JP2021001803A - Radiation source for non-destructive test, and method and apparatus for manufacturing the same - Google Patents
Radiation source for non-destructive test, and method and apparatus for manufacturing the same Download PDFInfo
- Publication number
- JP2021001803A JP2021001803A JP2019115636A JP2019115636A JP2021001803A JP 2021001803 A JP2021001803 A JP 2021001803A JP 2019115636 A JP2019115636 A JP 2019115636A JP 2019115636 A JP2019115636 A JP 2019115636A JP 2021001803 A JP2021001803 A JP 2021001803A
- Authority
- JP
- Japan
- Prior art keywords
- radiation source
- irradiation target
- spherical
- capsule
- destructive inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、非破壊検査用放射線源、並びに、その製造方法及び装置に係り、特に、非破壊検査によって得られる画像の幾何学的解像度が高く、線源強度をターゲット毎に均一とすることができ、リサイクルが容易な非破壊検査用放射線源、並びに、その製造方法及び装置に関する。 The present invention relates to a radiation source for non-destructive inspection and its manufacturing method and apparatus, and in particular, the geometric resolution of the image obtained by non-destructive inspection is high, and the source intensity can be made uniform for each target. It relates to a non-destructive inspection radiation source that can be easily recycled, and its manufacturing method and equipment.
原子炉を利用して非破壊検査用放射線源(以下、単に線源とも称する)を製造する技術が特許文献1に記載されている。 Patent Document 1 describes a technique for manufacturing a radiation source for non-destructive inspection (hereinafter, also simply referred to as a radiation source) using a nuclear reactor.
しかしながら従来は、例えば直径1.5mm×厚さ0.2mmの円盤状のターゲットを3〜4枚重ねて円柱状の線源としていたため、線源の上下面と側面で放出される放射線に異方性があるだけでなく、線源強度がターゲット毎に不均一となり、非破壊検査画像(例えば写真)の幾何学的解像度が低く、1枚1枚の線源強度が異なるため、再照射時の目標線源強度設定が困難であり、ターゲットのリサイクル性に欠ける等の問題点を有していた。 However, in the past, for example, 3 to 4 disc-shaped targets having a diameter of 1.5 mm and a thickness of 0.2 mm were stacked to form a columnar radiation source, so that the radiation emitted on the upper and lower surfaces and the side surfaces of the radiation source is different. Not only is it directional, but the source intensity is non-uniform for each target, the geometric resolution of non-destructive inspection images (for example, photographs) is low, and the source intensity of each sheet is different, so when re-irradiating. It was difficult to set the target radiation source intensity, and there were problems such as lack of recyclability of the target.
本発明は、前記従来の問題点を解消するべくなされたもので、非破壊検査画像の幾何学的解像度が高く、線源の異方性がなく、線源強度がターゲット毎に均一であり、ターゲットのリサイクル性も高い非破壊検査用放射線源、並びに、その製造方法及び装置を提供することを課題とする。 The present invention has been made to solve the above-mentioned conventional problems, that the geometric resolution of the non-destructive inspection image is high, there is no anisotropy of the radiation source, and the radiation source intensity is uniform for each target. An object of the present invention is to provide a non-destructive inspection radiation source having high recyclability of a target, and a method and apparatus for manufacturing the same.
本発明は、非破壊検査用放射線源の照射ターゲット形状を、例えば直径0.5〜1.5mm程度の微細な球状とすることにより、前記課題を解決するものである。 The present invention solves the above problems by making the irradiation target shape of the radiation source for non-destructive inspection a fine spherical shape having a diameter of, for example, about 0.5 to 1.5 mm.
ここで、前記球状の照射ターゲットを、イリジウム191を天然または濃縮したイリジウム金属とすることができる。 Here, the spherical irradiation target can be an iridium metal obtained by natural or concentrated iridium 191.
本発明は、又、球状の照射ターゲットを製造し、該球状の照射ターゲットを回転カプセルに収容し、原子炉一次冷却水の下方流により軸流羽根車を回転し、これにより前記回転カプセルを回転することを特徴とする非破壊検査用放射線源の製造方法により、前記課題を解決するものである。 The present invention also manufactures a spherical irradiation target, houses the spherical irradiation target in a rotary capsule, rotates an axial impeller by a downward flow of the primary cooling water of the reactor, thereby rotating the rotary capsule. The above-mentioned problems are solved by a method for manufacturing a radiation source for non-destructive inspection, which is characterized by the above.
