JP2021005816A - Planar array antenna shared between transmission and reception - Google Patents

Planar array antenna shared between transmission and reception Download PDF

Info

Publication number
JP2021005816A
JP2021005816A JP2019119375A JP2019119375A JP2021005816A JP 2021005816 A JP2021005816 A JP 2021005816A JP 2019119375 A JP2019119375 A JP 2019119375A JP 2019119375 A JP2019119375 A JP 2019119375A JP 2021005816 A JP2021005816 A JP 2021005816A
Authority
JP
Japan
Prior art keywords
feeding
transmission
inter
substrate
patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019119375A
Other languages
Japanese (ja)
Other versions
JP7292800B2 (en
Inventor
智文 須賀
Tomofumi Suga
智文 須賀
啓一 夏原
Keiichi Natsuhara
啓一 夏原
崇徳 野呂
Takanori Noro
崇徳 野呂
石田 克義
Katsuyoshi Ishida
克義 石田
貴容美 大川
Kiyomi Okawa
貴容美 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2019119375A priority Critical patent/JP7292800B2/en
Publication of JP2021005816A publication Critical patent/JP2021005816A/en
Application granted granted Critical
Publication of JP7292800B2 publication Critical patent/JP7292800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

To provide a planar array antenna shared between transmission and reception that can reduce a grating lobe without increasing the thickness and weight to improve a front gain.SOLUTION: An inter-element non-feeding element substrate 62 in which inter-element non-feeding patches 62b which are non-feeding elements extending in an excitation direction of transmission patches 42b of an upper layer feeding element substrate 42 are respectively arranged between the transmission patch 42b and the transmission patch 42b is stacked on the upper side of the upper layer feeding element substrate 42, and the dimension of the inter-element non-feeding patches 62b and the height of the inter-element non-feeding element substrate 62 with respect to the upper layer feeding element substrate 42 are set so that the grating lobe generated in the upper layer feeding element substrate 42 is canceled by the grating lobe generated in the inter-element non-feeding element substrate 62.SELECTED DRAWING: Figure 1

Description

本発明は、互いに直交する2つの偏波信号を送受信可能な送受共用平面アレーアンテナに関する。 The present invention relates to a transmission / reception shared plane array antenna capable of transmitting and receiving two polarization signals orthogonal to each other.

マイクロ波帯の衛星通信では、受信チャンネルごとに垂直偏波、水平偏波の切り替えが必要となるため、1つのアンテナで直交する2つの偏波(垂直偏波、水平偏波)に対応可能な送受共用平面アレーアンテナが用いられている。従来の送受共用平面アレーアンテナは、図7に示すように、下層から順に、グランド板101、誘電体102、下層給電素子基板103、誘電体104、下層スロット板105、誘電体106、上層給電素子基板107、誘電体108および上層スロット板109が積層されている。 In microwave band satellite communication, it is necessary to switch between vertically polarized light and horizontally polarized light for each receiving channel, so one antenna can handle two orthogonally polarized waves (vertically polarized light and horizontally polarized light). A common plane array antenna for transmission and reception is used. As shown in FIG. 7, the conventional transmission / reception shared plane array antenna has a ground plate 101, a dielectric 102, a lower layer feeding element substrate 103, a dielectric 104, a lower layer slot plate 105, a dielectric 106, and an upper layer feeding element in this order from the lower layer. The substrate 107, the dielectric 108, and the upper slot plate 109 are laminated.

下層給電素子基板103は、絶縁性を有する下層給電基板103aに、導電箔からなる矩形の下層給電素子103bがマトリクス状に配列されている。同様に、上層給電素子基板107は、絶縁性を有する上層給電基板107aに、導電箔からなる矩形の上層給電素子107bが、下層給電素子103bと同位置に配列されている。 In the lower layer feeding element substrate 103, rectangular lower layer feeding elements 103b made of a conductive foil are arranged in a matrix on the lower layer feeding substrate 103a having an insulating property. Similarly, in the upper layer feeding element substrate 107, a rectangular upper layer feeding element 107b made of a conductive foil is arranged at the same position as the lower layer feeding element 103b on the upper layer feeding substrate 107a having an insulating property.

給電素子のサイズは、送受信する偏波信号の周波数帯域に応じて決まり、周波数帯域が低いほど給電素子のサイズは大きくなる。このため、送信される偏波信号と受信される偏波信号との周波数帯域が大きく離れている場合、例えば、下層給電素子103bと上層給電素子107bのサイズに差が生じてしまい、サイズの大きな給電素子に合わせて配列間隔が決まってしまう。従って、サイズの小さな給電素子では、その励振方向における配列間隔が偏波信号の波長λに対して必要以上に大きくなり、グレーティングローブが発生してしまう。この結果、グレーティングローブにエネルギーが奪われて正面利得が低下する、という問題があった。 The size of the feeding element is determined according to the frequency band of the polarization signal to be transmitted and received, and the lower the frequency band, the larger the size of the feeding element. Therefore, when the frequency bands of the transmitted polarization signal and the received polarization signal are far apart, for example, there is a difference in size between the lower layer feeding element 103b and the upper layer feeding element 107b, and the size is large. The arrangement interval is determined according to the feeding element. Therefore, in a power feeding element having a small size, the arrangement interval in the excitation direction becomes larger than necessary with respect to the wavelength λ of the polarization signal, and a grating lobe is generated. As a result, there is a problem that energy is taken away by the grating lobe and the front gain is lowered.

