JP2020522427A - 膨出部を有するアイソレータを伴うフライトビークルエアエンジン - Google Patents

膨出部を有するアイソレータを伴うフライトビークルエアエンジン Download PDF

Info

Publication number
JP2020522427A
JP2020522427A JP2019567308A JP2019567308A JP2020522427A JP 2020522427 A JP2020522427 A JP 2020522427A JP 2019567308 A JP2019567308 A JP 2019567308A JP 2019567308 A JP2019567308 A JP 2019567308A JP 2020522427 A JP2020522427 A JP 2020522427A
Authority
JP
Japan
Prior art keywords
isolator
engine
downstream
flight vehicle
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019567308A
Other languages
English (en)
Other versions
JP7046104B2 (ja
Inventor
シッチーニ,ニコラス,ピー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2020522427A publication Critical patent/JP2020522427A/ja
Application granted granted Critical
Publication of JP7046104B2 publication Critical patent/JP7046104B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/10Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0253Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of aircraft
    • B64D2033/026Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of aircraft for supersonic or hypersonic aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0266Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants
    • B64D2033/0273Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants for jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/10Application in ram-jet engines or ram-jet driven vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/80Application in supersonic vehicles excluding hypersonic vehicles or ram, scram or rocket propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Abstract

フライトビークルは、空気入口、空気入口の下流にあるアイソレータ(又はディフューザ)、及びアイソレータの下流にある燃焼器を含むエンジンを有する。アイソレータは、入口から燃焼器への空気流の方向に垂直な少なくとも1つの寸法、すなわち、局部的に最大の膨出領域を含む。膨出領域は、膨出領域の上流及び下流の両方の比較可能なアイソレータ寸法よりも大きい。膨出領域は、アイソレータ内のショックを安定させ、流れの混合を容易にする。膨出部分の最も外側の壁の周りの高エネルギーの流れの分流は、アイソレータの後端の流れの中心に入り、流れの混合を増加させ、広範囲のフライト条件(マッハ、高度、迎角、ヨー)及びスロットル設定にわたって燃焼器に入るより一定の流れプロファイルをもたらす。

