JP2021005446A - Heat dissipation structure and battery including the same - Google Patents

Heat dissipation structure and battery including the same Download PDF

Info

Publication number
JP2021005446A
JP2021005446A JP2019117081A JP2019117081A JP2021005446A JP 2021005446 A JP2021005446 A JP 2021005446A JP 2019117081 A JP2019117081 A JP 2019117081A JP 2019117081 A JP2019117081 A JP 2019117081A JP 2021005446 A JP2021005446 A JP 2021005446A
Authority
JP
Japan
Prior art keywords
heat
heat radiating
conductive sheet
cushion member
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019117081A
Other languages
Japanese (ja)
Inventor
清水 隆男
Takao Shimizu
隆男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2019117081A priority Critical patent/JP2021005446A/en
Publication of JP2021005446A publication Critical patent/JP2021005446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Secondary Cells (AREA)

Abstract

To provide: a heat dissipation structure which can conform to various shapes of heat sources and has excellent heat dissipation efficiency; and a battery including the heat dissipation structure.SOLUTION: In a battery, a heat dissipation structure 1 includes one or two or more heat dissipation members 8 for enhancing heat dissipation from a heat source. The heat dissipation member 8 includes a cushion member 21 and a heat conductive sheet 20. The cushion member 21 is a member which is long in one direction and which is capable of being more easily deformed to conform to the surface shape of the heat source than the heat conductive sheet 20, and includes a plurality of ridge portions 25 projecting from the outer side surface of the cushion member 21 toward the outside. The heat conductive sheet 20 covers the side circumference of the cushion member 21 from the outside of the ridge portions 25.SELECTED DRAWING: Figure 1

Description

本発明は、放熱構造体およびそれを備えるバッテリーに関する。 The present invention relates to a heat dissipation structure and a battery including the heat radiating structure.

自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。 Control systems for automobiles, aircraft, ships, and household or commercial electronic devices are becoming more accurate and complex, and the density of small electronic components on circuit boards is increasing. .. As a result, it is strongly desired to solve the failure and shortening of the life of electronic components due to heat generation around the circuit board.

回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは冷却ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム(AlN)、立方晶窒化ホウ素(cBN)等から構成する方法は、回路基板のコストを極めて高くしてしまう。また、冷却ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。 In order to realize quick heat dissipation from the circuit board, conventionally, the circuit board itself is made of a material having excellent heat dissipation, a heat sink is attached, or a cooling fan is driven by a single means or a combination of multiple means. It is done. Of these, a method in which the circuit board itself is made of a material having excellent heat dissipation, for example, diamond, aluminum nitride (AlN), cubic boron nitride (cBN), etc., makes the cost of the circuit board extremely high. In addition, the arrangement of the cooling fan causes problems such as failure of the rotating device called the fan, maintenance necessity for preventing the failure, and difficulty in securing the installation space. On the other hand, the heat radiating fin is a simple one that can increase the surface area and further improve the heat radiating property by forming a large number of columnar or flat plate-shaped projecting portions using a metal having high thermal conductivity (for example, aluminum). Since it is a member, it is widely used as a heat-dissipating component (see Patent Document 1).

ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、電気自動車が普及してきている。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置などが必要となる。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が重要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。加えて、バッテリーの充電時にバッテリーセルが過熱状態になり、その寿命を短くしてしまう可能性もある。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。 By the way, at present, there are active movements around the world to gradually convert conventional gasoline-powered vehicles or diesel-powered vehicles to electric vehicles for the purpose of reducing the burden on the global environment. In particular, electric vehicles are becoming widespread in China as well as in European countries such as France, the Netherlands, and Germany. In order to popularize electric vehicles, it is necessary to develop high-performance batteries and install a large number of charging stations. In particular, it is important to develop technology to enhance the charge / discharge function of lithium-based automobile batteries. It is well known that the above-mentioned automobile battery cannot fully exert its charge / discharge function at a high temperature of 60 degrees Celsius or higher. In addition, the battery cell may become overheated when the battery is charged, shortening its life. For this reason, it is important to improve the heat dissipation of the battery as well as the circuit board described above.

バッテリーの速やかな放熱を実現するには、アルミニウム等の熱伝導性に優れた金属製の筐体に水冷パイプを配置し、当該筐体にバッテリーセルを多数配置し、バッテリーセルと筐体の底面との間に密着性のゴムシートを挟んだ構造が採用されている。このような構造のバッテリーでは、バッテリーセルは、ゴムシートを通じて筐体に伝熱して、水冷によって効果的に除熱される。 To realize quick heat dissipation of the battery, place the water cooling pipe in a metal housing with excellent thermal conductivity such as aluminum, place a large number of battery cells in the housing, and place the battery cell and the bottom of the housing. A structure in which an adhesive rubber sheet is sandwiched between the two is adopted. In a battery having such a structure, the battery cell transfers heat to the housing through a rubber sheet and is effectively removed by water cooling.

特開2008−243999Japanese Patent Application Laid-Open No. 2008-24399

しかし、上述のような従来のバッテリーにおいて、ゴムシートは、アルミニウムやグラファイトと比べて熱伝導性が低いため、バッテリーセルから筐体に効率よく熱を移動させることが難しい。また、ゴムシートに代えてグラファイト等のスペーサを挟む方法も考えられるが、複数のバッテリーセルの下面が平らではなく段差を有することから、バッテリーセルとスペーサとの間に隙間が生じ、伝熱効率が低下する。かかる一例にもみられるように、バッテリーセルは種々の形態(段差等の凹凸あるいは非平滑な表面状態を含む)をとり得ることから、バッテリーセルの種々の形態に順応可能であって高い伝熱効率を実現することの要望が高まっている。上記の要望は、バッテリーセルのみならず、回路基板、電子部品あるいは電子機器本体のような他の熱源からの放熱についても通じる。 However, in the conventional battery as described above, since the rubber sheet has lower thermal conductivity than aluminum or graphite, it is difficult to efficiently transfer heat from the battery cell to the housing. A method of sandwiching a spacer such as graphite instead of the rubber sheet is also conceivable, but since the lower surfaces of the plurality of battery cells are not flat and have steps, a gap is generated between the battery cells and the spacer, and the heat transfer efficiency is improved. descend. As seen in such an example, since the battery cell can take various forms (including unevenness such as a step or a non-smooth surface state), it can be adapted to various forms of the battery cell and has high heat transfer efficiency. There is a growing demand for realization. The above requirements also apply to heat dissipation from not only battery cells but also other heat sources such as circuit boards, electronic components or electronic device bodies.

本発明は、上記課題に鑑みてなされたものであり、熱源の種々の形態に順応可能であって、放熱効率に優れる放熱構造体、および当該放熱構造体を備えるバッテリーを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat radiating structure which is adaptable to various forms of a heat source and has excellent heat radiating efficiency, and a battery provided with the heat radiating structure. To do.

(1)上記目的を達成するための一実施形態に係る放熱構造体は、熱源からの放熱を高める1または2以上の放熱部材を備える放熱構造体であって、前記放熱部材は、クッション部材と、熱伝導シートとを備え、前記クッション部材は、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易な一方向に長尺な部材であって、前記クッション部材の外側面から外側に向かって突出する尾根部を複数備えており、前記熱伝導シートは、前記クッション部材の側面外周を、前記尾根部の外側から覆っている。
(2)別の実施形態に係る放熱構造体において、好ましくは、前記尾根部は、前記クッション部材の中心軸から放射状に伸びている。
(3)別の実施形態に係る放熱構造体において、好ましくは、前記熱伝導シートは、前記クッション部材の長さ方向にスパイラル状に進行させながら前記クッション部材の外側を覆っている。
(4)別の実施形態に係る放熱構造体は、好ましくは、前記放熱部材を2以上備え、前記放熱部材を、その長さ方向と直交する方向に並べた状態で固定可能な部材であって、前記放熱部材の前記長さ方向の少なくとも一端部を固定する固定部材を、さらに備える。
(5)別の実施形態に係る放熱構造体において、好ましくは、前記固定部材は、前記放熱部材の長さ方向と直交する方向に並んだ2以上の前記放熱部材を囲むように形成される。
(6)別の実施形態に係る放熱構造体は、好ましくは、前記放熱部材を2以上備え、2以上の前記放熱部材を前記長さ方向と直交する方向に並べた状態で連結する連結部材を備え、前記連結部材は、糸で構成される。
(7)別の実施形態に係る放熱構造体は、好ましくは、前記熱伝導シートの表面に、当該表面に接触する熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有する。
(8)別の実施形態に係る放熱構造体において、好ましくは、前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。
(9)上記目的を達成するための一実施形態に係るバッテリーは、冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、上述のいずれかの放熱構造体を備える。
(1) The heat dissipation structure according to the embodiment for achieving the above object is a heat dissipation structure including one or more heat dissipation members that enhance heat dissipation from a heat source, and the heat dissipation member is a cushion member. The cushion member is a member that is longer in one direction and is more easily deformed according to the surface shape of the heat source than the heat conductive sheet, and is outward from the outer surface of the cushion member. The heat conductive sheet covers the outer periphery of the side surface of the cushion member from the outside of the ridge portion, and includes a plurality of ridge portions projecting toward.
(2) In the heat radiating structure according to another embodiment, preferably, the ridge portion extends radially from the central axis of the cushion member.
(3) In the heat radiating structure according to another embodiment, preferably, the heat conductive sheet covers the outside of the cushion member while spirally advancing in the length direction of the cushion member.
(4) The heat radiating structure according to another embodiment is preferably a member provided with two or more heat radiating members, and the heat radiating members can be fixed in a state of being arranged in a direction orthogonal to the length direction thereof. Further, a fixing member for fixing at least one end of the heat radiating member in the length direction is further provided.
(5) In the heat radiating structure according to another embodiment, preferably, the fixing member is formed so as to surround two or more heat radiating members arranged in a direction orthogonal to the length direction of the heat radiating member.
(6) The heat radiating structure according to another embodiment preferably includes two or more heat radiating members and connects the two or more heat radiating members in a direction orthogonal to the length direction. The connecting member is made of a thread.
(7) The heat radiating structure according to another embodiment preferably has a heat conductive oil on the surface of the heat conductive sheet for increasing the heat conductivity from the heat source in contact with the surface to the surface.
(8) In the heat radiating structure according to another embodiment, preferably, the heat conductive oil has a higher thermal conductivity than the silicone oil and the silicone oil, and is composed of one or more of metal, ceramics or carbon. Includes with sex filler.
(9) The battery according to the embodiment for achieving the above object is a battery having one or more battery cells as heat sources in a housing having a structure for flowing a cooling member, and the battery cells. Any of the above-mentioned heat dissipation structures is provided between the housing and the housing.

本発明によれば、熱源の種々の形態に順応可能であって、放熱効率に優れる放熱構造体、および当該放熱構造体を備えるバッテリーを提供できる。 According to the present invention, it is possible to provide a heat radiating structure that is adaptable to various forms of a heat source and has excellent heat radiating efficiency, and a battery including the heat radiating structure.

図1は、本発明の第1実施形態に係る放熱構造体の平面図(1A)、(1A)に示す放熱構造体を矢印C方向から見た側面図(1B)および(1A)に示す放熱構造体を矢印D方向から見た側面図(1C)をそれぞれ示す。FIG. 1 is a side view (1B) and (1A) of the heat radiating structure shown in the plan view (1A) and (1A) of the heat radiating structure according to the first embodiment of the present invention as viewed from the direction of arrow C. Side views (1C) of the structure viewed from the direction of arrow D are shown. 図2は、図1(1A)における領域BのA−A線断面であって、放熱部材の上から押圧を受ける前後の断面図を示す。FIG. 2 is a cross-sectional view taken along the line AA of the region B in FIG. 1 (1A), and shows a cross-sectional view before and after being pressed from above the heat radiating member. 図3は、本発明の第2実施形態に係る放熱構造体の平面図を示す。FIG. 3 shows a plan view of the heat radiating structure according to the second embodiment of the present invention. 図4は、放熱構造体の製造方法の一部を説明するための図を示す。FIG. 4 shows a diagram for explaining a part of a method of manufacturing a heat radiating structure. 図5は、本発明の実施形態に係るバッテリーの縦断面図(5A)および熱源の一例であるバッテリーセルの一部を放熱構造体上に載せる前後の縦断面図(5B)をそれぞれ示す。FIG. 5 shows a vertical cross-sectional view (5A) of the battery according to the embodiment of the present invention and a vertical cross-sectional view (5B) before and after mounting a part of the battery cell which is an example of the heat source on the heat radiating structure. 図6は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。FIG. 6 shows a cross-sectional view when the battery cell is laid horizontally so as to be in contact with the side surface of the battery cell on the heat radiating structure, a partially enlarged view thereof, and a partial cross-sectional view when the battery cell expands during charging and discharging. Each is shown. 図7は、各種変形例に係る放熱部材の一部の斜視図を示す。FIG. 7 shows a perspective view of a part of the heat radiating member according to various modified examples.

次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, each embodiment of the present invention will be described with reference to the drawings. It should be noted that each of the embodiments described below does not limit the invention according to the claims, and all of the elements and combinations thereof described in each embodiment are the means for solving the present invention. Is not always required.

1.放熱構造体およびその製造方法
(第1実施形態)
図1は、本発明の第1実施形態に係る放熱構造体の平面図(1A)、(1A)に示す放熱構造体を矢印C方向から見た側面図(1B)および(1A)に示す放熱構造体を矢印D方向から見た側面図(1C)をそれぞれ示す。図2は、図1(1A)における領域BのA−A線断面であって、放熱部材の上から押圧を受ける前後の断面図を示す。
1. 1. Heat dissipation structure and its manufacturing method (first embodiment)
FIG. 1 is a side view (1B) and (1A) of the heat radiating structure shown in the plan view (1A) and (1A) of the heat radiating structure according to the first embodiment of the present invention as viewed from the direction of arrow C. Side views (1C) of the structure viewed from the direction of arrow D are shown. FIG. 2 is a cross-sectional view taken along the line AA of the region B in FIG. 1 (1A), and shows a cross-sectional view before and after being pressed from above the heat radiating member.

(1)概略構成
第1実施形態に係る放熱構造体1は、熱源からの放熱を高める2以上の放熱部材8を備える。放熱部材8は、1つのみでも良い。放熱部材8は、クッション部材21と、熱伝導シート20と、を備える。クッション部材21は、熱伝導シート20に比べて熱源の表面形状に合わせて変形容易である。クッション部材21は、一方向に長尺な部材である。クッション部材21は、熱伝導シート20に比べて熱源の表面形状に合わせて変形容易な一方向に長尺な部材である。クッション部材21は、その外側面から外側に向かって突出する尾根部(稜線部ともいう)25を4つ備えている。ただし、尾根部25は、複数であれば、4つに限定されない。熱伝導シート20は、クッション部材21の側面外周を、尾根部25の外側から覆っている。
(1) Schematic Configuration The heat dissipation structure 1 according to the first embodiment includes two or more heat dissipation members 8 that enhance heat dissipation from a heat source. Only one heat radiating member 8 may be used. The heat radiating member 8 includes a cushion member 21 and a heat conductive sheet 20. The cushion member 21 is more easily deformed according to the surface shape of the heat source than the heat conductive sheet 20. The cushion member 21 is a member that is long in one direction. The cushion member 21 is a member that is longer in one direction and is more easily deformed according to the surface shape of the heat source than the heat conductive sheet 20. The cushion member 21 includes four ridge portions (also referred to as ridgeline portions) 25 that project outward from the outer surface thereof. However, the number of ridge portions 25 is not limited to four as long as it is plural. The heat conductive sheet 20 covers the outer periphery of the side surface of the cushion member 21 from the outside of the ridge portion 25.

