JP2021004279A - Fiber-reinforced molding material and molding including the same - Google Patents

Fiber-reinforced molding material and molding including the same Download PDF

Info

Publication number
JP2021004279A
JP2021004279A JP2019117315A JP2019117315A JP2021004279A JP 2021004279 A JP2021004279 A JP 2021004279A JP 2019117315 A JP2019117315 A JP 2019117315A JP 2019117315 A JP2019117315 A JP 2019117315A JP 2021004279 A JP2021004279 A JP 2021004279A
Authority
JP
Japan
Prior art keywords
fiber
mass
compound
molding material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019117315A
Other languages
Japanese (ja)
Inventor
山本 修平
Shuhei Yamamoto
修平 山本
英樹 塩根
Hideki Shione
英樹 塩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2019117315A priority Critical patent/JP2021004279A/en
Publication of JP2021004279A publication Critical patent/JP2021004279A/en
Pending legal-status Critical Current

Links

Abstract

To provide a fiber-reinforced molding material that does not contain a halogen compound or an antimony compound, has excellent moldability, and gives a molding having excellent flame retardancy by a convenient work process, and a molding thereof.SOLUTION: A fiber-reinforced molding material contains a novolac type phenolic resin (A), a divinylbenzene compound (B), aluminum hydroxide (C), a poly(meth)acrylic ester compound (D), and a reinforced fiber (E). Relative to 100 pts.mass of the total of the novolac type phenolic resin (A) and the divinylbenzene compound (B), the aluminum hydroxide (C) is 110-240 pts.mass, and the poly(meth)acrylic ester compound (D) is 0.3-33 pts.mass.SELECTED DRAWING: None

Description

本発明は、繊維強化成形材料及びそれを用いた成形品に関する。 The present invention relates to a fiber reinforced molding material and a molded product using the same.

シートモールディングコンパウンド(SMC)は、熱硬化性樹脂、無機充填剤、増粘剤、硬化剤等を混ぜたペーストをガラス繊維に含浸させてシート状とし、熟成処理を行って、半硬化させた成形材料である。このSMCを金型によって加熱・加圧成形することで、成形品が得られる。このような成形品は、優れた耐久性や耐水性、機械強度、難燃性等の特性を利用して、浴室機器や貯水槽、浄化槽、建築材、床材、電気部品、車両用材料等として幅広く用いられているが、建築用材料や車両用材料、航空機材料等においては、高い難燃性が求められている。 Sheet molding compound (SMC) is formed by impregnating glass fibers with a paste containing a thermosetting resin, an inorganic filler, a thickener, a curing agent, etc. to form a sheet, which is aged and semi-cured. It is a material. A molded product can be obtained by heating and pressure molding this SMC with a mold. Such molded products utilize characteristics such as excellent durability, water resistance, mechanical strength, and flame retardancy to provide bathroom equipment, water tanks, septic tanks, building materials, flooring materials, electrical parts, vehicle materials, etc. However, high flame retardancy is required for building materials, vehicle materials, aircraft materials, and the like.

難燃性を得る手法として、含塩素化合物や含臭素化合物などのハロゲン化合物、三酸化アンチモンなどのアンチモン化合物を添加する方法がある。しかしながら、環境保護の観点から使用することが好ましくないとの指摘があり、ハロゲン化合物及びアンチモン化合物を含まない難燃機構が必要となっている。 As a method for obtaining flame retardancy, there is a method of adding a halogen compound such as a chlorine-containing compound or a bromine-containing compound, or an antimony compound such as antimony trioxide. However, it has been pointed out that it is not preferable to use it from the viewpoint of environmental protection, and a flame retardant mechanism containing no halogen compound and antimony compound is required.

一方、SMCの主要な構成成分の熱硬化性樹脂としては、従来、不飽和ポリエステル樹脂が一般的であったが、高い難燃性を付与する目的で、フェノール樹脂を用いることが検討されており、その中でも、常温で液状を示すレゾール型のフェノール樹脂の使用が好ましいとされている(例えば、特許文献1〜3。)。 On the other hand, as a thermosetting resin which is a main component of SMC, an unsaturated polyester resin has been generally used in the past, but it has been studied to use a phenol resin for the purpose of imparting high flame retardancy. Among them, it is said that the use of a resol type phenol resin which is liquid at room temperature is preferable (for example, Patent Documents 1 to 3).

しかしながら、このようなレゾール型のフェノール樹脂は、加熱することで脱水縮合を起こして硬化が進行することで、副生成物として水分が脱離してしまう課題があり、この水分の脱離はSMC成形時にフクレ、ソリの原因となるため、成形時に水分を除去するガス抜き工程を設ける必要があった。 However, such a resole-type phenol resin has a problem that water is desorbed as a by-product by causing dehydration condensation by heating and progressing curing, and this desorption of water is SMC molding. Since it sometimes causes blister and warp, it is necessary to provide a degassing step for removing water during molding.

そこで、ハロゲン化合物及びアンチモン化合物を含まず、簡便な作業工程により、難燃性に優れる成形品が得られる材料が求められていた。 Therefore, there has been a demand for a material that does not contain a halogen compound and an antimony compound and can obtain a molded product having excellent flame retardancy by a simple work process.

特開平3−189110号公報Japanese Unexamined Patent Publication No. 3-189110 特開2004−182964号公報Japanese Unexamined Patent Publication No. 2004-182964 特開2007−169457号公報JP-A-2007-169457

本発明が解決しようとする課題は、ハロゲン化合物及びアンチモン化合物を含まず、成形性に優れ、簡便な作業工程により、難燃性に優れる成形品が得られる繊維強化成形材料及びその成形品を提供することである。 The problem to be solved by the present invention is to provide a fiber-reinforced molding material which does not contain a halogen compound and an antimony compound, has excellent moldability, and can obtain a molded product having excellent flame retardancy by a simple work process, and a molded product thereof. It is to be.

本発明者等は、ノボラック型フェノール樹脂、ジビニルベンゼン化合物、水酸化アルミニウム、ポリ(メタ)アクリル酸エステル化合物、及び強化繊維を特定の組成比で含有する繊維強化成形材料が、上記課題を解決できることを見出し、本発明を完成させた。 The present inventors can solve the above-mentioned problems with a fiber-reinforced molding material containing a novolak-type phenol resin, a divinylbenzene compound, aluminum hydroxide, a poly (meth) acrylic acid ester compound, and reinforcing fibers in a specific composition ratio. The present invention was completed.