Description

本発明は、飛行機、ミサイル、パルスデトネーションエンジン(pulse detonation engines)、プロジェクタイル(projectiles)、又は宇宙へのアクセスシステムのようなフライト・ビークル(flight vehicles)用のエンジンの分野に関する。
デュアルモード・ラムジェット/スクラムジェット(dual-mode ramjets/scramjets)のような超音速及び極超音速エアブリージングエンジン(air breathing engines)は、アイソレータを含む。アイソレータは、典型的には、空気入口スロート(air inlet throat)の下流、入口とエンジン/燃焼器との間に配置された、一定面積の又はわずかに単調増加面積のセクションである。アイソレータの目的は、入口及び燃焼器内の条件間の変動を分離し、燃焼器に所望のフロープロファイル(flow profile)を提供し、入口の未始動及び/又は燃焼安定性に伴う問題を低減することである。また、アイソレータは、燃焼器が要求したときに、燃焼器の上流側に追加的圧力上昇を提供することができる。
アイソレータは、長さに沿ってショックシステムを設定することができる。その結果生じるショックトレイン(shock train)は、燃焼器によって要求される圧力上昇と一致する圧力上昇を生じ得る。この圧力上昇は、圧力連通がアイソレータ境界層を通過して入口スロートを越えて上流に進むことを許容しないか、或いはショックトレインが入口スロートの上流に延びることを許容せず、両方とも入口の未始動となる可能性がある。アイソレータは、入口又は燃焼器の変動の間の動的なクロストークを除去し、入口の未始動又はエンジンの炎が消滅/失速する原因となる。強い衝撃−境界層相互作用が、アイソレータ内で生じる可能性があり、特に境界層が最も厚く、エネルギープロファイルがより空乏化しているビークルの車体側で強い衝撃−境界層相互作用が起こる。これらの弱い境界層との強い衝撃相互作用は、アイソレータ出口での流れプロファイル(質量フラックス、マッハ数、全圧力など)の大きな歪みを生じ、これは、エンジンによって取り込まれ、燃焼効率を低下させ、エンジン失速/フレームアウトを引き起こす可能性がある。
フライトビークルのエンジンアイソレータは、エンジンの入口(アイソレータの上流)からエンジンの燃焼器(アイソレータの下流)への空気流の方向に垂直な、少なくとも1つの寸法を有する膨出領域を含み、すなわち、膨出領域の上流及び下流の両方の比較可能なアイソレータ寸法よりも大きい局部的な最大値である。
本発明の一態様に従ったフライトビークルは、胴体;及び前記胴体に機械的に結合されたエンジンを含む。エンジンは、空気入口;前記空気入口の下流にあるアイソレータ;及び前記アイソレータの下流にある燃焼器;を含む。前記空気入口及び前記アイソレータを通って燃焼器に至る空気は、前記空気入口と前記アイソレータとの間の境界にあるスロートで最小断面領域を通過する。前記アイソレータは膨出領域を有し、前記膨出領域で前記アイソレータの少なくとも1つの寸法が、前記アイソレータを通る空気流に垂直な方向において、前記膨出領域の上流及び下流の両方よりも大きい局部的寸法最大値を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記膨出領域は、前記アイソレータを通る空気流に垂直な断面領域を有し、前記断面領域は前記膨出領域の上流及び下流の両方よりも大きい局部的面積最大値を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記断面領域の形状は、前記膨出領域の上流及び下流の両方において、前記アイソレータを通る空気流に垂直な断面形状と同じである。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記断面領域の形状は、前記膨出領域の上流及び下流の両方において、前記アイソレータを通る空気流に垂直な断面形状のうちの少なくとも1つとは異なる。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記膨出領域は、前記アイソレータを通る空気流に垂直な方向に極大を有しない少なくとも1つの追加の寸法を有し、前記少なくとも1つの追加の寸法は、上流値と下流値のうちの少なくとも1つよりも小さい。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記アイソレータを通る空気流に垂直な方向の前記少なくとも1つの追加の寸法は、前記上流値と前記下流値の両方より小さい。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記燃焼器がラムジェットである。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記燃焼器がスクラムジェットである。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記燃焼器がタービンを含む。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記エンジンが超音速エンジンである。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記エンジンが極超音速エンジンである。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記エンジンが亜音速エンジンである。
本発明の概要のパラグラフのいずれかの実施形態によれば、エンジン及び/又はその構成要素(例えば、その入口)は、幾何学的形状の任意の組み合わせ、例えば、軸対称であってもよく、二次元形状(異なる長手方向位置における同じ断面形状)であってもよく、及び/又は複雑な三次元形状(異なる長手方向位置における異なる断面形状)であってもよい。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記膨出領域は、前記アイソレータを通る空気流に垂直な方向に円形の断面を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記膨出領域は、前記アイソレータを通過する空気流に垂直な方向に楕円形の断面を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、膨出領域は、アイソレータを通る空気流に垂直な方向に矩形の断面を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、膨出領域は、アイソレータを通る空気流に垂直な方向に正方形の断面を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、膨出領域は、アイソレータを通る空気流に垂直な方向に四角形の断面を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、膨出領域は、アイソレータを通る空気流に垂直な方向に台形の断面を有する。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記アイソレータを通る空気流に垂直な前記膨出領域の最大断面領域は、前記アイソレータを通る空気流に垂直な前記アイソレータの最小断面積の少なくとも110%である。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記膨出領域は、前記アイソレータ内でのショックの移動を制限するショックトラップを機能させる。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記アイソレータが、前記膨出領域の後部に混合領域を含んで、前記膨出領域による流れの歪みが低減される。
