JP2020517834A - Titanium alloy based sheet material for low temperature superplastic deformation - Google Patents

Titanium alloy based sheet material for low temperature superplastic deformation Download PDF

Info

Publication number
JP2020517834A
JP2020517834A JP2019558569A JP2019558569A JP2020517834A JP 2020517834 A JP2020517834 A JP 2020517834A JP 2019558569 A JP2019558569 A JP 2019558569A JP 2019558569 A JP2019558569 A JP 2019558569A JP 2020517834 A JP2020517834 A JP 2020517834A
Authority
JP
Japan
Prior art keywords
phase
spf
weight
sheet material
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019558569A
Other languages
Japanese (ja)
Other versions
JP7028893B2 (en
Inventor
ミハイール オットーヴィッチ レダー,
ミハイール オットーヴィッチ レダー,
イゴール ユリエヴィッチ プザコフ,
イゴール ユリエヴィッチ プザコフ,
ナタリア ユリエフナ タレンコヴァ,
ナタリア ユリエフナ タレンコヴァ,
アレキサンダー ウラジミロヴィッチ ベレストフ,
アレキサンダー ウラジミロヴィッチ ベレストフ,
ナタリア ゲオルギエヴナ ミトロポルスカヤ,
ナタリア ゲオルギエヴナ ミトロポルスカヤ,
ロバート デーヴィッド ブリッグス,
ロバート デーヴィッド ブリッグス,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2020517834A publication Critical patent/JP2020517834A/en
Application granted granted Critical
Publication of JP7028893B2 publication Critical patent/JP7028893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)

Abstract

本発明を実施することにより達成される技術的結果は、低温超塑性変形特性を有する最終製品の既知の現行技術の生産能力と最適なバランスのとれた化学組成を有する、チタニウム合金からのシートの製造である。このような結果は、重量%で、4.5−5.5のAl;4.5−5.5のV;0.1−1.0のMo;0.8−1.5のFe;0.1−0.5のCr;0.1−0.5のNiを含み;0.16−0.250の残部がチタニウム及び不純物であり、構造モリブデン等価物([Mo]eq.)が5より大きく、アルミニウム構造等価物([Al]eq.)が8より小さく、前記等価物が、以下の式:[Mo]eq.=[Mo]+[V]/1.5+[Cr]1.25+[Fe]2.5+[Ni]/0.8と[Al]eq.=[Al]+[O]10+[Zr]/6を用いて決定される、チタニウム合金に基づく低温超塑性変形のためのシート材により達成される。【選択図】なしThe technical results achieved by carrying out the present invention are that of sheets from titanium alloys with a known balanced state-of-the-art production capacity of the final product with low temperature superplastic deformation properties and an optimal balanced chemical composition. Manufacturing. Such results, in weight percent, are 4.5-5.5 Al; 4.5-5.5 V; 0.1-1.0 Mo; 0.8-1.5 Fe; 0.1-0.5 Cr; 0.1-0.5 Ni; 0.16-0.250 balance titanium and impurities, structural molybdenum equivalent ([Mo]eq.) 5 and the aluminum structural equivalent ([Al]eq.) is smaller than 8 and said equivalent has the following formula: [Mo]eq. =[Mo]+[V]/1.5+[Cr]1.25+[Fe]2.5+[Ni]/0.8 and [Al]eq. =[Al]+[O]10+[Zr]/6 determined by a sheet material for low temperature superplastic deformation based on a titanium alloy. [Selection diagram] None

Description

ここに開示されるのは、シート材及びシート状半製品といった材料及び製品であり、このような材料及び製品はチタニウム合金を含み、この材料は、775℃の温度での低温超塑性成形(SPF)を含む方法による製品加工に適している。材料及び製品は、Ti−6Al−4V合金から作製されたシート製品の経費効率的な選択肢として使用されうる。 Disclosed herein are materials and products such as sheet materials and sheet-like semi-finished products, such materials and products comprising titanium alloys, which materials have a low temperature superplastic forming (SPF) at a temperature of 775°C. ) Are suitable for processing products. The materials and products can be used as a cost-effective option for sheet products made from Ti-6Al-4V alloy.

用語「超塑性成形」は、全般に、材料(合金)が塑性ひずみの従来の限界を超えて(500%超)超塑性的に成形される過程に適用される。SPFは、温度及びひずみ速度の限定された範囲内で超塑性特性を呈する特定の材料に適用されうる。例えば、チタニウム合金シートは、通常、約3・10−4−1のひずみ速度で約900から1010℃の温度範囲内の超塑性成形(変形)を受けることができる。 The term "superplastic forming" generally applies to processes in which a material (alloy) is superplastically formed (>500%) beyond the conventional limits of plastic strain. SPF can be applied to certain materials that exhibit superplastic properties within a limited range of temperature and strain rate. For example, titanium alloy sheets can typically undergo superplastic forming (deformation) within a temperature range of about 900 to 1010° C. at a strain rate of about 3·10 −4 s −1 .

製造の面から、SPFで成形温度が低下する結果、有意な利点が得られる。例えば、SPF成形温度の低下により、ダイコストの削減、ダイの耐用年数の延長が実現され、安価なスチールダイの導入が可能になる。加えて、酸素リッチ層(アルファの場合)の形成及びスケールが軽減され、したがって製品収率が向上し、化学的エッチングの必要性が低減するか又は排除される。加えて、SPF作業完了後により微細な結晶粒の存在が保持されるという利点により、変形温度の低下がもたらされ、それにより結晶粒の成長が抑制されうる。 From a manufacturing standpoint, SPF's lower molding temperatures result in significant advantages. For example, lowering the SPF molding temperature reduces the die cost, extends the service life of the die, and enables the introduction of inexpensive steel dies. In addition, the formation and scale of the oxygen-rich layer (in the case of alpha) is reduced, thus improving product yield and reducing or eliminating the need for chemical etching. In addition, the advantage of retaining the presence of finer grains after completion of the SPF operation can result in a lower deformation temperature, which can inhibit grain growth.

現在、チタニウム合金からのシート材の超塑性成形能を向上させるために二つの既知のアプローチが存在する。第1のアプローチには、わずか2μmから1μm、及びそれより小さな細粒を製造し、それにより結晶粒堺すべりを強化する特殊用途用熱機械処理の開発が含まれる。特に、Ti−6Al−4V材料から形成される従来製品の温度より低い温度で変形用シートを製造する既知の方法が存在する(特許第2243833号、IPC B21B1/38、2005年1月10日公開)。 Currently, there are two known approaches to improve the superplastic formability of sheet materials from titanium alloys. The first approach involves the development of a special-purpose thermomechanical process that produces granules as small as 2 μm to 1 μm and smaller, thereby enhancing grain Sakai slip. In particular, there is a known method of manufacturing a deformation sheet at a temperature lower than that of a conventional product formed of Ti-6Al-4V material (Patent No. 2243833, IPC B21B1/38, published January 10, 2005). ).