一方、各送受共用平面アンテナ素子に対して金属製のフレア(ホーン)を設けることにより、グレーティングローブのレベルを軽減させる、という技術が知られている(例えば、特許文献1参照)。 On the other hand, there is known a technique of reducing the level of the grating lobe by providing a metal flare (horn) for each transmission / reception flat antenna element (see, for example, Patent Document 1).

特開2012−175680号公報Japanese Unexamined Patent Publication No. 2012-175680

しかしながら、特許文献1の技術では、送受共用平面アレーアンテナが大幅に厚くなり、重量も増加してしまうという問題があった。 However, the technique of Patent Document 1 has a problem that the transmission / reception shared plane array antenna becomes significantly thicker and the weight also increases.

そこで本発明は、厚みや重量を増加させずにグレーティングローブを軽減して、正面利得を向上可能な送受共用平面アレーアンテナを提供することを目的とする。 Therefore, an object of the present invention is to provide a transmission / reception shared plane array antenna capable of improving frontal gain by reducing the grating lobe without increasing the thickness and weight.

上記課題を解決するために、請求項1に記載の発明は、偏波信号を送信するための複数の給電素子がマトリクス状に配列された送信基板と、偏波信号を受信するための複数の給電素子が前記送信基板の給電素子と同位置に配列された受信基板と、を備え、前記送信基板の下側に前記受信基板が積層され、互いに直交する2つの偏波信号を送受信する送受共用平面アレーアンテナであって、前記送信基板の給電素子の励振方向に延びる無給電素子である素子間無給電素子が、前記給電素子と前記給電素子との間にそれぞれ配列された素子間無給電素子基板が、前記送信基板の上側に積層され、前記送信基板で発生するグレーティングローブを、前記素子間無給電素子基板で発生するグレーティングローブで打ち消すように、前記素子間無給電素子の寸法および前記送信基板に対する前記素子間無給電素子基板の高さが設定されている、ことを特徴とする。 In order to solve the above problems, the invention according to claim 1 comprises a transmission board in which a plurality of feeding elements for transmitting a polarization signal are arranged in a matrix, and a plurality of transmission boards for receiving the polarization signal. A receiving board in which the feeding element is arranged at the same position as the feeding element of the transmitting board is provided, the receiving board is laminated under the transmitting board, and two polarization signals orthogonal to each other are transmitted and received. An inter-element power feeding element, which is a flat array antenna and is a non-feeding element extending in the excitation direction of the feeding element of the transmitting board, is arranged between the feeding element and the feeding element. The dimensions of the inter-element power supply element and the transmission so that the substrate is laminated on the upper side of the transmission board and the grating lobe generated on the transmission board is canceled by the grating lobe generated on the inter-element power supply non-feeding element substrate. The height of the inter-element non-feeding element substrate with respect to the substrate is set.

請求項1に記載の発明によれば、給電素子と給電素子との間にそれぞれ素子間無給電素子が配列され、素子間無給電素子の配列間隔が給電素子の配列間隔と同じなため、送信基板と素子間無給電素子基板で発生するグレーティングローブが同じ角度方向になる。そして、送信基板で発生するグレーティングローブを、素子間無給電素子基板で発生するグレーティングローブで打ち消すように、素子間無給電素子の寸法および送信基板に対する素子間無給電素子基板の高さが設定されているため、グレーティングローブを軽減して正面利得を向上させることが可能となる。また、素子間無給電素子が配列された素子間無給電素子基板が積層されているだけであるため、厚みや重量を大きく増加させることがない。 According to the invention of claim 1, since the inter-element power feeding non-feeding elements are arranged between the feeding elements and the inter-element feeding non-feeding elements, the arrangement interval of the inter-element feeding non-feeding elements is the same as the arrangement spacing of the feeding elements. No power supply between the substrate and the element The grating lobes generated in the element substrate are in the same angular direction. Then, the dimensions of the inter-element non-feeding element and the height of the inter-element non-feeding element substrate with respect to the transmitting substrate are set so that the grating lobe generated on the transmission board is canceled by the grating lobe generated on the inter-element non-feeding element substrate. Therefore, it is possible to reduce the grating lobe and improve the frontal gain. Further, since the element-to-element non-feeding element substrates in which the inter-element feeding elements are arranged are merely laminated, the thickness and weight are not significantly increased.