すなわち、ノボラック型フェノール樹脂(A)、ジビニルベンゼン化合物(B)、水酸化アルミニウム(C)、ポリ(メタ)アクリル酸エステル化合物(D)、及び強化繊維(E)を含有する繊維強化成形材料であって、前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対し、前記水酸化アルミニウム(C)が110〜240質量部であり、前記ポリ(メタ)アクリル酸エステル化合物が0.3〜33質量部であることを特徴とする繊維強化成形材料及びそれを用いた成形品に関する。 That is, a fiber-reinforced molding material containing a novolak-type phenol resin (A), a divinylbenzene compound (B), aluminum hydroxide (C), a poly (meth) acrylic acid ester compound (D), and reinforcing fibers (E). The aluminum hydroxide (C) is 110 to 240 parts by mass with respect to a total of 100 parts by mass of the novolak type phenol resin (A) and the divinylbenzene compound (B), and the poly (meth) acrylic is used. The present invention relates to a fiber-reinforced molding material characterized in that the acid ester compound is 0.3 to 33 parts by mass, and a molded product using the same.

本発明の繊維強化成形材料から得られる成形品は、難燃性等に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。 Since the molded product obtained from the fiber-reinforced molded material of the present invention is excellent in flame retardancy and the like, it is an automobile member, a railroad vehicle member, an aerospace machine member, a ship member, a housing equipment member, a sports member, a light vehicle member, and a building. It can be suitably used for civil engineering members, housings for OA equipment, and the like.

本発明の繊維強化成形材料は、ノボラック型フェノール樹脂(A)、ジビニルベンゼン化合物(B)、水酸化アルミニウム(C)、ポリ(メタ)アクリル酸エステル化合物(D)、及び強化繊維(E)を含有する繊維強化成形材料であって、前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対し、前記水酸化アルミニウム(C)が110〜240質量部であり、前記ポリ(メタ)アクリル酸エステル化合物(D)が0.3〜33質量部であるものである。 The fiber-reinforced molding material of the present invention comprises a novolak-type phenol resin (A), a divinylbenzene compound (B), aluminum hydroxide (C), a poly (meth) acrylic acid ester compound (D), and a reinforcing fiber (E). The fiber-reinforced molding material contained is 110 to 240 parts by mass of the aluminum hydroxide (C) with respect to 100 parts by mass of the total of the novolak type phenol resin (A) and the divinylbenzene compound (B). , The poly (meth) acrylic acid ester compound (D) is 0.3 to 33 parts by mass.

なお、本発明において、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいう。 In the present invention, "(meth) acrylic acid" means one or both of acrylic acid and methacrylic acid, and "(meth) acrylate" means one or both of acrylate and methacrylate.

前記ノボラック型フェノール樹脂(A)は、特に限定されないが、前記ジビニルベンゼン化合物(B)との相溶性に優れることから、芳香環を架橋するメチレン結合のオルソ−パラ比が3以上であることが好ましい。ここで、オルソ−パラ比は、芳香環の水酸基に対してパラ位同士で架橋しているメチレン結合数と、オルソ位とパラ位とで架橋しているメチレン結合数の1/2との和に対する、オルソ位同士で架橋しているメチレン結合数と、オルソ位とパラ位とで架橋しているメチレン結合数の1/2との和との比である。なお、ノボラック型フェノール樹脂(A)は、単独で用いることも2種以上併用することもできる。 The novolak-type phenol resin (A) is not particularly limited, but since it is excellent in compatibility with the divinylbenzene compound (B), the ortho-para ratio of the methylene bond that crosslinks the aromatic ring is 3 or more. preferable. Here, the ortho-para ratio is the sum of the number of methylene bonds crosslinked between the para positions with respect to the hydroxyl group of the aromatic ring and 1/2 of the number of methylene bonds crosslinked between the ortho and para positions. It is the ratio of the sum of the number of methylene bonds crosslinked between the ortho positions and 1/2 of the number of methylene bonds crosslinked between the ortho positions and the para positions. The novolak type phenol resin (A) can be used alone or in combination of two or more.

また、前記ノボラック型フェノール樹脂(A)の数平均分子量は、200〜2,000が好ましく、300〜1,000がより好ましい。 The number average molecular weight of the novolak type phenol resin (A) is preferably 200 to 2,000, more preferably 300 to 1,000.

前記ノボラック型フェノール樹脂(A)は、例えば、ホルムアルデヒド供給物質とフェノール化合物とを、必要に応じて、触媒の存在下、そのモル比が0.5〜1.0となるようにして反応させることにより得られる。 In the novolak type phenol resin (A), for example, a formaldehyde supply substance and a phenol compound are reacted in the presence of a catalyst so that the molar ratio thereof is 0.5 to 1.0, if necessary. Obtained by

前記ホルムアルデヒド供給物質としては、例えば、ホルムアルデヒド水溶液や、パラホルムアルデヒド等が挙げられる。なお、これらのホルムアルデヒド供給物質は、単独で用いることも2種以上併用することもできる。 Examples of the formaldehyde supply substance include an aqueous formaldehyde solution and paraformaldehyde. These formaldehyde supply substances may be used alone or in combination of two or more.

前記フェノール化合物としては、例えば、フェノール、ビスフェノールF、ビスフェノールA、ビスフェノールAF等のビスフェノール化合物、クレゾール、p−ターシャリーブチルフェノール等のアルキル置換フェノール化合物、ブロモフェノール等のハロゲノフェノール化合物、レゾルシン等のフェノール性水酸基を2個以上含有する芳香族炭化水素、1−ナフトール、2−ナフトール、1,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のナフトール化合物などが挙げられる。なお、これらのフェノール化合物は、単独で用いることも2種以上併用することもできる。 Examples of the phenol compound include bisphenol compounds such as phenol, bisphenol F, bisphenol A, and bisphenol AF, alkyl-substituted phenol compounds such as cresol and p-terriary butylphenol, halogenophenol compounds such as bromophenol, and phenolic compounds such as resorcin. Examples thereof include aromatic hydrocarbons containing two or more hydroxyl groups, naphthol compounds such as 1-naphthol, 2-naphthol, 1,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene. These phenol compounds may be used alone or in combination of two or more.

前記触媒としては、例えば、酢酸亜鉛、ホウ酸マンガン等の金属塩、酸化鉛、酸化亜鉛等の金属酸化物が挙げられる。これらの触媒は、単独で用いることも2種以上併用することもできる。 Examples of the catalyst include metal salts such as zinc acetate and manganese borate, and metal oxides such as lead oxide and zinc oxide. These catalysts can be used alone or in combination of two or more.

また、前記ノボラック型フェノール樹脂(A)の製造の際、必要に応じて、フルフラール、尿素、メラミン、アセトグアナミン、ベンゾグアナミン等を併用することもできる。 Further, in the production of the novolak type phenol resin (A), furfural, urea, melamine, acetoguanamine, benzoguanamine and the like can be used in combination, if necessary.