ここで、溶融イリジウムを液体中に滴下させることによって、前記球状の照射ターゲットを製造することができる。 Here, the spherical irradiation target can be manufactured by dropping the molten iridium into the liquid.
又、機械加工によって、前記球状の照射ターゲットを製造することができる。 In addition, the spherical irradiation target can be manufactured by machining.
又、複数の前記球状の照射ターゲットを前記回転カプセルに複数層装荷することができる。 Further, a plurality of the spherical irradiation targets can be loaded in the rotating capsule in a plurality of layers.
本発明は、又、球状の照射ターゲットを収容する回転カプセルと、原子炉一次冷却水の下方流により回転される軸流羽根車とを備え、該軸流羽根車により前記回転カプセルを回転することを特徴とする非破壊検査用放射線源の製造装置により、前記課題を解決するものである。 The present invention also includes a rotary capsule accommodating a spherical irradiation target and an axial flow impeller that is rotated by a downward flow of the primary cooling water of the reactor, and the rotary impeller rotates the rotary capsule by the axial flow impeller. The above-mentioned problem is solved by the manufacturing apparatus of the radiation source for non-destructive inspection characterized by.
本発明によれば、照射ターゲット形状が微細な球状であるので、円盤状である場合に比べて非破壊検査画像の幾何学的解像度を高めることができる。又、線源の異方性をなくすことができる。更に、線源強度のばらつきが少ないのでターゲットのリサイクル性を高めて、希少資源を有効利用し、原料費を削減することができる。又、非破壊検査用放射線源の均一で効率的な製造が可能となり、コストパフォーマンスを向上することができる。又、外部電源でモータを駆動させてカプセルを回転させたりせず、原子炉一次冷却水の下方流を利用してカプセルを回転させるため、安価でかつ簡便に線源製造ができる。 According to the present invention, since the irradiation target shape is a fine spherical shape, the geometric resolution of the non-destructive inspection image can be increased as compared with the case where the irradiation target shape is a disk shape. Moreover, the anisotropy of the radiation source can be eliminated. Furthermore, since there is little variation in the intensity of the radiation source, the recyclability of the target can be improved, scarce resources can be effectively used, and the raw material cost can be reduced. In addition, a uniform and efficient production of a radiation source for non-destructive inspection is possible, and cost performance can be improved. Further, since the capsule is rotated by using the downward flow of the primary cooling water of the reactor without driving the motor by an external power source to rotate the capsule, the source can be manufactured inexpensively and easily.
以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments and examples. Further, the constituent requirements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Further, the components disclosed in the embodiments and examples described below may be appropriately combined or appropriately selected and used.
本発明の実施形態による192Ir製造手順の前半を図1に模式的に示す。 The first half of the 192 Ir manufacturing procedure according to the embodiment of the present invention is schematically shown in FIG.
まず、図1(A)、(B)に示す如く、例えば191Irを80%濃縮した濃縮イリジウム(Ir)でなるイリジウム(Ir)金属10から、例えば直径1mm、直径公差±0.02mm、重量12mg程度のイリジウム(Ir)微小球12を製造する。 First, as shown in FIGS. 1 (A) and 1 (B), for example, from the iridium (Ir) metal 10 composed of concentrated iridium (Ir) obtained by concentrating 191 Ir by 80%, for example, diameter 1 mm, diameter tolerance ± 0.02 mm, weight. About 12 mg of iridium (Ir) microspheres 12 are produced.
この製造には、イリジウム金属の溶融技術を活用して、溶融イリジウムを液体(例えば水)中に滴下させ、Ir微小球12を製造することができる。 In this production, the molten iridium can be dropped into a liquid (for example, water) to produce Ir microspheres 12 by utilizing the iridium metal melting technique.
あるいは、微細線盤加工技術を活用して、機械加工によりIr微小球12を製造することができる。 Alternatively, the Ir microspheres 12 can be manufactured by machining by utilizing the fine wire disk processing technology.