この発明の実施の形態に係る送受共用平面アレーアンテナの積層構造を示す分解斜視図である。It is an exploded perspective view which shows the laminated structure of the transmission / reception common plane array antenna which concerns on embodiment of this invention. 図1の送受共用平面アレーアンテナの偏波面を示す図(a)と、観測方向の角度を示す説明図(b)である。It is a figure (a) which shows the polarization plane of the transmission / reception common plane array antenna of FIG. 1, and the explanatory view (b) which shows an angle of an observation direction. 図1の送受共用平面アレーアンテナの送信パッチと素子間無給電パッチとの位置関係を示す図である。It is a figure which shows the positional relationship between the transmission patch of the transmission / reception common plane array antenna of FIG. 1 and the feeding patch between elements. 図1の送受共用平面アレーアンテナと対比する送受共用平面アレーアンテナとの送信指向性を示す図であり、(a)はZ軸の周辺角域の送信指向性を示し、(b)は広角域の送信指向性を示す。It is a figure which shows the transmission directivity of the transmission / reception common plane array antenna which contrasts with the transmission / reception common plane array antenna of FIG. 1, (a) shows the transmission directivity of the peripheral angle region of a Z axis, (b) is a wide angle region. Indicates the transmission directivity of. 図1の送受共用平面アレーアンテナと対比する送受共用平面アレーアンテナにおける、正面利得と開口効率を示す図である。It is a figure which shows the front surface gain and the aperture efficiency in the transmission / reception common plane array antenna which contrasts with the transmission / reception common plane array antenna of FIG. 図1の送受共用平面アレーアンテナと対比する送受共用平面アレーアンテナにおける、周波数に対する正面利得を示す図である。It is a figure which shows the frontal gain with respect to the frequency in the transmission / reception common plane array antenna which contrasts with the transmission / reception common plane array antenna of FIG. 従来の送受共用平面アレーアンテナの積層構造を示す分解斜視図である。It is an exploded perspective view which shows the laminated structure of the conventional transmission / reception common plane array antenna.

以下、この発明を図示の実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiment.

図1〜図6は、この発明の実施の形態を示し、図1は、この実施の形態に係る送受共用平面アレーアンテナ(以下、「本アレーアンテナ」という)1の積層構造を示す分解斜視図である。本アレーアンテナ1は、マイクロ波帯の衛星通信において、互いに直交する2つの偏波信号(水平偏波および垂直偏波)を送受信するアレーアンテナであり、図2(a)に示すように、矩形板状のアンテナ本体11の平面上に、互いに直交するX軸及びY軸に沿って、マトリクス状に多数のアンテナ素子(後述する受信パッチ26bや送信パッチ42bなど)が配列されている。 1 to 6 show an embodiment of the present invention, and FIG. 1 is an exploded perspective view showing a laminated structure of a transmission / reception shared plane array antenna (hereinafter, referred to as “the present array antenna”) 1 according to the present embodiment. Is. The array antenna 1 is an array antenna that transmits and receives two polarization signals (horizontal polarization and vertical polarization) that are orthogonal to each other in microwave band satellite communication, and is rectangular as shown in FIG. 2A. A large number of antenna elements (reception patch 26b, transmission patch 42b, etc., which will be described later) are arranged in a matrix along the X-axis and Y-axis orthogonal to each other on the plane of the plate-shaped antenna main body 11.

本アレーアンテナ1は、偏波信号を送受信する観測面の方向(観測面角度)をX軸に対してφ=0°としたとき、送信偏波面がφ=45°、受信偏波面がφ=135°となっている。図2(b)は、X軸およびY軸と、これらに直交するZ軸(図2(a)の紙面奥行方向)における衛星の観測方向を示しており、この観測方向をXY平面上に投影した投影線とX軸とがなす角度が観測面角度φとなり、観測方向とZ軸とがなす角度が観測角度θとなる。 In this array antenna 1, when the direction of the observation plane for transmitting and receiving polarization signals (observation plane angle) is φ = 0 ° with respect to the X axis, the transmission polarization plane is φ = 45 ° and the reception polarization plane is φ =. It is 135 °. FIG. 2B shows the observation directions of the satellite on the X-axis and the Y-axis and the Z-axis orthogonal to them (the paper depth direction of FIG. 2A), and this observation direction is projected on the XY plane. The angle formed by the projected line and the X-axis is the observation plane angle φ, and the angle formed by the observation direction and the Z-axis is the observation angle θ.

本アレーアンテナ1は、偏波信号を送信するための複数の送信パッチ(給電素子)42bがマトリクス状に配列された上層給電素子基板(送信基板)42と、偏波信号を受信するための複数の受信パッチ(給電素子)26bが送信パッチ42bと同位置に配列された下層給電素子基板(受信基板)26とを備え、具体的には、下層から順に、第1の積層部2、第2の積層部3、第3の積層部4、第4の積層部5、第5の積層部6、第6の積層部7および第7の積層部8が積層されている。 The array antenna 1 includes an upper layer feeding element substrate (transmission substrate) 42 in which a plurality of transmission patches (feeding elements) 42b for transmitting a polarization signal are arranged in a matrix, and a plurality of transmission patches (feeding elements) 42 for receiving the polarization signal. The receiving patch (feeding element) 26b of the above is provided with a lower layer feeding element substrate (receiving board) 26 arranged at the same position as the transmitting patch 42b. Specifically, the first laminated portion 2 and the second are in order from the lower layer. The laminated portion 3, the third laminated portion 4, the fourth laminated portion 5, the fifth laminated portion 6, the sixth laminated portion 7, and the seventh laminated portion 8 are laminated.