上記反応は有機溶剤の存在下で行ってもよいし、得られた反応生成物に有機溶剤を加えてもよいが、オルソ−パラ比の大きい樹脂が得られ易いため、有機溶剤の存在下で行うことが好ましい。 The above reaction may be carried out in the presence of an organic solvent, or an organic solvent may be added to the obtained reaction product, but since a resin having a large ortho-para ratio is easily obtained, it is possible to obtain a resin in the presence of an organic solvent. It is preferable to do so.

前記有機溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素が好ましい。 As the organic solvent, for example, aromatic hydrocarbons such as toluene and xylene are preferable.

前記ノボラック型フェノール樹脂(A)は、前記触媒の残留量を水洗等により低減したものが好ましく、0.005ppm以下のものが好ましい。 The novolak type phenol resin (A) preferably has the residual amount of the catalyst reduced by washing with water or the like, and preferably 0.005 ppm or less.

前記ジビニルベンゼン化合物(B)としては、例えば、ジビニルベンゼン、アルキルジビニルベンゼン、これらのハロゲン置換物等が挙げられるが、反応性や作業性がより優れることから、ジビニルベンゼンが好ましい。なお、これらのジビニルベンゼン化合物(B)は、単独で用いることも2種以上併用することもできる。 Examples of the divinylbenzene compound (B) include divinylbenzene, alkyldivinylbenzene, and halogen substitutions thereof, but divinylbenzene is preferable because it is more excellent in reactivity and workability. These divinylbenzene compounds (B) can be used alone or in combination of two or more.

前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との質量比(A/B)は、成形性及び難燃性のバランスがより優れることから、40/60〜70/30の範囲であることが好ましい。 The mass ratio (A / B) of the novolak-type phenol resin (A) and the divinylbenzene compound (B) is in the range of 40/60 to 70/30 because the balance between moldability and flame retardancy is better. Is preferable.

また、前記ノボラック型フェノール樹脂(A)と反応し得るビニル化合物として、前記ジビニルベンゼン化合物(B)以外のその他のビニル化合物を含有することができる。その他のビニル化合物としては、例えば、スチレン、メチルスチレン、エチルスチレン、モノブロモスチレン等の芳香族ビニル化合物、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸ステアリルエステル、(メタ)アクリル酸、N−メチロール(メタ)アクリルアミド、γ−メルカプトプロピルトリメトキシシラン等の脂肪族ビニル化合物が挙げられる。これらのその他のビニル化合物は、単独で用いることも2種以上併用することもできる。 Further, as the vinyl compound capable of reacting with the novolak type phenol resin (A), other vinyl compounds other than the divinylbenzene compound (B) can be contained. Examples of other vinyl compounds include aromatic vinyl compounds such as styrene, methylstyrene, ethylstyrene, and monobromostyrene, (meth) acrylic acid methyl ester, (meth) acrylic acid stearyl ester, (meth) acrylic acid, and N. Examples thereof include aliphatic vinyl compounds such as −methylol (meth) acrylamide and γ-mercaptopropyltrimethoxysilane. These other vinyl compounds may be used alone or in combination of two or more.

前記水酸化アルミニウム(C)は、良好な成形性を維持しながら、成形品に難燃性を付与できることから、前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物との合計100質量部に対し、110〜240質量部であることが重要であるが、成形性と難燃性のバランスがより向上することから、120〜220質量部がより好ましい。 Since the aluminum hydroxide (C) can impart flame retardancy to the molded product while maintaining good moldability, the total amount of the novolak type phenol resin (A) and the divinylbenzene compound is 100 parts by mass. It is important that the amount is 110 to 240 parts by mass, but 120 to 220 parts by mass is more preferable because the balance between moldability and flame retardancy is further improved.

前記ポリ(メタ)アクリル酸エステル化合物(D)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート等の(共)重合物が挙げられるが、増粘効果がより優れることから、ポリ(メタ)アクリル酸メチルが好ましく、粒子状であるものが好ましい。なお、これらのポリ(メタ)アクリル酸エステル化合物(D)は、単独で用いることも2種以上併用することもできる。 Examples of the poly (meth) acrylic acid ester compound (D) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate. , N-Hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate and other (co) polymers, but because they have a better thickening effect. , Methyl poly (meth) acrylate is preferable, and those in the form of particles are preferable. These poly (meth) acrylic acid ester compounds (D) may be used alone or in combination of two or more.

前記ポリ(メタ)アクリル酸エステル化合物(D)は、増粘効果と得られる成形品の外観及び強度とのバランスの観点から、前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対し、0.3〜33質量部であることが重要であるが、0.8〜25質量部であることがより好ましい。 The poly (meth) acrylic acid ester compound (D) is composed of the novolak type phenol resin (A) and the divinylbenzene compound (B) from the viewpoint of the balance between the thickening effect and the appearance and strength of the obtained molded product. It is important that the amount is 0.3 to 33 parts by mass with respect to 100 parts by mass in total, but it is more preferably 0.8 to 25 parts by mass.

前記強化繊維(E)としては、例えば、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、金属繊維、アラミド繊維、ビニロン繊維、テトロン繊維等の有機繊維などが挙げられるが、より高強度、高弾性の成形品が得られることから、ガラス繊維又は炭素繊維好ましい。これらの強化繊維(E)は単独で用いることも、2種以上併用することもできる。 Examples of the reinforcing fiber (E) include organic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, boron fiber, metal fiber, aramid fiber, vinylon fiber, and tetron fiber, but the height is higher. Glass fiber or carbon fiber is preferable because a molded product having high strength and high elasticity can be obtained. These reinforcing fibers (E) can be used alone or in combination of two or more.

前記強化繊維(E)の形状としては特に制限はなく、例えば、短繊維、長繊維、ヤーン、マット、シート等が挙げられる。 The shape of the reinforcing fiber (E) is not particularly limited, and examples thereof include short fibers, long fibers, yarns, mats, and sheets.

本発明の成形材料の成分中の、前記強化繊維(E)の含有率は、得られる成形品の機械強度がより向上することから、10〜60質量%の範囲が好ましく、20〜40質量%の範囲がより好ましい。 The content of the reinforcing fiber (E) in the components of the molding material of the present invention is preferably in the range of 10 to 60% by mass, preferably 20 to 40% by mass, because the mechanical strength of the obtained molded product is further improved. The range of is more preferable.