次いで、図1(C)に示す如く、Ir微小球12を適当に離して、1層につき、例えば直径25mmの円筒状アルミニウム製の熱媒体14の外周の直径20mmの円周上に、例えば2mm間隔で28個装荷したものを、図1(D)に示す如く、上下を適当に離して、例えば8層装荷して重層することにより、照射ターゲットの数を、例えば合計約220個とする。 Next, as shown in FIG. 1 (C), the Ir microspheres 12 are appropriately separated, and each layer is, for example, 2 mm on the circumference of the outer circumference of the cylindrical aluminum heat medium 14 having a diameter of 25 mm and having a diameter of 20 mm. As shown in FIG. 1 (D), 28 pieces are loaded at intervals, and the upper and lower parts are appropriately separated from each other, for example, 8 layers are loaded and layered, so that the total number of irradiation targets is, for example, about 220.
次いで、図1(E)に示す如く、照射ターゲットであるIr微小球12が装荷された8層の熱媒体14を回転カプセル(照射アンプルとも称する)20に密封し、図1(F)(=図2(A))に示す如く、原子炉40内に挿入して、原子炉一次冷却水の下方流で回転させつつ中性子を照射する。ここで、回転カプセル20を固定せずに回転させるのは、中性子照射の均一性を確保するためである。本実施形態では、原子炉一次冷却水の下方流を利用しているので、回転用電気モータや外部電源、その接続ケーブル等が不要であり、安価に構成できる。更に、ケーブルがない回転カプセル20を原子炉一次冷却水流路中に置くだけであるので、設置作業も簡便である。 Next, as shown in FIG. 1 (E), the eight-layer heat medium 14 loaded with the Ir irradiation target Ir microspheres 12 was sealed in a rotating capsule (also referred to as an irradiation ampoule) 20 and FIG. 1 (F) (= As shown in FIG. 2 (A)), it is inserted into the reactor 40 and irradiated with neutrons while rotating in the downward flow of the reactor primary cooling water. Here, the reason why the rotating capsule 20 is rotated without being fixed is to ensure the uniformity of neutron irradiation. In the present embodiment, since the downward flow of the primary cooling water of the reactor is used, an electric motor for rotation, an external power source, a connection cable thereof, and the like are not required, and the configuration can be inexpensive. Further, since the rotary capsule 20 without a cable is simply placed in the primary cooling water flow path of the reactor, the installation work is simple.
次いで、図2(B)に示す如く、原子炉40から取り出した照射済回転カプセル20Aを解体し、図2(C)に示す如く、照射済Ir微小球12Aが入っている照射済熱媒体14Aを取り出す。そして、図2(D)に示す如く、約220個の照射済Ir微小球12Aを取り出す。次いで、図2(E)に示す如く、照射済Ir微小球12Aを1個ずつ容器50に装荷し、図2(F)に示す如く、その容器50のγ線量を計測して所定量(例えば13Ci)であることを確認し、図2(G)に示す如く、容器50を密封して、密閉済容器50Aを図2(H)に示す如く、輸送容器52に入れて輸送する。 Next, as shown in FIG. 2 (B), the irradiated rotary capsule 20A taken out from the reactor 40 is disassembled, and as shown in FIG. 2 (C), the irradiated heat medium 14A containing the irradiated Ir microspheres 12A is contained. Take out. Then, as shown in FIG. 2D, about 220 irradiated Ir microspheres 12A are taken out. Next, as shown in FIG. 2 (E), the irradiated Ir microspheres 12A are loaded into the container 50 one by one, and as shown in FIG. 2 (F), the γ dose of the container 50 is measured and a predetermined amount (for example). After confirming that it is 13Ci), the container 50 is sealed as shown in FIG. 2 (G), and the sealed container 50A is placed in the transport container 52 and transported as shown in FIG. 2 (H).
本発明を検討する際に行った191Ir濃縮のIrターゲットの核的評価を図3に示す。 The nuclear evaluation of the Ir target of 191 Ir enrichment performed in examining the present invention is shown in FIG.
192Irの製造のためには、191Irの濃縮・非濃縮に関わらず、1〜2×1014(n/cm2)程度の熱中性子束密度が必要である。例えば、2ヶ月毎に輸送する場合には、照射時間を40日とすることができる。 For the production of 192 Ir, a thermal neutron flux density of about 1 to 2 × 10 14 (n / cm 2 ) is required regardless of whether 191 Ir is concentrated or not. For example, when transporting every two months, the irradiation time can be 40 days.