第1の積層部2は、下層から順に、下カバー21、ベース板22、発泡シート(誘電体)23、グランド板24、発泡シート25および下層給電素子基板26が積層されている。発泡シート23、25は、発泡ポリエチレンや発泡ポリプロピレンのシート材で、後述する他の発泡シートについても同様である。また、グランド板24は、シールド用の遮蔽板で導電性を有する薄板、例えばアルミニウム板で構成され、後述する下層スロット板32および上層スロット板52も同様である。 In the first laminated portion 2, the lower cover 21, the base plate 22, the foamed sheet (dielectric) 23, the ground plate 24, the foamed sheet 25, and the lower layer feeding element substrate 26 are laminated in this order from the lower layer. The foamed sheets 23 and 25 are sheet materials of polyethylene foam or polypropylene foam, and the same applies to other foamed sheets described later. Further, the ground plate 24 is a shielding plate for shielding and is made of a thin plate having conductivity, for example, an aluminum plate, and the same applies to the lower layer slot plate 32 and the upper layer slot plate 52 described later.

下層給電素子基板26は、偏波信号を受信するための受信パッチ26bがマトリクス状に配列された基板である。すなわち、フレキシブル基板などの絶縁性を有する薄い下層給電基板26aと、下層給電基板26a上に所定間隔で配列された複数の矩形の受信パッチ26bと、この受信パッチ26bに給電を行う下層給電線路26cとを備える。受信パッチ26bおよび下層給電線路26cは、銅、アルミニウム、金などの導電箔によって形成されている。また、下層給電線路26cは、所定の方向に沿って延び、下層給電基板26a上で共通の給電幹線に接続されている。 The lower layer feeding element substrate 26 is a substrate in which reception patches 26b for receiving polarization signals are arranged in a matrix. That is, a thin lower layer feeding board 26a having an insulating property such as a flexible substrate, a plurality of rectangular receiving patches 26b arranged at predetermined intervals on the lower layer feeding board 26a, and a lower layer feeding line 26c that supplies power to the receiving patches 26b. And. The receiving patch 26b and the lower layer feeding line 26c are formed of a conductive foil such as copper, aluminum, or gold. Further, the lower layer feeding line 26c extends along a predetermined direction and is connected to a common feeding trunk line on the lower layer feeding board 26a.

第2の積層部3は、下層から順に、発泡シート31および下層スロット板32が積層されている。下層スロット板32は、各受信パッチ26bに対面する位置に、矩形のスロット開口32aが設けられている。また、このスロット開口32aには、対角線方向を横切るブリッジ部32bが設けられている。このブリッジ部32bは、後述する送信パッチ42bの励振方向と平行に設けられており、送信パッチ42bの給電時には、励振に対し強い影響を及ぼして、指向性などのアンテナ特性を改善する。また、受信パッチ26bの励振方向と直交し、しかも、その幅が受信パッチ26bに比べて十分狭いため、その影響は殆どなく、他のアンテナ特性を劣化させることはない。 In the second laminated portion 3, the foam sheet 31 and the lower layer slot plate 32 are laminated in this order from the lower layer. The lower layer slot plate 32 is provided with a rectangular slot opening 32a at a position facing each receiving patch 26b. Further, the slot opening 32a is provided with a bridge portion 32b that crosses the diagonal direction. The bridge portion 32b is provided in parallel with the excitation direction of the transmission patch 42b, which will be described later, and when the transmission patch 42b is fed, it exerts a strong influence on the excitation and improves antenna characteristics such as directivity. Further, since it is orthogonal to the excitation direction of the reception patch 26b and its width is sufficiently narrower than that of the reception patch 26b, there is almost no effect thereof and other antenna characteristics are not deteriorated.

第3の積層部4は、下層から順に、発泡シート41および上層給電素子基板42が積層されている。上層給電素子基板42は、偏波信号を送信するための送信パッチ42bがマトリクス状に配列された基板である。すなわち、フレキシブル基板などの絶縁性を有する薄い上層給電基板42aと、受信パッチ26bと同位置に上層給電基板42a上に配列された複数の矩形の送信パッチ42bと、この送信パッチ42bに給電を行う上層給電線路42cとを備える。送信パッチ42bおよび上層給電線路42cは、受信パッチ26bなどと同様の導電箔によって形成されている。また、上層給電線路42cは、所定の方向(下層給電線路26cに直交する方向)に沿って延び、上層給電基板42a上で共通の給電幹線に接続されている。 In the third laminated portion 4, the foam sheet 41 and the upper layer feeding element substrate 42 are laminated in this order from the lower layer. The upper layer feeding element substrate 42 is a substrate in which transmission patches 42b for transmitting polarization signals are arranged in a matrix. That is, a thin upper layer feeding board 42a having an insulating property such as a flexible substrate, a plurality of rectangular transmission patches 42b arranged on the upper layer feeding board 42a at the same positions as the receiving patch 26b, and the transmitting patch 42b are fed. It is provided with an upper layer feeding line 42c. The transmission patch 42b and the upper layer feeding line 42c are formed of the same conductive foil as the reception patch 26b and the like. Further, the upper layer feeding line 42c extends along a predetermined direction (direction orthogonal to the lower layer feeding line 26c) and is connected to a common feeding trunk line on the upper layer feeding board 42a.