本発明の他の特徴に従ったフライトビークルのエンジンを動作させる方法は、前記エンジンの空気入口において、前記エンジンに入来する空気を圧縮するステップ;前記空気入口からの空気を前記エンジンのアイソレータを通過させて前記エンジンの燃焼器へと通すステップ;及び前記アイソレータからの空気を前記燃焼器内の燃料の燃焼に利用するステップ;を含む。前記の空気を前記アイソレータを通過させるステップは、前記アイソレータの膨出領域を通過させることを含み、前記膨出領域は、前記アイソレータを通る空気流の方向に垂直な断面領域の極大を有し、前記膨出領域の断面領域は、前記膨出領域の上流及び前記膨出領域の下流の両方よりも大きい。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記の空気を前記アイソレータを通過させるステップは、前記膨出領域内の前記空気流にショックを発生させるステップを含む。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記のショックを発生させるステップは、前記アイソレータを通る前記空気流の方向に垂直でない斜めのショックを発生させることを含む。
本発明の概要のパラグラフのいずれかの実施形態によれば、前記のショックを発生させるステップは、前記アイソレータを通る前記空気流の方向に垂直である法線ショックを発生させることを含む。
本発明の他の特徴に従ったフライトビークルのエンジンでは、空気入口;前記空気入口の下流にあるアイソレータ;及び前記アイソレータの下流の燃焼器;を含む。前記空気入口及び前記アイソレータを通って燃焼器に至る空気は、前記空気入口と前記アイソレータとの間の境界にあるスロートの最小断面領域を通過する。前記アイソレータは膨出領域を有し、前記膨出領域で前記アイソレータの少なくとも1つの寸法が、前記アイソレータを通る空気流に垂直な方向において、前記膨出領域の上流及び下流の両方よりも大きい局部的寸法最大値を有する。
上述の及びこれに関連した目的を達成するために、本発明は、以下に詳細に記載されかつ特許請求の範囲に特に示された特徴を含んでいる。以下の記載及び添付の図面は、本発明の例示的な実施形態を詳細に示している。しかしながら、これらの実施形態は、本発明の原理が使用され得る種々の方法のうちのいくつかを示しているにすぎない。本発明の他の目的、利点及び新規な特徴は、図面を参照して、本発明の詳細な記載から明らかになるであろう。
添付の図面は、必ずしも縮尺どおりではないが、本発明の種々の態様を示す。
本発明の一実施形態に係るフライトビークルの概略図である。 図1のフライトビークルのエンジンの構成部品を示す概略図である。 図2のエンジンの一部であり得るアイソレータの斜視図である。 第1動作条件における図3のアイソレータの動作を示す。 第2の動作条件における図3のアイソレータの動作を示す。 本発明の一実施形態に係る方法を示す高レベルのフローチャートである。
フライトビークル(flight vehicle)は、空気入口又は空気取り入れ口(air inlet)、空気入口の下流にあるアイソレータ(又はディフューザ(diffuser))、及びアイソレータの下流にある燃焼器(combustor)を含むエンジンを有する。アイソレータは、入口から燃焼器への空気の流れ(空気流)の方向に垂直な方向に少なくとも1つの寸法を有する、バルジ領域又は膨出領域(bulged region)を有する。バルジ領域は、局部的に最大であり、バルジ領域の上流及び下流の両方の比較可能なアイソレータ寸法よりも大きい。バルジ領域は、アイソレータ内部のショックを安定化させ、流れの混合を容易にする。例えば、バルジ領域の近傍の斜め衝撃が、大きなスロットル設定又は飛行軌道の逸脱に対して固定されたままであり、これは、流れの一貫性を改善する。バルジセクションの最外壁周りの高エネルギー流れの流れ転換は、流れがアイソレータの後端で低エネルギーである中心に衝突し、流れの混合を増加させ、燃焼器に入るより一様な流れをもたらす。アイソレータは、依然として、膨出部分を組み込むことにより、中程度から高レベルの最大静圧上昇を提供することができる。
図1は、胴体14に機械的に結合されたエンジン12によって動力を供給されるエアビークル(air vehicle)10を概略的に示す。エアビークル10は、ミサイル、パルスデトネーションエンジン、プロジェクタイル、無人航空機(無人領域ビークル(UAV))、有人航空機、又は宇宙へのアクセスビークルであってもよい。エアビークルは、種々のサイズのいずれか、及び種々の動作条件のいずれかを有することができる。以下の説明では、エアビークル10は、マッハ数が4〜6、又はより広くマッハ数が2〜25である、高超音速〜極超音速のエアビークルに関して説明されている。しかしながら、エアビークル10は、より低い超音速(マッハ数が1より大きい)で、又は亜音速でさえ動作することができる。
エンジン12は、種々の方法のいずれかで胴体14に連結されてよく、胴体14の一部と一体的に形成されるエンジン12の一部を含む。胴体14は、種々の好適な形状のいずれかを有することができ、エアビークル10の1つ以上の動作を実行するための追加的な構成要素を含むことができる。そのような追加的な構成要素は、いくつかの非限定的な例を与えるために、制御システム(例えば、操舵用)、揚力発生及び/又は制御表面(例えば、適所に固定されているか、全体的に又は部分的に移動可能な翼、フィン、又はキャナード(canards))、通信システム、冷却システム、センサその他のデータ収集システム、及び/又は種々のペイロード(payloads)のいずれかを含み得る。
さらに図2を参照すると、エンジン12は、空気入口(air inlet)20と、アイソレータ又はディフューザ(diffuser)22と、燃焼器又はエンジン燃焼器24とを含む。空気入口20は、自由空気流から空気を取り込み、空気を圧縮し、流れが圧縮されるにつれて1つ以上のショックがおそらく生じる。次いで、圧縮空気は空気入口20を出てアイソレータ22に入る。空気入口20とアイソレータ22との間の境界には、スロート26、最小面積位置がある。アイソレータ22は、ショックを安定に保つように機能し、入口とエンジンとの間の動的な流れの変動を分離し、要求された圧力上昇を提供し、及び/又は、空気がアイソレータ22から燃焼器24へ通過する下流端で所望の流れパターンを提供する。燃焼器24内では、燃料が空気流に加えられ、混合されて燃焼が起こり、燃焼された流れがノズル27を通過し、エンジン12から推力を発生し、これがエアビークル10に動力を供給するために使用される。燃焼生成物は、燃焼器24の下流端部からノズル27を通して排出される。したがって、エンジン12は、入口20、アイソレータ22、エンジン燃焼器24、及びノズル27を通る流路又は推進流路(propulsion flowpath)を画定する。