次に、同じく本発明を検討する際に行った191Irの反応断面積の影響(自己遮蔽効果)の検討結果を図4に示す。 Next, FIG. 4 shows the results of a study on the effect of the reaction cross section of 191 Ir (self-shielding effect), which was also carried out when the present invention was studied.
Irと中性子との反応断面積は、ウランの反応断面積よりも大きく、中性子を手前のIrで遮蔽してしまう(自己遮蔽)。そのため、図4(a)に示す如く、一方向(図では左方向)から中性子が来た場合、図4中央の横断面図(b)に示す如く、Irを内円と外円に配置すると、図4右側の(c)(外側装荷球における192Ir生成割合)、(d)(内側装荷球における192Ir生成割合)に示す如く、192Irの生成量が均一にならない。回転すれば、全方向から中性子が照射されるので均一になる。ただし、内円と外円では生成量に差が出るので、外円のみにIrを装荷することが望ましい。 The reaction cross section of Ir and neutron is larger than the reaction cross section of uranium, and the neutron is shielded by Ir in front (self-shielding). Therefore, as shown in FIG. 4A, when neutrons come from one direction (leftward in the figure), Ir is arranged in the inner and outer circles as shown in the cross-sectional view (b) at the center of FIG. As shown in (c) ( 192 Ir generation ratio in the outer loading ball) and (d) ( 192 Ir generation ratio in the inner loading ball) on the right side of FIG. 4, the amount of 192 Ir generated is not uniform. When it rotates, it becomes uniform because neutrons are irradiated from all directions. However, since there is a difference in the amount of production between the inner circle and the outer circle, it is desirable to load Ir only on the outer circle.
更に、同じく本発明を検討する際に行った原子炉一次冷却水による回転カプセル旋回の可能性の評価結果を図5に示す。 Further, FIG. 5 shows the evaluation result of the possibility of rotating the rotary capsule by the primary cooling water of the reactor, which was also carried out when examining the present invention.
回転速度に比べて、ギャップ部の流速が1000倍以上になるため、円筒容器表面の流れは旋回せずにギャップ部を通過しており、軸方向流れを旋回流れに転向させる構造が必要である。本体系では円筒容器に衝突する流れの損失とギャップ部の損失により、図5に示したように過大な軸方向力が発生することがわかった。そこで、円筒容器を回転させるには、軸方向力を支持するスラスト軸受の適用(ギャップ7mmに対して約50N以上の軸受荷重)が必要であることがわかった。 Since the flow velocity of the gap portion is 1000 times or more that of the rotation speed, the flow on the surface of the cylindrical container passes through the gap portion without swirling, and a structure that diverts the axial flow to the swirling flow is required. .. In this system, it was found that an excessive axial force is generated as shown in FIG. 5 due to the loss of the flow colliding with the cylindrical container and the loss of the gap portion. Therefore, it was found that in order to rotate the cylindrical container, it is necessary to apply a thrust bearing that supports the axial force (bearing load of about 50 N or more for a gap of 7 mm).
192Ir製造用回転カプセルを原子炉40の炉心内上下方向の一次冷却水流路に挿入した状態を図6に示す。 FIG. 6 shows a state in which the rotary capsule for 192 Ir production is inserted into the primary cooling water flow path in the vertical direction in the core of the reactor 40.
回転カプセル20を収容した、例えばA5052製のインナカプセル30は、例えばA6063製の外筒管22に収容されて、原子炉一次冷却水流路中に挿入される。前記インナカプセル30の軸は、例えばSUS304製のベアリング26と、例えばA5052製のベアリングホルダ24により外筒管22内で回転可能に上下で支持され、更に、同じくA5052製の軸流羽根車32を備えている。図において、34は、例えばSUS304製のメッシュ、36は、例えばA5052製のメッシュホルダである。従って、原子炉一次冷却水の下方流により軸流羽根車32が回転し、これに伴ってインナカプセル30及びその中の回転カプセル20も回転する。 The inner capsule 30 made of, for example, A5052, which contains the rotary capsule 20, is housed in the outer cylinder 22 made of, for example, A6063, and is inserted into the primary cooling water flow path of the reactor. The shaft of the inner capsule 30 is rotatably supported up and down in the outer cylinder 22 by, for example, a bearing 26 made of SUS304 and a bearing holder 24 made of A5052, and further, an axial flow impeller 32 also made of A5052 is supported. I have. In the figure, 34 is a mesh made of, for example, SUS304, and 36 is a mesh holder made of, for example, A5052. Therefore, the axial flow impeller 32 is rotated by the downward flow of the primary cooling water of the reactor, and the inner capsule 30 and the rotary capsule 20 in the inner capsule 30 are also rotated accordingly.