本発明の繊維強化成形材料の成分としては、ノボラック型フェノール樹脂(A)、ジビニルベンゼン化合物(B)、水酸化アルミニウム(C)、ポリ(メタ)アクリル酸エステル化合物(D)、及び強化繊維(E)以外のものを使用してもよく、例えば、前記ノボラック型フェノール樹脂(A)以外の熱硬化性樹脂、熱可塑性樹脂、硬化促進剤、重合禁止剤、充填剤、低収縮剤、離型剤、増粘剤、減粘剤、顔料、酸化防止剤、可塑剤、難燃剤、抗菌剤、紫外線安定剤、補強材、光硬化剤等を含有することができる。 The components of the fiber-reinforced molding material of the present invention include a novolak-type phenol resin (A), a divinylbenzene compound (B), aluminum hydroxide (C), a poly (meth) acrylic acid ester compound (D), and reinforcing fibers ( Those other than E) may be used, for example, a thermosetting resin other than the novolak type phenol resin (A), a thermoplastic resin, a curing accelerator, a polymerization inhibitor, a filler, a low shrinkage agent, and a mold release. It can contain an agent, a thickener, a thickener, a pigment, an antioxidant, a plasticizer, a flame retardant, an antibacterial agent, an ultraviolet stabilizer, a reinforcing material, a photocuring agent and the like.

前記熱硬化性樹脂としては、例えば、ビニルエステル樹脂、ビニルウレタン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、フラン樹脂等が挙げられる。また、これらの熱硬化性樹脂は、単独で用いることも2種以上併用することもできる。 Examples of the thermosetting resin include vinyl ester resin, vinyl urethane resin, unsaturated polyester resin, acrylic resin, epoxy resin, phenol resin, melamine resin, furan resin and the like. In addition, these thermosetting resins can be used alone or in combination of two or more.

前記熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ウレタン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂およびこれらを共重合等により変性させたものが挙げられる。また、これらの熱可塑性樹脂は、単独で用いることも2種以上併用することもできる。 Examples of the thermoplastic resin include polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, urethane resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, polybutadiene resin, polyisoprene resin, and copolymerization thereof. Examples thereof include those modified by the above. In addition, these thermoplastic resins can be used alone or in combination of two or more.

前記硬化促進剤としては、例えば、塩化アルミニウム、塩化第一錫等の金属塩化物、硫酸、塩酸、リン酸等の無機酸、ベンゼンスルホン酸、パラトルエンスルホン酸等の有機スルホン酸、酢酸、しゅう酸、マレイン酸等の有機カルボン酸、亜リンモノフェニル等の亜リン酸エステル、硫酸や有機スルホン酸から誘導されるエステル化合物、p−トルエンスルホン酸メチルや、塩化アンモニウム等の塩、塩化ベンジル、クロロメチルスチレン、塩化ベンゾイル、ハロゲン化金属のスルフォニウム塩等で代表される潜在性触媒などが挙げられる。これら硬化促進剤は、単独で用いることも2種以上併用することもできる。 Examples of the curing accelerator include metal chlorides such as aluminum chloride and stannous chloride, inorganic acids such as sulfuric acid, hydrochloric acid and phosphoric acid, organic sulfonic acids such as benzenesulfonic acid and p-toluenesulfonic acid, acetic acid and embroidery. Organic carboxylic acids such as acids and maleic acids, phosphite esters such as phosphomonophenyl, ester compounds derived from sulfuric acid and organic sulfonic acids, salts such as methyl p-toluenesulfonic acid and ammonium chloride, benzyl chloride, Examples thereof include latent catalysts typified by chloromethylstyrene, benzoyl chloride, and sulfonium salts of metal halides. These curing accelerators can be used alone or in combination of two or more.

前記硬化促進剤は、硬化性及び得られる成形品の性能のバランスがより向上することから、前記ノボラック型フェノール樹脂(A)100質量部に対して、0.5〜10質量部の範囲が好ましい。 The curing accelerator is preferably in the range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the novolak type phenol resin (A) because the balance between curability and the performance of the obtained molded product is further improved. ..

前記充填剤としては、無機化合物、有機化合物があり、成形品の強度等の物性を調整するために使用できる。 Examples of the filler include inorganic compounds and organic compounds, which can be used to adjust physical properties such as strength of molded products.

前記無機化合物としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉等が挙げられる。 Examples of the inorganic compound include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, burlite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloon, and the like. Examples thereof include alumina, glass powder, talc, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, and iron powder.

前記有機化合物としては、セルロース、キチン等の天然多糖類粉末や、合成樹脂粉末等があり、合成樹脂粉末としては、硬質樹脂、軟質ゴム、エラストマーまたは重合体(共重合体)などから構成される有機物の粉体やコアシェル型などの多層構造を有する粒子を使用できる。具体的には、ブタジエンゴムおよび/またはアクリルゴム、ウレタンゴム、シリコンゴム等からなる粒子、ポリイミド樹脂粉末、フッ素樹脂粉末、フェノール樹脂粉末などが挙げられる。これらの充填剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the organic compound include natural polysaccharide powders such as cellulose and chitin, synthetic resin powders, and the like, and synthetic resin powders are composed of hard resins, soft rubbers, elastomers, polymers (copolymers), and the like. Particles having a multilayer structure such as organic powder or core-shell type can be used. Specific examples thereof include particles made of butadiene rubber and / or acrylic rubber, urethane rubber, silicon rubber and the like, polyimide resin powder, fluororesin powder, phenol resin powder and the like. These fillers can be used alone or in combination of two or more.

本発明の繊維強化成形材料は、生産性に優れる観点及びデザイン多様性を有する成形性の観点から、シートモールディングコンパウンド(以下、「SMC」と略記する。)又はバルクモールディングコンパウンド(以下、「BMC」と略記する。)であることが好ましい。 The fiber-reinforced molding material of the present invention is a sheet molding compound (hereinafter, abbreviated as "SMC") or a bulk molding compound (hereinafter, "BMC") from the viewpoint of excellent productivity and moldability having design diversity. It is abbreviated as).

前記SMCの製造方法としては、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、前記ノボラック型フェノール樹脂(A)、前記ジビニルベンゼン化合物(B)、前記水酸化アルミニウム(C)、前記ポリ(メタ)アクリル酸エステル化合物(D)等の各成分を混合・分散し、得られた樹脂組成物を上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、前記強化繊維(E)を前記上下に設置されたキャリアフィルム上の樹脂組成物で挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて前記強化繊維(E)に樹脂組成物を含浸させた後、ロール状に巻き取る又はつづら折りに畳む方法等が挙げられる。さらに、この後に25〜60℃の温度で熟成を行うことが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンとポリプロピレンのラミネートフィルム、ポリエチレンテレフタレート、ナイロン等を用いることができる。 As a method for producing the SMC, the novolak type phenol resin (A), the divinylbenzene compound (B), using a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, and an extruder is used. Each component such as the aluminum hydroxide (C) and the poly (meth) acrylic acid ester compound (D) is mixed and dispersed, and the obtained resin composition is spread on a carrier film placed on the top and bottom to a uniform thickness. The reinforcing fibers (E) are sandwiched between the resin compositions on the carrier films placed above and below the reinforcing fibers (E), and then the whole is passed between the impregnated rolls and pressure is applied to the reinforcing fibers (E). ) Is impregnated with the resin composition, and then rolled up or folded into a zigzag fold. Further, it is preferable to carry out aging at a temperature of 25 to 60 ° C. after this. As the carrier film, a polyethylene film, a polypropylene film, a polyethylene-polypropylene laminate film, polyethylene terephthalate, nylon or the like can be used.

前記BMCの製造方法としては、前記SMCの製造方法と同様に、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、前記ノボラック型フェノール樹脂(A)、前記ジビニルベンゼン化合物(B)、前記水酸化アルミニウム(C)、前記ポリ(メタ)アクリル酸エステル化合物(D)等の各成分を混合・分散し、得られた樹脂組成物に前記強化繊維(E)を混合・分散させる方法等が挙げられる。また、SMCと同様に25〜60℃の温度で熟成することが好ましい。 As the method for producing the BMC, the novolak type phenol resin (A) is produced by using a mixer such as a normal mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder in the same manner as the method for producing the SMC. , The divinylbenzene compound (B), the aluminum hydroxide (C), the poly (meth) acrylic acid ester compound (D), and other components were mixed and dispersed, and the reinforcing fibers (the reinforcing fibers) were added to the obtained resin composition. Examples thereof include a method of mixing and dispersing E). Further, it is preferable to ripen at a temperature of 25 to 60 ° C. like SMC.

本発明の成形品は、前記繊維強化成形材料より得られるが、生産性に優れる点とデザイン多様性に優れる観点からその成形方法としては、SMC又はBMCの加熱圧縮成形が好ましい。 The molded product of the present invention can be obtained from the fiber-reinforced molding material, but from the viewpoint of excellent productivity and excellent design diversity, heat compression molding of SMC or BMC is preferable as the molding method.

前記加熱圧縮成形としては、例えば、SMC、BMC等の成形材料を所定量計量し、100〜200℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1〜30MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。なお、加熱条件や加圧条件は段階的に変更することもできる。 In the heat compression molding, for example, a predetermined amount of a molding material such as SMC or BMC is weighed, put into a mold heated to 100 to 200 ° C., molded by a compression molding machine, and the molding material is molded. A manufacturing method is used in which the molding material is cured by maintaining a molding pressure of 0.1 to 30 MPa, and then the molded product is taken out to obtain a molded product. The heating conditions and pressurizing conditions can be changed step by step.

本発明の繊維強化成形材料から得られる成形品は、外観、曲げ強さ、曲げ弾性率等に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。 Since the molded product obtained from the fiber-reinforced molded material of the present invention is excellent in appearance, bending strength, flexural modulus, etc., it is an automobile member, a railroad vehicle member, an aerospace machine member, a ship member, a housing equipment member, a sports member. , Light vehicle members, building civil engineering members, housings for OA equipment, etc. can be suitably used.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。フェノール樹脂のオルソ−パラ比は13C−NMR測定により求めたものである。 The present invention will be described in more detail below with reference to specific examples. The ortho-para ratio of the phenol resin was determined by 13C-NMR measurement.

(合成例1:ノボラック型フェノール樹脂(A−1)の合成)
攪拌機、コンデンサー、温度計及び滴下ロートを備えた4つ口2Lフラスコに、フェノール940g(10モル)及び80質量%パラホルムアルデヒドを281g(7.5モル)、更にキシレンを470g加え攪拌を開始した。触媒として酢酸亜鉛2水和物を4.7g加え、還流温度まで昇温した。5時間還流下にて反応させた後、蒸留を開始して水と溶剤であるキシレンを除去しつつ、130℃まで昇温した。130℃にて1時間保持した後、蒸留しながら150℃まで昇温した。さらに減圧下で遊離フェノールを一部除去した後、析出した触媒を濾過しながら取り出し、融点58℃の固形ノボラック型フェノール樹脂(A−1)を得た。このノボラック型フェノール樹脂(A−1)のオルソ−パラ比は6.6であった。
(Synthesis Example 1: Synthesis of Novolac Phenol Formaldehyde (A-1))
940 g (10 mol) of phenol, 281 g (7.5 mol) of 80% by mass paraformaldehyde, and 470 g of xylene were added to a four-necked 2L flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel to start stirring. 4.7 g of zinc acetate dihydrate was added as a catalyst, and the temperature was raised to the reflux temperature. After reacting under reflux for 5 hours, distillation was started to remove water and xylene as a solvent, and the temperature was raised to 130 ° C. After holding at 130 ° C. for 1 hour, the temperature was raised to 150 ° C. while distilling. Further, after partially removing free phenol under reduced pressure, the precipitated catalyst was taken out while filtering to obtain a solid novolak type phenol resin (A-1) having a melting point of 58 ° C. The ortho-para ratio of this novolak type phenol resin (A-1) was 6.6.

(調製例1:混合液(1)の調製)
得られたノボラック型フェノール樹脂(A−1)の100質量部に対して、ジビニルベンゼン100質量部を50℃にて溶解させて、ノボラック型フェノール樹脂とジビニルベンゼンとの混合物(1)を得た。
(Preparation Example 1: Preparation of mixed solution (1))
100 parts by mass of divinylbenzene was dissolved in 100 parts by mass of the obtained novolak-type phenol resin (A-1) at 50 ° C. to obtain a mixture (1) of the novolak-type phenol resin and divinylbenzene. ..

(調製例2:混合液(2)の調製)
得られたノボラック型フェノール樹脂(A−1)の115質量部に対して、ジビニルベンゼン85質量部を50℃にて溶解させて、ノボラック型フェノール樹脂とジビニルベンゼンとの混合物(2)を得た。
(Preparation Example 2: Preparation of mixed solution (2))
85 parts by mass of divinylbenzene was dissolved in 115 parts by mass of the obtained novolak-type phenol resin (A-1) at 50 ° C. to obtain a mixture (2) of the novolak-type phenol resin and divinylbenzene. ..

(実施例1:繊維強化成形材料(1)の作製及び評価)
調製例1で得た混合物(1)100質量部(ノボラック型フェノール樹脂50質量部、ジビニルベンゼン50質量部)に、水酸化アルミニウム(日本軽金属社製「B103」、以下、「水酸化アルミニウム(C−1)」と略記する。)200質量部、ポリメタクリル酸エステル有機微粒子(アイカ工業社製、「ゼフィアックF−303」、以下、「ポリ(メタ)アクリル酸エステル化合物(D−1)」と略記する。)10質量部、硬化促進剤(キシレン−4−スルホン酸水和物2質量部とクレゾール4質量部との混合物)6質量部を混合し、樹脂組成物(1)を得た。
(Example 1: Preparation and evaluation of fiber-reinforced molding material (1))
The mixture (1) obtained in Preparation Example 1 was added to 100 parts by mass (50 parts by mass of novolak type phenol resin, 50 parts by mass of divinylbenzene) with aluminum hydroxide (“B103” manufactured by Nippon Light Metal Co., Ltd., hereinafter “aluminum hydroxide (C)”. -1) ”) 200 parts by mass, polymethacrylic acid ester organic fine particles (manufactured by Aika Kogyo Co., Ltd.,“ Zefiac F-303 ”, hereinafter referred to as“ poly (meth) acrylic acid ester compound (D-1) ” (Abbreviation.) 10 parts by mass and 6 parts by mass of a curing accelerator (a mixture of 2 parts by mass of xylene-4-sulfonic acid hydrate and 4 parts by mass of cresol) were mixed to obtain a resin composition (1).

上記で得た樹脂組成物(1)を、PPフィルム上に塗布し、1インチ(25mm)にカットしたガラス繊維ロービング(日東紡社製「RS 480PB−549 AC」、以下、強化繊維(E−1)と略記する。)を繊維含有率が23質量%になるよう準備し、繊維方向性が無く厚みが均一になるように、塗布した樹脂上に空中から均一落下させ、同様に樹脂組成物(1)を塗布したフィルムで挟み込みガラス繊維に樹脂を含浸させた後、45℃恒温機中に24時間放置し、シート状の繊維強化成形材料(1)を得た。 The resin composition (1) obtained above was applied onto a PP film and cut into 1 inch (25 mm) glass fiber roving (“RS 480PB-549 AC” manufactured by Nitto Boseki Co., Ltd., hereinafter, reinforcing fiber (E-). 1) is abbreviated as 1) is prepared so that the fiber content is 23% by mass, and the resin composition is similarly dropped from the air onto the coated resin so that the fiber content is non-directional and the thickness is uniform. After sandwiching the glass fiber with the film coated with (1) and impregnating the glass fiber with a resin, the glass fiber was left in a thermostat at 45 ° C. for 24 hours to obtain a sheet-shaped fiber-reinforced molding material (1).

[成形品の作製]
上記で得られたシート状の繊維強化成形材料(1)をフィルムから剥離し、20cm×20cmにカットしたものを23×23cmの平板金型の中央にセットし、プレス圧力15MPaでプレス金型温度上型125℃/下型115℃、プレス時間15分、その後プレス金型温度上型155℃/下型145℃、プレス時間15分、その後プレス金型温度上型185℃/下型175℃、プレス時間30分で成形し、厚み1.5mmの平板状の成形品(1)を得た。
[Manufacturing of molded products]
The sheet-shaped fiber-reinforced molding material (1) obtained above was peeled from the film, cut into 20 cm × 20 cm, set in the center of a flat plate mold of 23 × 23 cm 2 , and pressed at a press pressure of 15 MPa. Temperature upper mold 125 ° C / lower mold 115 ° C, press time 15 minutes, then press mold temperature upper mold 155 ° C / lower mold 145 ° C, press time 15 minutes, then press mold temperature upper mold 185 ° C / lower mold 175 ° C. , A flat plate-shaped molded product (1) having a thickness of 1.5 mm was obtained by molding with a pressing time of 30 minutes.

[成形性の評価]
上記で得られた成形品(1)の外観を観察し、以下の基準により成形性を評価した。
○:成形材料の流動性が良好であり、成形品に表面荒れ等の欠陥がみられない。
△:成形材料の流動性は良好であるが、成形品の一部に表面荒れ等の欠陥がみられる。
×:成形材料の流動性が不良であり、金型通りの成形品が得られない。
[Evaluation of moldability]
The appearance of the molded product (1) obtained above was observed, and the moldability was evaluated according to the following criteria.
◯: The fluidity of the molding material is good, and no defects such as surface roughness are observed in the molded product.
Δ: The fluidity of the molding material is good, but defects such as surface roughness are observed in a part of the molded product.
X: The fluidity of the molding material is poor, and the molded product cannot be obtained according to the mold.

[難燃性の評価]
得られた成形品(1)を125mm×13mm×1.5mmにカットし、UL94燃焼試験のうち20mm垂直燃焼試験(IEC60695−11−10B,ASTM D3801)に準拠して測定を行い、難燃性を評価した。
[Evaluation of flame retardancy]
The obtained molded product (1) was cut into 125 mm × 13 mm × 1.5 mm, and measured in accordance with the 20 mm vertical combustion test (IEC60695-11-10B, ASTM D3801) of the UL94 combustion test, and the flame retardancy was measured. Was evaluated.

(実施例2:繊維強化成形材料(2)の作製及び評価)
実施例1で用いたポリ(メタ)アクリル酸エステル化合物(D−1)10質量部を1質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(2)を作製し、成形性及び難燃性を評価した。
(Example 2: Preparation and evaluation of fiber-reinforced molding material (2))
A fiber-reinforced molding material (2) was produced in the same manner as in Example 1 except that 10 parts by mass of the poly (meth) acrylic acid ester compound (D-1) used in Example 1 was changed to 1 part by mass. , Moldability and flame retardancy were evaluated.

(実施例3:繊維強化成形材料(3)の作製及び評価)
実施例1で用いたポリ(メタ)アクリル酸エステル化合物(D−1)10質量部を20質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(3)を作製し、成形性及び難燃性を評価した。
(Example 3: Preparation and evaluation of fiber-reinforced molding material (3))
A fiber-reinforced molding material (3) was produced in the same manner as in Example 1 except that 10 parts by mass of the poly (meth) acrylic acid ester compound (D-1) used in Example 1 was changed to 20 parts by mass. , Moldability and flame retardancy were evaluated.

(実施例4:繊維強化成形材料(4)の作製及び評価)
実施例1で用いた水酸化アルミニウム(C−1)200質量部を120質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(4)を作製し、成形性及び難燃性を評価した。
(Example 4: Preparation and evaluation of fiber-reinforced molding material (4))
A fiber-reinforced molding material (4) was produced in the same manner as in Example 1 except that 200 parts by mass of aluminum hydroxide (C-1) used in Example 1 was changed to 120 parts by mass. The flammability was evaluated.

(実施例5:繊維強化成形材料(5)の作製及び評価)
実施例1で用いた水酸化アルミニウム(C−1)200質量部を210質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(5)を作製し、成形性及び難燃性を評価した。
(Example 5: Preparation and evaluation of fiber-reinforced molding material (5))
A fiber-reinforced molding material (5) was produced in the same manner as in Example 1 except that 200 parts by mass of aluminum hydroxide (C-1) used in Example 1 was changed to 210 parts by mass. The flammability was evaluated.

(実施例6:繊維強化成形材料(6)の作製及び評価)
実施例1で用いた混合物(1)100質量部を混合物(2)100質量部に変更し、水酸化アルミニウム(C−1)200質量部を180質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(6)を作製し、成形性及び難燃性を評価した。
(Example 6: Preparation and evaluation of fiber-reinforced molding material (6))
Except that 100 parts by mass of the mixture (1) used in Example 1 was changed to 100 parts by mass of the mixture (2) and 200 parts by mass of aluminum hydroxide (C-1) was changed to 180 parts by mass, the same as in Example 1. In the same manner, a fiber-reinforced molding material (6) was prepared and its moldability and flame retardancy were evaluated.