燃焼器24は、燃料-空気又は燃料-酸化剤混合物を燃焼させて推力を発生させるための種々の適切な装置のいずれであってもよい。例えば、燃焼器24(及び/又はエンジン12)は、ラムジェット、スクラムジェット、デュアルモードラムジェット/スクラムジェット、又はタービンジェットであってもよい。図2では、燃焼器24はタービン28を有するものとして示されているが、多くの実施形態では、燃焼器24はタービン(又は他の可動部品)を有していない。
入口20は、例えば、円形、楕円形、又は長方形である種々の好適な形状のいずれかを有することができる。アイソレータ22は、入口20の正方形、長方形、台形又は楕円形の形状(いくつかの例を挙げる)から円形又は他の形状の燃焼器24への間の遷移を行う一般的な形状を有することができる。入口20及び燃焼器24は、互いに整列していてもよく、又は互いに異なる角度配向でオフセットされていてもよい。
図3は、アイソレータ22の実施形態のさらなる詳細を示す。アイソレータ22は、上流端34と下流端36との間にある膨出部分32を有する。アイソレータ22の下流部分は、下流端36において混合領域であり、この混合領域では、膨出領域32による流れの歪みが低減される。上流端34は、アイソレータ22が空気入口20からの流れを受ける入口26のスロート(throat)である。下流端36は、流れがアイソレータ22を出て燃焼器24に入るところである。従って、アイソレータ22を通る流れは、上流端34から下流端36への一般的な空気の流れ方向40に従う。
膨出部分32は、空気の流れ方向40に垂直な、少なくとも一次元の極大を有する。図3、図4を参照すると、膨出部分32は、空気流方向40に垂直な幅42(最大幅)を有することができ、これは上流幅44及び下流幅46の両方よりも大きい。上流幅44は、膨出部分32と上流端34との間で、膨出部分32の上流にある。下流幅46は、膨出部分32と下流端36との間の膨出部分32の下流にある。
膨出部分32もまた、その高さ52において極大を有することができ、膨出部分32の寸法は空気流方向40及び幅42の両方に垂直な方向である。「幅」及び「高さ」という用語は、いくぶん任意であり、本明細書では、実際の方向にかかわらず、空気流の方向40に略垂直な異なる方向を示すために使用される。
膨出部分32は、局部的な最大面積58を有することができ、その面積58は、空気流方向40に垂直であり、膨出部分32のすぐ上流及び下流の対応する面積よりも大きい。局部的最大面積58は、アイソレータの全ての寸法において局部的最大値を有する面積又は領域であってもよく、或いは、あるいくつかの寸法においては局部的最大であり、他の寸法においては最大ではないというのでもよい。換言すれば、局部的最大面積58は、アイソレータ22内の最大の高さ又は最大の幅の位置にあってもそうでなくてもよい。
膨出部分32は、アイソレータ22のうち膨出部分32のすぐ上流及び下流の部分と同じ断面形状を有することができる。あるいは、膨出部分22は、アイソレータ22の上流部分及び下流部分の一方又は両方とは異なる断面形状を有してもよい。例えば、膨出部分32は楕円形であってもよく、一方、上流部分及び/又は下流部分は、円形、又は長/短軸比が異なる楕円形などの異なる断面形状を有してもよい。
膨出部分32の1つ以上の寸法は、空気がアイソレータ22を通って流れる一般方向40に沿って長手方向に連続的に変化することができる。すなわち、アイソレータ表面に段階的な不連続部がなくても良く、或いはアイソレータ表面の勾配の不連続部さえなくてもよいが、代わりに、膨出部分32におけるアイソレータ22の表面が滑らかに変化して、及び/又は、膨出部分32からアイソレータ22の上流及び下流部分への遷移をなすことができる。変形的には、そのような段階的不連続部が存在してもよい。膨出部分32は、平らな壁であってもよく、或いは斜めの衝撃波又はショックウェイブ(Shock waves)を固定するための1つ又は複数の位置において意図的なキンク(kink)を有することもできる。
図4及び図5は、異なるマッハ数で動作する2つの異なる入口設計によってもたらされる、2つの異なるアイソレータ空気流プロフィールについての、動作中のアイソレータ22の実施形態を示す。膨出部分32は、流れがアイソレータ22に入るスロート又は入口34の近くのアイソレータ22の上流端34により近い。より広い意味で、膨出部分32は、アイソレータ22の上流側半分50内にあってもよい。膨出部分32の幾何学的形状、特に膨出部分32の外向きの上流部分は、燃焼器24によって要求される場合に流れに一連の衝撃(ショック)を与える。
スロットルが増加すると、燃焼器24は、より高い圧力上昇を要求する(質量の保全を満足させる)傾向がある。推進システムは、ショックトレイン(shock train)の変化を通してアイソレータ22の圧力損失を減少させて燃焼器24の圧力を上昇させることにより、この要求を満たす。ある点では、アイソレータ22のショックトレインはもはや圧力を上昇させることができなくなる可能性があるので、質量を保存するためには、質量流量を減少させなければならず、ショックシステムは、質量流量をこぼすことができるようにアイソレータ22及び入口20から排出される。また、フライト条件(マッハ数、高度、迎え角、及び/又はヨー角)を変えると、一定のスロットル設定についても同様の効果が実現される。
図4の参照符号62及び図5の参照符号64で示される、一連の斜めショックが示されている。参照符号62及び64は、高又は中程度の背圧に対する最も強いショックの位置を示し、示されたショックの1つ以上が、任意の所定の流量条件に対して存在し得る。斜め衝撃波(ショック)62及び64が位置する膨出部分32のこの前方(上流)部分における拡大する幾何学的形状は、衝撃波(ショック)62及び64を適所に保持するのを助け、アイソレータ22内でさらに上流に移動しないよう保持するのを助ける。アイソレータの増大領域(最大幅のような極大の位置42まで)は、この部分に位置するショックシステムを維持する。膨出部分32の下流部分の収縮形状はまた、角度付きショック62及び64が膨出部分32からさらに下流に移動しないようにする助けとなり、アイソレータのこの部分を流動混合(flow mixing)に使用することを可能にする。低い背圧又は非常に高いマッハ数では、最も強いショックがさらに下流に移動する可能性がある(例えば、ショック72(図4)及び74(図5))。
膨出部分32の幾何学的形状は、広い範囲のスロットル設定又はフライト条件(流速及び燃焼器圧力)に対して、アイソレータの前方セクションに固定されたままのショック構造を設定するのに役立つ。このことは、流れのアイソレータ出口プロファイルを、ある範囲の動作条件にわたってほとんど変化しない(及び/又は、より一様に)ことを保持する。その理由は、ショック62及び64が、種々の動作条件にわたって同一の位置又は類似の位置にとどまる(従来のアイソレータ設計動作とは異なる)からである。