前記線源においては、原子炉出荷時の目標放射能量が10Ciであることを踏まえて、例えば13Ciとしていたが、今後の需要も考慮して30Ciの1.3倍の39Ciの製造も可能である。 In the above-mentioned radiation source, for example, 13 Ci was set based on the fact that the target radioactivity amount at the time of shipment from the reactor was 10 Ci, but considering future demand, it is possible to manufacture 39 Ci, which is 1.3 times as much as 30 Ci. ..
なお、前記実施形態においては、放射性同位体がイリジウムIr192とされていたが、放射性同位体の種類はこれに限定されず、コバルトCo60、セシウムCs127、イッテルビウムYb169、セレンSe75、テルミウムTm170等の他の放射性同位体であってもよい。又、熱媒体14のサイズや層数、微小球の数等も前記実施形態に限定されない。 In the above embodiment, the radioisotope was iridium-Ir192, but the type of radioisotope is not limited to this, and other radioisotopes such as cobalt Co60, cesium Cs127, itterbium Yb169, selenium Se75, and thermium Tm170. It may be a radioactive isotope. Further, the size of the heat medium 14, the number of layers, the number of microspheres, and the like are not limited to the above-described embodiment.
10…イリジウム(Ir)金属
12、12A…イリジウム(Ir)微小球
14、14A…熱媒体
20…回転カプセル
30…インナカプセル
32…軸流羽根車
40…原子炉
50、50A…容器
52…輸送容器
10 ... Iridium (Ir) metal 12, 12A ... Iridium (Ir) microspheres 14, 14A ... Heat medium 20 ... Rotating capsule 30 ... Inner capsule 32 ... Axial flow impeller 40 ... Reactor 50, 50A ... Container 52 ... Transport container
Claims (7)
該球状の照射ターゲットを回転カプセルに収容し、
原子炉一次冷却水の下方流により軸流羽根車を回転し、
これにより前記回転カプセルを回転することを特徴とする非破壊検査用放射線源の製造方法。 Manufacture a spherical irradiation target,
The spherical irradiation target is housed in a rotating capsule and
The axial flow impeller is rotated by the downward flow of the primary cooling water of the reactor,
A method for producing a radiation source for non-destructive inspection, which comprises rotating the rotating capsule accordingly.
原子炉一次冷却水の下方流により回転される軸流羽根車とを備え、
該軸流羽根車により前記回転カプセルを回転することを特徴とする非破壊検査用放射線源の製造装置。 A rotating capsule that houses a spherical irradiation target,
Equipped with an axial-flow impeller that is rotated by the downward flow of the reactor primary cooling water,
An apparatus for manufacturing a radiation source for non-destructive inspection, which comprises rotating the rotary capsule by the axial flow impeller.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019115636A JP6914544B2 (en) | 2019-06-21 | 2019-06-21 | Manufacturing method and equipment of radioactive source for non-destructive inspection |
JP2021076616A JP2021107833A (en) | 2019-06-21 | 2021-04-28 | Radiation source for non-destructive test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019115636A JP6914544B2 (en) | 2019-06-21 | 2019-06-21 | Manufacturing method and equipment of radioactive source for non-destructive inspection |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021076616A Division JP2021107833A (en) | 2019-06-21 | 2021-04-28 | Radiation source for non-destructive test |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021001803A true JP2021001803A (en) | 2021-01-07 |
JP6914544B2 JP6914544B2 (en) | 2021-08-04 |
Family
ID=73995025
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019115636A Active JP6914544B2 (en) | 2019-06-21 | 2019-06-21 | Manufacturing method and equipment of radioactive source for non-destructive inspection |
JP2021076616A Pending JP2021107833A (en) | 2019-06-21 | 2021-04-28 | Radiation source for non-destructive test |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021076616A Pending JP2021107833A (en) | 2019-06-21 | 2021-04-28 | Radiation source for non-destructive test |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6914544B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133854A (en) * | 2007-11-28 | 2009-06-18 | Ge-Hitachi Nuclear Energy Americas Llc | Cross-section reduced isotope system |
WO2011132266A1 (en) * | 2010-04-20 | 2011-10-27 | 独立行政法人放射線医学総合研究所 | Method and device for producing radionuclide by means of accelerator |