第2のアプローチには、
− 二位相体積分率及び形態の強化、
− 速いディフューザとしての合金中の即ちFe及びNiの含有量により結晶粒堺すべりを速めるより速い拡散法、
− より低いベータトランザス温度(BTT)
により、より粗い材料粒度に超過塑性を呈するチタニウム合金シート材の新規の系を開発することが含まれる。
The second approach is
-Enhancement of two-phase volume fraction and morphology,
A faster diffusion method to accelerate grain Sakai slip due to the content of Fe and Ni in the alloy as a fast diffuser,
− Lower beta transus temperature (BTT)
Involves developing a new system of titanium alloy sheet material that exhibits overplasticity in coarser material grain sizes.

したがって、合金の化学組成の効率的選択において、超微細結晶粒の形成に必要とされる特殊用途用処理技術をまったく使用せずに低温で満足のゆく超塑性成形(変形)特性を得ることが可能である。 Therefore, in the efficient selection of the chemical composition of the alloy, it is possible to obtain satisfactory superplastic forming (deformation) characteristics at low temperatures without using any special-purpose processing technology required for the formation of ultrafine grains. It is possible.

二相(α+β)チタニウム合金は、合金元素の付加レベルに応じて、2.5から10%に等しいモリブデン構造等価物([Mo]equiv.)を有する合金に分類される(Kolachev B.A., Polkin I. S., Talalayev V.D.Titanium alloys of various countries: Reference book.Moscow.VILS.2000.316 p. - p. 13-16)。このような合金は、通常、アルミニウム及びβ安定化元素を用いて合金化され、ベータ相を保持している。ベータ相の量は、この族に属するアニールされた状態の合金中で5%から50%まで変動しうる。したがって、機械特性は比較的広い範囲で変化する。これら合金は、ロシア及びそれ以外の国において広範に使用され、特に、合金元素の付加がうまくいったTi−6A1−4V合金が使用された。(Materials Properties Handbook: Titanium Alloys. R. Boyer, G. Welsch, E. Collings. ASM International, 1998. 1048 p. - p. 486-488)。この合金において、アルミニウムは強度的性質及び耐熱性を増す傾向があり、一方バナジウムは強度的性質を増すだけでなく塑性も向上させる数少ない元素の一つである。Ti−6A1−4V族に属する合金は、バー、チューブ、セクション、自由鍛造品及び閉塞型鍛造品、プレート、シート、ストリップ及びフォイルの生産に使用される。この合金は、空中ビークルの溶接構造及び組立構造、多数の航空及びロケットの構造的構成要素の製造と、外傷学、整形外科学及び歯科学に適用される医療用インプラントの製造とに使用される。 Duplex (α+β) titanium alloys are classified into alloys with molybdenum structural equivalents ([Mo] equiv.) equal to 2.5 to 10%, depending on the level of addition of alloying elements (Kolachev BA, Polkin IS. , Talalayev VDTitanium alloys of various countries: Reference book.Moscow.VILS.2000.316 p.-p. 13-16). Such alloys are usually alloyed with aluminum and the β-stabilizing element and retain the beta phase. The amount of beta phase can vary from 5% to 50% in the annealed alloys belonging to this family. Therefore, the mechanical properties change over a relatively wide range. These alloys have been used extensively in Russia and other countries, especially the Ti-6A1-4V alloy, which has been successful in adding alloying elements. (Materials Properties Handbook: Titanium Alloys. R. Boyer, G. Welsch, E. Collings. ASM International, 1998. 1048 p.-p. 486-488). In this alloy, aluminum tends to increase strength properties and heat resistance, while vanadium is one of the few elements that not only increases strength properties but also improves plasticity. Alloys belonging to the Ti-6A1-4V group are used in the production of bars, tubes, sections, free and closed forgings, plates, sheets, strips and foils. This alloy is used in the manufacture of welded and assembled structures for aerial vehicles, numerous structural components of aeronautics and rockets, and medical implants for trauma, orthopedics and dentistry. ..

Ti−6Al−4V合金のアナログであるVT5合金からの低温超塑性成形に適したチタニウム合金のシート状半製品の既知の製造方法が存在する(特許第2224047号、IPC C22F1/18、B21B3/00、2004年2月20日公開)。この方法は、低温超塑性成形に適した均一なサブ微結晶質構造(結晶粒サイズが1μm未満)を有するチタニウム合金のシート状半製品の製造を可能にする。この方法は、高価で効率が低く、特殊用途用の装備の利用を必要とする。 There is a known method for producing a titanium alloy sheet-like semi-finished product suitable for low temperature superplastic forming from a VT5 alloy which is an analog of Ti-6Al-4V alloy (Japanese Patent No. 2224047, IPC C22F1/18, B21B3/00). , Published on February 20, 2004). This method allows the production of titanium alloy sheet blanks with a uniform sub-microcrystalline structure (grain size less than 1 μm) suitable for low temperature superplastic forming. This method is expensive, inefficient, and requires the use of special purpose equipment.

Ti−6A1−4V合金は、総合的な鍛造技術を用いて強ひずみ加工(SPD)により生成されて、超塑性特性を呈するサブ微結晶質構造を有することが知られている。合金の微細構造は、平均サイズ0.4μmのα及びβ相結晶粒と副結晶粒、不均一な回折コントラストを証拠とする高レベルの結晶格子内部応力と弾性歪み、並びに電子顕微鏡によって得られる構造画像における高密度の転位によって定義される。(S. Zherebtsov, G. Salishchev, R. Galeyev, К. Maekawa, Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. // Materials Transactions. 2005; V. 46(9): 2020-2025)。このような合金からシート状半製品を製造するために、最終製品の価値を有意に増大させる、総合的鍛造技術を使用した非集中的で低コストのSPD作業が必要とされている。 Ti-6A1-4V alloy is known to have a sub-microcrystalline structure that exhibits superplastic properties, produced by strong strain processing (SPD) using comprehensive forging techniques. The microstructure of the alloy consists of α and β phase grains with an average size of 0.4 μm and sub-grains, high levels of internal lattice stress and elastic strain evidenced by non-uniform diffraction contrast, and structures obtained by electron microscopy. Defined by high density dislocations in the image. (S. Zherebtsov, G. Salishchev, R. Galeyev, К. Maekawa, Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. // Materials Transactions. 2005; V. 46 (9): 2020-2025). In order to produce sheet-like semi-finished products from such alloys, there is a need for decentralized, low cost SPD operations using comprehensive forging techniques that significantly increase the value of the final product.