ここで、下層給電素子基板26が上層給電素子基板42よりも低い周波数帯域の偏波信号を受信する場合、受信パッチ26bのサイズは、送信パッチ42bよりも大きく設定されている。 Here, when the lower layer feeding element substrate 26 receives a polarization signal in a frequency band lower than that of the upper layer feeding element substrate 42, the size of the receiving patch 26b is set to be larger than that of the transmitting patch 42b.

第4の積層部5は、下層から順に、発泡シート51および上層スロット板52が積層されている。上層スロット板52は、送信パッチ42bに対面する位置に、矩形のスロット開口52aが設けられている。 In the fourth laminated portion 5, the foam sheet 51 and the upper layer slot plate 52 are laminated in order from the lower layer. The upper layer slot plate 52 is provided with a rectangular slot opening 52a at a position facing the transmission patch 42b.

第5の積層部6は、下層から順に、発泡シート61および素子間無給電素子基板62が積層されている。素子間無給電素子基板62は、素子間無給電パッチ(素子間無給電素子)62bがマトリクス状に配列された基板であり、フレキシブル基板などの絶縁性を有する薄い下層絶縁基板62aに、細長い長方形状で導電箔の複数の素子間無給電パッチ62bが配列されている。 In the fifth laminated portion 6, the foam sheet 61 and the inter-element feeding element substrate 62 are laminated in this order from the lower layer. The inter-element non-feeding element substrate 62 is a substrate in which inter-element non-feeding patches (inter-element non-feeding elements) 62b are arranged in a matrix, and is an elongated rectangular shape on a thin lower layer insulating substrate 62a having insulation properties such as a flexible substrate. A plurality of element-to-element non-feeding patches 62b of conductive foil are arranged in a shape.

この素子間無給電パッチ62bは、図3に示すように、送信パッチ42bの励振方向つまり給電方向に延びる無給電素子であり、複数の素子間無給電パッチ62bがそれぞれ均等に、送信パッチ42bと送信パッチ42bとの間に配列されている。このため、素子間無給電パッチ62bの配列間隔が、送信パッチ42bおよび受信パッチ26bの配列間隔と同寸法となり、上層給電素子基板42と素子間無給電素子基板62で発生するグレーティングローブが同じ角度方向になる。 As shown in FIG. 3, the inter-element non-feeding patch 62b is a non-feeding element extending in the excitation direction of the transmission patch 42b, that is, the feeding direction, and the plurality of inter-element non-feeding patches 62b are evenly distributed with the transmission patch 42b. It is arranged between the transmission patch 42b and the transmission patch 42b. Therefore, the arrangement spacing of the inter-element non-feeding patch 62b is the same as the arrangement spacing of the transmission patch 42b and the reception patch 26b, and the grating lobes generated between the upper layer feeding element substrate 42 and the inter-element non-feeding element substrate 62 have the same angle. Become a direction.

さらに、上層給電素子基板42で発生するグレーティングローブを、素子間無給電素子基板62で発生するグレーティングローブで打ち消すように、素子間無給電パッチ62bの寸法および上層給電素子基板42に対する素子間無給電素子基板62の高さが設定されている。すなわち、素子間無給電パッチ62bの長手方向(送信パッチ42bの励振方向)の寸法を調整することで、グレーティングローブの振幅が変わる。また、上層スロット板52からの素子間無給電素子基板62の高さ位置を調整することで、グレーティングローブの位相が変わる。このため、送信パッチ42bによるグレーティングローブと同程度の振幅であって、逆位相のグレーティングローブが素子間無給電パッチ62bで発生するように、素子間無給電パッチ62bの長手方向の寸法と、発泡シート61の厚みが調整、設定されている。 Further, the dimensions of the inter-element power feeding patch 62b and the inter-element non-feeding to the upper layer feeding element substrate 42 are canceled so that the grating lobe generated in the upper layer feeding element substrate 42 is canceled by the grating lobe generated in the inter-element non-feeding element substrate 62. The height of the element substrate 62 is set. That is, the amplitude of the grating lobe changes by adjusting the dimensions of the inter-element feeding patch 62b in the longitudinal direction (excitation direction of the transmission patch 42b). Further, the phase of the grating lobe is changed by adjusting the height position of the inter-element non-feeding element substrate 62 from the upper layer slot plate 52. Therefore, the longitudinal dimension and foaming of the inter-element non-feeding patch 62b so that the grating lobe having the same amplitude as that of the transmission patch 42b and having the opposite phase is generated in the inter-element non-feeding patch 62b. The thickness of the sheet 61 is adjusted and set.