膨出部分32内の面積比の変化(小から大そして小へ)は、広範囲のフライト条件及びスロットル設定に対して、アイソレータ22の上流側半分50内にショックトレイン(ショック62及び64)を維持する機能を有し得る。より広い意味で、ショックトレインは、膨出部分32の上流など、アイソレータ22の上流部分内に保持されてもよい。条件の範囲は、フライトビークル10(図1)の実際の動作条件の全範囲を包含し得る。膨出部分32をアイソレータ22の上流側半分50内に配置することにより、下流側半分にショックを全く存在させず又は最小限にして、アイソレータ22の下流側半分を、外側流れ流(outboard flow stream)及び中心線流れ(centerline flow rate)の流れ混合(flow mixing)のために使用することができる。これにより、アイソレータ22の出口で、より一様な流れが可能となり、そこで流れは燃焼器24に移る(図1)。
低総圧力歪み、運動量歪み、質量フラックス歪み、及び/又はマッハ歪みのような歪みを、この流れ混合とともに低減又は最小化することができる。
膨出領域の最大断面積は、アイソレータを通る空気流に垂直であり、アイソレータの最小断面積又はアイソレータの後端の領域に対して、少なくとも110%であってもよく。この値はより大きくても良く、例えば、少なくとも120%、少なくとも130%、少なくとも140%、少なくとも150%、少なくとも160%、少なくとも170%、少なくとも180%、少なくとも190%、少なくとも200%、又はこの文章及び前術の文章の値を使用する任意の範囲に大きくすることができる。
ある種の流れ(例えば、いくつかのマッハ数)に対しては、高さの収縮に結合した幅の拡大を有する膨出領域を構成することが有利であり得る。膨出領域の幅比は、1.04〜1.4であってもよいが、この範囲は一例に過ぎず、他の比も可能であり、例えば、マッハ数及び入来ショックシステムに基づいて変化する。
膨出領域(上流のスロートから膨出領域までの)内の側壁の角度は、異なる実施形態で変化してもよい。約2°、約3°、約4°、約5°、約6°、約7°、約8°、約9°、約10°、約11°、約12°、約13°、約14°、約15°、約16°、約17°、約18°、約19°、約20°であって良く、或いはこれらの値のいずれか2つを使用した任意の範囲であっても良い。これらの値は単なる例であり、他の角度も可能である。
アイソレータの最大面積は、アイソレータの上流側半分(長さで)に発生してもよい。あるいは、アイソレータの中央、又はアイソレータの下流側半分にあってもよい。
そのようなアイソレータは、例えば、400%〜1,000%以上改善された流れの混合及び/又は流れの一様性(流動歪み(flow distortion)の低減)をもたらすことができる。流動歪みは、様々な流動パラメータ及び歪み決定を用いて、多数の方法で定義することができる。SAE ARP1420B 円周方向歪強度(circumferential distortion intensity)の定義は、歪みを評価し測定する一般的な方法の1つである。SAE ARP1420B A.1.2に従い、リング当たりの歪み強度の差は200%〜400%以上改善され得る。ただし、状況によっては、他の定義及び測定値を適用することができる。例えば、質量磁束歪み(mass flux distortion)は、全圧力歪み(total pressure distortion)(ターボジェット用に重要)よりも、ラムジェット又はスクラムジェットに対してより重要なパラメータであり得る。また、半径方向の歪み又は全体の歪み(半径方向又は円周方向に関係なく)は、円周方向の歪みよりも重要であり得る。これらの異なるパラメータの使用は、歪み低減においてさらに大きな改善を与えることができる。歪みを低減することで燃焼効率を10%以上向上させることができる。
膨出領域32のための多くの代替の形状が可能である。上述した実施形態及び変形形態の特徴は、可能であれば、単一の実施形態に組み合わせることができる。
アイソレータ22は、様々な他の利点をもたらし得る。これらに含まれるものとしては、(従来のアイソレータと比較して)非常に低い背圧で追加の損失を発生させる膨出構成の潜在的な能力があり、従来の設計よりも広範囲のフライト条件下で、ビークルがより効率的な「ラムジェット」モードの動作(主に亜音速燃焼)を行うことが可能となる。別の可能な利点は、アイソレータ内での燃焼ガスの再循環の可能性を低減することである。再循環は、アイソレータ材料の溶融を引き起こし、バーンスルー(burnthrough)を生じる可能性がある。さらに、従来のアイソレータ構成と比較して、ヨー条件での流れの歪みが小さい可能性がある。多くのフライト条件及びスロットル設定にわたる一定のアイソレータ出口の流れパターンは、流れの歪みの減少パターンであり得るが、また、燃料消費を減少させ、ビークル効率を改善し、推進/加速能力を増加させ、概念的設計の間により良いシステム解を可能にし得る。また、非一様な燃焼器の加熱が減少する。燃焼室の加熱は、燃料噴射の流れの問題を招く可能性がある(燃料が燃焼器の周りを走行して冷却している場合)。
図6は、エンジン12(図2)などのエンジンを動作させる方法100を示す上位フローチャートである。ステップ102において、エンジンに流入する空気が、空気取り入れ口又は空気入口(air intake)において圧縮される。空気の一部は、ステップ103に示すように、入口ダイバータ又は入口ブリード穴でボード外に廃棄(dump)されてもよい。ステップ104において、空気入口の下流端からの圧縮空気は、燃焼器への途中でアイソレータを通過する。アイソレータを通過する際、流れは、アイソレータの膨出部分に固定された斜めのショック(このようなショックが必要な場合)を通過する。最後に、ステップ106で、アイソレータを通過した空気が燃焼器内の燃料の燃焼に使用される。
本発明を或る好適な実施形態に関して図示して説明してきたが、この明細書と添付された図面とを読んで理解すると他の当業者にも同等の変更や修正ができるものと認識することができる。特に、上述のエレメント(コンポーネント、アセンブリ、デバイス、組成物等)によって実行される種々の機能に関して、そのようなエレメントを記述するために使用される用語(「手段」への言及を含む)は、別段の指示がない限り、本発明の本明細書に示された例示的な実施形態においてその機能を実行する開示された構造と構造的に等価ではないとしても、記載されたエレメントの特定の機能(すなわち、機能的に同等である)を実行する任意のエレメントに対応することを意図している。さらに、本発明の特定の特徴は、例示されたいくつかの実施形態のうちの1つ又は複数のみに関して上述したが、このような特徴は、任意の与えられた又は特定の用途に対して所望かつ有利であり得るように、他の実施形態の1つ又は複数の他の特徴と組み合わせることができる。