放熱構造体1は、2以上の放熱部材8をその長さ方向と直交する方向に並べた状態(横並びの状態ともいう)で固定可能な部材であって、放熱部材8の長さ方向の両端部を固定する枠部材(固定部材の一例)10を、さらに備える。枠部材10は、2以上の放熱部材8を横並びの状態にした集合体の略外周を囲う部材である。ただし、枠部材10は、2以上の放熱部材8の長さ方向の少なくとも一端部を固定する部材であっても良い。この実施形態において、枠部材10は、薄い板若しくはフィルム状の枠の内部に、枠部材10の厚さ方向に貫通する開口部11を備えている。放熱部材8は、開口部11上に浮いた状態で、枠部材10の片面に固定されている。枠部材10は、好ましくは、その厚さが、熱源からの押圧により変形した放熱部材8の厚さよりも薄くなるよう形成されている。このため、放熱部材8における開口部11と反対側の方向から熱源によって開口部11側に押圧すると、放熱部材8は、その厚さ方向(Z方向)の一部を開口部11に沈み込ませるように撓むことができる。放熱部材8同士の隙間Lは、放熱部材8の上方(すなわち、放熱部材8を固定している枠部材10の面の上方)からの押圧によって放熱部材8の直径Dが80%になるまで扁平状態になっても放熱部材8同士が接触しないほどの距離である。ただし、放熱部材8同士の隙間Lを過度に大きくすると、絶縁体としての空気が大量に存在し、熱源から冷却部位への熱伝達を妨げる可能性もある。このため、隙間Lは、放熱部材8の直径Dが80%になるまで扁平状態になっても放熱部材8同士が接触しない最短の距離に設定する方が好ましい。 The heat radiating structure 1 is a member capable of fixing two or more heat radiating members 8 in a direction orthogonal to the length direction (also referred to as a side by side), and both ends of the heat radiating member 8 in the length direction. A frame member (an example of a fixing member) 10 for fixing the portion is further provided. The frame member 10 is a member that surrounds a substantially outer circumference of an aggregate in which two or more heat radiating members 8 are arranged side by side. However, the frame member 10 may be a member that fixes at least one end of two or more heat radiating members 8 in the length direction. In this embodiment, the frame member 10 is provided with an opening 11 penetrating in the thickness direction of the frame member 10 inside a thin plate or film-like frame. The heat radiating member 8 is fixed to one side of the frame member 10 in a state of floating above the opening 11. The frame member 10 is preferably formed so that its thickness is thinner than the thickness of the heat radiating member 8 deformed by pressing from a heat source. Therefore, when the heat radiating member 8 is pressed toward the opening 11 by a heat source from the direction opposite to the opening 11, the heat radiating member 8 sinks a part of the thickness direction (Z direction) into the opening 11. Can be bent like this. The gap L between the heat radiating members 8 is flattened until the diameter D of the heat radiating member 8 becomes 80% by pressing from above the heat radiating member 8 (that is, above the surface of the frame member 10 fixing the heat radiating member 8). The distance is such that the heat radiating members 8 do not come into contact with each other even in the state. However, if the gap L between the heat radiating members 8 is made excessively large, a large amount of air as an insulator may be present, which may hinder heat transfer from the heat source to the cooling portion. Therefore, it is preferable to set the gap L to the shortest distance at which the heat radiating members 8 do not come into contact with each other even if the heat radiating members 8 are flattened until the diameter D becomes 80%.

放熱構造体1は、複数の放熱部材8をその長さ方向と直交する方向に並べた状態で連結する糸7(連結部材の一例)を備える。この実施形態では、連結部材としての糸7は、放熱部材8の長さ方向の両端部を枠部材10の対向両辺(図1のY方向にある両辺)上に載せた状態で、放熱部材8を枠部材10に固定する。また、糸7は、放熱部材8の長さ方向略中間位置にて複数の放熱部材8を連結して、放熱部材8のならぶ延長線上に位置する対向両辺(図1のX方向にある両辺)に固定する。 The heat radiating structure 1 includes a thread 7 (an example of a connecting member) that connects a plurality of heat radiating members 8 in a state of being arranged in a direction orthogonal to the length direction thereof. In this embodiment, the thread 7 as the connecting member has the heat radiating member 8 in a state where both ends in the length direction of the heat radiating member 8 are placed on both opposite sides (both sides in the Y direction of FIG. 1) of the frame member 10. Is fixed to the frame member 10. Further, the thread 7 connects a plurality of heat radiating members 8 at substantially intermediate positions in the length direction of the heat radiating member 8 and faces both sides located on the extension lines of the heat radiating members 8 (both sides in the X direction in FIG. 1). Fix to.

次に、放熱構造体1の各構成要素について説明する。 Next, each component of the heat dissipation structure 1 will be described.

(2)熱伝導シート
熱伝導シート20は、この実施形態では、クッション部材21の長さよりも短い幅の帯状シートである。熱伝導シート20は、クッション部材21の長さ方向にスパイラル状に進行させながら、クッション部材21の外側を覆っている。
(2) Heat Conductive Sheet In this embodiment, the heat conductive sheet 20 is a strip-shaped sheet having a width shorter than the length of the cushion member 21. The heat conductive sheet 20 covers the outside of the cushion member 21 while advancing in a spiral shape in the length direction of the cushion member 21.

熱伝導シート20は、好ましくは炭素を含むシートであり、さらに好ましくは90質量%以上を炭素から構成されるシートである。例えば、熱伝導シート20に、樹脂を焼成して成るグラファイト製のフィルムを用いることもできる。ただし、熱伝導シート20は、炭素と樹脂とを含むシートであっても良い。その場合、樹脂は、合成繊維でも良く、その場合には、樹脂として好適にはアラミド繊維を用いることができる。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。熱伝導シート20は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。熱伝導シート20は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。なお、グラファイト繊維、カーボン粒子あるいはカーボンファイバーといった各種フィラーも、すべて、炭素フィラーの概念に含まれる。 The heat conductive sheet 20 is preferably a sheet containing carbon, and more preferably 90% by mass or more of carbon. For example, a graphite film formed by firing a resin can be used for the heat conductive sheet 20. However, the heat conductive sheet 20 may be a sheet containing carbon and resin. In that case, the resin may be a synthetic fiber, and in that case, an aramid fiber can be preferably used as the resin. The term "carbon" as used in the present application is broadly defined to include any structure composed of carbon (element symbol: C) such as graphite, carbon black having lower crystallinity than graphite, diamond, and diamond-like carbon having a structure similar to diamond. Is interpreted as. In this embodiment, the heat conductive sheet 20 can be a thin sheet obtained by curing a material obtained by blending and dispersing graphite fibers and carbon particles in a resin. The heat conductive sheet 20 may be carbon fibers knitted in a mesh shape, and may be blended or knitted. In addition, various fillers such as graphite fibers, carbon particles and carbon fibers are all included in the concept of carbon fillers.

熱伝導シート20を炭素と樹脂とを備えるシートとする場合には、当該樹脂が熱伝導シート20の全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、熱伝導シート20は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源からの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、芳香族ポリアミド(アラミド繊維)等を好適に挙げることができる。樹脂は、熱伝導シート20の成形前の状態において、炭素フィラーの隙間に、例えば粒子状あるいは繊維状に分散している。熱伝導シート20は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。熱伝導シート20は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、Al、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。 When the heat conductive sheet 20 is a sheet containing carbon and a resin, the resin may exceed 50% by mass or 50% by mass or less with respect to the total mass of the heat conductive sheet 20. .. That is, the heat conductive sheet 20 may or may not use resin as the main material as long as there is no major problem in heat conduction. As the resin, for example, a thermoplastic resin can be preferably used. As the thermoplastic resin, a resin having a high melting point that does not melt when conducting heat from a heat source is preferable, and for example, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyamideimide (PAI), and aroma. Group polyamide (aramid fiber) and the like can be preferably mentioned. The resin is dispersed in the gaps between the carbon fillers in the form of particles or fibers in the state before molding of the heat conductive sheet 20. In addition to the carbon filler and the resin, the heat conductive sheet 20 may be dispersed with AlN or diamond as a filler for further enhancing the heat conduction. Further, instead of the resin, an elastomer softer than the resin may be used. The thermal conductivity sheet 20 can also be a sheet containing metals and / or ceramics in place of or with carbon as described above. As the metal, those having relatively high thermal conductivity such as aluminum, copper, and alloys containing at least one of them can be selected. Further, as the ceramics, ceramics having relatively high thermal conductivity such as Al 2 O 3 , AlN, cBN, and hBN can be selected.

熱伝導シート20は、導電性に優れるか否かは問わない。熱伝導シート20の熱伝導率は、好ましくは10W/mK以上である。この実施形態では、熱伝導シート20は、好ましくは、グラファイトの帯状の板であり、熱伝導性と導電性に優れる材料から成る。熱伝導シート20は、湾曲性(若しくは屈曲性)に優れるシートであるのが好ましく、その厚さに制約はないが、0.02〜3mmが好ましく、0.03〜0.5mmがより好ましい。ただし、熱伝導シート20の熱伝導率は、その厚さが増加するほど低下するため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。 It does not matter whether the heat conductive sheet 20 is excellent in conductivity or not. The thermal conductivity of the heat conductive sheet 20 is preferably 10 W / mK or more. In this embodiment, the heat conductive sheet 20 is preferably a strip of graphite and is made of a material having excellent heat conductivity and conductivity. The heat conductive sheet 20 is preferably a sheet having excellent curvature (or flexibility), and the thickness thereof is not limited, but 0.02 to 3 mm is preferable, and 0.03 to 0.5 mm is more preferable. However, since the thermal conductivity of the heat conductive sheet 20 decreases as the thickness increases, it is necessary to determine the thickness by comprehensively considering the strength, flexibility and heat conductivity of the sheet. preferable.