二位相のチタニウム合金から薄手シートを製造し、前記シートから製品を製造するための既知の方法が存在する。この方法は、重量%で以下の元素含有量:3.5−6.5のAl、4.0−5.5のV、0.05−1.0のMo、0.5−1.5のFe、0.10−0.2のO、0.01−0.03のC、0.005−0.07のCr、0.01−0.5のZr、0.001−0.02のNを含み、残部がチタニウムである合金からのシート状半製品の製造を含む;この場合の化学組成は、アルミニウム[Al]強度等価物=6.0−11.55及びモリブデン[Mo]強度等価物=3.5−5.6の強度等価物の値で調節される(特許第2555267号、IPC C22F1/18B21B3/00、2015年10月7日公開)−プロトタイプ。 There are known methods for making thin sheets from dual phase titanium alloys and making products from said sheets. This method comprises the following element contents in weight%: Al of 3.5-6.5, V of 4.0-5.5, Mo of 0.05-1.0, 0.5-1.5. Fe, 0.10-0.2 O, 0.01-0.03 C, 0.005-0.07 Cr, 0.01-0.5 Zr, 0.001-0.02 Of N, with the balance being titanium, including the production of semi-finished sheets; the chemical composition in this case is aluminum [Al] strength equivalent=6.0-11.55 and molybdenum [Mo] strength. Equivalent=Adjusted with a strength equivalent value of 3.5-5.6 (Patent No. 2555267, IPC C22F1/18B21B3/00, published October 7, 2015)-Prototype.

前記特許の範囲内で製造された厚さ<3mmのシート状半製品は、SPFに必要とされる特性の安定性が低いことに起因して、工業生産に適していない場合がある。理由は、合金の化学組成のアジャスタとして強度等価物を使用しても、必要とされる調節、合金中の合金元素間の適切な関係、及びシート状半製品でのSPF作業の性能に必要とされる合金の構造特性が可能にならないためである。さらには、合金中のSi及びZrの存在により、結晶粒表面上にケイ化物が形成され、それにより結晶粒間のすべりが妨げられ、過程不安定性が生じうる。 Sheet-like semi-finished products with thickness <3 mm produced within the scope of said patent may not be suitable for industrial production due to the low stability of the properties required for SPF. The reason is that even using a strength equivalent as an adjuster of the chemical composition of the alloy, it is necessary for the required regulation, the proper relationship between the alloying elements in the alloy, and the performance of SPF work on sheet-like semi-finished products. This is because the structural characteristics of the alloys used are not possible. Furthermore, the presence of Si and Zr in the alloy can lead to the formation of silicides on the surface of the grains, which prevents slippage between the grains and can lead to process instability.

本明細書に開示されるのは、2μmを上回る結晶粒サイズでの、より低温の超塑性成形能を有する(α+β)チタニウム合金のシート材の製造である。このシート材は、安定な特性を呈し、実施例において、より微細な結晶粒を有するTi−6Al−4V合金から作製されるシート状半製品のコスト効率のよい選択肢である。 Disclosed herein is the production of sheet material of (α+β) titanium alloy with superplastic formability at lower temperatures with grain sizes greater than 2 μm. This sheet material exhibits stable properties and, in the examples, is a cost-effective option for sheet-like semi-finished products made from Ti-6Al-4V alloy with finer grains.

本明細書に開示されるのは、低温超塑性成形特性を呈する最終製品のための既知の一般的な製造技術に基づく製造性と効率的にバランスの取れた化学組成を有するチタニウム合金からの、シートの製造である。 Disclosed herein is a titanium alloy having a chemical composition that is efficiently balanced with manufacturability based on known general manufacturing techniques for end products that exhibit low temperature superplastic forming properties, It is the manufacture of sheets.

初期状態にある合金構造を示している。The alloy structure in the initial state is shown. 初期状態にある合金構造を示している。The alloy structure in the initial state is shown. SPFの間に得られる荷重曲線である。It is a load curve obtained during SPF. SPFの間に得られる荷重曲線である。It is a load curve obtained during SPF. SPFの間に得られる荷重曲線である。It is a load curve obtained during SPF. 0.2及び1.1のひずみ度(縦断方向に)における[Mo]等価物に応じた真応力対ひずみ曲線を示すグラフである。FIG. 3 is a graph showing true stress versus strain curves for [Mo] equivalents at strain levels of 0.2 and 1.1 (longitudinal direction).

低温超塑性成形のためのシート材の例は、重量%で以下の元素含有量:4.5−5.5のAl、4.5−5.5のV、0.1−1.0のMo、0.8−1.5のFe、0.1−0.5のCr、0.1−0.5のNi、0.16−0.25のOを有し、残りはチタニウムと残留元素であり、5を上回るモリブデン構造等価物([Mo]eqiv.)及び8を下回るアルミニウム構造等価物([Al]equiv.)を有し;前記等価物の値が以下の数式:
[Mo]eqiv.=[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5+[Ni]/0.8
[Al]eqiv.=[Al]+[O]×10+[Zr]/6
から計算されるチタニウム合金から作製することができる。
Examples of sheet materials for low temperature superplastic forming include the following element contents in weight percent: Al of 4.5-5.5, V of 4.5-5.5, V of 0.1-1.0. Mo, 0.8-1.5 Fe, 0.1-0.5 Cr, 0.1-0.5 Ni, 0.16-0.25 O, balance titanium and residual Is an element and has a molybdenum structural equivalent greater than 5 ([Mo]eqiv.) and an aluminum structural equivalent less than 8 ([Al]equiv.); the value of said equivalent being:
[Mo]eqiv. =[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5+[Ni]/0.8
[Al]eqiv. =[Al]+[O]×10+[Zr]/6
It can be made from a titanium alloy calculated from

低温超塑性成形のためのシート材は、8μm未満のサイズを有する結晶粒からなる構造を有する。 The sheet material for low temperature superplastic forming has a structure composed of crystal grains having a size of less than 8 μm.

低温超塑性成形のためのシート材は、775±10℃の温度で超塑性特性を呈することができる。 Sheet materials for low temperature superplastic forming can exhibit superplastic properties at temperatures of 775±10°C.

775±10℃の温度での低温超塑性成形のためのシート材は、0.9から1.1のα/β相比を呈する。 Sheet materials for low temperature superplastic forming at temperatures of 775±10° C. exhibit an α/β phase ratio of 0.9 to 1.1.

低温超塑性成形のためのシート材であって、SPF過程の間にα相とβ相の間で拡散する合金元素の量は最小で0.5%に等しく、これは関係式:

Figure 2020517834
に基づいて決定され、式中:
Q − SPFの間の材料中で拡散する合金元素の量(重量%)であり、
n − 材料中の合金元素の量であり、
|Δm| − SPF過程の間の、α及びβ相の合金元素含有量の絶対変動値(重量%)である。
|Δm|は、式:
|Δm|=(mβ1−mα1)−(mβ2−mα2),(重量%)
から計算され、
式中:
mβ1 − SPFの前の、β相の合金元素の含有量(重量%)であり、
mβ2 − SPFの後の、β相の合金元素の含有量(重量%)であり、
mα1 − SPFの前の、α相の合金元素の含有量(重量%)であり、
mα2 − SPFの後の、α相の合金元素の含有量(重量%)である。 Sheet material for low temperature superplastic forming, the amount of alloying elements diffusing between α and β phases during the SPF process is equal to a minimum of 0.5%, which is related to the relational expression:
Figure 2020517834
In the formula:
Q-the amount (% by weight) of alloying elements diffusing in the material between the SPF,
n-is the amount of alloying elements in the material,
|Δm| − Absolute variation (% by weight) of alloying element content of α and β phases during SPF process.
|Δm| is an expression:
|Δm|=(mβ1-mα1)-(mβ2-mα2), (wt%)
Calculated from
In the formula:
The content (% by weight) of the β-phase alloying element before mβ1-SPF,
The content (% by weight) of the β-phase alloying element after mβ2-SPF,
content of α-phase alloying elements (wt%) before mα1-SPF,
It is the content (% by weight) of alloying elements in the α phase after mα 2 -SPF.