Claims (19)

  1. フライトビークルであって:
    胴体;及び
    前記胴体に機械的に結合されたエンジン;
    を含み、
    前記エンジンは、
    空気入口;
    前記空気入口の下流にあるアイソレータ;及び
    前記アイソレータの下流にある燃焼器;
    を含み、
    前記空気入口及び前記アイソレータを通って燃焼器に至る空気は、前記空気入口と前記アイソレータとの間の境界にあるスロートで最小断面領域を通過し、
    前記アイソレータは膨出領域を有し、前記膨出領域で前記アイソレータの少なくとも1つの寸法が、前記アイソレータを通る空気流に垂直な方向において、前記膨出領域の上流及び下流の両方よりも大きい局部的寸法最大値を有する、
    ことを特徴とするフライトビークル。
  2. 前記膨出領域は、前記アイソレータを通る空気流に垂直な断面領域を有し、前記断面領域は前記膨出領域の上流及び下流の両方よりも大きい局部的面積最大値を有する、請求項1に記載のフライトビークル。
  3. 前記断面領域の形状は、前記膨出領域の上流及び下流の両方において、前記アイソレータを通る空気流に垂直な断面形状と同じである、請求項2に記載のフライトビークル。
  4. 前記断面領域の形状は、前記膨出領域の上流及び下流の両方において、前記アイソレータを通る空気流に垂直な断面形状のうちの少なくとも1つとは異なる、請求項2に記載のフライトビークル。
  5. 前記膨出領域は、前記アイソレータを通る空気流に垂直な方向に極大を有しない少なくとも1つの追加の寸法を有し、前記少なくとも1つの追加の寸法は、上流値と下流値のうちの少なくとも1つよりも小さい、請求項1乃至4のいずれかに記載のフライトビークル。
  6. 前記アイソレータを通る空気流に垂直な方向の前記少なくとも1つの追加の寸法は、前記上流値と前記下流値の両方より小さい、請求項5に記載のフライトビークル。
  7. 前記燃焼器がラムジェット又はスクラムジェットである、請求項1乃至6のいずれかに記載のフライトビークル。
  8. 前記燃焼器がタービンを含む、請求項1乃至6のいずれかに記載のフライトビークル。
  9. 前記エンジンが超音速エンジン又は極超音速エンジンである、請求項1乃至8のいずれか1項に記載のフライトビークル。
  10. 前記エンジンが亜音速エンジンである、請求項1乃至8のいずれかに記載のフライトビークル。
  11. 前記膨出領域は、前記アイソレータを通る空気流に垂直な方向に円形の断面を有する、請求項1乃至10のいずれかに記載のフライトビークル。
  12. 前記膨出領域は、前記アイソレータを通過する空気流に垂直な方向に楕円形の断面を有する、請求項1乃至10のいずれかに記載のフライトビークル。
  13. 前記アイソレータを通る空気流に垂直な前記膨出領域の最大断面領域は、前記アイソレータを通る空気流に垂直な前記アイソレータの最小断面積の少なくとも110%である、請求項1乃至12のいずれかに記載のフライトビークル。
  14. 前記膨出領域は、前記アイソレータ内でのショックの移動を制限するショックトラップを機能させる、請求項1乃至13のいずれかに記載のフライトビークル。
  15. 前記アイソレータが、前記膨出領域の後部に混合領域を含んで、前記膨出領域による流れの歪みが低減される、請求項1乃至14のいずれかに記載のフライトビークル。
  16. フライトビークルのエンジンを動作させる方法であって:
    前記エンジンの空気入口において、前記エンジンに入来する空気を圧縮するステップ;
    前記空気入口からの空気を前記エンジンのアイソレータを通過させて前記エンジンの燃焼器へと通すステップ;及び
    前記アイソレータからの空気を前記燃焼器内の燃料の燃焼に利用するステップ;
    を含み、
    前記の空気を前記アイソレータを通過させるステップは、前記アイソレータの膨出領域を通過させることを含み、前記膨出領域は、前記アイソレータを通る空気流の方向に垂直な断面領域の極大を有し、前記膨出領域の断面領域は、前記膨出領域の上流及び前記膨出領域の下流の両方よりも大きい、
    ことを特徴とする方法。
  17. 前記の空気を前記アイソレータを通過させるステップは、前記膨出領域内の前記空気流にショックを発生させるステップを含む、請求項16に記載の方法。
  18. 前記のショックを発生させるステップは、前記アイソレータを通る前記空気流の方向に垂直でない角度が付いたショックを発生させることを含む、請求項17に記載の方法。
  19. フライトビークルのエンジンであって:
    空気入口;
    前記空気入口の下流にあるアイソレータ;及び
    前記アイソレータの下流の燃焼器;
    を含み、
    前記空気入口及び前記アイソレータを通って燃焼器に至る空気は、前記空気入口と前記アイソレータとの間の境界にあるスロートの最小断面領域を通過し、
    前記アイソレータは膨出領域を有し、前記膨出領域で前記アイソレータの少なくとも1つの寸法が、前記アイソレータを通る空気流に垂直な方向において、前記膨出領域の上流及び下流の両方よりも大きい局部的寸法最大値を有する、
    ことを特徴とするエンジン。
JP2019567308A 2017-06-06 2018-02-20 膨出部を有するアイソレータを伴うフライトビークルエアエンジン Active JP7046104B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/615,146 2017-06-06
US15/615,146 US11261785B2 (en) 2017-06-06 2017-06-06 Flight vehicle air breathing engine with isolator having bulged section
PCT/US2018/018728 WO2018226268A1 (en) 2017-06-06 2018-02-20 Flight vehicle air breathing engine with isolator having bulged section