(3)クッション部材
クッション部材21の重要な機能は、変形容易性と回復力である。回復力は、クッション部材21の弾性変形性に依る。変形容易性は、熱源の形状に追従するために必要な特性であり、特にリチウムイオンバッテリーなどの半固形物、液体的性状も持つ内容物などを変形しやすいパッケージに収めるようなバッテリーセルの場合には、設計寸法的にも不定形または寸法精度があげられない場合が多い。このため、クッション部材21の変形容易性や追従力を保持するための回復力の保持は重要である。
(3) Cushion member The important functions of the cushion member 21 are deformability and resilience. The resilience depends on the elastic deformability of the cushion member 21. Deformability is a characteristic required to follow the shape of the heat source, especially in the case of a battery cell that contains semi-solid materials such as lithium-ion batteries and contents that also have liquid properties in a easily deformable package. In many cases, the design dimensions are irregular or the dimensional accuracy cannot be improved. Therefore, it is important to maintain the deformability of the cushion member 21 and the resilience for maintaining the following force.

クッション部材21は、この実施形態では、スパイラル状に巻回される熱伝導シート20の筒内に備えられる。4本の尾根部25は、クッション部材21の中心軸から放射状に伸びている。クッション部材21をその長さ方向に対して垂直に切ったときの断面は、アルファベットのXの形状(あるいはクロス形状)を有する。 In this embodiment, the cushion member 21 is provided in the cylinder of the heat conductive sheet 20 wound in a spiral shape. The four ridge portions 25 extend radially from the central axis of the cushion member 21. The cross section of the cushion member 21 cut perpendicular to its length direction has an alphabetical X shape (or cross shape).

クッション部材21は、放熱部材8に接触する熱源が平坦でない場合でも、熱伝導シート20と熱源との接触を良好にする機能を有する。さらに、空間22は、クッション部材21の変形を容易にし、加えて放熱構造体1の軽量化に寄与する。クッション部材21は、熱源等からの熱伝導シート20に加わる荷重によって熱伝導シート20が破損等しないようにする保護部材としての機能も有する。クッション部材21は、熱伝導シート20に比べて弾性変形しやすく、熱源等からの押圧及びその開放による変形に起因して、割れや亀裂が入りにくい。このため、クッション部材21は、熱伝導シート20に亀裂が生じる事態を抑制することができる。この実施形態では、クッション部材21は、熱伝導シート20に比べて低熱伝導性の部材である。 The cushion member 21 has a function of improving the contact between the heat conductive sheet 20 and the heat source even when the heat source in contact with the heat radiating member 8 is not flat. Further, the space 22 facilitates the deformation of the cushion member 21, and in addition contributes to the weight reduction of the heat radiating structure 1. The cushion member 21 also has a function as a protective member for preventing the heat conductive sheet 20 from being damaged by a load applied to the heat conductive sheet 20 from a heat source or the like. The cushion member 21 is more easily elastically deformed than the heat conductive sheet 20, and is less likely to crack or crack due to deformation due to pressing from a heat source or the like and its release. Therefore, the cushion member 21 can suppress the situation where the heat conductive sheet 20 is cracked. In this embodiment, the cushion member 21 is a member having a lower thermal conductivity than the heat conductive sheet 20.

尾根部25と熱伝導シート20とは、この実施形態では、接着、嵌合、溶着などの手法で接続されている。ただし、尾根部25と熱伝導シート20とは、接触しているが、非固定状態であっても良い。尾根部25と尾根部25との間には、空間22が存在する。空間22は、熱源の方向および/または熱源と反対側に位置する冷却面の方向に位置するのが好ましい。熱源をクッション部材21に載せた際に、クッション部材21が容易に扁平化できるようにする観点からである。クッション部材21の尾根部25は、この実施形態では、クッション部材21の長さ方向に沿って連続して延びる部位であって、クッション部材21の長さと同じ長さを有する。ただし、尾根部25は、クッション部材21の長さ方向に沿って、一定若しくは不定の間隔にて突出する非連続の突出部位でも良い。 In this embodiment, the ridge portion 25 and the heat conductive sheet 20 are connected by a method such as adhesion, fitting, or welding. However, although the ridge portion 25 and the heat conductive sheet 20 are in contact with each other, they may be in a non-fixed state. A space 22 exists between the ridge portion 25 and the ridge portion 25. The space 22 is preferably located in the direction of the heat source and / or in the direction of the cooling surface located on the opposite side of the heat source. This is from the viewpoint of allowing the cushion member 21 to be easily flattened when the heat source is placed on the cushion member 21. In this embodiment, the ridge portion 25 of the cushion member 21 is a portion that extends continuously along the length direction of the cushion member 21 and has the same length as the length of the cushion member 21. However, the ridge portion 25 may be a discontinuous protruding portion that protrudes at regular or indefinite intervals along the length direction of the cushion member 21.

クッション部材21は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。クッション部材21は、熱伝導シート20を伝わる熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されるのが好ましい。この実施形態では、クッション部材21は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。クッション部材21は、その熱伝導性を少しでも高めるために、ゴム中にAl、AlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。クッション部材21は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「クッション部材」は、柔軟性に富み、熱源の表面に密着可能に弾性変形可能な部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。さらに、クッション部材21の変形例としては、上記ゴム状弾性体ではなく、金属を用いて構成することもできる。クッション部材21は、樹脂やゴム等から形成されたスポンジあるいはソリッド(スポンジのような多孔質ではない構造のもの)で構成することも可能である。 The cushion member 21 is preferably a thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); urethane-based , Ester-based, styrene-based, olefin-based, butadiene-based, fluorine-based and other thermoplastic elastomers, or composites thereof and the like. The cushion member 21 is preferably made of a material having high heat resistance that can maintain its shape without being melted or decomposed by the heat transmitted through the heat conductive sheet 20. In this embodiment, the cushion member 21 is more preferably made of a urethane-based elastomer impregnated with silicone or silicone rubber. The cushion member 21 may be configured by dispersing fillers typified by Al 2 O 3 , AlN, cBN, hBN, diamond particles, etc. in rubber in order to increase its thermal conductivity as much as possible. The cushion member 21 may contain air bubbles or may not contain air bubbles. Further, the "cushion member" means a member that is highly flexible and can be elastically deformed so as to be in close contact with the surface of a heat source, and in this sense, it can be read as a "rubber-like elastic body". Further, as a modification of the cushion member 21, a metal may be used instead of the rubber-like elastic body. The cushion member 21 can also be made of a sponge or a solid (a non-porous structure such as a sponge) formed of resin, rubber, or the like.

(4)連結部材
連結部材の一例である糸7は、2以上の放熱部材8を連結して、放熱部材8の自由な動きを規制する部材である。糸7は、好ましくは、120℃程度の高温に耐え得る糸であって、天然繊維、合成繊維、カーボン繊維、金属繊維等の繊維からなる撚糸で構成されることが好ましい。糸7は、放熱部材8が熱源等の加重を受けて扁平形状になっても、それを許容するだけの柔軟性あるいは輪の空間領域を備えるのが好ましい。2以上の放熱部材8は、この実施形態では、放熱部材8の空間22に糸7を到達するように縫って連結されている。糸7によって放熱部材8を縫って連結するには、手で縫っても、あるいはソーイングマシンを使って縫っても良い。糸7の縫い方は、特に限定されず、手縫い、本縫い、千鳥縫い、単環縫い、二重環縫い、縁かがり縫い、扁平縫い、安全縫い、オーバーロック等の如何なる縫い方でも良い。また、JIS L 0120の規定する表示記号によれば、好適な縫い方として、「101」、「209」、「301」、「304」、「401」、「406」、「407」、「410」、「501」、「502」、「503」、「504」、「505」、「509」、「512」、「514」、「602」および「605」の各種縫い目を構成する縫い方を例示できる。また、糸7の長さ方向に複数の輪をつくり、その輪の中に放熱部材8を通して、放熱部材8同士を連結しても良い。なお、糸7以外の連結部材を用いて、放熱部材8同士を連結、あるいは放熱部材8を枠部材10等の固定部材に固定しても良い。糸7以外の連結部材としては、一本の長尺部材の長さ方向に沿って配列される複数本の突出部を備えたものを例示できる。放熱部材8は、空間22に突出部を挿入して連結部材により連結可能である。
(4) Connecting member The thread 7 which is an example of the connecting member is a member which connects two or more heat radiating members 8 and regulates the free movement of the heat radiating member 8. The yarn 7 is preferably a yarn that can withstand a high temperature of about 120 ° C., and is preferably composed of a twisted yarn made of fibers such as natural fibers, synthetic fibers, carbon fibers, and metal fibers. It is preferable that the thread 7 has flexibility or a spatial region of a ring that allows the heat radiating member 8 to have a flat shape due to the load of a heat source or the like. In this embodiment, the two or more heat radiating members 8 are sewn and connected so as to reach the space 22 of the heat radiating member 8. To sew and connect the heat radiating member 8 with the thread 7, it may be sewn by hand or by using a sewing machine. The sewing method of the thread 7 is not particularly limited, and any sewing method such as hand sewing, lock stitching, zigzag stitching, single chain stitching, double chain stitching, overlock stitching, flat stitching, safety stitching, and overlock sewing may be used. Further, according to the display symbols specified by JIS L 0120, as suitable sewing methods, "101", "209", "301", "304", "401", "406", "407", "410" , "501", "502", "503", "504", "505", "509", "512", "514", "602" and "605". It can be illustrated. Further, a plurality of rings may be formed in the length direction of the thread 7, and the heat radiating members 8 may be connected to each other by passing the heat radiating member 8 through the rings. The heat radiating members 8 may be connected to each other by using a connecting member other than the thread 7, or the heat radiating member 8 may be fixed to a fixing member such as a frame member 10. Examples of the connecting member other than the thread 7 include those having a plurality of protruding portions arranged along the length direction of one long member. The heat radiating member 8 can be connected by a connecting member by inserting a protruding portion into the space 22.

(5)熱伝導性オイル
熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。熱伝導シート20は、微視的に、隙間(孔あるいは凹部)を有する。通常、当該隙間には空気が存在し、熱伝導性に悪影響を及ぼす可能性が有る。熱伝導性オイルは、その隙間を埋めて、空気に代わって存在することになり、熱伝導シート20の熱伝導性を向上させる機能を有する。
(5) Thermally Conductive Oil The thermally conductive oil preferably contains a silicone oil and a thermally conductive filler having a higher thermal conductivity than the silicone oil and consisting of one or more of metal, ceramics or carbon. The heat conductive sheet 20 has a gap (hole or recess) microscopically. Normally, air is present in the gap, which may adversely affect the thermal conductivity. The heat conductive oil fills the gap and exists in place of air, and has a function of improving the heat conductivity of the heat conductive sheet 20.

熱伝導性オイルは、熱伝導シート20の表面、少なくとも熱源等と熱伝導シート20とが接触する面に備えられている。本願において、熱伝導性オイルの「オイル」は、非水溶性の常温(20〜25℃の範囲の任意の温度)で液状若しくは半固形状の可燃物質をいう。「オイル」という文言に代え、「グリース」あるいは「ワックス」を用いることもできる。熱伝導性オイルは、熱源から熱伝導シート20に熱を伝える際に熱伝導の障害にならない性質のオイルである。熱伝導性オイルには、炭化水素系のオイル、シリコーンオイルを用いることができる。熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。 The heat conductive oil is provided on the surface of the heat conductive sheet 20, at least the surface where the heat source or the like and the heat conductive sheet 20 come into contact with each other. In the present application, the "oil" of the thermally conductive oil refers to a combustible substance that is liquid or semi-solid at room temperature (any temperature in the range of 20 to 25 ° C.) that is water-insoluble. Instead of the word "oil", "grease" or "wax" can also be used. The heat conductive oil is an oil having a property that does not interfere with heat conduction when heat is transferred from the heat source to the heat conductive sheet 20. As the heat conductive oil, a hydrocarbon-based oil or a silicone oil can be used. The thermally conductive oil preferably contains a silicone oil and a thermally conductive filler having a higher thermal conductivity than the silicone oil and consisting of one or more of metal, ceramics or carbon.

シリコーンオイルは、好ましくは、シロキサン結合が2000以下の直鎖構造の分子から成る。シリコーンオイルは、ストレートシリコーンオイルと、変性シリコーンオイルとに大別される。ストレートシリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルを例示できる。変性シリコーンオイルとしては、反応性シリコーンオイル、非反応性シリコーンオイルを例示できる。反応性シリコーンオイルは、例えば、アミノ変性タイプ、エポキシ変性タイプ、カルボキシ変性タイプ、カルビノール変性タイプ、メタクリル変性タイプ、メルカプト変性タイプ、フェノール変性タイプ等の各種シリコーンオイルを含む。非反応性シリコーンオイルは、ポリエーテル変性タイプ、メチルスチリル変性タイプ、アルキル変性タイプ、高級脂肪酸エステル変性タイプ、親水性特殊変性タイプ、高級脂肪酸含有タイプ、フッ素変性タイプ等の各種シリコーンオイルを含む。 Silicone oils preferably consist of molecules with a linear structure having a siloxane bond of 2000 or less. Silicone oil is roughly classified into straight silicone oil and modified silicone oil. Examples of the straight silicone oil include dimethyl silicone oil, methyl phenyl silicone oil, and methyl hydrogen silicone oil. Examples of the modified silicone oil include reactive silicone oil and non-reactive silicone oil. Reactive silicone oils include, for example, various silicone oils such as amino-modified type, epoxy-modified type, carboxy-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type, and phenol-modified type. The non-reactive silicone oil includes various silicone oils such as a polyether-modified type, a methylstyryl-modified type, an alkyl-modified type, a higher fatty acid ester-modified type, a hydrophilic special-modified type, a higher fatty acid-containing type, and a fluorine-modified type.

シリコーンオイルは、耐熱性、耐寒性、粘度安定性、熱伝導性に優れたオイルであるため、熱伝導シート20の表面に塗布して、熱源等と熱伝導シート20との間に介在させる熱伝導性オイルとして特に好適である。熱伝導性オイルは、好ましくは、油分以外に、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーを含む。金属としては、金、銀、銅、アルミニウム、ベリリウム、タングステンなどを例示できる。セラミックスとしては、アルミナ、窒化アルミニウム、キュービック窒化ホウ素、ヘキサゴナル窒化ホウ素などを例示できる。炭素としては、ダイヤモンド、グラファイト、ダイヤモンドライクカーボン、アモルファスカーボン、カーボンナノチューブなどを例示できる。 Since silicone oil is an oil having excellent heat resistance, cold resistance, viscosity stability, and thermal conductivity, it is applied to the surface of the heat conductive sheet 20 to intervene between the heat source and the heat conductive sheet 20. It is particularly suitable as a conductive oil. The thermally conductive oil preferably contains, in addition to the oil, a thermally conductive filler composed of one or more of metal, ceramics or carbon. Examples of the metal include gold, silver, copper, aluminum, beryllium, and tungsten. Examples of ceramics include alumina, aluminum nitride, cubic boron nitride, and hexagonal boron nitride. Examples of carbon include diamond, graphite, diamond-like carbon, amorphous carbon, and carbon nanotubes.

熱伝導性オイルは、熱源と熱伝導シート20との間に介在する他、熱伝導シート20と冷却部位との間に介在する方が好ましい。熱伝導性オイルは、熱伝導シート20の全面に塗布されていても、熱伝導シート20の一部分に塗布されていても良い。熱伝導性オイルを熱伝導シート20に存在させる方法は、特に制約されることなく、スプレーを用いた噴霧、刷毛等を用いた塗布、熱伝導性オイル中への熱伝導シート20の浸漬など、如何なる方法によるものでも良い。なお、熱伝導性オイルは、放熱構造体1にとって必須の構成ではなく、好適に備えることのできる追加的な構成である。これは、第2実施形態以降でも同様である。 The heat conductive oil is preferably interposed between the heat source and the heat conductive sheet 20 as well as between the heat conductive sheet 20 and the cooling portion. The heat conductive oil may be applied to the entire surface of the heat conductive sheet 20 or may be applied to a part of the heat conductive sheet 20. The method for allowing the heat conductive oil to exist in the heat conductive sheet 20 is not particularly limited, and includes spraying with a spray, coating with a brush, and immersing the heat conductive sheet 20 in the heat conductive oil. Any method may be used. The heat conductive oil is not an essential configuration for the heat radiating structure 1, but an additional configuration that can be suitably provided. This also applies to the second and subsequent embodiments.