(実施例7:繊維強化成形材料(7)の作製及び評価)
実施例1で用いたポリ(メタ)アクリル酸エステル化合物(D−1)10質量部を0.5質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(7)を作製し、成形性及び難燃性を評価した。
(Example 7: Preparation and evaluation of fiber-reinforced molding material (7))
The fiber-reinforced molding material (7) was used in the same manner as in Example 1 except that 10 parts by mass of the poly (meth) acrylic acid ester compound (D-1) used in Example 1 was changed to 0.5 parts by mass. It was prepared and evaluated for moldability and flame retardancy.

(実施例8:繊維強化成形材料(8)の作製及び評価)
実施例1で用いたポリ(メタ)アクリル酸エステル化合物(D−1)10質量部を30質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(8)を作製し、成形性及び難燃性を評価した。
(Example 8: Preparation and evaluation of fiber reinforced molding material (8))
A fiber-reinforced molding material (8) was produced in the same manner as in Example 1 except that 10 parts by mass of the poly (meth) acrylic acid ester compound (D-1) used in Example 1 was changed to 30 parts by mass. , Moldability and flame retardancy were evaluated.

(実施例9:繊維強化成形材料(9)の作製及び評価)
実施例1で用いた水酸化アルミニウム(C−1)200質量部を230質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(9)を作製し、成形性及び難燃性を評価した。
(Example 9: Preparation and evaluation of fiber-reinforced molding material (9))
A fiber-reinforced molding material (9) was produced in the same manner as in Example 1 except that 200 parts by mass of aluminum hydroxide (C-1) used in Example 1 was changed to 230 parts by mass. The flammability was evaluated.

(比較例1:繊維強化成形材料(R1)の作製及び評価)
実施例1で用いたポリ(メタ)アクリル酸エステル化合物(D−1)10質量部を0.1質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(R1)を作製し、成形性を評価した。なお、成形性が不良であったため、難燃性の評価は行わなかった。
(Comparative Example 1: Preparation and Evaluation of Fiber Reinforced Molding Material (R1))
The fiber-reinforced molding material (R1) was used in the same manner as in Example 1 except that 10 parts by mass of the poly (meth) acrylic acid ester compound (D-1) used in Example 1 was changed to 0.1 parts by mass. It was prepared and the moldability was evaluated. Since the moldability was poor, the flame retardancy was not evaluated.

(比較例2:繊維強化成形材料(R2)の作製及び評価)
実施例1で用いたポリ(メタ)アクリル酸エステル化合物(D−1)10質量部を35質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(R2)を作製し、成形性を評価した。なお、成形性が不良であったため、難燃性の評価は行わなかった。
(Comparative Example 2: Preparation and Evaluation of Fiber Reinforced Molding Material (R2))
A fiber-reinforced molding material (R2) was prepared in the same manner as in Example 1 except that 10 parts by mass of the poly (meth) acrylic acid ester compound (D-1) used in Example 1 was changed to 35 parts by mass. , Moldability was evaluated. Since the moldability was poor, the flame retardancy was not evaluated.

(比較例3:繊維強化成形材料(R3)の作製及び評価)
実施例1で用いた水酸化アルミニウム(C−1)200質量部を100質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(R3)を作製し、成形性及び難燃性を評価した。
(Comparative Example 3: Preparation and Evaluation of Fiber Reinforced Molding Material (R3))
A fiber-reinforced molding material (R3) was produced in the same manner as in Example 1 except that 200 parts by mass of aluminum hydroxide (C-1) used in Example 1 was changed to 100 parts by mass. The flammability was evaluated.

(比較例4:繊維強化成形材料(R4)の作製及び評価)
実施例1で用いた水酸化アルミニウム(C−1)200質量部を250質量部に変更した以外は、実施例1と同様にして、繊維強化成形材料(R4)を作製し、成形性を評価した。なお、成形性が不良であったため、難燃性の評価は行わなかった。
(Comparative Example 4: Preparation and Evaluation of Fiber Reinforced Molding Material (R4))
A fiber-reinforced molding material (R4) was produced in the same manner as in Example 1 except that 200 parts by mass of aluminum hydroxide (C-1) used in Example 1 was changed to 250 parts by mass, and the moldability was evaluated. did. Since the moldability was poor, the flame retardancy was not evaluated.

上記で得られた繊維強化成形材料(1)〜(9)の組成及び評価結果を表1及び2に示す。 The compositions and evaluation results of the fiber-reinforced molding materials (1) to (9) obtained above are shown in Tables 1 and 2.

Figure 2021004279
Figure 2021004279

Figure 2021004279
Figure 2021004279

上記で得られた繊維強化成形材料(R1)〜(R4)の組成及び評価結果を表3に示す。 Table 3 shows the compositions and evaluation results of the fiber-reinforced molding materials (R1) to (R4) obtained above.

Figure 2021004279
Figure 2021004279

実施例1〜9の本発明の繊維強化成形材料は、成形性に優れ、得られる成形品は難燃性に優れることが確認された。 It was confirmed that the fiber-reinforced molding materials of the present invention of Examples 1 to 9 were excellent in moldability, and the obtained molded product was excellent in flame retardancy.

一方、比較例1は、ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対するポリ(メタ)アクリル酸エステル化合物(D−1)が、本発明の下限である0.3質量部よりも少ない例であるが、成形性が不十分であることが確認された。 On the other hand, in Comparative Example 1, the lower limit of the present invention is the poly (meth) acrylic acid ester compound (D-1) with respect to a total of 100 parts by mass of the novolak type phenol resin (A) and the divinylbenzene compound (B). Although it is an example less than 0.3 parts by mass, it was confirmed that the moldability was insufficient.

比較例2は、ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対するポリ(メタ)アクリル酸エステル化合物(D−1)が、本発明の上限である33質量部よりも多い例であるが、成形性が不十分であることが確認された。 In Comparative Example 2, the poly (meth) acrylic acid ester compound (D-1) with respect to a total of 100 parts by mass of the novolak type phenol resin (A) and the divinylbenzene compound (B) is 33 mass by mass, which is the upper limit of the present invention. Although there are more examples than parts, it was confirmed that the moldability was insufficient.

比較例3は、ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対する水酸化アルミニウム(C−1)が、本発明の下限である110質量部よりも少ない例であるが、難燃性が不十分であることが確認された。 Comparative Example 3 is an example in which aluminum hydroxide (C-1) is less than 110 parts by mass, which is the lower limit of the present invention, with respect to a total of 100 parts by mass of the novolak type phenol resin (A) and the divinylbenzene compound (B). However, it was confirmed that the flame retardancy was insufficient.