Publications (2)

Publication Number Publication Date
JP2020522427A true JP2020522427A (ja) 2020-07-30
JP7046104B2 JP7046104B2 (ja) 2022-04-01

Family

ID=61557356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567308A Active JP7046104B2 (ja) 2017-06-06 2018-02-20 膨出部を有するアイソレータを伴うフライトビークルエアエンジン

Country Status (7)

Country Link
US (1) US11261785B2 (ja)
EP (1) EP3635233B1 (ja)
JP (1) JP7046104B2 (ja)
AU (1) AU2018279791B2 (ja)
DK (1) DK3635233T3 (ja)
ES (1) ES2912363T3 (ja)
WO (1) WO2018226268A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11204000B2 (en) * 2017-03-24 2021-12-21 Raytheon Company Flight vehicle engine with finned inlet
US11002223B2 (en) 2017-12-06 2021-05-11 Raytheon Company Flight vehicle with air inlet isolator having wedge on inner mold line
US11384712B1 (en) * 2019-03-01 2022-07-12 Innoveering, LLC Active control of scramjet isolator shock systems
CN112572810A (zh) * 2020-11-25 2021-03-30 北京空天技术研究所 一种进气道边界层分离消除装置及飞行器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726279A (en) * 1986-11-12 1988-02-23 United Technologies Corporation Wake stabilized supersonic combustion ram cannon
EP1445465A1 (en) * 2003-02-06 2004-08-11 The Boeing Company Combination of core engine with ramjet engine incorporating swirl augmented combustion
US20080283677A1 (en) * 2006-12-05 2008-11-20 Pratt & Whitney Rocketdyne, Inc. Single-stage hypersonic vehicle featuring advanced swirl combustion
US8484980B1 (en) * 2009-11-19 2013-07-16 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Dual-mode combustor