(6)固定部材
枠部材10に代表される固定部材の材料には、特に制約はなく、例えば、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂あるいは電子線硬化性樹脂を好適に用いることができる。固定部材は、複数の放熱部材8を固定するために用いられ、熱源と、冷却部材若しくは冷却部材に近接する冷却部位との間に放熱構造体1を配置しやすくする機能を持つ。
(6) Fixing member The material of the fixing member represented by the frame member 10 is not particularly limited, and for example, a thermoplastic resin, a thermosetting resin, a photocurable resin or an electron beam curable resin is preferably used. Can be done. The fixing member is used for fixing a plurality of heat radiating members 8, and has a function of facilitating the arrangement of the heat radiating structure 1 between the heat source and the cooling member or the cooling portion close to the cooling member.

(第2実施形態)
次に、第2実施形態に係る放熱構造体について説明する。第1実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Second Embodiment)
Next, the heat dissipation structure according to the second embodiment will be described. The same reference numerals are given to the parts common to the first embodiment, and duplicate description will be omitted.

図3は、本発明の第2実施形態に係る放熱構造体の平面図を示す。 FIG. 3 shows a plan view of the heat radiating structure according to the second embodiment of the present invention.

第2実施形態に係る放熱構造体1aは、上述の放熱構造体1と同様、2以上の放熱部材8を備える。放熱構造体1aが放熱構造体1と異なる主な部分は、固定部材の形態である。放熱構造体1aの固定部材は、放熱部材8の長さ方向の両端を固定する2本のバー10aである。放熱部材8の両端は、糸7を用いてバー10aに固定されている。糸7は、放熱構造体1とは異なり、放熱部材8の長さ方向の略中間部の固定には用いられていない。 The heat radiating structure 1a according to the second embodiment includes two or more heat radiating members 8 like the heat radiating structure 1 described above. The main portion of the heat radiating structure 1a different from the heat radiating structure 1 is the form of the fixing member. The fixing member of the heat radiating structure 1a is two bars 10a for fixing both ends of the heat radiating member 8 in the length direction. Both ends of the heat radiating member 8 are fixed to the bar 10a by using the thread 7. Unlike the heat radiating structure 1, the thread 7 is not used for fixing the substantially intermediate portion of the heat radiating member 8 in the length direction.

次に、本発明の上記各実施形態に係る放熱構造体の製造方法について説明する。 Next, a method for manufacturing the heat radiating structure according to each of the above embodiments of the present invention will be described.

図4は、放熱構造体の製造方法の一部を説明するための図を示す。図4では、放熱部材の実際の長さより短く描いている。 FIG. 4 shows a diagram for explaining a part of a method of manufacturing a heat radiating structure. In FIG. 4, it is drawn shorter than the actual length of the heat radiating member.

まず、断面がクロス形状のクッション部材21を用意する。次に、クッション部材21の外側に熱伝導シート20をスパイラル状に巻回する。この際、クッション部材21の尾根部25の端面および熱伝導シート20の内側の面の少なくとも1つの面に、未硬化状態の接着剤を塗布するのが好ましい。 First, the cushion member 21 having a cross-shaped cross section is prepared. Next, the heat conductive sheet 20 is spirally wound around the outside of the cushion member 21. At this time, it is preferable to apply an uncured adhesive to at least one surface of the end surface of the ridge portion 25 of the cushion member 21 and the inner surface of the heat conductive sheet 20.

クッション部材21の外側に熱伝導シート20を巻回する際に未硬化状態の接着剤を用いない別の製造方法としては、以下のような方法を例示できる。例えば、クッション部材21が完全には硬化していない未硬化状態で、熱伝導シート20を巻く。その後、加温により、クッション部材21を完全に硬化させる。 As another manufacturing method that does not use an uncured adhesive when winding the heat conductive sheet 20 around the outside of the cushion member 21, the following method can be exemplified. For example, the heat conductive sheet 20 is wound in an uncured state in which the cushion member 21 is not completely cured. Then, the cushion member 21 is completely cured by heating.

熱伝導シート20を、クッション部材21の外側にスパイラル状に巻回した後、熱伝導シート20がクッション部材21の両端からはみ出した部分があれば、そのはみ出した部分をカット若しくはクッション部材21ごとカットする。最後に、熱伝導シート20の表面に、熱伝導性オイルを塗布する。 After the heat conductive sheet 20 is wound around the outside of the cushion member 21 in a spiral shape, if there is a portion of the heat conductive sheet 20 protruding from both ends of the cushion member 21, the protruding portion is cut or the cushion member 21 is cut together. To do. Finally, the heat conductive oil is applied to the surface of the heat conductive sheet 20.

熱伝導シート20のクッション部材21の両端からはみ出した部分をカットするカット工程および熱伝導性オイルを塗布する塗布工程は、上述のタイミングで行うことに限定されない。例えば、カット工程は、塗布工程の後に行っても良い。 The cutting step of cutting the portion protruding from both ends of the cushion member 21 of the heat conductive sheet 20 and the coating step of applying the heat conductive oil are not limited to those performed at the above-mentioned timing. For example, the cutting step may be performed after the coating step.

放熱構造体1,1aは、上述の製造方法により製造された2以上の放熱部材8を、熱伝導シート20の巻回しながら進行する方向(放熱部材8の長さ方向)と直交する方向に並べた状態で、糸7で連結し、固定部材に糸7で縫い付けることにより製造される。より具体的には、放熱構造体1,1aは、複数の放熱部材8を並べた状態で、糸7を用いて手縫い若しくはソーイングマシンで縫い付けることにより連結される。 In the heat radiating structure 1, 1a, two or more heat radiating members 8 manufactured by the above-mentioned manufacturing method are arranged in a direction orthogonal to the direction in which the heat conductive sheet 20 is wound and travels (the length direction of the heat radiating member 8). In this state, it is manufactured by connecting with a thread 7 and sewing it to a fixing member with the thread 7. More specifically, the heat radiating structures 1, 1a are connected by hand-sewn or sewn with a sewing machine using a thread 7 in a state where a plurality of heat radiating members 8 are arranged side by side.

2.バッテリー
次に、本発明の実施形態に係るバッテリーについて説明する。
2. 2. Battery Next, the battery according to the embodiment of the present invention will be described.

図5は、本発明の実施形態に係るバッテリーの縦断面図(5A)および熱源の一例であるバッテリーセルの一部を放熱構造体上に載せる前後の縦断面図(5B)をそれぞれ示す。 FIG. 5 shows a vertical cross-sectional view (5A) of the battery according to the embodiment of the present invention and a vertical cross-sectional view (5B) before and after mounting a part of the battery cell which is an example of the heat source on the heat radiating structure.

この実施形態において、バッテリー30は、例えば、電気自動車用のバッテリーであって、多数のバッテリーセル(単に、セルと称しても良い。)40を備える。バッテリー30は、一方に開口する有底型の筐体31を備える。筐体31は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。バッテリーセル40は、筐体31の内部34に配置される。バッテリーセル40の上方には、電極(不図示)が突出して設けられている。複数のバッテリーセル40は、好ましくは、筐体31内において、その両側からネジ等を利用して圧縮する方向に力を与えられて、互いに密着するようになっている(不図示)。筐体31の底部32には、冷却部材35の一例である冷却水を流すために、1または複数の水冷パイプ33が備えられている。冷却部材は、冷却媒体あるいは冷却剤と称しても良い。 In this embodiment, the battery 30 is, for example, a battery for an electric vehicle and includes a large number of battery cells (which may be simply referred to as cells) 40. The battery 30 includes a bottomed housing 31 that opens to one side. The housing 31 is preferably made of aluminum or an aluminum-based alloy. The battery cell 40 is arranged inside 34 of the housing 31. An electrode (not shown) is projected above the battery cell 40. The plurality of battery cells 40 are preferably brought into close contact with each other in the housing 31 by applying a force in the direction of compression from both sides thereof using screws or the like (not shown). The bottom 32 of the housing 31 is provided with one or more water cooling pipes 33 for flowing cooling water, which is an example of the cooling member 35. The cooling member may be referred to as a cooling medium or a coolant.