第6の積層部7は、下層から順に、発泡シート71および上層無給電素子基板72が積層されている。上層無給電素子基板72は、無給電パッチ(無給電素子)72bがマトリクス状に配列された基板であり、フレキシブル基板などの絶縁性を有する薄い上層絶縁基板72aに、矩形で導電箔の複数の無給電パッチ72bが送信パッチ42bと同位置に配列されている。この上層無給電素子基板72は、その下層の発泡シート71によって、送信用の上層給電素子基板42の指向性に影響を及ぼす高さ位置に設置されており、上層給電素子基板42のビーム幅を狭くして正面利得を向上させる。 In the sixth laminated portion 7, the foam sheet 71 and the upper layer non-feeding element substrate 72 are laminated in this order from the lower layer. The upper layer non-feeding element substrate 72 is a substrate in which non-feeding patches (non-feeding elements) 72b are arranged in a matrix, and a plurality of rectangular conductive foils are formed on a thin upper insulating substrate 72a having insulation properties such as a flexible substrate. The non-feeding patch 72b is arranged at the same position as the transmission patch 42b. The upper layer non-feeding element substrate 72 is installed at a height position that affects the directivity of the upper layer feeding element substrate 42 for transmission by the foam sheet 71 of the lower layer thereof, and the beam width of the upper layer feeding element substrate 42 is adjusted. Narrow it to improve frontal gain.

第7の積層部8は、下層から順に、発泡シート81、中カバー82、発泡シート83、および上カバー84が積層されている。このように、受信パッチ26b、スロット開口32a、送信パッチ42b、スロット開口52aおよび無給電パッチ72bが同位置に配列され、これらの間に素子間無給電パッチ62bが配列されている。 In the seventh laminated portion 8, the foam sheet 81, the inner cover 82, the foam sheet 83, and the upper cover 84 are laminated in this order from the lower layer. In this way, the reception patch 26b, the slot opening 32a, the transmission patch 42b, the slot opening 52a, and the non-feeding patch 72b are arranged at the same position, and the inter-element non-feeding patch 62b is arranged between them.

このような構成の本アレーアンテナ1によれば、上記のように、送信パッチ42bと送信パッチ42bとの間にそれぞれ素子間無給電パッチ62bが配列され、素子間無給電パッチ62bの配列間隔が送信パッチ42bの配列間隔と同じなため、上層給電素子基板42と素子間無給電素子基板62で発生するグレーティングローブが同じ角度方向になる。そして、上層給電素子基板42で発生するグレーティングローブを、素子間無給電素子基板62で発生するグレーティングローブで打ち消すように、素子間無給電パッチ62bの寸法および上層給電素子基板42に対する素子間無給電素子基板62の高さが設定されているため、グレーティングローブを軽減して正面利得を向上させることが可能となる。また、素子間無給電パッチ62bが配列された素子間無給電素子基板62が積層されているだけであるため、厚みや重量を大きく増加させることがない。 According to the present array antenna 1 having such a configuration, as described above, the inter-element non-feeding patch 62b is arranged between the transmission patch 42b and the transmission patch 42b, respectively, and the inter-element non-feeding patch 62b is arranged at intervals. Since the arrangement interval is the same as that of the transmission patch 42b, the grating lobes generated between the upper layer feeding element substrate 42 and the inter-element non-feeding element substrate 62 are in the same angular direction. Then, the dimensions of the inter-element non-feeding patch 62b and the inter-element non-feeding to the upper layer feeding element substrate 42 are canceled so that the grating lobe generated in the upper layer feeding element substrate 42 is canceled by the grating lobe generated in the inter-element non-feeding element substrate 62. Since the height of the element substrate 62 is set, it is possible to reduce the grating lobe and improve the frontal gain. Further, since the inter-element non-feeding element substrate 62 in which the inter-element non-feeding patch 62b is arranged is merely laminated, the thickness and weight are not significantly increased.

図4は、第6の積層部7を備えるが第5の積層部6を備えない送受共用平面アレーアンテナ(以下、「対比アレーアンテナ」という)と、本アレーアンテナ1との送信指向性を示す図である。この図は、観測面角度φ=0°とするXZ平面において、Z軸を中心(正面)とする送信指向性を示し、(a)は、Z軸の周辺角域(−10度〜+10度)の送信指向性を示し、(b)は、広角域(−90度〜+90度)の送信指向性を示す。この図から、対比アレーアンテナに比べて本アレーアンテナ1の方が、グレーティングローブが軽減されていることが確認できる。 FIG. 4 shows the transmission directivity between the transmission / reception shared plane array antenna (hereinafter referred to as “contrast array antenna”) including the sixth laminated portion 7 but not the fifth laminated portion 6 and the present array antenna 1. It is a figure. This figure shows the transmission directivity centered on the Z axis (front) in the XZ plane where the observation plane angle φ = 0 °, and (a) shows the peripheral angular region (-10 degrees to +10 degrees) of the Z axis. ) Indicates the transmission directivity, and (b) indicates the transmission directivity in the wide angle range (-90 degrees to +90 degrees). From this figure, it can be confirmed that the grating lobe is reduced in the present array antenna 1 as compared with the contrast array antenna.

また、図5は、対比アレーアンテナと本アレーアンテナ1における、正面利得と開口効率を示す図であり、図6は、対比アレーアンテナと本アレーアンテナ1における、周波数に対する正面利得を示す図である。ここで、図6中符号Fcは、使用する中心周波数を示し、図5は、中心周波数Fcにおける正面利得と開口効率を示す。この図から、対比アレーアンテナに比べて本アレーアンテナ1の方が、中心周波数Fcを中心とする周波数帯域において、正面利得が高いことが確認できる。 Further, FIG. 5 is a diagram showing the frontal gain and the aperture efficiency of the contrasting array antenna and the main array antenna 1, and FIG. 6 is a diagram showing the frontal gain with respect to the frequency of the contrasting array antenna and the main array antenna 1. .. Here, reference numeral Fc in FIG. 6 indicates the center frequency to be used, and FIG. 5 indicates the frontal gain and aperture efficiency at the center frequency Fc. From this figure, it can be confirmed that the present array antenna 1 has a higher frontal gain in the frequency band centered on the center frequency Fc than the contrast array antenna 1.

ところで、素子間無給電素子基板62を備えずに上層無給電素子基板72を複数枚積層する場合、送信のマッチングが大きくずれてしまい、Sパラメータや指向性が大きく変化してしまう。また、無給電パッチ72bの寸法や高さによっては、他の特性に影響を与えるおそれがある。これに対して、本アレーアンテナ1では、上記のような素子間無給電素子基板62を備えるため、他の特性に影響を与えることなく、グレーティングローブが軽減して正面利得が向上する、という利点を有する。 By the way, when a plurality of upper layer non-feeding element substrates 72 are laminated without providing the inter-element non-feeding element substrate 62, the transmission matching is greatly deviated, and the S parameter and the directivity are greatly changed. Further, depending on the size and height of the non-feeding patch 72b, other characteristics may be affected. On the other hand, since the array antenna 1 is provided with the inter-element feeding element substrate 62 as described above, it has an advantage that the grating lobe is reduced and the front gain is improved without affecting other characteristics. Has.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、素子間無給電素子基板62を1枚だけ設けているが、複数枚の素子間無給電素子基板62を積層してもよい。また、メアンダーラインポラライザなどで構成された円偏波変換器を積層した円偏波共用平面アンテナに、本発明を適用してもよい。また、素子間無給電素子基板62における素子間無給電パッチ62bの導電箔の形状は長方形に限らず、菱形等変更してもよい。 Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above-described embodiment, and even if there is a design change or the like within a range that does not deviate from the gist of the present invention. Included in the invention. For example, in the above-described embodiment, only one inter-element non-feeding element substrate 62 is provided, but a plurality of inter-element non-feeding element substrates 62 may be laminated. Further, the present invention may be applied to a circularly polarized light shared plane antenna in which circularly polarized light converters composed of a meander line polarizer or the like are stacked. Further, the shape of the conductive foil of the inter-element non-feeding patch 62b on the inter-element non-feeding element substrate 62 is not limited to a rectangle, and may be changed such as a rhombus.

1 送受共用平面アレーアンテナ
26 下層給電素子基板(受信基板)
26b 受信パッチ(給電素子)
32 下層スロット板
42 上層給電素子基板(送信基板)
42b 送信パッチ(給電素子)
52 上層スロット板
62 素子間無給電素子基板
62b 素子間無給電パッチ(素子間無給電素子)
72 上層無給電素子基板
72b 無給電パッチ(無給電素子)
1 Transmission / reception shared plane array antenna 26 Lower layer power feeding element board (reception board)
26b Reception patch (feeding element)
32 Lower layer slot board 42 Upper layer power feeding element board (transmission board)
42b transmission patch (feeding element)
52 Upper layer slot plate 62 Passive repeater board between elements 62b Passive patch between elements (passive element between elements)
72 Upper layer non-feeding element substrate 72b Passive patch (non-feeding element)

Claims (1)

偏波信号を送信するための複数の給電素子がマトリクス状に配列された送信基板と、偏波信号を受信するための複数の給電素子が前記送信基板の給電素子と同位置に配列された受信基板と、を備え、前記送信基板の下側に前記受信基板が積層され、互いに直交する2つの偏波信号を送受信する送受共用平面アレーアンテナであって、
前記送信基板の給電素子の励振方向に延びる無給電素子である素子間無給電素子が、前記給電素子と前記給電素子との間にそれぞれ配列された素子間無給電素子基板が、前記送信基板の上側に積層され、
前記送信基板で発生するグレーティングローブを、前記素子間無給電素子基板で発生するグレーティングローブで打ち消すように、前記素子間無給電素子の寸法および前記送信基板に対する前記素子間無給電素子基板の高さが設定されている、
ことを特徴とする送受共用平面アレーアンテナ。
A transmission board in which a plurality of feeding elements for transmitting a polarization signal are arranged in a matrix, and a reception in which a plurality of feeding elements for receiving a polarization signal are arranged at the same positions as the feeding elements of the transmission board. A transmission / reception shared plane array antenna comprising a substrate and having the reception substrate laminated under the transmission board to transmit and receive two polarization signals orthogonal to each other.
The inter-element non-feeding element, which is a non-feeding element extending in the excitation direction of the feeding element of the transmitting board, is arranged between the feeding element and the feeding element, respectively. Laminated on the upper side,
The dimensions of the inter-element non-feeding element and the height of the inter-element non-feeding element substrate with respect to the inter-element feeding substrate so that the grating lobe generated in the transmitting substrate is canceled by the grating lobe generated in the inter-element non-feeding element substrate. Is set,
A flat array antenna for both transmission and reception, which is characterized by this.
JP2019119375A 2019-06-27 2019-06-27 Planar array antenna for both transmission and reception Active JP7292800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119375A JP7292800B2 (en) 2019-06-27 2019-06-27 Planar array antenna for both transmission and reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119375A JP7292800B2 (en) 2019-06-27 2019-06-27 Planar array antenna for both transmission and reception

Publications (2)

Publication Number Publication Date
JP2021005816A true JP2021005816A (en) 2021-01-14
JP7292800B2 JP7292800B2 (en) 2023-06-19

Family

ID=74099472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119375A Active JP7292800B2 (en) 2019-06-27 2019-06-27 Planar array antenna for both transmission and reception

Country Status (1)

Country Link
JP (1) JP7292800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7016191B1 (en) 2021-05-18 2022-02-04 Rfルーカス株式会社 Antenna device and traffic gate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267930A (en) * 1992-03-17 1993-10-15 Hitachi Chem Co Ltd Vertical/horizontal polarized wave shared plane antenna
US5576718A (en) * 1992-05-05 1996-11-19 Aerospatiale Societe Nationale Industrielle Thin broadband microstrip array antenna having active and parasitic patches
JP2001244727A (en) * 2000-03-02 2001-09-07 Nippon Dengyo Kosaku Co Ltd Microstrip antenna
JP2002158534A (en) * 2000-11-17 2002-05-31 Ntt Docomo Inc Patch antenna
WO2017150054A1 (en) * 2016-03-04 2017-09-08 株式会社村田製作所 Array antenna
JP2019012970A (en) * 2017-06-30 2019-01-24 日本無線株式会社 Transmission/reception shared planar antenna element and transmission/reception shared planar array antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267930A (en) * 1992-03-17 1993-10-15 Hitachi Chem Co Ltd Vertical/horizontal polarized wave shared plane antenna
US5576718A (en) * 1992-05-05 1996-11-19 Aerospatiale Societe Nationale Industrielle Thin broadband microstrip array antenna having active and parasitic patches
JP2001244727A (en) * 2000-03-02 2001-09-07 Nippon Dengyo Kosaku Co Ltd Microstrip antenna
JP2002158534A (en) * 2000-11-17 2002-05-31 Ntt Docomo Inc Patch antenna
WO2017150054A1 (en) * 2016-03-04 2017-09-08 株式会社村田製作所 Array antenna
JP2019012970A (en) * 2017-06-30 2019-01-24 日本無線株式会社 Transmission/reception shared planar antenna element and transmission/reception shared planar array antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7016191B1 (en) 2021-05-18 2022-02-04 Rfルーカス株式会社 Antenna device and traffic gate
JP7108340B1 (en) 2021-05-18 2022-07-28 Rfルーカス株式会社 passage gate
JP2022177662A (en) * 2021-05-18 2022-12-01 Rfルーカス株式会社 Antenna device and passage gate
JP2022177776A (en) * 2021-05-18 2022-12-01 Rfルーカス株式会社 passage gate

Also Published As

Publication number Publication date
JP7292800B2 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
US10511101B2 (en) Wireless communication module
KR100624049B1 (en) Square Lattice Horn Array Antenna for Circularly Polarized Reception
US8564484B2 (en) Planar dual polarization antenna
US10008782B2 (en) Low coupling full-duplex MIMO antenna array with coupled signal cancelling
US9373892B2 (en) Dielectric waveguide slot antenna
US6593891B2 (en) Antenna apparatus having cross-shaped slot
US20060279465A1 (en) Plate board type MIMO array antenna including isolation element
US20100007573A1 (en) Multibeam antenna
CN110911831B (en) Double-frequency circularly polarized planar transmission array antenna adopting single-wire polarized feed source
JP7009031B2 (en) Circularly polarized shared plane antenna
EP3642906B1 (en) Wideband antenna array
JP6973911B2 (en) Transmission / reception shared plane antenna element and transmission / reception shared plane array antenna
JP2021005816A (en) Planar array antenna shared between transmission and reception
JP2007124346A (en) Antenna element and array type antenna
JP3782278B2 (en) Beam width control method of dual-polarized antenna
Xie et al. Circularly polarized FP resonator antenna with 360° beam-steering
JP2005252474A (en) Triplate planar array antenna
WO2018198970A1 (en) Antenna device
JP7173851B2 (en) Dual-polarized planar antenna
JP2021005817A (en) Circular polarization shared plane antenna
JP2005223836A (en) Slot feeding antenna
JP2017175282A (en) Reception antenna device
JPH09121116A (en) Planar antenna
JP2017085513A (en) Antenna device
KR200355454Y1 (en) Square Lattice Horn Array Antenna for Circularly Polarized Reception

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230606

R150 Certificate of patent or registration of utility model

Ref document number: 7292800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150