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989846A (en) 1958-02-12 1961-06-27 Lear Inc Shock wave sensing device
GB911074A (en) 1959-01-28 1962-11-21 English Electric Co Ltd Improvements in and relating to ram jet propelled aircraft
US3777488A (en) 1961-06-23 1973-12-11 Garrett Corp Method and apparatus for reaction propulsion
US3792584A (en) * 1972-02-16 1974-02-19 Boeing Co Increased or variable bypass ratio engines
US3879941A (en) * 1973-05-21 1975-04-29 Gen Electric Variable cycle gas turbine engine
US5082206A (en) 1988-07-25 1992-01-21 General Electric Company Hypersonic flight vehicle
US4930309A (en) * 1988-11-03 1990-06-05 Fleck Aerospace Limited Partnership Gas compressor for jet engine
US5058837A (en) 1989-04-07 1991-10-22 Wheeler Gary O Low drag vortex generators
DE4008956A1 (de) * 1990-03-20 1991-09-26 Messerschmitt Boelkow Blohm Einlaufsystem fuer ueber- oder hyperschallflugzeuge
US5114099A (en) 1990-06-04 1992-05-19 W. L. Chow Surface for low drag in turbulent flow
US5337975A (en) * 1992-02-28 1994-08-16 Rockwell International Corporation Breathing system for hypersonic aircraft
FR2710607B1 (fr) * 1993-10-01 1995-12-01 Onera (Off Nat Aerospatiale) Entrée d'air supersonique et hypersonique bidimensionnelle, à trois rampes mobiles, pour l'air de combustion d'un moteur d'aéronef .
US5881758A (en) * 1996-03-28 1999-03-16 The Boeing Company Internal compression supersonic engine inlet
US6793175B1 (en) 1999-08-25 2004-09-21 The Boeing Company Supersonic external-compression diffuser and method for designing same
US7048229B2 (en) 2000-09-26 2006-05-23 Techland Research, Inc. Low sonic boom inlet for supersonic aircraft
US7216474B2 (en) 2004-02-19 2007-05-15 Aerojet-General Corporation Integrated air inlet system for multi-propulsion aircraft engines
AU2007211060A1 (en) 2006-01-31 2007-08-09 Alcoa Inc. Vortex generator
US20080060361A1 (en) 2006-09-07 2008-03-13 Pratt & Whitney Rocketdyne, Inc. Multi-height ramp injector scramjet combustor
US7797943B2 (en) 2006-10-18 2010-09-21 Aerojet-General Corporation Core burning for scramjet engines
US20080128547A1 (en) 2006-12-05 2008-06-05 Pratt & Whitney Rocketdyne, Inc. Two-stage hypersonic vehicle featuring advanced swirl combustion
RU2343297C1 (ru) 2007-04-24 2009-01-10 Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН (ИТПМ СО РАН) Сверхзвуковой воздухозаборник
US8528601B2 (en) 2009-03-30 2013-09-10 The Regents Of The University Of Michigan Passive boundary layer control elements
US8656957B2 (en) 2009-09-30 2014-02-25 The Board Of Trustees Of The University Of Illinois Vortex generators to control boundary layer interactions
US8434723B2 (en) 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8403271B2 (en) 2010-08-24 2013-03-26 Lockheed Martin Corporation Passive robust flow control micro device
RU2472956C2 (ru) 2011-04-29 2013-01-20 Открытое акционерное общество "ОКБ Сухого" Сверхзвуковой регулируемый воздухозаборник
US9447731B1 (en) 2012-08-15 2016-09-20 The Boeing Company Supersonic elliptical ramp inlet
US20140224949A1 (en) 2013-02-13 2014-08-14 Dale Mark Track Guard
EP2868864A1 (en) * 2013-11-04 2015-05-06 Institut von Karman de Dynamique des Fluides, AISBL Axial fluid machine and method for power extraction
US9908633B2 (en) 2015-03-31 2018-03-06 The Boeing Company Variable-capture supersonic inlet
JP6719933B2 (ja) 2016-03-16 2020-07-08 三菱重工業株式会社 ジェットエンジン、飛しょう体、および、ジェットエンジンの動作方法
US11204000B2 (en) * 2017-03-24 2021-12-21 Raytheon Company Flight vehicle engine with finned inlet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726279A (en) * 1986-11-12 1988-02-23 United Technologies Corporation Wake stabilized supersonic combustion ram cannon
EP1445465A1 (en) * 2003-02-06 2004-08-11 The Boeing Company Combination of core engine with ramjet engine incorporating swirl augmented combustion
JP2004270691A (ja) * 2003-02-06 2004-09-30 Boeing Co:The 複合サイクルエンジン発明の詳細な説明
US20080283677A1 (en) * 2006-12-05 2008-11-20 Pratt & Whitney Rocketdyne, Inc. Single-stage hypersonic vehicle featuring advanced swirl combustion
US8484980B1 (en) * 2009-11-19 2013-07-16 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Dual-mode combustor

Also Published As

Publication number Publication date
DK3635233T3 (da) 2022-05-09
EP3635233B1 (en) 2022-03-30
EP3635233A1 (en) 2020-04-15
AU2018279791B2 (en) 2022-08-25
WO2018226268A1 (en) 2018-12-13
AU2018279791A1 (en) 2020-01-16
BR112019025747A2 (pt) 2020-06-23
ES2912363T3 (es) 2022-05-25
US20180347461A1 (en) 2018-12-06
JP7046104B2 (ja) 2022-04-01
US11261785B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP7046104B2 (ja) 膨出部を有するアイソレータを伴うフライトビークルエアエンジン
JP6937389B2 (ja) 障害物を有するアイソレータを備えたフライトビークルエアブリージング推進システム
EP3112650B1 (en) Inlet flow restrictor
AU2024201294A1 (en) Flight vehicle air breathing engine with isolator containing flow diverting ramps
US6981364B2 (en) Combine engine for single-stage spacecraft
KR101020596B1 (ko) 연소기 및 이를 포함하는 엔진
US11639700B2 (en) Airframe integrated scramjet with fixed geometry and shape transition for hypersonic operation over a large Mach number range
JP2023548715A (ja) 大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット
BR112019025747B1 (pt) Motor de veículo de voo, veículo de voo e método para operar um motor de veículo de voo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7046104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150