バッテリーセル40は、底部32との間に、放熱構造体1を挟むようにして筐体31内に配置されている。このような構造のバッテリー30において、バッテリーセル40は、放熱構造体1を通じて筐体31に伝熱して、水冷によって効果的に除熱される。このように、バッテリー30は、冷却部材35を流す構造を持つ筐体31内に、1または2以上の熱源としてのバッテリーセル40を備え、バッテリーセル40と筐体31(ここでは、底部32)との間に放熱構造体1を備える。なお、冷却部材35は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却部材35は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。また、放熱構造体1は、11個のバッテリーセル40を載置しているが、バッテリーセル40の個数は11個に限定されない。また、放熱部材8の個数についても、特に限定されない。 The battery cell 40 is arranged in the housing 31 so as to sandwich the heat radiating structure 1 with the bottom portion 32. In the battery 30 having such a structure, the battery cell 40 transfers heat to the housing 31 through the heat radiating structure 1 and is effectively removed by water cooling. As described above, the battery 30 includes a battery cell 40 as one or more heat sources in the housing 31 having a structure for flowing the cooling member 35, and the battery cell 40 and the housing 31 (here, the bottom portion 32). A heat radiating structure 1 is provided between the two. The cooling member 35 is not limited to cooling water, but is interpreted to include an organic solvent such as liquid nitrogen and ethanol. The cooling member 35 is not limited to a liquid under the conditions used for cooling, and may be a gas or a solid. Further, although the heat dissipation structure 1 has 11 battery cells 40 mounted therein, the number of battery cells 40 is not limited to 11. Further, the number of heat radiating members 8 is not particularly limited.

放熱構造体1を構成する複数の放熱部材8は、バッテリーセル40を載置していない状態では略円筒形状を有しているが、バッテリーセル40を載置するとその重さで圧縮され扁平の形態になる。なお、本願では、「縦断面」とは、バッテリー30の筐体31の内部34における上方開口面から底部32へと垂直に切断する方向の断面を意味する。 The plurality of heat radiating members 8 constituting the heat radiating structure 1 have a substantially cylindrical shape when the battery cell 40 is not mounted, but when the battery cell 40 is mounted, they are compressed by the weight and flattened. Become a form. In the present application, the "vertical cross section" means a cross section in the inner 34 of the housing 31 of the battery 30 in the direction of vertically cutting from the upper opening surface to the bottom 32.

3.その他の実施形態
上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
3. 3. Other Embodiments As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these, and can be implemented in various modifications.

図6は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。 FIG. 6 shows a cross-sectional view when the battery cell is laid horizontally so as to be in contact with the side surface of the battery cell on the heat radiating structure, a partially enlarged view thereof, and a partial cross-sectional view when the battery cell expands during charging and discharging. Each is shown.

先述の各実施形態では、バッテリーセル40を縦にしてその下端に放熱構造体1を接触せしめている状況について説明したが、バッテリーセル40の配置形態は、これに限定されない。バッテリーセル40の側面を放熱構造体1の各放熱部材8に接触させるように、バッテリーセル40を配置しても良い。バッテリーセル40は、充電および放電の際に温度上昇する。バッテリーセル40の容器自体が柔軟性に富む材料にて形成されていると、バッテリーセル40の特に側面が膨らむ可能性がある。そのような場合でも、放熱構造体1を構成している各放熱部材8がバッテリーセル40の外面の形状に合わせて変形できるので、充放電時にも放熱性を高く維持できる。 In each of the above-described embodiments, the situation in which the battery cell 40 is vertically arranged and the heat radiating structure 1 is brought into contact with the lower end thereof has been described, but the arrangement form of the battery cell 40 is not limited to this. The battery cell 40 may be arranged so that the side surface of the battery cell 40 is in contact with each heat radiating member 8 of the heat radiating structure 1. The temperature of the battery cell 40 rises during charging and discharging. If the container itself of the battery cell 40 is made of a highly flexible material, the side surface of the battery cell 40 may bulge in particular. Even in such a case, since each heat radiating member 8 constituting the heat radiating structure 1 can be deformed according to the shape of the outer surface of the battery cell 40, high heat radiating property can be maintained even during charging and discharging.

図7は、各種変形例に係る放熱部材の一部の斜視図を示す。 FIG. 7 shows a perspective view of a part of the heat radiating member according to various modified examples.

放熱部材8aは、上述の放熱部材8においてクッション部材21の外側をスパイラル状に巻回している帯状の熱伝導シート20に代えて、クッション部材21の外側を円筒状に被覆する熱伝導シート20aを用いた部材である。このように、放熱部材8aは、クッション部材21と、その外側を略円筒状に被覆する熱伝導シート20aとを備えても良い。 The heat radiating member 8a is a heat conductive sheet 20a that covers the outside of the cushion member 21 in a cylindrical shape instead of the band-shaped heat conductive sheet 20 in which the outside of the cushion member 21 is spirally wound in the heat radiating member 8 described above. This is the member used. As described above, the heat radiating member 8a may include the cushion member 21 and the heat conductive sheet 20a that covers the outside thereof in a substantially cylindrical shape.

放熱部材8bは、合計6本の尾根部25aを備えたクッション部材21aの外側を円筒状に被覆する熱伝導シート20aを用いた部材である。尾根部25aの数は、2、3、5あるいは7以上でも良い。尾根部25aは、クッション部材21aの中心軸から放射状に伸びているが、中心軸から放射状に伸びていなくとも良い。円柱若しくは角柱の形状を有するクッション部材21aの外側面から外方向に尾根部25aが突出していれば良い。 The heat radiating member 8b is a member using a heat conductive sheet 20a that covers the outside of the cushion member 21a having a total of six ridge portions 25a in a cylindrical shape. The number of ridges 25a may be 2, 3, 5 or 7 or more. The ridge portion 25a extends radially from the central axis of the cushion member 21a, but does not have to extend radially from the central axis. The ridge portion 25a may protrude outward from the outer surface of the cushion member 21a having the shape of a cylinder or a prism.

放熱部材8cは、上述のクッション部材21aの外側をスパイラル状に熱伝導シート20で被覆した部材である。このような形態の放熱部材8cでも、放熱部材8bと同様の効果を奏することができる。 The heat radiating member 8c is a member in which the outside of the cushion member 21a described above is spirally coated with a heat conductive sheet 20. Even with such a heat radiating member 8c, the same effect as that of the heat radiating member 8b can be obtained.

熱源は、バッテリーセル40のみならず、回路基板や電子機器本体などの熱を発する対象物を全て含む。例えば、熱源は、キャパシタおよびICチップ等の電子部品であっても良い。放熱構造体1は、バッテリー30以外の構造物、例えば、電子機器、家電、発電装置等に配置されていても良い。 The heat source includes not only the battery cell 40 but also all objects that generate heat, such as a circuit board and an electronic device main body. For example, the heat source may be an electronic component such as a capacitor and an IC chip. The heat radiating structure 1 may be arranged in a structure other than the battery 30, for example, an electronic device, a home appliance, a power generation device, or the like.

また、放熱構造体1,1aを構成する複数の放熱部材8,8a,8b,8cは、その長さ方向の一方の端部のみが固定部材(例えば、バー10a)に固定されていても良い。また、放熱部材8,8a,8b,8cは、枠部材10を構成する4つの辺と糸7により固定されても良い。また、枠部材10は、平面視にて四角い枠形状の部材ではなく、楕円、円、三角若しくは五角以上の多角形の外形であってその内側に開口部分を有していても良い。また、枠部材10のバッテリーセル40側の面を、放熱部材8,8a,8b,8cのバッテリーセル40側の面と同じ位置にするように、枠部材10と放熱部材8,8a,8b,8cとを固定しても良い。さらに、放熱部材8,8a,8b,8cの高さ方向(バッテリーセル40から底部32に向かう方向)の中位置に枠部材10を固定しても良い。また、放熱構造体1,1aは、枠部材10あるいはバー10aのような固定部材を備えていなくとも良い。 Further, the plurality of heat radiating members 8, 8a, 8b, 8c constituting the heat radiating structure 1, 1a may have only one end in the length direction fixed to the fixing member (for example, the bar 10a). .. Further, the heat radiating members 8, 8a, 8b, 8c may be fixed by the four sides forming the frame member 10 and the thread 7. Further, the frame member 10 may not be a member having a square frame shape in a plan view, but may have an ellipse, a circle, a triangle, or a polygonal outer shape of pentagon or more, and may have an opening portion inside the frame member 10. Further, the frame member 10 and the heat radiating members 8, 8a, 8b, so that the surface of the frame member 10 on the battery cell 40 side is at the same position as the surface of the heat radiating members 8, 8a, 8b, 8c on the battery cell 40 side. 8c may be fixed. Further, the frame member 10 may be fixed at a middle position in the height direction (direction from the battery cell 40 toward the bottom 32) of the heat radiating members 8, 8a, 8b, 8c. Further, the heat radiating structures 1, 1a do not have to be provided with a fixing member such as the frame member 10 or the bar 10a.