比較例4は、ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対する水酸化アルミニウム(C−1)が、本発明の上限である230質量部よりも多い例であるが、成形性が不十分であることが確認された。 Comparative Example 4 is an example in which aluminum hydroxide (C-1) is more than 230 parts by mass, which is the upper limit of the present invention, with respect to a total of 100 parts by mass of the novolak type phenol resin (A) and the divinylbenzene compound (B). However, it was confirmed that the moldability was insufficient.

Claims (5)

ノボラック型フェノール樹脂(A)、ジビニルベンゼン化合物(B)、水酸化アルミニウム(C)、ポリ(メタ)アクリル酸エステル化合物(D)、及び強化繊維(E)を含有する繊維強化成形材料であって、前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との合計100質量部に対し、前記水酸化アルミニウム(C)が110〜240質量部であり、前記ポリ(メタ)アクリル酸エステル化合物が0.3〜33質量部であることを特徴とする繊維強化成形材料。 A fiber-reinforced molding material containing a novolak-type phenol formaldehyde (A), a divinylbenzene compound (B), aluminum hydroxide (C), a poly (meth) acrylic acid ester compound (D), and reinforcing fibers (E). The aluminum hydroxide (C) is 110 to 240 parts by mass with respect to a total of 100 parts by mass of the novolak type phenol resin (A) and the divinylbenzene compound (B), and the poly (meth) acrylic acid ester. A fiber reinforced molding material, characterized in that the compound is 0.3 to 33 parts by mass. 前記ノボラック型フェノール樹脂(A)の芳香環を架橋するメチレン結合のオルソ−パラ比が、3以上である請求項1記載の繊維強化成形材料。 The fiber-reinforced molding material according to claim 1, wherein the ortho-para ratio of the methylene bond that crosslinks the aromatic ring of the novolak-type phenol resin (A) is 3 or more. 前記ノボラック型フェノール樹脂(A)の数平均分子量が300〜2,000である請求項1又は2記載の繊維強化成形材料。 The fiber-reinforced molding material according to claim 1 or 2, wherein the novolak-type phenol resin (A) has a number average molecular weight of 300 to 2,000. 前記ノボラック型フェノール樹脂(A)と前記ジビニルベンゼン化合物(B)との質量比(A/B)が40/60〜70/30である請求項1〜3のいずれか1項記載の繊維強化成形材料。 The fiber reinforced molding according to any one of claims 1 to 3, wherein the mass ratio (A / B) of the novolak type phenol resin (A) to the divinylbenzene compound (B) is 40/60 to 70/30. material. 請求項1〜4のいずれか1項記載の繊維強化成形材料を用いた成形品。 A molded product using the fiber-reinforced molding material according to any one of claims 1 to 4.
JP2019117315A 2019-06-25 2019-06-25 Fiber-reinforced molding material and molding including the same Pending JP2021004279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117315A JP2021004279A (en) 2019-06-25 2019-06-25 Fiber-reinforced molding material and molding including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117315A JP2021004279A (en) 2019-06-25 2019-06-25 Fiber-reinforced molding material and molding including the same

Publications (1)

Publication Number Publication Date
JP2021004279A true JP2021004279A (en) 2021-01-14

Family

ID=74098025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117315A Pending JP2021004279A (en) 2019-06-25 2019-06-25 Fiber-reinforced molding material and molding including the same

Country Status (1)

Country Link
JP (1) JP2021004279A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051157A (en) * 1991-04-16 1993-01-08 Dainippon Ink & Chem Inc Curable prepreg and its cured molded article
JPH07228755A (en) * 1994-02-18 1995-08-29 Dainippon Ink & Chem Inc Resin composition for sealing electronic part
JPH0827355A (en) * 1994-07-13 1996-01-30 Kobe Steel Ltd Flame retardant fiber-reinforced plastic molding or molding composition
JPH08127706A (en) * 1994-10-31 1996-05-21 Dainippon Ink & Chem Inc Curable resin composition, prepreg, compound, and cured item
JP2003147170A (en) * 2001-11-15 2003-05-21 Mitsui Chemicals Inc Resin composition, and prepreg and laminate made of it
JP2005247940A (en) * 2004-03-03 2005-09-15 Sumitomo Bakelite Co Ltd Phenolic resin molding material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051157A (en) * 1991-04-16 1993-01-08 Dainippon Ink & Chem Inc Curable prepreg and its cured molded article
JPH07228755A (en) * 1994-02-18 1995-08-29 Dainippon Ink & Chem Inc Resin composition for sealing electronic part
JPH0827355A (en) * 1994-07-13 1996-01-30 Kobe Steel Ltd Flame retardant fiber-reinforced plastic molding or molding composition
JPH08127706A (en) * 1994-10-31 1996-05-21 Dainippon Ink & Chem Inc Curable resin composition, prepreg, compound, and cured item
JP2003147170A (en) * 2001-11-15 2003-05-21 Mitsui Chemicals Inc Resin composition, and prepreg and laminate made of it
JP2005247940A (en) * 2004-03-03 2005-09-15 Sumitomo Bakelite Co Ltd Phenolic resin molding material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
プラスチック・データブック, JPN6023004111, 1999, pages 994 - 996, ISSN: 0004982403 *

Similar Documents

Publication Publication Date Title
JP6041069B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JP5510764B1 (en) Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
KR101963071B1 (en) Preparation mathod of a resin composition containing benzoxazine and the prepreg and laminate prepared therefrom
JP2004182850A (en) Prepreg having excellent balance of characteristics and laminated sheet
JP6090684B1 (en) Resin composition for printed wiring board, prepreg, resin composite sheet and metal foil-clad laminate
TWI725956B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP2004175925A (en) Prepreg and laminate
KR101762102B1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin composite sheet, and printed wiring board
JP7238626B2 (en) Fiber-reinforced molding material and molded article using the same
JP2017155230A (en) Poly(vinylbenzyl)ether compound, curable resin composition containing this and cured article
TWI760348B (en) Decorative board with adhesive
JP2021004279A (en) Fiber-reinforced molding material and molding including the same
KR20160097258A (en) Thermosetting resin composition and use thereof
JP6828413B2 (en) Phenolic resin, curable resin composition and its cured product
JPWO2016203829A1 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6817529B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, resin composite sheet and printed wiring board
JP3147182B2 (en) Curable prepreg and molded product obtained by curing the same
JP6738447B2 (en) Decorative boards and floor materials
JPWO2021111885A1 (en) Sheet molding compound and its molded products
TWI670321B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TW201819521A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2021039558A1 (en) Phenolic resin, curable resin composition, and cured object obtained therefrom
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
EP3290454B1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board
JP2012111872A (en) Formed article and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801