natural gas burning gas turbine combined cycle electric power plant
JP2002340296A (en) * 2001-05-16 2002-11-27 Sumitomo Precision Prod Co Ltd Liquefied gas vaporizing and heating device
JP2006506584A (en) * 2002-11-14 2006-02-23 ダブリュー アイヤーマン、ヴォルカー System and method for vaporizing liquefied natural gas
JP2007040286A (en) * 2005-07-30 2007-02-15 Yoshihide Nakamura Gas turbine plant
US20120090324A1 (en) * 2005-05-19 2012-04-19 Black and Veatch Corporation. Air vaporizor
JP2015010683A (en) * 2013-07-01 2015-01-19 株式会社神戸製鋼所 Gas vaporizer with cold heat recovery function and cold heat recovery device
JP2018119511A (en) * 2017-01-27 2018-08-02 株式会社神戸製鋼所 Natural gas burning combined cycle power generation system and natural gas burning combined cycle power generation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409440B2 (en) * 2010-02-26 2014-02-05 株式会社ダイキンアプライドシステムズ Refrigeration refrigerant manufacturing method using intermediate medium vaporizer and refrigeration refrigerant supply facility
JP6419629B2 (en) * 2015-03-31 2018-11-07 株式会社神戸製鋼所 Gas vaporizer for cold recovery
JP6839975B2 (en) * 2015-12-28 2021-03-10 株式会社神戸製鋼所 Intermediate medium vaporizer
CN208139636U (en) * 2018-04-27 2018-11-23 南京工业大学 A kind of device for producing solid ice using LNG gasification release cold energy
CN208887200U (en) * 2018-06-05 2019-05-21 中机国能电力工程有限公司 A kind of liquefied natural gas gasifying water-cooling energy-saving system
CN109556336A (en) * 2018-11-20 2019-04-02 鹤山市华美金属制品有限公司 A kind of energy-saving and environment-friendly cooling water preparation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914587A (en) * 1995-06-23 1997-01-17 Chubu Electric Power Co Inc Fuel lng vaporizing device for natural gas burning gas turbine combined cycle electric power plant
JP2002340296A (en) * 2001-05-16 2002-11-27 Sumitomo Precision Prod Co Ltd Liquefied gas vaporizing and heating device
JP2006506584A (en) * 2002-11-14 2006-02-23 ダブリュー アイヤーマン、ヴォルカー System and method for vaporizing liquefied natural gas
US20120090324A1 (en) * 2005-05-19 2012-04-19 Black and Veatch Corporation. Air vaporizor
JP2007040286A (en) * 2005-07-30 2007-02-15 Yoshihide Nakamura Gas turbine plant
JP2015010683A (en) * 2013-07-01 2015-01-19 株式会社神戸製鋼所 Gas vaporizer with cold heat recovery function and cold heat recovery device
JP2018119511A (en) * 2017-01-27 2018-08-02 株式会社神戸製鋼所 Natural gas burning combined cycle power generation system and natural gas burning combined cycle power generation method

Also Published As

Publication number Publication date
CN114026358B (en) 2023-05-16
KR20220004217A (en) 2022-01-11
CN114026358A (en) 2022-02-08
TW202117225A (en) 2021-05-01
JP6767546B1 (en) 2020-10-14
KR102522339B1 (en) 2023-04-18
WO2021002231A1 (en) 2021-01-07
TWI792015B (en) 2023-02-11

Similar Documents

Publication Publication Date Title
JP6198452B2 (en) Intermediate medium vaporizer
JP5409440B2 (en) Refrigeration refrigerant manufacturing method using intermediate medium vaporizer and refrigeration refrigerant supply facility
JP6779146B2 (en) Natural gas-fired combined cycle power generation system and natural gas-fired combined cycle power generation method
JPH10288047A (en) Liquefied natural gas evaporating power generating device
WO2021002231A1 (en) Liquefied natural gas vaporizer and cold water supply method
JP5580225B2 (en) Vacuum water heater
JP2014508899A5 (en)
JP2007247797A (en) Lng vaporizer
TWI781329B (en) Reverse osmosis treatment method and system
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JP6092065B2 (en) Liquefied gas vaporization system and liquefied gas vaporization method
JP6666703B2 (en) Heat exchanger
JP6407744B2 (en) Liquefied gas vaporizer and liquefied gas vaporization system
JP6913808B2 (en) Natural gas-fired combined cycle power generation method
JP2021021433A (en) Liquefied gas vaporizer
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
JP5653861B2 (en) Water heater
JP5580224B2 (en) Vacuum water heater
JP7011516B2 (en) Liquefied natural gas vaporization system
JPH09151707A (en) Cryogenic power generating device using liquid natural gas
Nikitin et al. Steam condensing–liquid CO2 boiling heat transfer in a steam condenser for a new heat recovery system
JPH08200017A (en) Rankine cycle of thermal power plant
JP2007107733A (en) Cold recovering device
JP2021536548A (en) Assembly that evaporates liquefied gas to provide combustion gas to the engine
JP2020003019A (en) Vaporizer of low temperature liquefied fuel gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R150 Certificate of patent or registration of utility model

Ref document number: 6767546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150