提供されるシート材は、本明細書の実施例において、一組の高加工特性及び構造特性を呈する。これは、合金元素の効率的選択と、材料合金中におけるそれらの比によって達成される。 The provided sheet material exhibits a set of high processing and structural properties in the examples herein. This is achieved by the efficient selection of alloying elements and their ratio in the material alloy.

αの群−安定化元素 Group of α-stabilizing elements

実質的にすべての商用合金に使用されるアルミニウムは、最も効率的な強化剤であり、チタニウムの強度的性質及び耐熱性を向上させる。酸素は、チタニウム同素変態の温度を上昇させる。0.16%から0.25%の範囲内の酸素の存在は、合金の強度を上昇させ、可塑性に対して有意な悪影響を有さない。 Aluminum, which is used in virtually all commercial alloys, is the most efficient strengthener and improves the strength and heat resistance properties of titanium. Oxygen raises the temperature of the titanium allotropic transformation. The presence of oxygen in the range of 0.16% to 0.25% increases the strength of the alloy and has no significant adverse effect on plasticity.

βの群−安定化元素(V、Mo、Cr、Fe、Ni)は、商用合金に広く使用される。 The group β-stabilizing elements (V, Mo, Cr, Fe, Ni) are widely used in commercial alloys.

4.5%から5.5%の量のバナジウム、0.8%から1.5%の量の鉄、及び0.1%から0.5%の量のクロムは、合金強度を上昇させ、可塑性に対して比較的小さな影響を有するか又はまったく影響を有さない。 Vanadium in an amount of 4.5% to 5.5%, iron in an amount of 0.8% to 1.5%, and chromium in an amount of 0.1% to 0.5% increase alloy strength, Has relatively little or no effect on plasticity.

0.1%から1.0%の範囲のモリブデンの導入により、α相においてそのほぼ完全な又は完全な拡散が保証され、したがって必要とされる強度的性質が、実施例において、塑性特性に対してほとんど又はまったく悪影響を与えずに達成されうる。 The introduction of molybdenum in the range of 0.1% to 1.0% guarantees its almost complete or complete diffusion in the α phase, so that the required strength properties are, in the examples, relative to the plastic properties. Can be achieved with little or no adverse effect.

提供される合金は、0.8%から1.5の量又は1.0%から1.5%の量の鉄と、0.1%から0.5%の量のニッケルとを含む。これら元素は、SPFにおいて結晶粒間すべりにプラスの影響を有する最も拡散性の高いβ安定化元素である。 The provided alloy comprises iron in an amount of 0.8% to 1.5 or 1.0% to 1.5% and nickel in an amount of 0.1% to 0.5%. These elements are the most diffusive β-stabilizing elements that have a positive effect on intergranular slip in SPF.

SPF効率に影響を有する構造要因の中で、第1に際立っているのは、提供される材料について8μm(実験データ)を超えない結晶粒のサイズである。 Among the structural factors affecting SPF efficiency, the first outstanding is the grain size which does not exceed 8 μm (experimental data) for the provided material.

SPF温度におけるα/β相の比が1に近い場合、二位相チタニウム合金における相変態に起因して材料の超塑性流動が起こりうることが既知である(Kaibyshev O. Superplastic properties of commercial alloys. Moscow. Metallurgy. 1984. p. 179-218.)。これは、結晶粒間すべりに寄与する等軸構造の形成を促す。構造球状化の駆動力は、表面エネルギーの低下の傾向である。β相の増加に起因する結晶粒界境界の成長は、結晶粒界境界における表面エネルギーレベルの変化をもたらし、次いで球状化を活性化させる。1に近いα/β比においてSPF過程の間にベータ相の必要量を有するために、モリブデン構造等価物([Mo]equiv.)の値は5より大きくなければならず、アルミニウム構造等価物([Al]equiv.)の値は8を超えてはならない。加えて、上記を超えるアルミニウム等価物の値は、BTTの上昇と、その結果SPF温度の上昇とをもたらす。 It is known that superplastic flow of materials can occur due to phase transformation in dual phase titanium alloy when the ratio of α/β phase at SPF temperature is close to 1 (Kaibyshev O. Superplastic properties of commercial alloys. Moscow . Metallurgy. 1984. p. 179-218.). This promotes the formation of an equiaxed structure that contributes to intergranular slip. The driving force for structural spheronization is the tendency for the surface energy to decrease. The growth of grain boundary boundaries due to the increase of β phase leads to a change in surface energy level at the grain boundary boundaries, which in turn activates spheroidization. The value of the molybdenum structural equivalent ([Mo] equiv.) must be greater than 5 to have the required amount of beta phase during the SPF process at α/β ratio close to 1, and the aluminum structural equivalent ( The value of [Al] equiv.) must not exceed 8. In addition, aluminum equivalent values above the above result in an increase in BTT and consequently an increase in SPF temperature.

提供される材料の超塑性特性に影響を与えるための最適な温度は、775±10℃に等しい。 The optimum temperature for affecting the superplastic properties of the provided material is equal to 775±10°C.

α相とβ相との間で拡散する合金元素の量は、0.5%以上でなければならない。これは、結晶粒界拡散の活性化エネルギーが体積拡散の活性化エネルギー未満であり、原子の拡散輸送が結晶粒界で行なわれているという事実に起因する。結晶粒界のそのようなエリアは、通常の引張応力の影響を受けて、空孔の集中増加を呈する。圧縮応力の影響を受けているそれらエリアは、それよりも少ない空孔の集中を呈する:集中に差異が生じ、空孔の直接的拡散を引き起こす。空孔の移動には原子の交換が伴い、後者は反対方向に動くので、結晶粒間すべりの強化が引き起こされる。 The amount of alloying elements diffusing between the α phase and the β phase must be 0.5% or more. This is due to the fact that the activation energy of grain boundary diffusion is less than the activation energy of volume diffusion, and the diffusion transport of atoms is performed at the grain boundaries. Such areas of the grain boundaries exhibit an increased concentration of vacancies under the influence of normal tensile stress. Those areas under the influence of compressive stress exhibit less void concentration: differences in concentration cause direct diffusion of voids. The movement of vacancies is accompanied by the exchange of atoms, and the latter moves in the opposite direction, which causes intergranular slip enhancement.

調査を目的として、2mmの厚さを有するシート状半製品を使用した。シート材を製造するために、表1に示す種々の化学組成の六つの実験用合金を融解した。 For the purpose of investigation, a sheet-shaped semi-finished product having a thickness of 2 mm was used. Six experimental alloys of various chemical compositions shown in Table 1 were melted to produce sheet material.

2mm厚のシート材を、既知の製造方法と対比させ、超塑性成形を目的として製造した。超塑性特性について試験する前に、材料を、30分間720℃の温度でのアニーリングに供し、その後空冷した。処理工程の完了後、試料をシートから縦断方向及び横断方向に取って室温及び高温での引張強度試験を行い、次いで室温で、強度、弾性及び塑性特性を決定するための試料の一般的試験を行った。 A sheet material having a thickness of 2 mm was manufactured for the purpose of superplastic forming by comparing with a known manufacturing method. Prior to testing for superplastic properties, the material was annealed at a temperature of 720° C. for 30 minutes and then air cooled. After completion of the treatment process, the specimens are taken from the sheet in longitudinal and transverse directions for room temperature and elevated temperature tensile strength tests, and then at room temperature for general testing of the samples to determine strength, elasticity and plastic properties. went.

Figure 2020517834
Figure 2020517834

初期状態における材料構造の評価(図1及び図2)は、構造が、等軸構造に類似しており、主として、より暗い(α)又はより明るい(β)の元素のように見える、α相とβ相の交互の結晶粒からなる。合金中の[Mo]equivの増加に伴い、β相結晶粒の体積分率が、合金2に予想されるα/β比2/1から合金3及び合金4中の1/1に近い値まで上昇することに注目されたい。切断法により微細構造写真上で測定された相結晶粒の平均サイズは、[Mo]equiv.の増加に伴っていくらか増大する傾向にあり、2.8から3.8μmの範囲内である(最小結晶粒サイズは合金2に対して決定されている)。初期状態にある材料1の結晶粒構造の均一度が他の実験用合金と比べて低いことに注目されたい。等軸の結晶粒に加えて、材料1は、十分な嵩を有する細長い結晶粒からなるエリアを示す。また、β相の形態が合金によっていくらか変化することも注目されたい。合金2は、最小量の合金元素を有し、β相は主にα相粒子間に個別の群として位置する;しかし合金5から開始して、β相は明確なコヒーレンシーを有し、結晶粒のテクスチャに加えて、α相結晶粒間の比較的薄い層として成形される。[Mo]equiv.の増加に伴い、これら層は厚みを増す傾向にある。 An evaluation of the material structure in the initial state (FIGS. 1 and 2) shows that the structure resembles an equiaxed structure, predominantly appearing as darker (α) or brighter (β) elements in the α phase. And β-phase alternating crystal grains. With the increase of [Mo] equiv in the alloy, the volume fraction of β-phase crystal grains from the α/β ratio 2/1 expected in alloy 2 to a value close to 1/1 in alloy 3 and alloy 4 Note the rise. The average size of the phase crystal grains measured on the microstructure photograph by the cutting method is [Mo] equiv. , And tends to increase with an increase in .gamma., which is in the range of 2.8 to 3.8 .mu.m (minimum grain size has been determined for Alloy 2). Note that the grain structure homogeneity of material 1 in its initial state is low compared to other experimental alloys. In addition to equiaxed grains, Material 1 exhibits areas consisting of elongated grains with sufficient bulk. Also note that the morphology of the β-phase varies somewhat with the alloy. Alloy 2 has the least amount of alloying elements, the β phase is mainly located as a separate group between the α phase particles; however, starting from alloy 5, the β phase has a well-defined coherency and grain In addition to its texture, it is formed as a relatively thin layer between α-phase grains. [Mo] equiv. As the thickness increases, the thickness of these layers tends to increase.

比較実施例
SPF(775℃の温度及び3×10−4−1のひずみ速度、シートの長さ方向での)後の鍛造(縮小部)状態及び未鍛造(ヘッド部エリア)状態における材料構造の比較分析により、縮小部における変形が、ほぼ鍛造されていない上部と比較していくらかの結晶粒成長と、より複雑な形状のα及びβ相の結晶粒からの集塊の発生とを誘導したことが示された。
Comparative Example Material structure in the forged (reduced part) state and the unforged (head part area) state after SPF (at a temperature of 775° C. and a strain rate of 3×10 −4 s −1 , in the length direction of the sheet). A comparative analysis of the above showed that the deformation in the reduced part induced some grain growth and the formation of agglomerates from the more complex α and β phase grains compared to the nearly unforged top. Was shown.

結晶粒サイズの評価は、合金元素の付加が、最大のβ安定化元素の付加を有する合金中の位相結晶粒のサイズに有意に影響しないこと、及びその範囲が3.5±0.5μm(非鍛造部)と4±0.5μm(鍛造部)の間であることを示した。同時に、合金元素を最小含有量で含む合金2の場合、縮小部の結晶粒のサイズは、5μmまで初期状態と比較してほぼ二倍以上に増大する。 Grain size was evaluated by the fact that the addition of alloying elements does not significantly affect the size of phase grains in the alloy with the maximum addition of β-stabilizing element, and the range is 3.5±0.5 μm ( It was shown to be between the non-forged part) and 4±0.5 μm (forged part). At the same time, in the case of alloy 2 containing the alloying elements in the minimum content, the size of the crystal grains in the reduced portion is increased up to 5 μm almost twice or more as compared with the initial state.

電顕分析(EMPA)の方法により、初期状態にある調査対象材料中において、超塑性特性の試験後に、α相とβ相の間での合金元素の分布を試験した;試験は、縦の試験片の鍛造縮小部とヘッド部に実施し、結果を表2、3及び4に示す。 The distribution of alloying elements between the α and β phases was tested in the initially investigated material by the method of electron microscopy (EMPA) after the superplastic properties were tested; the test was a longitudinal test. The forging reduction part and the head part of one piece were carried out, and the results are shown in Tables 2, 3 and 4.

Figure 2020517834
Figure 2020517834
Figure 2020517834
Figure 2020517834

Figure 2020517834
Figure 2020517834
Figure 2020517834
Figure 2020517834

SPFの間の材料中で拡散する合金元素の量は、式:

Figure 2020517834
から決定され、式中:
Q − SPFの間の材料中で拡散する合金元素の量(重量%)であり、
n − 材料中の合金元素の量であり、
|Δm| − SPF過程の間の、α−及びβ相の合金元素含有量の絶対変動値(重量%)である。
|Δm|は、式:
|Δm|=(mβ1−mα1)−(mβ2−mα2),(重量%)
から計算され、
式中:
mβ1 − SPFの前の、β相の合金元素の含有量(重量%)であり、
mβ2 − SPFの後の、β相の合金元素の含有量(重量%)であり、
mα1 − SPFの前の、α相の合金元素の含有量(重量%)であり、
mα2 − SPFの後の、α相の合金元素の含有量(重量%)である。 The amount of alloying element that diffuses in the material during the SPF is calculated by the formula:
Figure 2020517834
Determined from the formula:
Q-the amount (% by weight) of alloying elements diffusing in the material between the SPF,
n-the amount of alloying elements in the material,
|Δm| − Absolute variation (wt %) of alloying element content of α- and β phases during SPF process.
|Δm| is an expression:
|Δm|=(mβ1-mα1)-(mβ2-mα2), (wt%)
Calculated from
In the formula:
The content (% by weight) of the β-phase alloying element before mβ1-SPF,
The content (% by weight) of the β-phase alloying element after mβ2-SPF,
content of α-phase alloying elements (wt%) before mα1-SPF,
It is the content (% by weight) of alloying elements in the α phase after mα 2 -SPF.

表4に含まれるのは、SPF過程の間の拡散する合金元素の量に関連する計算データである。 Included in Table 4 are calculated data related to the amount of alloying elements that diffuse during the SPF process.

調査対象の鍛造シート材中のα及びβ相における変化の分析により、試験片の縮小部におけるα相及びβ相間の金元素含有量の差異が、塑性変形を受けていない試験片のヘッド部における同差異と比較して大きいことが示された(表2、3及び4)。 By analyzing the changes in the α and β phases in the forged sheet material under investigation, the difference in the gold element content between the α phase and β phase in the reduced portion of the test piece was found to be in the head portion of the test piece that was not subjected to plastic deformation. It was shown to be large compared to the same difference (Tables 2, 3 and 4).

得られたEMPAの結果は、775℃の温度での超塑性特性試験の対象である材料における位相体積分率の評価にも使用され、表5に示される。 The EMPA results obtained are also used for the evaluation of the phase volume fraction in the material subject to the superplastic property test at a temperature of 775° C. and are shown in Table 5.

Figure 2020517834
Figure 2020517834

Figure 2020517834
Figure 2020517834

試験の間に得られた荷重曲線を図3、4及び5に示す。 The load curves obtained during the test are shown in Figures 3, 4 and 5.

超塑性試験での合金の特性を表6に示す。 Table 6 shows the characteristics of the alloys in the superplasticity test.

0.2及び1.1のひずみ速度(縦断方向)における[Mo]等価物に応じた真応力対ひずみ曲線を図6に示す。 The true stress versus strain curves for the [Mo] equivalents at strain rates of 0.2 and 1.1 (longitudinal direction) are shown in FIG.

Figure 2020517834
Figure 2020517834

最小含有量の合金元素を含む材料1(図3)は、775℃の温度で最も不安定なSPF過程を有しており、これは浮遊ネックの形成により引き起こされる応力−ひずみ曲線の典型的なうねりによって表されている。SPFにおけるこのような材料挙動は、SPFで高い成長率を有する(5μm以下)比較的嵩の大きな初期結晶粒(2.5μm)に起因しており、この場合α/β位相比(2/1)は効率的でなく、効率のよい結晶粒間スリップの代わりにSPFにとって好ましくない結晶粒内すべりの活性化をもたらす。 Material 1 with a minimum content of alloying elements (FIG. 3) has the most unstable SPF process at a temperature of 775° C., which is typical of the stress-strain curve caused by the formation of a floating neck. It is represented by a swell. Such material behavior in SPF is due to the relatively bulky initial grains (2.5 μm) which have a high growth rate (5 μm or less) in SPF, in which case the α/β phase ratio (2/1 ) Is not efficient and results in the activation of intergranular slip, which is undesirable for SPF, instead of efficient intergranular slip.

材料2(図3)にはβ安定化元素がさらに付加されており、したがって、応力−ひずみ曲線のうねりの形のSPF過程の不安定性が、構造中のβ相体積分率の低下に起因して、合金1と比較して低減した。ここで、ひずみ度が0.6から0.8の範囲である場合、不完全に処理された構造のエリア内における動的な再結晶化の進行に起因して(長形の結晶粒の存在)有意な硬化は確認されなかった。これは、調査対象の他のすべての合金には典型的でない。 A β-stabilizing element was further added to the material 2 (FIG. 3 ), and therefore, the instability of the SPF process in the form of waviness of the stress-strain curve was caused by the decrease of the β-phase volume fraction in the structure. And decreased as compared with Alloy 1. Here, when the strain degree is in the range of 0.6 to 0.8, due to the progress of the dynamic recrystallization within the area of the incompletely processed structure (the existence of the elongated crystal grains). ) No significant cure was observed. This is not typical of all other alloys investigated.

モリブデン(合金5)、クロム(合金6)を除いて、最大含有量のβ安定化元素を含む材料3、5及び6(図4、5)は、コヒーレンスの増大及び結晶粒間スリップの容易化を伴う合金構造中のβ相の増加に起因して、材料1及び2と比較して小さなうねりを有する応力−ひずみ曲線で表される;また、硬化が、真ひずみの度合いの上昇に伴ってより顕著になる(表3、図6)。この場合、具体的には横断方向の試験において、うねりは0.6以下のひずみ度合いに保持され、これはシートの初期テクスチャと効率が十分でないα/β相の比(3から2に近い3)に帰することができる。材料6中のクロムの非存在は、材料3と比較して、材料5中のモリブデンの非存在より小さい度合いで応力−ひずみ曲線に影響する。原因の一つは、SPF過程の安定性に対するモリブデン付加の影響が、クロムの付加と比較して(2から2.5分の1でありうる)強い結果にありうる。 Except for molybdenum (alloy 5) and chromium (alloy 6), materials 3, 5 and 6 (Figs. 4 and 5) containing the maximum content of β-stabilizing element increase coherence and facilitate inter-grain slip. It is represented by a stress-strain curve with a small waviness compared to materials 1 and 2 due to the increase of β-phase in the alloy structure with; It becomes more prominent (Table 3, Figure 6). In this case, in particular, in the transverse test, the waviness is maintained at a strain degree of 0.6 or less, which is the ratio of the initial texture of the sheet and the inefficient α/β phase (3 to 3 close to 2). ) Can be attributed to. The absence of chromium in material 6 affects the stress-strain curve to a lesser extent than the absence of molybdenum in material 5 as compared to material 3. One of the reasons may be that the effect of molybdenum addition on the stability of the SPF process is strong compared to the addition of chromium (which may be 2-2.5 fold).

材料4は、最大量のβ安定化元素を含み、0.3%のニッケルでさらに合金化されている;これは、横断方向及び縦断方向の両方において775℃の温度でより安定な超塑性挙動を、流れの開始において最小応力を、顕著な曲線のうねりの非存在とひずみ度合いの増大に伴う単調な硬化とを呈した。これは、変形温度におけるほぼ効率的なα/β位相比(1/1)と、調査対象の全合金と比較して最大含有量の拡散するβ安定化元素(ニッケル、鉄)に起因しており、したがって結晶粒間スリップでの質量移行過程を促す(SPF過程の間のα相とβ相との合金元素含有量の変化の合計差は1.9重量%を超える)。 Material 4 contains the maximum amount of β-stabilizing element and is further alloyed with 0.3% nickel; it has a more stable superplastic behavior at a temperature of 775° C. in both transverse and longitudinal directions. Exhibited a minimal stress at the onset of flow, the absence of significant curvilinear undulations and a monotonic hardening with increasing strain. This is due to the almost efficient α/β phase ratio (1/1) at the deformation temperature and the maximum content of diffusing β-stabilizing elements (nickel, iron) compared to all alloys investigated. Therefore, it promotes the mass transfer process in the inter-grain slip (the total difference in the change of the alloying element contents of the α phase and the β phase during the SPF process exceeds 1.9 wt %).

調査された合金の中で、材料4は、材料要件に完全に準拠して最良の結果を示した(表7)。一定のひずみ速度及び(775±7)℃の温度における引張試験(3×10−4インチ/インチ/秒のひずみ)を下の表7に示す。 Of the alloys investigated, Material 4 gave the best results in full compliance with the material requirements (Table 7). The tensile tests (3×10 −4 inch/inch/second strain) at constant strain rate and temperature of (775±7)° C. are shown in Table 7 below.

Figure 2020517834
Figure 2020517834

アニーリングされた状態のシートの機械特性の比較を表8に示す。 A comparison of the mechanical properties of the annealed sheets is shown in Table 8.

Figure 2020517834
Figure 2020517834

表7及び8に示されるデータは、例示的な一実施態様の結果として、2μmを上回る結晶粒サイズを有し、航空宇宙材料に適用される要件に準拠した半完成品の既知の一般的製造技術に基づいて、シート材が、製造性と効率的にバランスのとれた化学組成を有するチタニウム合金から製造されたことを示している。 The data shown in Tables 7 and 8 show that, as a result of one exemplary embodiment, the known general production of semi-finished products having a grain size above 2 μm and complying with the requirements applied to aerospace materials. Based on the technology, it shows that the sheet material was made from a titanium alloy with a chemical composition that was well balanced with manufacturability.

本明細書にしたがって製造される製品が様々な設計を有しうることに注目されたい。本明細書に提供された設計は、例示的なものであって限定的なものではなく、本発明の限定は特許請求の範囲によって行われるものである。 It should be noted that the products manufactured in accordance with this specification can have a variety of designs. The designs provided herein are exemplary rather than limiting, and the invention's limitations are defined by the following claims.

Claims (5)

重量%で以下の元素含有量:4.5−5.5のAl、4.5−5.5のV、0.1−1.0のMo、0.8−1.5のFe、0.1−0.5のCr、0.1−0.5のNi、0.16−0.25のOを有し、残りがチタニウム及び残留元素であり、5を上回るモリブデン構造等価物([Mo]eqiv.)及び8を下回るアルミニウム構造等価物([Al]equiv.)を有し;前記等価物の値が以下の式:
[Mo]eqiv.=[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5+[Ni]/0.8
[Al]eqiv.=[Al]+[O]×10+[Zr]/6
から計算されるチタニウム合金から作製される、低温超塑性成形のためのシート材。
The following element contents are included by weight%: Al of 4.5-5.5, V of 4.5-5.5, Mo of 0.1-1.0, Fe of 0.8-1.5 and 0. 0.1-0.5 Cr, 0.1-0.5 Ni, 0.16-0.25 O with the balance titanium and residual elements with molybdenum structural equivalents greater than 5 ([[ Mo]eqiv.) and an aluminum structural equivalent below 8 ([Al]equiv.); the value of said equivalent being the following formula:
[Mo]eqiv. =[Mo]+[V]/1.5+[Cr]×1.25+[Fe]×2.5+[Ni]/0.8
[Al]eqiv. =[Al]+[O]×10+[Zr]/6
Sheet material for low temperature superplastic forming, made from titanium alloy calculated from.
8mμ未満のサイズを有する結晶粒からなる構造を有する、請求項1に記載の低温超塑性成形のためのシート材。 The sheet material for low temperature superplastic forming according to claim 1, having a structure composed of crystal grains having a size of less than 8 mμ. 775±10℃の温度で超塑性特性を呈する、請求項1に記載の低温超塑性成形のためのシート材。 The sheet material for low temperature superplastic forming according to claim 1, which exhibits superplastic properties at a temperature of 775±10°C. 775±10℃の温度で0.9から1.1のα/β位相比を呈する、請求項1及び2に記載の低温超塑性成形のためのシート材。 The sheet material for low temperature superplastic forming according to claim 1 or 2, which exhibits an α/β phase ratio of 0.9 to 1.1 at a temperature of 775±10°C. SPF過程の間のα相とβ相の間で拡散する合金元素の量が最小で0.5%に等しく、前記量が以下の関係式:
Figure 2020517834
から決定され、式中:
Qは、SPFの間の材料中で拡散する合金元素の量(重量%)であり、
nは、材料中の合金元素の量であり、
|Δm|は、SPF過程の間の、β相及びα相における合金元素含有量の絶対変動値(重量%)であり、
|Δm|は、式:
|Δm|=(mβ1−mα1)−(mβ2−mα2)(重量%)
から計算され、
ここで:
mβ1は、SPFの前の、β相の合金元素の含有量(重量%)であり、
mβ2は、SPFの後の、β相の合金元素の含有量(重量%)であり、
mα1は、SPFの前の、α相の合金元素の含有量(重量%)であり、
mα2は、SPFの後の、α相の合金元素の含有量(重量%)である、
請求項1、2、3及び4に記載の低温超塑性成形のためのシート材。
The amount of alloying elements diffusing between the α and β phases during the SPF process is at least equal to 0.5%, said amount having the following relational expression:
Figure 2020517834
Determined from the formula:
Q is the amount (% by weight) of alloying elements diffusing in the material between the SPFs,
n is the amount of alloying elements in the material,
|Δm| is the absolute variation value (% by weight) of the alloying element content in the β phase and the α phase during the SPF process,
|Δm| is an expression:
|Δm|=(mβ1-mα1)-(mβ2-mα2) (% by weight)
Calculated from
here:
mβ1 is the content (% by weight) of the β-phase alloying element before SPF,
mβ2 is the content (% by weight) of the β-phase alloying element after SPF,
mα1 is the content (% by weight) of the α-phase alloying element before SPF,
mα2 is the content (% by weight) of the α-phase alloying element after SPF,
A sheet material for low-temperature superplastic forming according to claim 1, 2, 3, or 4.
JP2019558569A 2017-04-25 2017-04-25 Titanium alloy-based sheet material for low-temperature superplastic deformation Active JP7028893B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2017/000266 WO2018199791A1 (en) 2017-04-25 2017-04-25 Titanium alloy-based sheet material for low-temperature superplastic deformation

Publications (2)

Publication Number Publication Date
JP2020517834A true JP2020517834A (en) 2020-06-18
JP7028893B2 JP7028893B2 (en) 2022-03-02

Family

ID=63918626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558569A Active JP7028893B2 (en) 2017-04-25 2017-04-25 Titanium alloy-based sheet material for low-temperature superplastic deformation

Country Status (8)

Country Link
US (1) US20200149133A1 (en)
EP (1) EP3617335B1 (en)
JP (1) JP7028893B2 (en)
CN (1) CN111279003B (en)
BR (1) BR112019022330B1 (en)
CA (1) CA3062762A1 (en)
RU (1) RU2691434C2 (en)
WO (1) WO2018199791A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680630B (en) * 2020-12-04 2021-12-24 中国航发北京航空材料研究院 Vacuum heat treatment method for ultra-high-toughness, medium-strength and high-plasticity TC32 titanium alloy part
CN115652142A (en) * 2022-12-02 2023-01-31 昆明理工大学 Novel titanium alloy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274238A (en) * 1989-07-10 1991-12-05 Nkk Corp Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
US20070007281A1 (en) * 2003-08-25 2007-01-11 Tetyukhin Vladislav V Method for manufacturing thin sheets of high strength titanium alloys description
JP2014523483A (en) * 2011-06-17 2014-09-11 テイタニウム メタルス コーポレイシヨン Method for producing alpha-beta Ti-Al-V-Mo-Fe alloy sheet
WO2017156401A1 (en) * 2016-03-10 2017-09-14 Titanium Metals Corporation Alpha-beta titanium alloy having improved elevated temperature properties and superplasticity
CN107858558A (en) * 2017-11-23 2018-03-30 北京有色金属研究总院 A kind of Superplastic Titanium Alloys sheet material and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299626A (en) * 1980-09-08 1981-11-10 Rockwell International Corporation Titanium base alloy for superplastic forming
US5256369A (en) * 1989-07-10 1993-10-26 Nkk Corporation Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
EP0408313B1 (en) * 1989-07-10 1995-12-27 Nkk Corporation Titanium base alloy and method of superplastic forming thereof
JPH0819502B2 (en) * 1990-02-20 1996-02-28 日本鋼管株式会社 Titanium alloy excellent in superplastic workability, its manufacturing method, and superplastic working method of titanium alloy
JP3395443B2 (en) * 1994-08-22 2003-04-14 住友金属工業株式会社 High creep strength titanium alloy and its manufacturing method
RU2224047C1 (en) 2002-06-05 2004-02-20 Институт проблем сверхпластичности металлов РАН Method for manufacture of semi-finished sheet products from titanium alloys
RU2243833C1 (en) 2003-08-25 2005-01-10 ОАО Верхнесалдинское металлургическое производственное объединение (ВСМПО) Method for making thin sheets of high strength titanium alloys
RU2250806C1 (en) * 2003-08-25 2005-04-27 ОАО Верхнесалдинское металлургическое производственное объединение (ВСМПО) Method for making thin sheets of high-strength titanium alloys
GB2470613B (en) * 2009-05-29 2011-05-25 Titanium Metals Corp Alloy
RU2425164C1 (en) * 2010-01-20 2011-07-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Secondary titanium alloy and procedure for its fabrication
RU2555267C2 (en) * 2013-06-25 2015-07-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Method of fabrication of thin sheets from two-phase titanium alloy and product from these sheets
RU2549804C1 (en) * 2013-09-26 2015-04-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Method to manufacture armoured sheets from (alpha+beta)-titanium alloy and items from it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274238A (en) * 1989-07-10 1991-12-05 Nkk Corp Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
US20070007281A1 (en) * 2003-08-25 2007-01-11 Tetyukhin Vladislav V Method for manufacturing thin sheets of high strength titanium alloys description
JP2014523483A (en) * 2011-06-17 2014-09-11 テイタニウム メタルス コーポレイシヨン Method for producing alpha-beta Ti-Al-V-Mo-Fe alloy sheet
WO2017156401A1 (en) * 2016-03-10 2017-09-14 Titanium Metals Corporation Alpha-beta titanium alloy having improved elevated temperature properties and superplasticity
CN107858558A (en) * 2017-11-23 2018-03-30 北京有色金属研究总院 A kind of Superplastic Titanium Alloys sheet material and preparation method thereof

Also Published As

Publication number Publication date
RU2691434C2 (en) 2019-06-13
EP3617335A4 (en) 2020-08-19
JP7028893B2 (en) 2022-03-02
RU2017139320A3 (en) 2019-05-13
BR112019022330A2 (en) 2020-05-26
BR112019022330B1 (en) 2022-11-29
EP3617335A1 (en) 2020-03-04
RU2017139320A (en) 2019-05-13
US20200149133A1 (en) 2020-05-14
EP3617335B1 (en) 2021-11-17
CN111279003B (en) 2022-01-28
CN111279003A (en) 2020-06-12
CA3062762A1 (en) 2019-11-28
WO2018199791A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
EP0408313B1 (en) Titanium base alloy and method of superplastic forming thereof
CN109154037B (en) Alpha-beta titanium alloys with improved high temperature properties and superplasticity
JPS63186859A (en) Method for improving dynamical and statical mechanical properties of (alpha + beta)- titanium alloy
TW201504449A (en) Thermo-mechanical processing of nickel-titanium alloys
RU2555267C2 (en) Method of fabrication of thin sheets from two-phase titanium alloy and product from these sheets
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
AU2019350496B2 (en) Creep resistant titanium alloys
Yu et al. Microstructure evolution of accumulative roll bonding processed pure aluminum during cryorolling
JP7028893B2 (en) Titanium alloy-based sheet material for low-temperature superplastic deformation
Semenova et al. Features of Duplex Microstructural Evolution and Mechanical Behavior in the Titanium Alloy Processed by Equal‐Channel Angular Pressing
RU2490356C1 (en) Ultra-fine grain two-phase alpha-beta titanium alloy with improved level of mechanical properties, and method for its obtainment
Mogucheva et al. Superplasticity in a 5024 aluminium alloy processed by severe plastic deformation
Dobatkin et al. Nanocrystalline structure formation in Al-Mg-Sc alloys during severe plastic deformation
RU2345173C1 (en) Method of producing superductile plates from aluminium alloys of aluminium-magnesium-lithium system
Mukhtarov et al. Influence of severe plastic deformation and heat treatment on microstructure and mechanical properties of a nickel-iron based superalloy
JP2005330579A (en) Method for enhancing cold-formability of prescribed alloy and product produced by cold forming treatment
Galiyev et al. Dynamic recrystallization and grain growth in a ZK60 magnesium alloy sheet produced by isothermal rolling
Shagiev et al. Superplastic forming of titanium alloys at 700 C
Kumar et al. Influence of creep forming temperature on the mechanical properties and high cycle fatigue strength of Al-Mg-Sc-Zr alloy
Avtokratova et al. Microstructure and superplasticity of an Al-Mg-Sc-Zr alloy processed by ECAP and subsequent cold rolling
JP3841290B2 (en) Manufacturing method of β-type titanium alloy and β-type titanium alloy manufactured by the manufacturing method
Mulyukov et al. Current status of research and development on superplasticity at the Institute for Metals Superplasticity Problems
JPH03285055A (en) Method for working beta titanium alloy
WO2020234655A1 (en) Sheet metal product with high bendability and manufacturing thereof
Ghiasi et al. Aging behavior and microstructure evolution of a cold-drawn Ni-Co superalloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150