バッテリー30は、放熱部材8,8a,8b,8cのいずれを備えた放熱構造体を配置したものでも良い。また、放熱構造体は、放熱部材8,8a,8b,8cの内の2種類以上を含むように構成されても良い。放熱部材8,8a,8b,8cの形状は、円筒あるいは円柱以外に、楕円筒、楕円柱、三角以上の角筒若しくは角柱のような他の形状でも良い。 The battery 30 may have a heat radiating structure provided with any of the heat radiating members 8, 8a, 8b, and 8c. Further, the heat radiating structure may be configured to include two or more of the heat radiating members 8, 8a, 8b, 8c. The shape of the heat radiating members 8, 8a, 8b, 8c may be other than a cylinder or a cylinder, such as an elliptical cylinder, an elliptical pillar, a prism having a triangle or more, or a prism.

また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。 Further, the plurality of components of each of the above-described embodiments can be freely combined except when they cannot be combined with each other.

本発明に係る放熱構造体は、例えば、自動車用バッテリーの他、自動車、工業用ロボット、発電装置、PC、家庭用電化製品などの各種電子機器にも利用することができる。また、本発明に係るバッテリーは、自動車用のバッテリー以外に、家庭用の充放電可能なバッテリー、PC等の電子機器用のバッテリーにも利用できる。 The heat dissipation structure according to the present invention can be used not only for automobile batteries but also for various electronic devices such as automobiles, industrial robots, power generation devices, PCs, and household electric appliances. Further, the battery according to the present invention can be used not only as a battery for automobiles but also as a rechargeable battery for home use and a battery for electronic devices such as PCs.

1,1a・・・放熱構造体、7・・・糸(連結部材の一例)、8,8a,8b,8c・・・放熱部材、10・・・枠部材(固定部材の一例)、10a・・・バー(固定部材の一例)、11・・・開口部、20,20a・・・熱伝導シート、21,21a・・・クッション部材、22・・・空間、25,25a・・・尾根部、30・・・バッテリー、31・・・筐体、35・・・冷却部材、40・・・バッテリーセル(熱源の一例)。 1,1a ... Heat dissipation structure, 7 ... Thread (example of connecting member), 8,8a, 8b, 8c ... Heat dissipation member, 10 ... Frame member (example of fixing member), 10a ... Bar (an example of a fixing member), 11 ... opening, 20, 20a ... heat conductive sheet, 21,21a ... cushion member, 22 ... space, 25, 25a ... ridge , 30 ... Battery, 31 ... Housing, 35 ... Cooling member, 40 ... Battery cell (an example of heat source).

Claims (9)

熱源からの放熱を高める1または2以上の放熱部材を備える放熱構造体であって、
前記放熱部材は、
クッション部材と、
熱伝導シートと、
を備え、
前記クッション部材は、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易な一方向に長尺な部材であって、前記クッション部材の外側面から外側に向かって突出する尾根部を複数備えており、
前記熱伝導シートは、前記クッション部材の側面外周を、前記尾根部の外側から覆っている放熱構造体。
A heat dissipation structure including one or more heat dissipation members that enhance heat dissipation from a heat source.
The heat radiating member is
Cushion member and
With a heat conductive sheet
With
The cushion member is a member that is unidirectionally long and easily deformed according to the surface shape of the heat source as compared with the heat conductive sheet, and has a ridge portion that protrudes outward from the outer surface of the cushion member. We have more than one
The heat conductive sheet is a heat radiating structure that covers the outer periphery of the side surface of the cushion member from the outside of the ridge portion.
前記尾根部は、前記クッション部材の中心軸から放射状に伸びている請求項1に記載の放熱構造体。 The heat radiating structure according to claim 1, wherein the ridge portion extends radially from the central axis of the cushion member. 前記熱伝導シートは、前記クッション部材の長さ方向にスパイラル状に進行させながら前記クッション部材の外側を覆っている請求項1または2に記載の放熱構造体。 The heat radiating structure according to claim 1 or 2, wherein the heat conductive sheet covers the outside of the cushion member while spirally advancing in the length direction of the cushion member. 前記放熱部材を2以上備え、
前記放熱部材を、その長さ方向と直交する方向に並べた状態で固定可能な部材であって、前記放熱部材の前記長さ方向の少なくとも一端部を固定する固定部材を、さらに備える請求項1から3のいずれか1項に記載の放熱構造体。
With two or more heat dissipation members
Claim 1 further includes a member capable of fixing the heat radiating member in a state orthogonal to the length direction thereof, and further comprising a fixing member for fixing at least one end of the heat radiating member in the length direction. The heat radiating structure according to any one of 3 to 3.
前記固定部材は、前記放熱部材の長さ方向と直交する方向に並んだ2以上の前記放熱部材を囲むように形成される請求項4に記載の放熱構造体。 The heat radiating structure according to claim 4, wherein the fixing member is formed so as to surround two or more heat radiating members arranged in a direction orthogonal to the length direction of the heat radiating member. 前記放熱部材を2以上備え、
2以上の前記放熱部材を前記長さ方向と直交する方向に並べた状態で連結する連結部材を備え、
前記連結部材は、糸で構成される請求項1から5のいずれか1項に記載の放熱構造体。
With two or more heat dissipation members
A connecting member for connecting two or more heat-dissipating members in a state of being arranged in a direction orthogonal to the length direction is provided.
The heat radiating structure according to any one of claims 1 to 5, wherein the connecting member is made of a thread.
前記熱伝導シートの表面に、当該表面に接触する熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有する請求項1から6のいずれか1項に記載の放熱構造体。 The heat radiating structure according to any one of claims 1 to 6, wherein the surface of the heat conductive sheet has a heat conductive oil for increasing the heat conductivity from the heat source in contact with the surface to the surface. 前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む請求項7に記載の放熱構造体。 The heat-dissipating structure according to claim 7, wherein the thermally conductive oil contains a silicone oil and a thermally conductive filler having a higher thermal conductivity than the silicone oil and composed of one or more of metal, ceramics or carbon. 冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、請求項1から8のいずれか1項に記載の放熱構造体を備えるバッテリー。

A battery having one or more battery cells as heat sources in a housing having a structure for flowing a cooling member, and any one of claims 1 to 8 is provided between the battery cells and the housing. A battery with the heat dissipation structure described in the section.

JP2019117081A 2019-06-25 2019-06-25 Heat dissipation structure and battery including the same Pending JP2021005446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117081A JP2021005446A (en) 2019-06-25 2019-06-25 Heat dissipation structure and battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117081A JP2021005446A (en) 2019-06-25 2019-06-25 Heat dissipation structure and battery including the same

Publications (1)

Publication Number Publication Date
JP2021005446A true JP2021005446A (en) 2021-01-14

Family

ID=74099466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117081A Pending JP2021005446A (en) 2019-06-25 2019-06-25 Heat dissipation structure and battery including the same

Country Status (1)

Country Link
JP (1) JP2021005446A (en)

Similar Documents

Publication Publication Date Title
JP6894933B2 (en) Heat dissipation structure and battery with it
KR102637678B1 (en) Heat dissipation structure and battery comprising the same
JP6886543B1 (en) Heat dissipation structure and battery with it
JP2020191171A (en) Heat dissipation structure and battery including the same
JP2021015696A (en) Heat dissipation structure and battery having the same
WO2021241161A1 (en) Heat radiation structure, and battery provided with same
JP2020113393A (en) Heat dissipation structure and battery with it
KR102644474B1 (en) Heat dissipation structure and battery comprising the same
JP2020187885A (en) Heat dissipation structure and battery including the same
JP2021005582A (en) Heat dissipation structure and battery including the same
JP7402717B2 (en) Heat dissipation structure and battery equipped with the same
WO2020184109A1 (en) Heat-dissipating structure sheet and method for manufacturing heat-dissipating structure
JP2021005446A (en) Heat dissipation structure and battery including the same
JP2021005508A (en) Heat dissipation structure and battery including the same
JP2020191169A (en) Heat dissipation structure and battery including the same
JP7399760B2 (en) Heat dissipation structure and battery equipped with the same
JP7399764B2 (en) Heat dissipation structure and battery equipped with the same
JP7254661B2 (en) Heat dissipation structure and battery with same
JP7402716B2 (en) Heat dissipation structure and battery equipped with the same
JP7394666B2 (en) Heat dissipation structure and battery equipped with the same
JP2020135952A (en) Heat radiation structure, and battery including the same
JP2020136607A (en) Heat radiation structure, and device including the same
JP2021197295A (en) Heat dissipation structure, battery and electronic device
JP2021111481A (en) Heat conductor and battery including the same
JP2021018937A (en) Heat dissipation structure and battery comprising the same