JP2013140136A (en) * | 2011-12-28 | 2013-07-18 | Ge-Hitachi Nuclear Energy Americas Llc | Systems and methods for processing irradiation targets through nuclear reactor |
JP2018095967A (en) * | 2012-04-27 | 2018-06-21 | トライアンフTriumf | Process of cyclotron production of technetium-99m, system, and device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3024923C (en) * | 2016-05-24 | 2021-10-12 | Qsa Global Inc. | Low density spherical iridium source |
-
2019
- 2019-06-21 JP JP2019115636A patent/JP6914544B2/en active Active
-
2021
- 2021-04-28 JP JP2021076616A patent/JP2021107833A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133854A (en) * | 2007-11-28 | 2009-06-18 | Ge-Hitachi Nuclear Energy Americas Llc | Cross-section reduced isotope system |
WO2011132266A1 (en) * | 2010-04-20 | 2011-10-27 | 独立行政法人放射線医学総合研究所 | Method and device for producing radionuclide by means of accelerator |
JP2013140136A (en) * | 2011-12-28 | 2013-07-18 | Ge-Hitachi Nuclear Energy Americas Llc | Systems and methods for processing irradiation targets through nuclear reactor |
JP2018095967A (en) * | 2012-04-27 | 2018-06-21 | トライアンフTriumf | Process of cyclotron production of technetium-99m, system, and device |
Also Published As
Publication number | Publication date |
---|---|
JP6914544B2 (en) | 2021-08-04 |
JP2021107833A (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030156675A1 (en) | System and method for radioactive waste destruction | |
JP2017211379A (en) | Isotope production apparatus | |
Chankow | Neutron radiography | |
JP6629153B2 (en) | Non-destructive inspection apparatus and method for nuclear fuel | |
JP7179690B2 (en) | Method and apparatus for producing radionuclides | |
JP6914544B2 (en) | Manufacturing method and equipment of radioactive source for non-destructive inspection | |
Agrawal et al. | Radioassay of the materials for AMoRE-II experiment | |
RU2779257C2 (en) | Radiation source for non-destructive testing, and method and device for its production | |
EP4220666B1 (en) | Method and apparatus for manufacturing a radiation source for nondestructive inspection | |
US11508491B2 (en) | Radiation source for nondestructive inspection, and method and apparatus for manufacturing same | |
US3047486A (en) | Nuclear reactor | |
US3172818A (en) | Heterogeneous nuclear reactors | |
Matsuzaki et al. | 99Mo production via 99Tc (μ−, ν) 99Mo reaction with recycled 99Tc | |
Barton | Developments in use of californium-252 for neutron radiography | |
US20220406485A1 (en) | Fuel fabrication process for radioisotope thermoelectric generators | |
Ali et al. | Experimental Study on 3-D Isotope-Selective CT Imaging Based on Nuclear Resonance Fluorescence Transmission Method | |
Matsuzaki et al. | A NEW PRODUCTION METHOD OF 99Mo BY MUON NUCLEAR TRANSMUTATION | |
Ascenzo | HOW NEUTRON RADIOGRAPHY WORKS | |
Santos et al. | SHIPPING CASE FOR IRRADIATED FUEL ELEMENTS | |
Jones et al. | Assessing High-energy, Laser-driven, X-ray Sources as a Technique to Analyse ILW Containers-18242 | |
Orestano et al. | EUROPIUM AS RESONANT ABSORBER FOR THE SIMULATION OF Pu AND AS SPECTRAL DETECTOR. | |
Warman | Neutron radiography in field use | |
Martinelli et al. | PROGRESS IN THE STUDY AND APPLICATIONS OF LOW-ENERGY-PHOTON RADIOACTIVE SOURCES. | |
Sachs | Matter and Antimatter from General Relativity. | |
Sommer | Materials performance experience at spallation neutron sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200720 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200720 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210428 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210520 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210707 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6914544 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |